高中自主招生数学试题
自主招生数学试题
以下是一些自主招生数学试题的示例,:
1. 选择题:
- 1/2的平方根是多少?
A. √2
B. √1/2
C. 2
D. 1/2
-抛物线y=x^2-4x+4的顶点坐标是?
A. (0,0)
B. (2,-4)
C. (2,0)
D. (4,0)
2. 填空题:
-已知函数f(x)=x^3-3x+1,求f(-1)。
-1
-设向量a=(2,3),向量b=(-1,2),求向量a和向量b的点积。
2
3. 解答题:
-解方程组:
x+y=5
x-y=3
-证明:对于任意实数a和b,a^2+b^2≥2ab。
4. 应用题:
-一家工厂生产A、B两种产品,生产A产品需耗电8千瓦时,生产B产品需耗电12千瓦时。
若工厂每天只能生产A、B中的一种产品,且每天至少生产A产品2个,求该工厂每天最多能生产多少个B产品。
-一辆汽车从A地出发,以60公里/小时的速度行驶,行驶3小时后到达B地。
若汽车返回时的速度为80公里/小时,求汽车返回A地所需的时间。
高中自主招生数学试题及答案
高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。
A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。
A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。
7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。
8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。
9. 一个正方体的体积为27,它的边长是_________。
10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。
三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。
(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。
(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。
(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。
(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。
(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。
希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。
重点高中自主招生数学试题
重点高中自主招生数学试题一、选择题1.若函数$f(x)=\frac{2x-1}{x+3}$, 当$x$趋近于无穷大时,$f(x)$的值趋近于A. 2B. -2C. 1D. -12.已知函数$f(x)$的定义域为$x \in (-\infty, 2)$, 那么函数$g(x)=f(e^{2x})$的定义域是A. $x \in (-\infty, \ln4)$B. $x \in (-\infty, 2)$C. $x \in (-\infty, \ln2)$D. $x \in (-\infty, \ln\frac{1}{4})$3.已知函数$f(x)=\frac{x-1}{x+1}$,则$f(x+1)$等于A. $f(x)$B. $f(x)+1$C. $f(x-1)$D. $\frac{1}{f(x)}$二、填空题1.设$a$为正整数,若$a^3-4a^2+5a-2=0$有一个正整数解,则$a$的值是\anst{2}。
2.设等差数列$\{a_n\}$满足$a_1=5$,$a_9=29$,则$a_{15}$的值是\anst{47}。
3.已知$\frac{3^x+3^{-x}}{3^x-3^{-x}}=7$,则$x$的值是\anst{1}。
三、解答题1.解方程:$\log_3(x^2+2x)-2\log_3(x+1)=\log_3(x+2)-2$解答:首先,我们可以利用对数的性质进行简化。
将题目中的等式两边都取对数底为3,得到:$\log_3(x^2+2x)-\log_3(x+1)^2=\log_3(x+2)-1$然后,利用对数的运算相关规律合并右侧表达式:$\log_3\left(\frac{x^2+2x}{(x+1)^2}\right)=\log_3(x+2)-1$进一步简化为:$\log_3\left(\frac{x^2+2x}{x^2+2x+1}\right)=\log_3(x+2)-1$由于等式两边底数相同,因此可以去掉对数符号:$\frac{x^2+2x}{x^2+2x+1}=x+2$接下来,我们将方程进行整理化简为二次方程:$x^2+2x=(x^2+2x+1)(x+2)$展开并合并同类项:$x^2+2x=x^3+4x^2+5x+2$整理得到:$x^3+3x^2+3x+2=0$通过观察,我们可以发现当$x=-1$时,方程成立。
省级重点高中自主招生数学真题8套(含答案)
省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。
以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。
)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。
2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。
3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。
重点高中自主招生数学(含答案)
重点高中自主招生数学试题答案及评分标准一、选择题(本题满分30分,每小题5分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、已知实数a 满足,则等于 (B )|2|2a a -+=a (A )0 (B )1(C )2(D )32、名同学参加夏令营活动,需要同时搭建可容纳人和人的两种帐篷,则有效搭建方案5032共有A )(A )8种 (B )9种 (C )种3、反比例函数与一次函数 1k y x -=y =B ).是的平分线,∆70,=︒120,BPC ∠=︒BD ABP ∠CE( C )BFC =( (D ) 95︒100︒5、如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部ABCD A 30︒AB C D '''分的面积为 ( A )(A )(B1(C )(D )112D C (A)(B)(C)(D)(A)(B)(C)(D)6、四条直线围成正方形。
现掷一个均匀且各面上6,6,6,6+=-=+-=--=x y x y x y x y ABCD 标有1、2、3、4、5、6的立方体,每个面朝上的机会是均等的。
连掷两次,以面朝上的数为点P 的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标),则点落在正方形面上(含边界)P 的概率是( D )(A ) (B ) (C )(D )214397125二、填空题(本大题满分30分,每小题5分)7、若,则的值为 0 .1,x =-43221x x x ++- 10、如图,双曲线与矩形OABC 的边CB ,BA 分别交于点E ,F 且AF =BF ,连2(0)y x x=>接EF ,则△OEF 的面积为 .2311、如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点 P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是_____14/3_______cm .12、对于正数x ,规定,例如。
重点高中自主招生考试数学试卷精选全文
可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。
2025年重点高中自主招生考试数学模拟试卷试题(含答案)
2025重点高中自主招生数学针对性模拟试卷(本试卷满分150分,时间2小时)一、选择题(每小题6分,共60分)1.若“14人中至少有2人在同一个月过生日”这一事件发生的概率为P ,则()A.P=0B.0<P<1C.P=1P>12.下列命题中,真命题的个数是()①一组对边平行且对角线相等的四边形是矩形②对角线互相垂直且相等的四边形是菱形③两组对角分别相等的四边形是平行四边形④一组对边平行,另一组对边相等的四边形是平行四边形A.0个 B.1个 C.2个 D.3个3.方程()1112=--x x 的根共有()A.1个B.2个C.3个D.4个4.设{}d c b a ,,,max 表示d c b a ,,,中最大的数,则⎭⎫⎩⎨⎧-210,2,260tan 2,45cos 2max 0π=()A.045cos 2 B.260tan 20- C.2π D.2105.若关于x 的方程012)14(2=-+++m x m x 的两根分别为1x 、2x ,且321=+x x ,则m =()A.-1或21 B.-1或1C.21-或21 D.21-或16.如图,在△ABC 中,点D 在线段AC 上,点F 在线段BC 延长线上,BF=5CF,且四边形CDEF 是平行四边形,△BDE 与△ADE 的面积之和为7,则△ABC 面积为()A.28 B.29 C.30 D.327.用数字0,1,2,3,4可以组成没有重复数字的四位数共有()A.64个 B.72个 C.96个 D.不同于以上答案8.已知y x ,是整数,则满足方程03432=---y x xy 的数对),(y x 共有()A.4对B.6对C.8对D.12对9.如图,在△ABC 中,AC=BC=4,D 是BC 的中点,过A,C,D 三点的圆O 与AB 边相切于点A,则圆O 的半径为()A.2B.5C.214D.714410.若关于x 的方程x k x =-23有三个不同解321,,x x x ,设,321x x x m ++=则m 的取值范围为()A.2<m B.23->m C.20<<m D.223<<-m 二、填空题(每小题6分共36分)11.已知△ABC 中,BC=1,AC=2,AB=3,则△ABC 的内切圆半径为.12.若y x 、满足⎪⎪⎩⎪⎪⎨⎧=+=+2454545yx xy y x xy ,则=+y x .13.如图,在平面直角坐标系中,抛物线22--=x x y 与x 轴交于A、B 两点(点A 在点B 左边),点E 在对称轴MN 上,点F 在以点C(-1,-4)为圆心,21为半径的圆上,则AE+EF 的最小值为.14.已知直线)0(1>+=k kx y 与双曲线xy 2=交于A、B 两点,设A、B 两点的坐标分别为),(11y x A 、),(22y x B ,则=-+-)1()1(1221y x y x .15.若21≤---a x x 对任意实数x 都成立,则实数a 的取值范围是.16.已知互不相等的正整数20321,,,,a a a a 满足202420321=+++a a a a ,设d 是20321,,,,a a a a 的最大公约数,则d 的最大值为.三、解答题(共54分)17.(12分)已知实数215-=a .(1)求a a +2的值;(2)求3223111aa a a a a +++++的值.18.(12分)已知一次函数)0(1)2(<+-=k x k y 的图象与y x 、轴分别交于点A、B.(1)若2-=k ,试在第一象限内直接写出点),(y x M 的坐标,使得A、B、M 三点构成一个等腰直角三角形;(2)设O 为坐标原点,求△OAB 的面积的最小值.19.(14分)如图,已知0120=∠AOB ,PT 切圆O 于T,A、B、P 三点共线,∠APT 的平分线依次交AT、BT 于C、D,连接BC、AD.(1)求证:△CDT 为等边三角形;(2)若AC=8,BD=2,求PC 的长.20.(16分)已知函数a x a x y -+-+=3)4(2.(1)若此函数的图象与x 轴交于点)0,()0,(21x B x A 、,且2021≤<≤x x ,求a 的取值范围;(2)若20≤≤x ,求y 的最大值;(3)记a x a x x f -+-+=3)4()(2,若对于任意的40<<a ,都能找到200≤≤x ,使t x f ≥)(0,求t 的取值范围参考答案:一、选择题:1-5CBBDC6-10ACBDD 二、填空题:11、2321-+12、913、2914、-415、31≤≤-a 16、817.(1)∵215-=a ,512=+∴a ,5)12(2=+∴a .4442=+∴a a ,12=+∴a a .(3)a a -=12,12)1()1(23-=--=-=-=∴a a a a a a a a .∴原式==++++-3321112aa a a a 122222112333-+=+=++a a a a a a a .当215-=a 时,原式=353)25(2152521511522152+=++-=-+-=--+-⨯.18.(1)当2-=k 时,52+-=x y ,满足题意的M 点有3个,分别为415,415(),215,5(),25,215(321M M M .(2)易求得)21,0(),0,12(k B kA --.k kk k OB OA S OAB 2212)2112(2121--=--=⋅=∴∆,0<k ,021>-∴k ,02>-k .有均值不等式得4)2(2122=-⋅-+≥∆k kS OAB ,当且仅当k k 221-=-,即21-=k 时,等号成立.∴△ABC 的面积的最小值为4.19.(1)证明:0120=∠AOB ,06021=∠=∠∴AOB ATB .∵PT 切⊙O 于T,∴∠BTP=∠TAP.∵PC 平分∠APT,∴∠APC=∠CPT.∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT.∴∠TCD=∠CDT=00060260180=-.∴△CDT 为等边三角形.(3)解:设CT=DT=x ,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB.∴BDCTPD PC =①,∵∠DTP=∠PAC,∠APC=DPT,∴△ACP∽△TDP.∴PD PC TD AC =,∴TD AC BD CT =.∴xx 82=.∴4=x (负值舍去).∴CD=DT=CT=4.由①得244=-PC PC ,解得PC=8.20.解:(1)∵0)2()3(4)4(22>-=---=∆a a a ,2≠∴a .①当a x x -==3,121时,则231≤-<a ,∴21<≤a ;②当1,321=-=x a x 时,则130<-≤a .32≤<∴a .综上所述,a 的取值范围为31≤≤a 且2≠a .(2)对称轴为直线24a x -=.分三种情况讨论:①当024<-a,即4>a 时,当2=x 时,1-=a y 为最大值.②当2240≤-≤a,即40≤≤a 时,此时y 最大值在0=x 或2=x 处取得.(ⅰ)当242024a a --≥--时,则20≤≤a .此时,当0=x 时,a y -=3为最大值;(ⅱ)当242024aa --<--时,则42≤<a ,此时,当2=x 时,1-=a y 为最大值.③当224>-a,即0<a 时,当0=x 时,a y -=3为最大值.综上所述,当2<a 时,y 的最大值为a -3;当2>a 时,y 的最大值为1-a .(3)对称轴为直线24a x -=.∵40<<a ,∴2240<-<a.∴函数a x a x x f -+-+=3)4()(21在区间⎥⎦⎤⎢⎣⎡-24,0a 上是减函数,在区间⎥⎦⎤⎢⎣⎡-2,24a 上是增函数.∴对任意的)4,0(∈a ,存在]2,0[0∈x 使得t x f ≥|)(|0可化为对任意的)4,0(∈a ,t f ≥|)0(|或t f ≥|)2(|或t af ≥-)24(有一个成立即可.即t a f f f ≥⎭⎬⎫⎩⎨⎧-max 24(||,)2(||,)0(|即可.①当242024a a --≥--时,则20≤≤a ,|)2(||)0(|f f ≥.∴a a a a f f t -=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤3|2)2(||,3||24(||,)0(|max2max ,∴1)3(min =-≤a t .②当242024aa --<--时,则42≤<a ,此时,|)0(||)2(|f f >.1|4)2(||,1||24(),2(|max2-=⎭⎬⎫⎩⎨⎧---=⎭⎬⎫⎩⎨⎧-≤∴a a a a f f t .∴1)1(min =-≤a t .综上所述,t 的取值范围为1≤t .。
安徽省芜湖市第一中学2021-2022学年高一自主招生考试数学试题
安徽省芜湖市第一中学2021-2022学年高一自主招生考试数学试题学校:___________姓名:___________班级:___________考号:___________A .①②B .②④3.已知2222,a b b c a b c -=-=++=A .-22B .-14.两枚相同的正方体骰子,六个面分别标有数字枚骰子朝上面的数字之积能被6整除的概率为(A .2个B .6.如图,已知直线1:l y =A .2B .D .7.如图,已知在平面直角坐标系的顶点A ,且点B 在x 轴上,过点A .6B .二、填空题8.已知()2311a a --=,则a 的取值可能是__________.9.分解因式32452x x x +++=__________.10.若关于整数x 的不等式组2123x a x b -<⎧⎨->⎩的解为31x -≤≤,则a b -的最大值为__________.11.设,,a b c 是正整数,且7080,8090,90100a b c ≤<≤<≤<,当数据,,a b c 的方差最小时,a b c ++的值为__________.12.若一列不全为零的数除了第一个数和最后一个数外,每个数都等于与它相邻的前后两数之和,则称这列数具有“波动性质”.已知一列数共有2025个,第五个数为3,且具有“波动性质”,则这2025个数的和是__________.三、解答题13.如图,A 是圆B 上任意一点,点C 在圆B 外,已知2,4AB BC ACD == ,是等边三角形,则BCD △的面积的最大值为__________.四、填空题五、解答题(1)如图(1),若236CF EF ==,求线段BD 的长度;(2)如图(2),若2,22GC GE ==,求tan CDA ∠的值.18.材料:对抛物线21(0)2y x p p=>,定义:点0,2p F ⎛⎫ ⎪⎝⎭叫做该抛物线的焦点,(1)求抛物线C的解析式和点A的坐标;(2)若将抛物线C的图象向左平移2个单位,再向上平移①设M为抛物线C'位于第一象限内图象上的任意一点,+的最小值;MN MA参考答案:由于A 为定点,则A '也为定点,故当即此时AM MP PN ++取得最小值,因为直线1l 和2l 与x 轴相交所成的锐角分别为所以604020PON ∠=-= ,则而A 坐标为()2,23,故OA OA =AF BC ∴ ,AED BCD ∴ ,32AE AD BC BD ∴==,EF AF AEBC BC-∴=,【详解】,连接为边作等边BCM=∠=︒,60MCB=∠,DCM ACB,=,AC MC BC≅△(SAS),DCM CAB//EH AD ,,BH BE CD CF HD EA HD EF∴==,因为,CB CA CE AB =⊥,所以E如图,过点E 作EH AD ⊥于点H EGH ∴ 等腰直角三角形,EH =2,2CG CG EH =∴== ,在CFG △和EFH △中,根据阅读材料中的结论,可得MF 于是1MN MA MF MA +=+-要使MN MA +最小只需MF MA +根据两点间线段最短,可得MF【点睛】难点点睛:求解2PF FA -⋅方程,和抛物线方程联立,表示出点:1AB y kx =+,联立214y x =推出。
自主招生考试数学试卷及参考答案
自主招生考试数学试卷及参考答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22第2自主招生考试 数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。
2.全卷由试题卷和答题卷两部分组成。
试题的答案必须做在答题卷的相应位置上。
做在试题卷上无效。
3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。
4.答题过程不准使用计算器。
祝你成功!一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则 A S S S 123<< B S S S 213<< C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是33第5A π-1B π-2C 121-πD 221-π4.由325x y a x y a x y a m-=+⎧⎪+=⎪⎨>⎪⎪>⎩得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是 A 0 B 1 C 2 D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =ax 2+(a -b )x —b 的图象如图所示,44那么化简222||a ab b b -+-的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S 正方形ABCD = ▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:(1)第4个图案中有白色纸片 ▲ 张 (2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张第10题 第7题第8题5511.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答: ▲ . (2)作DE ∥AB 的目的是: ▲ .(3) 判断四边形ABED 为平行四边形的依据是: ▲ . (4)判断四边形ABCD 是等腰梯形的依据是 ▲ .(5)若题设中没有AD ≠BC ,那么四边形ABCD 一定是等腰梯形吗为什么 答 ▲ .自主招生考试第11题第12题66数学标准答案一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8. 256 9. 57610.(1) 13 (2) 3n+1 (3) 15250 11. a b12.(1)没有错误 (2)为了证明AD ∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义 (5) 不一定,因为当AD =BC 时,四边形ABCD 是矩形 三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。
枣庄市高中数学自招题
枣庄市高中数学自招题枣庄市高中数学自招题是高中生备战自主招生考试的重要内容之一,其难度较高,涵盖了高中数学各个知识点。
以下是几道典型的枣庄市高中数学自招题供大家参考:1. 设直线L过点A(1,2),与两坐标轴交于A'、A"两点,求L的方程。
解析:由题意可知直线L经过点A(1,2),且交x轴于点A'(x,0),交y轴于点A"(0,y)。
则直线L的斜率为k=(2-0)/(1-x),又由直线L经过点A(1,2),可得2=k(1-x),解得k=2-x。
所以直线L的方程为y=(2-x)x。
2. 已知函数f(x)=2x^2+3x+1,g(x)为f(x)的反函数,求g(x)的表达式。
解析:要求函数f(x)=2x^2+3x+1的反函数g(x),首先求f(x)的导函数f'(x),即f'(x)=4x+3。
由于f(x)的反函数g(x)与f(x)关于直线y=x对称,所以g'(x)=1/f'(g(x))。
代入f'(x)=4x+3,解得g'(x)=1/(4g(x)+3)。
将g'(x)代入g(x)的导函数中,得到g(x)=1/(4x+3)。
3. 已知点A(2,1)、B(3,2)、C(4,3)为直线y=kx+b上的三个点,求k和b的值。
解析:由题意可知点A(2,1)、B(3,2)、C(4,3)在直线y=kx+b上,代入得到三个方程:1=2k+b,2=3k+b,3=4k+b。
解这个方程组,得到k=1,b=-1。
所以直线y=x-1。
枣庄市高中数学自招题的题目涵盖了高中数学的各个知识点,考察了学生对数学知识的掌握程度和运用能力。
通过解答这些题目,学生可以更好地理解数学知识,提高解题的能力和速度,为高中数学自主招生考试做好准备。
希望同学们能认真学习,不断练习,提高数学水平,取得优异的成绩。
省重点高中自主招生数学试卷及答案
省重点高中自主招生考试数学试卷 2018.3本次考试不能使用计算器,没有近似计算要求的保留准确值.一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选,多选,错选,均不给分) 1.下列计算正确的是( ▲ )A .4212-=⎪⎭⎫ ⎝⎛-- B .()532)()(a a a -=-+-C .336)()(a a a -=-÷- D .()623a a -=-2.如图是某一几何体的三视图,其表面积为( ▲ )A .π24B .π21C .π15D .π123.自然数7、8、8、a 、b ,这组数据的中位数为7,且唯一..的众数是8,那么,所有满足条件的a 、b 中,b a +的最大值是( ▲ )A .9B .10C .11D .124.在抛物线2x y =上任取一点A (非坐标原点O ),连结OA ,在OA 上取点B ,使OB=31OA , 则顶点在原点且过点B 的抛物线的解析式为( ▲ ) A .231x y =B .29x y =C .291x y = D .23x y = 5.函数12+=x y 与反比例函数x k y =的图象有一个交点为M (m ,3),则不等式12-<xkx 的解为( ▲ ) A .3<x B .23-<x 或10<<x C . 1>x 或023<<-x D .1>x 或23-<x 6.一个三角形中一边上的高大于这条边,称这条边为“优边”.那么,一个三角形中“优边”的条数最多为( ▲ )A .0B .1C .2D .3主视图 俯视图(第2题)7.水果店进1吨水果,进价每千克6元,售价每千克11元,销售过程中有2%的水果被损 坏而不能出售.售出进货总量的一半后,为尽快售完,余下的水果准备打折出售.为使 总利润不低于3300元,在余下的水果的销售中,营业员最多能打几折优惠顾客?答:( ▲ ) A .6 B .7 C .8 D .9 8.设a 、b 、c 都是实数,有如下三个命题:①若0<b<2,且a 2+ab+c>0,则c>1;②若c>1,且0<b<2,则a 2+ab+c>O ;③若a 2+ab+c>0,且c>1,则O<b<2. 其中真命题( ▲ )A .只有①B .只有②C .①和②D .②和③ 9.如图,Rt △ABC 中,∠=∠Rt C ,BC =26,⊙O 与AB 相切于D ,与AC 相交于E ,ED ∥BC ,且22tan =∠ADE ,BD =23,则⊙O 的半径是( ▲ )A .23B .32C .24D .6210.对于任意实数x ,y ,z ,定义运算“※”,满足x ※y =57)1()1(249462222-+++-++y x y xy x ,且 x ※y ※z =(x ※y )※z .在下列各结论中:①2※1=5;②x ※3=6;③这一运算满足交换律,即x ※y =y ※x ;④2014※2013※2012※……※4※3※2=19.其中正确的个 数是( ▲ )A .1B .2C .3D . 4 二、填空题(本题有6小题,每小题5分,共30分)11.等式()1112=--x x 成立的条件是 ▲ .ABCDEO. (第9题)13.国际上通常用恩格尔系数(记作n )来衡量一个国家和地区人民的生活水平的状况,它 的计算公式:xn y=(x :家庭食品支出总额;y :家庭消费支出总额).各种家庭类型的 n 如下表:和2010年完全相同的情况下多支出2000元,并且y=2x+3600(单位:元),则该家庭2013 年属于 ▲ (填家庭类型).14.已知不等式63<x 的解都能使不等式7)2(->-a x a 成立,则a 的取值范围为 ▲ . 15.如图,等腰△ABC 的底边在y 轴正半轴上,顶点C 在第一象限,延长AC 交双曲线xky = 于D ,且CD=AC ,延长CB 交x 轴于E .若△ABE 的面积为5,则k = ▲ .16.已知,点I 是△ABC 的内心, E 、F 分别在AB 、AC 上,且EF 过点I ,AE=AF ,BE=4,CF=3,则EF 的长为▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,满分80分)17.你先化简224(2)24a aa a a -+÷+-,再从-2 , 2中选择一个合适的数代入求值.18.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如5323+=,.I AC B FE (第16题)119733++=, ,1917151343+++=,(1)求37分裂的结果;(2)若3m 分裂后,其中有一个奇数为2015,求m 的值.19.如图,□ABCD 的对角线AC 和BD 相交于点O ,AE 垂直平分BC ,分别交BD 、BC 于点F 、E ,已知3sin 5BAE ∠=,AB =10. 求AO 和AF 的长.20.某公司现有甲、乙两种品牌的打印机,其中甲品牌有A ,B 两种型号,乙品牌有C,D,E三种型号.朝阳中学计划从甲、乙两种品牌中各选购一种型号的打印机. (1)利用树状图或列表法写出所有的选购方案;(2)若各种型号的打印机被选购的可能性相同,那么C 型号打印机被选购的概率是多少? (3)各种型号的打印机的价格如下表:朝阳中学购买了两种品牌的打印机共30台,其中乙品牌只选购了E 型号,共用去资金 5万元,问E 型号打印机共购买了多少台?21.如果一个矩形纸片用平行于边的线段分成n 个小矩形纸片(这些小矩形可以互相全等,也可以不全等),若所有分成的小矩形纸片与原矩形相似,则称这样的矩形为n 阶自相似矩形.如一组邻边长分别为1,2的矩形Q 分割成两个全等的矩形,与原矩形是相似的,因此矩形Q 是2阶自相似矩形.请找出所有较短边长为1的3阶自相似矩形,画出分割示意图,写出较长边的长(结 果保留根号).22.若三角形的一边和该边上的高相等的三角形称为“优美三角形”.(1)如图①,在3×3的网格中找一个格点C ,使得△ABC 是优美三角形.符合条件的C 点共几个? (2)已知抛物线2yax 经过A (1-,1),P 是y 轴正半轴上一动点(除原点),射线AP与抛物线交另一点B .问△AOP 和△POB 是否一定是“优美三角形”,若是,说明理由;若不是,求出当P 点在什么位置时,能使其成为“优美三角形”.23.我们把自变量为x 的函数记作)(x f ,)(m f 表示自变量m x =时,函数)(x f 的值. 已知22463)(22+++-=a a ax x x f ,其中a 为实数.(1)若在50≤≤m 的范围内,存在m ,使)3()54(2m f m f -=-,求a 的取值范围; (2)当12≤≤-x 时,)(x f 的最小值为4,求所有满足条件的a 的值.BAAOPxyB图①图②(第22题)24.如图①,在平面直角坐标系中,点M 在x 轴正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴 于C ,D 两点,且C 为 的中点,连结CE 、CB ,已知A (2 ,0),AE =8. (1)求点C 的坐标和⊙M 的半径;(2)过点D 作⊙M 的切线,交x 轴于点P ,动点F 在⊙M 上运动,设OF =y ,PF =x 求y 与x 的函数解析式;(3)如图②过E 作弦EF ,交CB 于H ,若CE =CH ,求EF 的长.AE(图①)(第24题)(图②)数学试题参考答案及评分一、选择题(本题有10小题,每小题4分,共40分。
自主招生数学试题及答案
自主招生数学试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项不是正整数?A. 0B. 1C. 2D. 3答案:A2. 如果函数\( f(x) = x^2 - 4x + 3 \),那么\( f(2) \)的值是多少?A. -1B. 1C. 3D. 5答案:A3. 圆的面积公式是?A. \( \pi r^2 \)B. \( 2\pi r \)C. \( \pi d \)D. \( \pi r \)答案:A4. 已知\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。
A. \( \frac{4}{5} \)B. \( \frac{1}{5} \)C. \( -\frac{4}{5} \)D. \( -\frac{1}{5} \)答案:A5. 以下哪个数是无理数?A. \( \sqrt{2} \)B. 1.5C. 0.333...D. 1答案:A6. 一个等差数列的首项是3,公差是2,第10项是多少?A. 23B. 21C. 19D. 17答案:B二、填空题(每题3分,共15分)1. 一个直角三角形的两条直角边分别为3和4,斜边的长度是______。
答案:52. 函数\( g(x) = 2x - 1 \)的反函数是______。
答案:\( g^{-1}(x) = \frac{x + 1}{2} \)3. 一个数的平方根是4,这个数是______。
答案:164. 已知\( \tan(\theta) = 3 \),求\( \sin(\theta) \)的值(假设\( \theta \)在第一象限)。
答案:\( \frac{3\sqrt{10}}{10} \)5. 一个等比数列的首项是2,公比是3,第5项是多少?答案:162三、解答题(每题25分,共50分)1. 解不等式:\( |x - 5| < 4 \)。
高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)
高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1 2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.48.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是.10.命题“如果a2=b2,那么a=b”的逆命题是命题.(填写“真”或“假”)11.命题:“两直线平行,则同旁内角互补”的逆命题为.12.命题“若a=b,则a2=b2”的逆命题是.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是命题.(填“真”或“假”)14.命题“如a=b,那么|a|=|b|”的逆命题是命题.(填“真”或“假”)15.命题:“如果a=b,那么3a=3b”的逆命题是,该逆命题是(填“真”或“假”)命题.16.“若a=b,则a2=b2”的逆命题是命题.(填“真”或“假”)17.命题“若a=b,则|a|=|b|”的逆命题是.18.命题“如果a2=b2,那么a=b”的逆命题是命题(填“真”或“假”).19.命题“若a2=b2,则a=b.”的逆命题是.20.命题:“如果a=b,那么a2=b2”的逆命题是,该命题是命题(填真或假).21.命题:“若a=b,则a4=b4”,该命题的逆命题是;该命题的逆命题是命题.(填“真”或“假”)22.命题“如果a2=b2,那么a=b”的逆命题是,该命题的逆命题是命题(填真或假)23.命题“如果,那么a=b”的逆命题是:.24.命题“如果a=b,那么a2=b2”的逆命题是.高中自主招生考试数学真题-四种命题及其关系真题(配完整解析)参考答案与试题解析一.选择题(共8小题)1.命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可取下面哪组值反例说明()A.a=1,b=1B.a=﹣1,b=﹣1C.a=1,b=2D.a=﹣1,b=1【解答】解:命题“如果a=b,那么|a|=|b|”的逆命题是假命题,可以取a=﹣1,b=1说明.故选:D.【点评】本题考查命题与定理,解题的关键是理解题意,灵活运用所学知识解决问题.2.下列命题:①同旁内角互补,两直线平行;②若a2=b2,则a=b;③锐角与钝角互为补角;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补是真命题;②若a2=b2,则a=b的逆命题是若a=b,则a2=b2是真命题;③锐角与钝角互为补角的逆命题是互补的角是锐角与钝角,是假命题;④相等的角是对顶角的逆命题是对顶角相等,是真命题;故选:B.【点评】此题主要考查了命题与定理,正确把握相关性质是解题关键.3.下列说法中,正确的有()个①,,,0,cos60︒五个数中,其中是无理数的有2个.②关于x的一元二次方程mx2﹣2x﹣10有两个实数根,那么字母m的取值范围是m>﹣1且m≠0.③平行四边形,圆,正六边形,线段四个图形既是中心对称图形,也是轴对称图形.④“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤相等的圆心角所对的弧相等⑥单项式的次数是3次.A.1个B.2个C.3个D.4个【解答】解:①正确.,,,0,cos60︒五个数中,其中,是无理数.②错误.mx2﹣2x﹣10是代数式,表示方程.③错误.平行四边形是中心对称图形,不是轴对称图形.④正确.“若a=b,则|a|=|b|”,它的逆命题是假命题.⑤错误.在同圆或等圆中,相等的圆心角所对的弧相等.⑥错误.单项式的次数是2次.故选:B.【点评】本题考查无理数、一元二次方程、代数式、中心对称图形、轴对称图形、圆心角与弧之间的关系、单项式的次数的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.4.给出下列4个命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④对顶角相等,它们的逆命题是真命题的个数是()A.1个B.2个C.3个D.4个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④对顶角相等的逆命题是相等的角是对项角,是假命题;它们的逆命题是真命题的个数是2个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.5.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.【点评】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,用到的知识点是逆命题.6.下列说法正确的有()①在,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个【解答】解:在,,π,﹣3.1415926,中,共有2个无理数,所以①错误;若a=b,则a2=b2,它的逆命题为若a2=b2,则a=b,此是逆命题为假命题,所以②错误;若n边形的内角和是外角和的3倍,即(n﹣2)×180°=3×360°,解得n=8,即它是八边形,所以③正确;平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧,所以④错误.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列正确叙述的个数是()①每个命题都有逆命题②真命题的逆命题是真命题③假命题的逆命题是真命题④每个定理都有逆定理⑤每个定理一定有逆命题⑥命题“若a=b,那么a3=b3”的逆命题是假命题.A.1B.2C.3D.4【解答】解:把原命题的题设与结论交换得到它的逆命题,所以①正确;真命题:若a=b,则|a|=|b|,其逆命题为:若|a|=|b|,则a=b,它是假命题,所以②错误;假命题:若am>bm,则a>b,其逆命题:若a>b,则am>bm,它是假命题,所以③错误;真命题的逆命题不一定是真命题,所以④错误;每个定理一定有逆命题,所以⑤正确;命题“若a=b,那么a3=b3”的逆命题为“若a3=b3,则a=b”,它是真命题,所以⑥错误.故选:B.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题叫定理;两个命题的题设与结论互换的命题互为逆命题.8.已知命题:如果a=b,那么|a|=|b|.该命题的逆命题是()A.如果a=b,那么|a|=|b|B.如果|a|=|b|,那么a=bC.如果a≠b,那么|a|≠|b|D.如果|a|≠|b|,那么a≠b【解答】解:已知本题中命题的题设是a=b,结论是|a|=|b|,所以它的逆命题中的题设是|a|=|b|,结论是a=b,所以本题中的逆命题是如果|a|=|b|,那么a=b.故选:B.【点评】本题考查了互逆命题的知识.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.二.填空题(共16小题)9.命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b.【解答】解:命题“若a=b,则﹣a=﹣b”的逆命题是若﹣a=﹣b,则a=b,故答案为:若﹣a=﹣b,则a=b【点评】此题考查命题问题,关键是根据命题的题设和结论进行颠倒得出逆命题即可解答.10.命题“如果a2=b2,那么a=b”的逆命题是真命题.(填写“真”或“假”)【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,故答案为:真.【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.命题:“两直线平行,则同旁内角互补”的逆命题为同旁内角互补,两直线平行.【解答】解:命题“两直线平行,同旁内角互补”的题设是“两直线平行”,结论是“同旁内角互补”,故其逆命题是“同旁内角互补,两直线平行”.故应填:同旁内角互补,两直线平行.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.对于命题“如果a=b,那么ac=bc.”,它的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如果a=b,那么ac=bc.”,它的逆命题是“如果ac=bc,那么a=b.”,是假命题,故答案为:假.【点评】本题考查的是命题的概念、命题的真假判断,掌握逆命题的概念是解题的关键.14.命题“如a=b,那么|a|=|b|”的逆命题是假命题.(填“真”或“假”)【解答】解:命题“如a=b,那么|a|=|b|”的逆命题是如果|a|=|b|,那么a=b,是假命题,【点评】本题考查的是命题的逆命题、以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.命题:“如果a=b,那么3a=3b”的逆命题是如果3a=3b,那么a=b,该逆命题是真(填“真”或“假”)命题.【解答】解:根据题意得:命题“如果a=b,那么3a=3b”的条件是如果a=b,结论是3a=3b,故逆命题是如果3a=3b,那么a=b,该命题是真命题.故答案为:如果3a=3b,那么a=b,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.也考查了命题的真假判断.16.“若a=b,则a2=b2”的逆命题是假命题.(填“真”或“假”)【解答】解:若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.此逆命题为假命题.故答案为假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.17.命题“若a=b,则|a|=|b|”的逆命题是若|a|=|b|,则a=b.【解答】解:命题“若a=b,则|a|=|b|”的逆命题是:“若|a|=|b|,则a=b”.故答案为若|a|=|b|,则a=b【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.18.命题“如果a2=b2,那么a=b”的逆命题是真命题(填“真”或“假”).【解答】解:“如果a2=b2,那么a=b”的逆命题是“如果a=b,那么a2=b2.”“如果a2=b2,那么a=b”的逆命题是真命题,【点评】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.命题“若a2=b2,则a=b.”的逆命题是若a=b,则a2=b2.【解答】解:命题“若a2=b2,则a=b”的条件是a2=b2,结论是a=b,故逆命题是:若a=b,则a2=b2.故答案为如果a=b,那么a2=b2.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.20.命题:“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b,该命题是假命题(填真或假).【解答】解:根据题意得:命题“如果a=b,那么a2=b2”的条件是如果a=b,结论是a2=b2”,故逆命题是如果a2=b2,那么a=b,该命题是假命题.故答案为:如果a2=b2,那么a=b;假.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.21.命题:“若a=b,则a4=b4”,该命题的逆命题是若a4=b4,则a=b;该命题的逆命题是假命题.(填“真”或“假”)【解答】解:“若a=b,则a4=b4”的条件是:a=b,结论是:a4=b4,∴逆命题是:若a4=b4,则a=b,若a4=b4,则a=±b,故为假命题,故答案为若a4=b4,则a=b,假.【点评】本题考查了互逆命题的知识以及真假命题的判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,难度适中.22.命题“如果a2=b2,那么a=b”的逆命题是如果a=b,那么a2=b2,该命题的逆命题是真命题(填真或假)【解答】解:命题“如果a2=b2,那么a=b”的条件是如果a2=b2,结论是a=b,故逆命题是:如果a=b,那么a2=b2,为真命题.故答案为如果a=b,那么a2=b2,真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23.命题“如果,那么a=b”的逆命题是:如果a=b,那么.【解答】解:命题“如果a=b”的逆命题是:如果a=b,那么故答案为:如果a=b,那么【点评】本题考查了逆命题的概念.关键是明确交换原命题的题设和结论,得到逆命题.24.命题“如果a=b,那么a2=b2”的逆命题是如果a2=b2,那么a=b.【解答】解:“如果a=b,那么a2=b2”的逆命题是:如果a2=b2,那么a=b.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考点卡片1.四种命题及其关系四种命题及其关系.1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题.3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题.2.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)3.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.。
重点高中自主招生数学试题
E A B F第3题图DA BCEGF第6题图数学测试试卷2017.2一、选择题(每小题6分,共60分)1、已知52015-=xx ,则=-+---21)1()2(23x x x ( )A 、2016B 、2017C 、2018D 、20192、已知关于x 的不等式组⎪⎩⎪⎨⎧>-+>-+xt x t x 235352恰有三个整数根。
则t 的取值范围是( ) A 、78712-<≤-t B 、23712-<≤-t C 、3423-<≤-t D 、7834-<≤-t3、如图,六边形ABCDEF 由五个单位正方形组成,称能平分此六边形的面积的直线为“好线”。
则共存在“好线”( )条。
A 、1B 、2C 、3D 、无数 4、如图,在平面直角坐标系中,R t△OAB 的顶点A 在x 轴的正半轴上,B )3 ,3(,C )0 ,21(,P 为斜边OB 上的一动点,则PA+PC的最小值为( )A 、313B 、 231C 、193+D 、725、已知z y x 、、均为非负数,且满足x 2z -y -41-z y ==+。
若z y +-=22x w 2,则w 的最小值为( ) A 、-1 B 、923 C 、21- D 、0 6、如图,正△ABC 的边长为6,D 、E 分别为边BC 、AC 上的一点,满足CD=AE 。
设BE 与AD 交于点F ,连结CF ,作EG ∥CF 与AD 交于点G 。
若EF=1,则AG 的长为( ) A 、61 B 、21C 、1D 、2 7.如图,△ABC 的外接圆⊙O 的半径长为5,BC=8,点P 为BC 的中点,以点P 为圆心 作⊙P ,若⊙P 与⊙O 相切,则⊙P 的半径长为( ) A .3 B . 3.5 C .2或8 D .2或4就读学校: 班级: 姓名: 试场号: 座位号:………………………………………………………装………………………………订………………………………线………………………………………8.如图,在菱形网格中,每个小菱形的边长都是1,点A ,B ,C 都在格点上,则在网格中与△ABC 面积相等且有一条边重合的格点三角形的个数是( )A .5B .6C . 7D .89.如图,直线l 1:1-=x y 与直线l 2:12-=x y 交于点P ,直线l 1与x 轴交于点A .一动点C 从点A 出发,沿平行于y 轴的方向向上运动,到达直线l 2上的点B 1,再沿平行于x 轴的方向向右运动,到达直线l 1上的点A 1;再沿平行于y 轴的方向向上运动,到达直线l 2上的点B 2,再沿平行于x 轴的方向向右运动,到达直线l 1上的点A 2,…依此规律,则动点C 到达点A 10所经过的路径总长为( )A .1210- B .2210- C .1211- D .2211-10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,点E ,F 分别在 边AC ,BC 上,ED ⊥DF 于点D ,延长FD 交CA 的延长线于点G ,且EG=EF .若AC=2,BC=4,则AE 的长是( )A .52B .54C .34D .65二、填空题(每小题6分,共36分) 11、已知为pn m 、、实数,若41+-x x 、均为多项式p nx mx x +++23的因式,则8622+--p n m = .12、如图,在平面直角坐标系中,O 为坐标原点,□ABOC 的对角线交于点M ,双曲线)0(<=x xky 经过点B 、M 。
高中自招试题数学答案及解析
高中自招试题数学答案及解析试题一:已知函数\( f(x) = 3x^2 - 2x + 1 \),求其导数\( f'(x) \)。
答案:首先,根据导数的定义,我们对函数\( f(x) \)进行求导。
对于\( f(x) = 3x^2 - 2x + 1 \),其导数\( f'(x) \)为:\[ f'(x) = 6x - 2 \]解析:求导的过程涉及到幂函数的导数规则,即\( (x^n)' = n \cdot x^{n-1} \)。
对于常数项1,其导数为0。
将各项的导数相加,得到最终的导数表达式。
试题二:设集合A={1, 2, 3},集合B={2, 3, 4},求集合A和集合B 的交集A∩B。
答案:集合A和集合B的交集A∩B为{2, 3}。
解析:交集是指两个集合中共有的元素。
在这个例子中,我们可以看到元素2和3同时出现在集合A和集合B中,因此它们构成了这两个集合的交集。
试题三:若\( \sin(2x) = 2\sin(x) \),求\( x \)的值。
答案:根据二倍角公式,我们知道\( \sin(2x) = 2\sin(x)\cos(x) \)。
将题目中的等式代入,得到:\[ 2\sin(x)\cos(x) = 2\sin(x) \]由于\( \sin(x) \neq 0 \),我们可以除以\( 2\sin(x) \)得到:\[ \cos(x) = 1 \]这意味着\( x \)的值是\( 2k\pi \),其中\( k \)是整数。
解析:这个问题的关键在于识别并应用二倍角公式。
通过将等式转换为已知的三角恒等式,我们可以简化问题并找到\( x \)的解。
试题四:解不等式\( |x - 3| < 2 \)。
答案:不等式\( |x - 3| < 2 \)可以分解为两个不等式:\[ -2 < x - 3 < 2 \]解得:\[ 1 < x < 5 \]解析:绝对值不等式可以通过将其分解为两个不等式来解决。
数学自主招生模拟试题
数学自主招生模拟试题
第一部分:选择题
1. 下列哪个数学符号代表无穷大?
A. √2
B. ∞
C. π
D. e
2. 如果对数a的值为3,那么指数a的值为多少?
A. 9
B. 5
C. 27
D. 81
3. 若a^2 + b^2 = 25,且a + b = 7,则a和b的值分别为多少?
A. a=3, b=4
B. a=4, b=3
C. a=5, b=6
D. a=6, b=5
4. 一个正方形的对角线长度为10,那么它的面积是多少?
A. 25
B. 50
C. 75
D. 100
5. 以下哪个不是三角函数?
A. sin
B. log
C. cos
D. tan
第二部分:填空题
1. 20%的250是多少?
答:50
2. 已知a=3,b=4,c=5,那么a^2 + b^2 = __?
答:25
3. 若a:b=2:3,b:c=3:4,求a:b:c的比值。
答:2:3:4
第三部分:简答题
1. 请简要说明直角三角形的勾股定理。
答:直角三角形的斜边的平方等于直角边的平方和。
2. 请解释什么是复数?
答:复数是由实部和虚部组成的数,通常表示为a+bi,其中a为实部,b为虚部,i为虚数单位。
3. 请列举一个常用的数学公式,并简要说明其应用场景。
答:圆的面积公式S=πr^2,可以用来计算圆形物体的表面积。
结束语:以上就是数学自主招生模拟试题的内容,希望能帮助大家更好地准备数学招生考试。
祝各位考生顺利通过考试!。
高中自主招生考试数学试题(含答案详解)
一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。
高中自主招生数学试卷(含答案)
□□高中自主招生数 学 试 卷题 号 一 二 总 分得 分一、填空题(本大题共8小题,每小题7分,共56分. 把答案填在题中横线上)1.若21x =+,则32(22)(122)2x x x -+++-的值是 .2.有6个量杯A 、B 、C 、D 、E 、F ,它们的容积分别是16毫升、18毫升、22毫升、23毫升、24毫升和34毫升.有些量杯中注满了酒精,有些量杯中注满了蒸馏水,还剩下一个空量杯,而酒精的体积是蒸馏水体积的两倍.那么注满蒸馏水的量杯是 . 3.各边互不相等的ABC ∆,两条高的长度分别为4和12,若第三条高的长度也是整数,那么这条高的长度等于 .4.如图1,在ABC ∆中, AB AC = ,40=∠A ,延长AC 到D ,使CD BC =,点P 是ABD ∆的内心,则BPC ∠= .图1 图2 图35.ABC ∆的三边长,,a b c 都为整数,且24a bc b ca +++=,当ABC ∆为等腰三角形时,它的三边边长分别为 . 6.如图2,凸五边形ABCDE 内接于半径为1的⊙O ,ABCD 是矩形, AE ED =,且BE 和CE 把AD 三等分.则此五边形ABCDE 的面积是 .7.方程20x ax b ++=的两根为12,x x ,且3322121212x x x x x x +=+=+,则有序实数对(,)a b 共有 对.8.如图3,正EFG ∆内接于正方形ABCD ,其中,,E F G 分别在边,,AB AD BC 上,若2AE EB =,则BGBC= .二、解答题(本大题共3小题,共44分,答题应写出文字说明、证明过程或演算步骤)9.(本小题满分14分)如图,⊙1O 与⊙2O 相交于A 、B 两点,过点B 的直线交⊙1O 与⊙2O 于C 、D .弧BD 的中点为M ,AM 交⊙1O 于E ,交CD 于F ,连,,CE AD DM .(1) 求证:AD EF DM CF ⋅=⋅;(2) 求证:22EF MFCE MA=; (3) 若5,7,2,4BC BD CF DF AM MF ====,求MF 和CE 的长.10.(本小题满分14分)两个男孩曹俊和伍岳在33⨯棋盘上用黑棋子和白棋子对局,规则如下:(I )他们轮流下子;(II )每轮到一次,就把一个棋子放在棋盘的空格里;(III )棋手轮到时,可选择一白子或一黑子,并且不必要总用同色;(IV )当棋盘填满时,某一行、列或对角线有偶数个黑棋子,曹俊就得1分,而某一行、列或对角线有奇数个黑棋子,伍岳就得1分;(V )棋手至少得到8分中的5分,就算得胜.(1)4:4和局是否可能?若可能,请列出一种表格的情况;若不可能,请说明理由; (2)叙述先下手的男孩的取胜策略.11.(本小题满分16分)已知直线12y x =和y x m =-+,二次函数2y x px q =++图象的顶点为M(1)若M 恰在直线12y x =和y x m =-+的交点处,证明无论m 取何实数值,二次函数2y x px q =++的图象与直线y x m =-+总有两个不同的交点;(2)在(1)的条件下,直线y x m =-+过点)3,0(-D ,二次函数2y x px q =++的图象与y轴交于点C,与x轴的左交点为A,在直线12y x=上求异于M的点N,使N在CMA∆的外接圆上.2012安师大附中自主招生数学答案1.22.A、C(或者填16毫升、22毫升)3.54.145︒5.6,6,1;4,4,2;3,3,36.53 47. 3 8.5399.(1)证明:连接AB ,BCE BAE ∠=∠,BM MD =,则BAM DAM ∠=∠BDM =∠ CEF DMF 与中,CEF DMF ∠=∠.由,ECF MAD ∠=∠CEF AMD ∠=∠CEF AMD ∴△∽△ CFEFAD MD = 即AD EF DM CF ⋅=⋅ ………………5分 (2)CEF DMF △∽△,有EFMF CEDM =,CEF AMD △∽△,有EF MDCE AM= 22EF MF MD MFCE DM AM MA== ………………9分 (3)由题意3,4BF DF ==,由相交弦定理可知:BF DF MF AF ⋅=⋅123,2MF MF MF =⋅=,由(2)可得2=64CE ,8CE = ………………14分10.解(1)4:4和局是可能的,结局如图1黑 白 黑 白 黑 白 黑白黑图1…………… 5分(2)如果有0或2个黑子的行(列或对角线,下同)的数目超过4,曹俊就会得胜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中自主招生数学试题
一、选择题(每小题5分,共30分)
1、若匀速行驶的汽车速度提高40%,则行车时间可节省( )%(精确至1%)
A、6 0
B、40
C、 29
D、25
2、如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为
( ).
A、1
B、9/4
C、4
D、36/25
3、已知:,x2+3x为( )
A、1
B、-3和1
C、3
D、-1或3
4、四边形ABCD的对角线AC、BD交于点O,且S△AOB=4,S△COD=9,则四边形A B
CD面积有( )
A、最小值12
B、最大值12
C、最小值25
D、最大值25
5、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天
平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )
A、 3个球
B、4个球
C、5个球
D、6个球
3.已知为实数,且,设,,则的大小关系是()
A. B. C. D.无法确定
6.如图,在正ABC中,D为AC上一点,E为AB上一点,BD、CE交于P,若四边形ADPE与△BPC面积相等,则∠BPE的度数为( )
(A)60° (B)45° (C)7 5° (D)50°
7.用半径为、圆心角为的扇形做成一个圆锥的侧面,则这个圆锥的底面半径
是()
A.cm
B.cm
C.cm
D.cm
8.若为整数,则能使也为整数的的个数有()
A.1个
B.2个
C.3个
D.4个
9.已知为实数,则代数式的最小值为()
A. B. C. D.
10.二次函数的图象如何移动就得到的图象()
A. 向左移动1个单位,向上移动3个单位。
B. 向右移动1个单位,向上移动3个单位。
C. 向左移动1个单位,向下移动3个单位。
D. 向右移动1个单位,向下移动3个单位。
二、填空
11、圆心在x轴上的两圆相交于A、B两点,已知A点的坐标为(-3,2),则B点的坐标是。
12、半径为10的圆0内有一点P,OP=8,过点P所有的弦中长是整数的弦有条。
13、如右图,圆锥的母线长是,底面半径是,是底面圆周上一点,从
出发绕侧面一周,再回到点的最短的路线长是
14、若抛物线中不管取何值时都通过定点,则定点坐标为
15、如图,6个半径为1的圆围成的弧边六角形(阴影部分)的面积为。
16、一顶简易的圆锥形帐蓬,帐篷收起来时伞面的长度有4米,撑开后帐篷高2米,则帐篷撑好后的底面直径是米。
17.直角坐标系中直线AB交x轴,y轴于点A(4,0)与 B(0,-3),现有一半径为1的
动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过秒后动圆
与直线AB相切。
18.方程组的解是
三、解答题(共40分)
19.为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排人,则还剩人;若每处安排人,则有一处的人数不足人,但不少于人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.
20.据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度V (km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,O)作横轴的垂线L,梯形OABC在直线L左侧部分的面积即为t(h)内沙尘暴所经过的路程S(km)
(1)当t=4时,求S的值;(2)将S随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由。
21.如图,四边形是正方形,点是的中点,是边上不同于点、
的点,若,求证:.
22、(本题14分)已知抛物线y=-x+bx+c与x轴的两个交点分别为A(x,0)、B(x,0)(A
在B的左边),且x+ x=4.
(1)求b的值及c的取值范围;
(2)如果AB=2,求抛物线的解析式;
(3)设此抛物线与y轴的交点为C,顶点为D,对称轴与x轴的交点为E,问是否存在这样的抛物线,使△AOC和△BED全等,如果存在,求出抛物线的解析式;如果不存在,请说明理由.。