2002年清华大学信号与系统考研真题
信号与系统考研专业课资料
信号与系统考研专业课资料一、引言信号与系统是电子信息科学与技术、通信工程、自动控制、电子工程及其他相关专业中的一门基础专业课程。
考研学习信号与系统,需要充分准备相关的资料,以便更好地理解和掌握这门课程的核心内容。
二、教材推荐1. 《信号与系统》(第二版),作者:艾伯特·阿兹纳夫,阿兰·韦德伯格;2. 《信号与系统分析》(第三版),作者:罗金甫,李惠民,胡云鹏;3. 《信号与系统》(第三版),作者:陈果,王荣华,刘昌军;这些教材是信号与系统这门课程的主要参考书,其中均包含了该专业的基本概念、模型与理论,并提供大量的习题和案例供学习者练习和实践。
三、学习视频推荐除了教材之外,学习信号与系统还可以通过观看相关的学习视频来加深对知识的理解。
以下是一些值得推荐的学习视频:1. 清华大学公开课:信号与系统 - 讲师:陈景润这门公开课详细介绍了信号与系统的各个方面,适合初学者入门。
讲师深入浅出地讲解了课程的核心概念和理论,并给出了许多实际应用的例子。
2. 北京大学公开课:信号与系统 - 讲师:李文新该公开课讲解了信号与系统中的一些重要概念,如连续时间信号与系统、离散时间信号与系统等,并通过实例演示来帮助学生理解。
3. 哈尔滨工业大学公开课:信号与系统 - 讲师:尹海涛该公开课涵盖了信号与系统的核心知识点,包括信号的表示与运算、连续时间系统、离散时间系统等,并提供了大量的习题和实例供学生练习。
四、练习题集推荐在学习信号与系统的过程中,通过做练习题可以更好地巩固知识,并帮助理解和应用所学内容。
以下是一些经典的练习题集推荐:1. 《信号与系统配套练习》(第三版),作者:李惠民,罗金甫,胡云鹏;这本练习题集全面覆盖了信号与系统中的各个方面,包括信号的分类与表示、线性系统与时不变系统、频域分析等,可帮助学生进行系统的复习和巩固。
2. 《信号与系统分析习题精粹》(第二版),作者:罗杰斯·周;该习题集精选了信号与系统的经典题目,并提供了详细的解答和解题思路,适合学生进行自测和强化练习。
数字信号处理答案(第三版)清华大学
数字信号处理教程课后习题答案目录第一章离散时间信号与系统第二章Z变换第三章离散傅立叶变换第四章快速傅立叶变换第五章数字滤波器的基本结构第六章无限长单位冲激响应(IIR)数字滤波器的设计方法第七章有限长单位冲激响应(FIR)数字滤波器的设计方法第八章数字信号处理中有限字长效应第一章 离散时间信号与系统1 .直接计算下面两个序列的卷积和)n (h *)n (x )n (y =请用公式表示。
分析:①注意卷积和公式中求和式中是哑变量m ( n 看作参量), 结果)(n y 中变量是 n ,; )()()()()(∑∑∞-∞=∞-∞=-=-=m m m n x m h m n h m x n y ②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,; )( )( 4n y n n y n 值的,如此可求得所有值的)相加,求得一个(③ 围的不同的不同时间段上求和范一定要注意某些题中在 n00 , 01()0 , ,()0,n n n a n N h n n n n x n n n β-⎧≤≤-=⎨⎩⎧≤⎪=⎨<⎪⎩其他如此题所示,因而要分段求解。
)(5.0)(,)1(2 )()4()(5.0)(,)2( )()3()()(,)( )()2()()(,)( )()1(3435n u n h n u n x n R n h n n x n R n h n R n x n R n h n n x n n n =--==-=====δδ2 .已知线性移不变系统的输入为)n (x ,系统的单位抽样响应 为)n (h ,试求系统的输出)n (y ,并画图。
分析:①如果是因果序列)(n y 可表示成)(n y ={)0(y ,)1(y ,)2(y ……},例如小题(2)为)(n y ={1,2,3,3,2,1} ;②)()(*)( , )()(*)(m n x n x m n n x n x n -=-=δδ ;③卷积和求解时,n 的分段处理。
清华大学869信号与系统和微机原理考研参考书目、考研真题、复试分数线
李俊峰 吴麒
836 普通物理(力 《大学物理》一、二、清华大学出版社(第二版)
张三慧
专注清华大学考研辅导
学、热学、电磁学)三册
837 物理化学
《物理化学》
清华大学出版社
《材料科学基础》 清华大学出版社,1998
学(数学规划、应用 《运筹学》(应用随机 清华大学出版社,2004 年 2 月
随机模型、统计学各 模型)
占 1/3)
《概率论与数理统计》 高等教育出版社,2001 年
(第 1~9 章)
W.L.Winston V.G. Kulkarni 盛聚等
《电路原理》(第 2 版)清华大学出版社,2007 年 3 月
方法与应用》
沃纳.赛佛林等
《中外广播电视史》 复旦大学出版社,2005
郭镇之
623 药理学综合 《药理学》第六版 人民卫生出版社
杨宝峰
《中国古代音乐史》 人民音乐出版社
杨荫浏著
630 中西音乐史 《中国近现代音乐史》高等教育出版社
汪毓和编著
《西方音乐通史》 上海音乐出版社
于润洋主编
《西方现代艺术史》 天津人民美术出版社 801 中西方美术史
清华大学 869 信号与系统和微机原理考研参考书目、考研真 题、复试分数线
869 信号与系统和微机原理课程介绍
首先,清楚考试明细,掌握真题,真题为本。通过真题,了解和熟知:考什么、怎么考、 考了什么、没考什么;通过练习真题,了解:目前我的能力、复习过程中我的进步、我的考 试目标。提醒一句:千万不要浪费大量时间做不相关的模拟题;千万不要把考研复习等同于 做题目,搞题海战术。
其次,把握参考书,参考书为锚。弄懂、弄熟。考研复习如何才能成功?借用《卖油翁》 里的一句话,那就是:手熟而已。明确考试之后,考研就基本上是一个熟悉吃透的过程。无 论何时,参考书第一,不能轻视。所以,千万不要本末倒置,把做题凌驾于看书之上。如何 才叫熟悉?我认为,要打破“讲速度,不讲效率”的做法,看了多少遍并不是检验熟悉与否的 指标,合上书本,随时自我检测,能否心中有数、一问便知,这才是关键。
清华电子系信号与系统真题大全
5. ( )周期信号的 Fourier 级数必处处收敛。
6. ( )A 和 B 均为 n × n 方阵,则必有 e(A+B)t = eAteBt 。
7. ( )两个有限序列的圆卷积(循环卷积)必等于它们的线卷积。
8. ( )全通系统必为无失真传输系统。
∞
9. ( )由已知信号 f (t) 构造信号: F(t) = ∑ f (t + nT ) ,则 F(t) 为周期 n=−∞ 信号。
(2)若已经确知 Rhh (m) ,能否唯一确定 h(n) ?为什么? (3)在已确知 Rhh (m) 的条件下,求具有最小相位特性的 h(n) 。请 给出具体过程和相应公式。 (4)在本题(1)小题中,若 x(n) 为白噪声序列, Rxx (m) = δ (m) , 命题是否成立?为什么?(δ (m) 为单位样值序列)
(提示:F
{u(t)} =
1 + πδ (ω) )
jω
3
Write by BITI_lilu
2002 年清华大学信号与系统
清华大学硕士生入学考试试题专用纸
准考证号
系别
考试时间
专业
考试科目
试题内容 :
一、(8 分)已知 X (k) = DFT[x(n)] , 0 ≤ n < N ,求: (1) x(n) 的 Z 变换 X (z) = ? (2) x(n) 的傅立叶变换 X (e jω ) = ?
=
a 2π
∞ X (ω)Ψ*(aω)e jωbdω 成立。请予以证明,并请说明
−∞
a、b
的含义。式中, a > 0,b > 0 。
七 、( 10 分 ) 若 f (t) 的 傅 立 叶 变 换 F(ω) 为 ω 的 实 因 果 信 号 , 即
清华大学00到08信号与系统试题.
(1) 若 x(t)=u(t) , 求 e(∞) (2) 若 x(t)=sin(ω0 t + ψ0),求 e(t),y(t)的稳态解 八 已知 x(t)=u(t)-u(t-1),y(t)=u(t)-2u(t-1/2)+u(t-1) 1 求 x(t)与 y(t)的内积<x(t),y(t)> 2 画出 Rxy(τ)的图形,并标出关键点 3 画出 x(t)*y(t)的图形,并标出关键点 九 已知一长度为 N 的有限长序列的 DFT 为 X(k),求 x(n)的 Z 变换 十 x(t),y(t)是能量有限信号,证明 Rxy(τ)<={Rxx(0)]^1/2 [Ryy(0)]^1/2
1
清华大学 06 年信号与系统
七、 f(t)=f(t)U(t),F(jw)实部 R(w)=α/(α^2+w^2), 求 f(t) (缺过程扣分,提示:积分公式 八、 f(t)傅立叶变换 F(w)=2A τSa(wτ),g(t)=f(αt)和噪声信号 n(t)通过 f(t)的匹配 滤波器 噪声自相关函数 R(τ)=Nδ(τ) ①当只有 f(αt)通过匹配滤波器时,画出当α=1,1/2,2 时的输出波形 ②α≠1 时,f(αt)和 n(t)通过 f(t)的匹配滤波器时峰值信噪比有损失,请计算 α=1/2,2 时峰值信噪比损失 (可自定义峰值信噪比损失,但必须合理)
二、 (6 分)线性时不变系统的频率特性如图 1-(b)所示,系统的输 入如图 1-(a)所示,请给出系统的零状态响应波形图或解析表示。
自相关推导出来的帕斯瓦尔方程1给出一个反馈框图求hs2根据bibo稳定判断参数k1k2满足的约束条件3画出bibo稳定的hs的极点分布4输入etututt2求rt并且画图画图这个做得太少一个电感和电阻串联的滤波器1用冲击不变法求hn2用iir实现该数字滤波器2画出hjw的幅度谱凡是画图的都砸了3截取hn冲击响应的幅度不少于10的窗函数画fir结构1求输出yn的加法和乘法次数2用dft和fft推导一种快速算法不需要画蝶形图3估算这种方法的乘法和加法次数注
清华大学信号与系统2010(回忆版)真题
()()()()()()()()()3121242422010;122,,()109k ,Z f x x F j F j d f t f t dt F f t X δωωωππωωωω+∞+∞**-∞-∞==++⎰⎰信号与系统回忆版一、共十小题,每题6分1、求、试证(频率用f 的话应该没有系数1/2)并举一个具体的例子;3、离散数据的降抽样会出现的主要问题,如何解决;4、求可能情况,尽可能多;5、已知一个输出信号的傅氏变换,问输入信号的特征,具体忘了;6、已知傅氏系数求变()()()()()()222t ;7FFT 8ms e ,F ;9,10A (),(),X z F F e k s t x t dt j j σσωωω--∞-∞⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=Φ⎰+换系数、画出用求自相关函数的框图;d 、,已知求dt 、问y t 是否线性变换;、拉氏变换的充分条件。
二、连续情况,二阶微分方程的求解,算常规题,具体忘了;三、已知幅度(相位)就是一个频域抽样重构的题目,一些具体问题只要清楚时域和频域抽样就没问题啦;四、离散情况,差分N N N 22N=9,jn t jm t jn t jm t n n m N m N n m NA ee A e e A ωωωω>>>+∑∑∑∑∑∑nn-N -N 2n -N 方程的求解,也算常规题,但是比较难算,具体忘了;五、信号被升余弦窗函数,矩形窗函数作用后频谱的特征;六、已知f (t )=B ,对,B 问他们是否正交并证明,等式f (t )=+B 是否成立并证明;七、一个FI R 的图,看起来非常烦,如果熟悉FI R 结构就很简单,应该是问到了能否实现高通,后面的问题也很简单。
2014清华大学信号与系统考研资料心得
2014清华大学信号与系统考研资料心得1、清华大学2000-2012年信号与系统考研真题和部分年份真题答案(真题的作用不言而喻,是必备的第一手资料。
题答案是试卷题目答案,答案清晰,这份答案是市面上最全的版本;2、已录取的清华大学信号在复习中整理的笔记(几十页最新更新!3、内部讲义一份——由于是内部讲义,我不方便在此发布照片,有意向的同学可以联系我,到时候可以传照片以供鉴定。
这份讲义我当年动用了各种人际关系,花了N多钱,才买到,市场上直接买不到,希望引起各位学弟学妹的重视。
4、清华大学《信号与系统》郑君里版考研精华笔记(独家发布!!,共46页,此笔记是2012年的学长总结的笔记,对信号的理解和类型题总结,对清华《信号与系统》的精髓进行了总结。
重点非常明确,极具系统性,概括性强,逻辑清晰,笔记清晰,有利于把握课本重点,节约宝贵的复习,提高复习效率。
笔记按照章节对郑君里《信号与系统》清华院指定教材进行了总结和归纳,后面再分证明专题,专题演讲,一些结论,专业课冲刺必备公式,重点课后习题详解,进行了系统的讲解;是一份非常系统,全面的复习笔记;5、清华大学《信号与系统》郑君里版考研精华笔记(独家发布!!,共73页,由今年考取清华的研究生整理,自己比较小,内容很多,概括性很强,有系统,有条理,是市面上目前出售的过时的,不清晰的笔记所不能相提并论的;价值性,非常高;6、清华大学《信号与系统》6套全真考研模拟题及答案,此六套模拟题是严格按照清华、中科院、中科大这类的名校信号的难度编写而成(独家发布,难度较大,且配有答案,是清华大学信号与系统考研复习中,不可多得的材料,可用于复习巩固、测试检测对知识的掌握程度,提高拔高使用;7、清华大学《信号与系统》期中期末考试试题;8、清华大学《信号与系统》内部复习题集(独家发布!!,本资料覆盖大纲要求掌握的每个知识点,内容与考试大纲完全一致,分章节都有要点总结,习题都有详细解答,题型结构与真题一致,历年真题大量出自此资料中的原题,实难弄到!其价值远远大于历年真题。
清华信号与系统历年考题00
清华信号与系统历年考题00后4个班的限选课⼀、⼩题集合1.卷积;——图解法,30秒搞定2.LT;3.LT;4.FT;——积分特性⼆、给⽅框图,求系统函数等(书后原题4-43)。
三、求系统函数。
具体的忘了,系统中有个延时单元,输⼊是全波整流,输出是半波整流。
⽤LT作,主要考周期冲激信号的LT。
四、⼀LTI系统,h(t)=(Sa)^2,两周期⽅波信号分别通过,求时域响应。
解法:Sa函数的平⽅ <==> 理想低通的卷积,得到三⾓低通;周期⽅波 <==> 冲激序列。
算得上是最难的题了五、e(t)=1+cos(wt)经冲激抽样(不符合抽样定量),再理想低通滤波,求时域响应。
解法:FT,频域求解。
本⼈是5班课代表.刚从⼭⽼师那⾥回来,带来⼀些信息,供⼤家参考.⾸先声明,仅供参考,如有误导,概不负责.1.考试以⼭⽼师的笔记为主,课本上没有的笔记上有的可能要考,课本有的笔记上没有的基本不考.~~~~2.考试以基本概念为主.注意,有⼀道20分的问答题,分作五个⼩题.(⽼师说,这是他第⼀次出问答题.)没有填空之类,即,⼤部分是计算题(我猜测),⽽且⽼师说有结合计算的证明题. 忘了问计算题与留的习题的关系.希望以后去答疑的同学问⼀下.3.⽼师强调,概念第⼀,计算第⼆,技巧第三.估计,计算难度低,只要你思路正确,也就是1+1 的⽔平.忘了问复数计算问题(留数),请哪位去答疑的同学问⼀下.4.⽼师举例:a.现实的信号,可能不是带限的,在处理中如何保证信号的尽量不失真.(思路,从dft的加窗和抽样来考虑)b.带限信号和时限信号不能同时成⽴,问怎样理解.(思路,笔记上有详细的说明,说明笔记的重要性)5.关于滤波器.⽼师强调设计的重要性.列如:a.冲击相应不变法与双线性变换发(iir)的设计.(注意不考实现,但是⽼师说可能有综合题.)b.⽼师强调了双线性变换(iir)和fir.c.⽼师强调了fir中的加窗,说开卷考试问题就好办了.估计,可能要考五种窗函数.6.问及⽼师,上下册那⼀个重要.⽼师说,以他上课时说的重点为主.他说,fourier,z,和离散为重点.(其他也有可能是重点,望各位补充)7.问,课本量太⼤,不知怎么准备.答,要学会控制,抓住重点.8.问,试卷的容量.答,够你答的,但是两⼩时能够答完.9.强调,有确切数值解的题⽬不多,题⽬有弹性,也就是说,你看的可能容易,但是可能是个陷阱.10.书上的⽐较繁琐的公式⼤概不会考.~~~~~呵呵,就这么多,⽼师停和蔼的,有问必答,不过有时答⾮所问.(注意,如果想答疑,前往10-408,时间为今天下午和明天.因为⽼师后⼏天有会,可能没有时间.)机遇呀,希望⼤家把握.6.2001.6.16<<信号与系统>>B卷(⼭⽼师)以下版权属eehps所有,如有问题概不负责,仅供参考1:f(t)=f2(t)-j*f1(t),f2与f1成hilbert变换对已知F[f(2)]=F1(w),求F[f(t)]//笔记上有时域hilbert变换的系统函数H(w)=-jsgn(w)2:f(t)=e^-a|t|,(a>0) 先时域抽样后频域抽样A:证明等效时宽T与等效带宽B乘积为常数,若T单位为s带宽B单位Hz,求B*T=?//证明书上有,当B单位取Hz,B*T=1B:求原信号,时域抽样后的信号,频域抽样后的信号及他们的频谱C:问从频域抽样后的信号能否恢复原信号//看图就知道leD:应该加什么措施才能够恢复原信号//从加窗截断考虑3:x(n),0<=n<=N-1A:求X[k]=DFT{x(n)}//书上的定义B:将x(n)补零扩展N变成N1=k*N(k为⾃然数,k>1),记做x1(n),求DFT{x1(n)}与DFT{x(n)}的关系//在区间[0,N-1]上easy,其它没做,好像⽐较繁C:问这样扩展后能否提⾼频率分辨率4: x(t)=sin(t),y(t)=cos(t) (t在整个时域上)A:求x(t)关于y(t)的相关系数//书上有的,注意x(t),y(t)均是频率有限信号B:求x(t)和y(t)的互相关函数//注意x(t),y(t)均是频率有限信号就⾏了5:就是把上册书231页图4-42中的零极点对调了,要求画出幅频,相频图//⾃⼰看书le,⽐较简单6:电路图就是上策书221的图4-26(R=1欧,C=1F),要求⽤双线性变换法设计数字滤波器 A:问步长T怎么选取//看书B:求H(Z)C:双线性变换的主要问题?//书上有,主要是它是⼀个⾮线性变换,会引起失真D:给出⼀个⽅块图描述该系统E:⼤略画出幅频特性图7:问答题A:傅⽴叶变换中出现负频率1:为什么会出现负频率//上册书93⾃⼰找2:为什么只研究正频率//对称性了B:线性系统响应=零输⼊响应+零状态响应,为什么?//线性系统满⾜叠加定理C:怎样理解傅⽴叶变换在线性定常系统中的重要性D:DFT有快速算法FFT,本质原因?//书上⼀章的绪⾔有,变换矩阵的多余性E:傅⽴叶变换满⾜范数不变性,是任何范数还是特定的,并给出解释//笔记有leF:弱极限的定义//看笔记A卷1.计算sinx,cosx的相关系数和相关函数还有24分的问答题,怀疑送分?有:1。
信号与系统 考研 真题
信号与系统考研真题信号与系统是电子信息类专业、通信工程类专业等方向中的重要课程,也是考研中常考的一门科目。
在考试中,信号与系统真题占据了相当重要的比重。
本文将介绍信号与系统考研真题,以及如何高效备考信号与系统。
第一部分:信号与系统考研真题1. 2009年考研信号与系统真题题目一:设x(t) =e^(-t), t≥0, x(t)的傅里叶变换为X(f), 则X(0) =?解析:根据傅里叶变换的定义,X(f) = ∫[0,∞] e^(-t) e^(-jwt) dt = ∫[0,∞] e^(-t(1 + jw)) dt。
此处需要用到函数的傅里叶变换公式,化简后可得到:X(f) = 1 / (1 + jf)将f=0代入,可得X(0) = 1题目二:已知x(t)经过理想低通滤波器处理后的输出y(t)为y(t) =2x(t) * rect(t / 2),其中rect(t)为矩形脉冲函数,则y(t)的傅里叶变换为?解析:根据卷积定理,y(t)的傅里叶变换为X(f) * Y(f),其中X(f)为x(t)的傅里叶变换。
根据题意可得:Y(f) = 2 * X(f) * sinc(f/2)其中sinc(f)为sinc函数。
2. 2012年考研信号与系统真题题目一:已知信号x(t)的傅里叶变换为X(f),因果性系统S的系统函数为H(f),此系统输出的傅里叶变换为Y(f),则下列哪个等式成立?A. Y(f) = X(f) * H(f)B. Y(f) = X(f) / H(f)C. Y(f) = H(f) / X(f)D. Y(f) = H(f) - X(f)解析:根据系统函数的定义可得:Y(f) = X(f) * H(f)因此,选项A成立。
题目二:已知系统的冲激响应h(t)为 h(t) = (1 - e^(-t)) * u(t),其中u(x)为单位阶跃函数,则该系统的频率响应H(f)为?解析:根据频率响应与冲激响应的关系可得:H(f) = ∫[-∞, ∞] h(t) * e^(-j2πft) dt = ∫[0, ∞] (1 - e^(-t)) * e^(-j2πft) dt其中,利用单位阶跃函数的性质进行换元变换,得到H(f) = 1 / (1 +j2πf)第二部分:信号与系统备考指导1. 充分理解概念信号与系统作为一门核心课程,重要的是要充分理解其中的概念。
信号与系统考研试题2
信号与系统考研试题2第二章连续系统的时域分析一、单项选择题X2.1(东南大学2002年考研题)一线性时不变连续时间系统,其在某激励信号作用下的自由响应为(e -3t +e -t )ε(t ),强迫响应为(1-e -2t )ε(t ),则下面的说法正确的是。
(A )该系统一定是二阶系统(B )该系统一定是稳定系统(C )零输入响应中一定包含(e -3t +e -t )ε(t ) (D )零状态响应中一定包含(1-e -2t )ε(t )X2.2(西安电子科技大学2005年考研题)信号f 1(t )和 f 2(t ) 如图X2.2所示,f =f 1(t )* f 2(t ),则 f (-1)等于。
(A )1 (B )-1 (C )1.5 (D )-0.5图X2.2X2.3(西安电子科技大学2005年考研题)下列等式不成立的是。
)(*)()(*)()(210201t f t f t t f t t f A =+-[]??=)(*)()(*)()(2121t f dt d t f dt d t f t f dt d B )()(*)()(t f t t f C '='δ )()(*)()(t f t t f D =δ答案:X2.1[D],X2.2[C],X2.3[B]二、判断与填空题T2.1(北京航空航天大学2001年考研题)判断下列说法是否正确,正确的打“√”,错误的打“×”。
(1)若)(*)()(t h t f t y =,则)2(*)2(2)2(t h t f t y =。
[ ](2)如果x (t )和y (t )均为奇函数,则x (t )*y (t )为偶函数。
[ ] (3)卷积的方法只适用于线性时不变系统的分析。
[ ] (4)若)(*)()(t h t f t y =,则)(*)()(t h t f t y --=-。
[ ](5)两个LTI 系统级联,其总的输入输出关系与它们在级联中的次序没有关系。
清华大学《信号与系统》真题2010年
清华大学《信号与系统》真题2010年(总分:99.99,做题时间:90分钟)一、{{B}}{{/B}}(总题数:2,分数:40.00)(1). 4.00)__________________________________________________________________________________________ 正确答案:(解:根据傅里叶变换与逆变换的定义,得到: [*]) 解析:(2).2(πt)·cos(πt)dt 。
(分数:4.00)__________________________________________________________________________________________ 正确答案:(解:根据常用傅里叶变换,可知F[Sa(πt)]=u(t+π)-u(t-π),再由卷积定理,可得: F[Sa 2(πt)]=[*][u(ω+π)-u(ω-π)]*[u(ω+π)-u(ω-π)] [*]又因为F[cos(πt)]=π[δ(ω+π)+δ(ω-π)],则由上题的结论,得到: [*]) 解析:(3).已知X(k)=DFT[x(n)],0≤n≤N -1,0≤k≤N -1,请用X(k)表示X(z),其中X(z)是x(n)的z 变换。
(分数:4.00)__________________________________________________________________________________________ 正确答案:(解:对于长度为N 的有限长序列,利用其DFT 的N 个样值,可以恢复其z 变换函数: [*] 其中,[*],是内插函数。
) 解析:(4).已知F(e-πt2)=e-πf2其中σ>0。
(分数:4.00)__________________________________________________________________________________________ 正确答案:(解:根据傅里叶变换尺度变换可知:[*] 所以:F[e -(t/σ)2]=[*]再由傅里叶变换微分性质可知,[*],所以:[*]) 解析:(5).一个系统的输出y(t)与输入x(t)的零状态条件下的关系为τ)x(τ)d τ,式中k(t,τ)是t 和τ的连续函数,请回答,该系统为线性系统吗?为什么?(分数:4.00)__________________________________________________________________________________________ 正确答案:(解:是。
清华大学测试与检测技术基础(信号与系统)习题讲解
n
n 0
0
40 50
n0
解3:在学过 FT 及其性质以及特殊函数的 FT 后可返回此处用此法解。
因频域采样引起时域周期化,此题可先求出单个方波脉冲的频谱,应是 sinc 函数, 然后使其在时域周期化成为周期方波脉冲,这样就引起频域的采样,将连续频谱离散化, 成为周期方波脉冲信号的频谱,从而解得结果。其图形表达见解 2 频谱图的包络线和采 样谱。由于周期方波脉冲的占空比变化而使 sinc 函数及采样值有不同的变化。
Cn
A n
(n 为奇数)
n
t g1
bn an
0
n 1,5,9,13... n 3,7,11,15...
FS 为( 1 ) T2
xt
0
A 3
e j30t
0
A
e j0t
A 2
A
e j0t
0
A 3
e j30t
频谱图
Cn
A 2A
0 0
A
3
A
5
3 0
50
A 7
70
n0
n
0
30
70
n0
解2: 用三角函数形式
2A T2
1
cos
T
解4:
6H.求j周期0.00信51j号1x (t一2阶cos系100统t+co )s3 后00t的-4稳通态过响频应响。函数为
解: 此输入信号 x t 含有两个频率成分,其幅值与相位为
1 100 X 100 2 x 100 0
A
0
2
2T
t
xt A t
2
2
解1:用复指数形式
Cn
1 T
清华大学信号与系统2008年试题回忆
清华大学信号与系统2008年试题回忆1.1 Fn和F(w)的物理意义1.2 DFT是否正交变换1.3 FT和LT的关系1.4 fir滤波器的时域对称性的表达式2.1 希尔伯特正变换和反变换级联后是一个冲击2.2 f(x)=e^(-x)u(x),求f(ax)卷积f(bx),a>0,b>0(s^2+3s+3)/(s^2+2s+2)整体再乘e^(-s)2.3 delta(t)+t*delta'(t)2.4 给出H(z)的表达式,求逆系统的冲击响应2.5 证明一个bibo线性定常系统可以表为一个最小相位系统和全通系统级联3.1 证明:实信号幅度谱和相位谱的奇偶性3.2 证明:自相关推导出来的帕斯瓦尔方程4.1 1/给出一个反馈框图,求H(s)2/根据bibo稳定,判断参数K1 K2满足的约束条件3/画出bibo稳定的H(s)的极点分布4/输入e(t)=u(t)-u(t-T/2),求r(t),并且画图(画图这个做得太少)5/一个电感和电阻串联的滤波器(1)用冲击不变法求H(n)(2)用IIR实现该数字滤波器(3)画出H(jw)的幅度谱(凡是画图的都砸了)(3)截取h(n)冲击响应的幅度不少于10%的窗函数,画FIR结构6/x(n),0<=n<=7,h(n),0<=n<=1023(1)求输出y(n)的加法和乘法次数(2)用DFT和FFT推导一种快速算法,不需要画蝶形图(3)估算这种方法的乘法和加法次数注:程佩清的信号处理第4章第10节就有具体解法7/这道题在奥本海默数字信号处理有出现定义Wf,自相关宽度,wf=R(t)从负无穷到正无穷的积分除以R(0) f(t)=u(t+1/2)-u(t-1/2),R(t)是f(t)的自相关1/求f(t)的wf大小2/求f(t)的能谱密度一.证明解答下列各题1 输入信号x(t)=u(t)-u(t-1) 通过系统函数为∑(-1)^n δ(t-n)e^-3t 的零状态响应y(t)(1)求y(t)及图形(2)求y(t)的拉式变换.2.LT[f(t)]=?求f(t)3.电视调制测试信号f(t)=A{m+c[u(t)-1)}cosw0t 求F.T.4.5.已知x(n)的ZT X(z),证明ZTx*(n)= X*(z*)6.x(n)y(n)互相关函数的Z.T.(Rxy)=X(z)Y(1/z) 二.|X(w)|为介于1000pi-2000pi的关于纵轴对称的三角波 w=1.5kpi时最大值为1 x(t)-> 乘法器 -> 加法器->截止频率为2000pi的理想带阻滤波器-r(t)| |cos3000pit--1)画出输出r(t)的频谱及加法器输出信号2)要解调出预调制前的基带信号请画出框图并给出解调出来的信号频谱三.非均匀抽样四.采样矩形脉冲先时域抽样再频域抽样类似于第五章的例题1 画出采样后的图型2 写出表达式的FT3 一般意义下这样采样后DFT不考虑舍入误差情况下能不能准确得到等间隔DFT采样值五.已知n点DCT ,IDCT定义式x(n) 0=<n-1< p="">y(n)= {x(2N-1-n) N=<2n-1< p="">1)证明 W^(k+1/2)DFT[y(n)]=DCT[x(n)] W下标是2N2)证明X=(X1,X2,X3…XN) x=(x1,x2,x3…xn) X 为x的DCT=K 其中K为一常数六.问答题1)什么是Gibbs现象?存在的充要条件是什么?如何消除?3已知f1(t)的傅立叶变换为F1(ω),求的傅立叶变换F2(ω)=?4求的拉普拉斯变换。
《信号与系统》考研试题解答第一章信号与系统
第一章信号与系统一、单项选择题X1.1 (北京航空航天大学 2000 年考研题)试确定下列信号的周期:( 1) x(t )3cos 4t3;(A ) 2( B )( C )2(D )2( 2) x(k ) 2 cosk sin8k 2 cosk642(A ) 8 ( B ) 16 ( C )2 (D ) 4X1.2 (东南大学 2000 年考研题)下列信号中属于功率信号的是。
(A ) cost (t)(B ) e t (t)(C ) te t (t )t( D ) eX1.3 (北京航空航天大学 2000 年考研题)设 f(t)=0 ,t<3,试确定下列信号为 0 的 t 值:(1) f(1- t)+ f(2- t);(A ) t>-2 或 t>-1 ( B ) t=1 和 t=2(C ) t>-1( D ) t>-2(2) f(1- t) f(2- t) ;(A ) t>-2 或 t>-1 ( B ) t=1 和 t=2(C ) t>-1 ( D ) t>-2(3) ft ;3(A ) t>3 (B ) t=0 (C ) t<9 (D ) t=3X1.4 (浙江大学 2002 年考研题)下列表达式中正确的是 。
(A ) ( 2t )(t)( B ) ( 2t)1(t)2(C ) ( 2t )2 (t )( D )2 (t)1(2 )2X1.5 (哈尔滨工业大学 2002 年考研题)某连续时间系统的输入f( t) 和输出 y(t)满足y(t) f (t ) f (t 1) ,则该系统为。
(A )因果、时变、非线性 ( B )非因果、时不变、非线性 (C )非因果、时变、线性( D )因果、时不变、非线性X1.6 (东南大学 2001 年考研题)微分方程 y (t) 3y (t) 2 y(t) f (t 10) 所描述的系统为。
(A)时不变因果系统(B)时不变非因果系统(C)时变因果系统(D)时变非因果系统X1.7 (浙江大学2003 年考研题)y(k) f ( k 1) 所描述的系统不是。
信号与系统试卷及参考答案
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间 120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t) (8分) (3).f(k)=1,k=0,1,2,3,h(k)=1,k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分)(5)y ’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2,试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
一个《信号与系统》考了147分的考研者的经历
一个《信号与系统》考了147分的考研者的经历信号与系统我考了147,总分438!我考的成绩挺平均:政治83,英语,77,数学131,专业课信号与系统147分,总分438。
但我在这里不说别的,只说说我复习专业课的经验。
由于我工作很不顺心,所以才有了考研的想法,本来打算边工作边考。
后来在一次老同学的聚会上,原来的同学有几个关系好的鼓励我要好好复习。
所以我就下了决心辞去了工作考,因此复习时我特别认真和重视,下定决心要比别人付出双倍时间和金钱。
我在六月初买了专业课的课本和参考书,然后利用公司的上网条件搜集到了我要用得的资料(这个工作确实太花时间,我几乎用了整整三个月天天趴在网上搜集,对工作影响大了,老板批评了我几次,后来在老板炒我鱿鱼之前我先交了辞职书了)我在7月以前是利用空闲时间学习,主要看了上海交大胡光锐和中科大徐守时的信号与系统,还有北理工的数字信号处理,然后决定先学信号与系统后学数字信号处理。
7月后就抓紧一切可以利用的时间学习了,甚至上班也偷偷看。
用一个月细读了清华大学郑均理信号与系统上下二册,并对照答案看过了大多数课后题(第一版的课后题包含了全部第二版的课后题,因此第一版的答案可以用)。
8月结合笔记细读了西安交大刘树堂翻译的奥本海姆的信号与系统,并对照答案做课后题(也是用第一版的答案,题号要自己找)。
这本书不愧为经典,后悔没早点看。
课后题基础题没做,提高题几乎全作了,有一些明显不像考试题得只看了看答案的思想。
用时一个月。
9月先把上交胡光锐的解题指导,和张小虹的学习指导与实践的例题看完了,用时15天。
然后开始做第一次作试卷,做了8份杂的+上交大7份+中科大的11份,受打击极大,不过还是硬着头皮挑会做得先做了,留下了不会的和所有的数字信号处理的题。
这个时候是我第一次也是唯一一次产生放弃的念头。
我的感谢我在母校上研的老同学们,是他们的鼓励让我坚定了一定要坚持到底的信念。
10月开始辞职在家全力复习,从10月1号开始做西安交大的15份卷子,感觉能做的题目占到了一半。
清华信号与系统期末考试试题1
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A 2s 7 e2s3 s 32
B e2s s 32
C
se
s
2 s 3
32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
st df t , 求 s 的傅里叶逆变换。
dt
2
四、(10 分)如图所示信号 f t ,其傅里叶变换
F jw F
f t,求(1)
F
0Leabharlann (2)F
jwdw
五、(12)分别求出像函数 Fz
3z
在下列三种收敛域下所对应的序列
2z2 5z 2
2
2
2
1) 右边 f k 2k uk 1 k uk
2
2) 左边
f k 1 k 2k u k 1
2
3) 双边 f k 1 k uk 2k u k 1
2
六、(10 分) 解:
由 H (S) 得微分方程为
y(t) 2y(t) y(t) f (t)
S 2Y (S) Sy(0 ) y(0 ) 2SY (S) 2y(0 ) Y (S) S 2 F(S)
S2
(S 2) y(0 ) y(0 )
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、 s 2 s5
5、 (t) u(t) etu(t)
6、 1 0.5k1 uk
8、 et cos2tut