高二文科数学圆锥曲线五基础训练一题目

合集下载

-圆锥曲线基础练习及答案

-圆锥曲线基础练习及答案

直线与圆一、考点内容1、求直线斜率方法(1)知直线l 倾斜角)1800(00<≤αα,则斜率090(tan ≠=ααk 即倾斜角为090的直线没有斜率(2)知直线l 过两点),(11y x A ,),(22y x B ,则斜率___________=k )(21x x ≠ (3)知直线l 一般式方程0y x =++C B A ,则斜率________=k 知直线l 斜截式方程b kx y +=,可以直接写出斜率 2、求直线方程方法——点斜式知直线l 过点),(b a ,斜率为k ,则直线方程为__________________,化简即可! 特别在求曲线在点))(,(a f a 处切线方程,往往用点斜式! 4、平行与垂直问题若21//l l ,则1k ______2k ;若21l l ⊥,则1k =2k _________ 5、距离问题(1)两点间距离公式若点),(21x x A 、),(22y x B ,则=||AB _________________ (2)点到直线距离公式点),(n m 到直线0y x =++C B A 距离=d _________________ 注意:直线必须化为一般式方程! (3)两平行线间距离公式两平行线0y x 0y x 21=++=++C B A C B A 与的距离=d _________________ 注意:两平行线必须把x 与y 系数化为一样! 6、圆与方程(1)标准方程222)()(r b y a x =-+-,圆心坐标为__________,半径为______(2)一般方程022=++++F Ey Dx y x ,条件0422>-+F E D圆心坐标为__________,半径为____________ 7、直线与圆位置关系(1)相离:公共点个数为_____个,此时d ______ r (d 为圆心到直线距离)(2)相切:公共点个数为_____个,此时d ______r (圆心与切点连线垂直于切线) (3)相交:公共点个数为_____个,此时d ______r (弦长=L _________)二、课堂练习1.原点到直线052=-+y x 的距离为(D ) A .1B .3C .2D .52.经过圆x 2+2x +y 2=0的圆心G ,且与直线x +y =0垂直的直线方程是( C )A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=03.经过圆的圆心且与直线平行的直线方程是( A )A .B .C .D .4.以) 0 , 1 (为圆心,且与直线03=+-y x 相切的圆的方程是( A ) A .8)1(22=+-y x B .8)1(22=++y x C .16)1(22=+-y x D .16)1(22=++y x5.已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是( C )A .1710B .8C .2D .1756.直线与圆的位置关系是( A ) A .相离B .相切C .直线与圆相交且过圆心D .直线与圆相交但不过圆心7.圆:012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( B )A 、 2B 、21+C 、221+D 、221+ 8.圆心在原点,并与直线3x-4y-l0=0相切的圆的方程为___422=+y x _________.9.直线y x =被圆22(2)(4)10x y -+-=所截得的弦长等于.<十>圆锥曲线[椭圆]一、考点内容:1、椭圆的定义: 12||||2MF MF a +=2、椭圆的简单几何性质:二、基础练习:1 .已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是( D ) A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 2.已知椭圆C :x 2+2y 2=4.则椭圆C 的离心率为_____22____ 3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).求椭圆的方程;(x 24+y 23=1.)4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63.求椭圆C 的标准方程;(x 26+y 22=1.)5.在平面直角坐标系中,已知椭圆C 的中心在原点O,焦点在轴上,短轴长为2,离心率为,求椭圆C 的方程.6.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .求椭圆C 的方程;22184x y +=7.椭圆C:x 2a2+y 2b 2=1(a>b>0)的离心率e =√32,a+b=3 (1) 求椭圆C 的方程;2214x C y ∴+=椭圆的方程为:[双曲线]一、考点内容:(1)双曲线定义:a PF PF 2|||-|||21= (2)标准方程:焦点在x 轴上焦点在y 轴上焦点坐标为:_______________________ ____________________________ 顶点坐标为:_______________________ ____________________________渐近线方程:_______________________ ____________________________ (3)性质:离心率_______=e )1(>e(4),,a b c 间的关系: ____________________________ 二、基础练习:1.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( D )A .2B.62C.52D .12.已知双曲线2222:1x y C a b -=(0,0)a b >>则C 的渐近线方程为( C )A .14y x =±B .13y x =±C .12y x =±D .y x =±1 .双曲线的顶点到其渐近线的距离等于( B )A .B .C .1D .4.双曲线221y x m-=的充分必要条件是 ( C ) A .12m >B .1m ≥C .1m >D .2m >5.已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于( C )22x a 25yAB C D 6.双曲线x 24-y 2=1的离心率等于___52_____.7.双曲线的离心率为________.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+m 的值为2.9.设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为___x 2-y 2=1_____.[抛物线](1)定义:抛物线上任意一点P 到焦点的距离等于点P 到准线的距离. (2)标准方程与性质 二、基础练习:1.抛物线y =14x 2的准线方程是( A )A .y =-1B .y =-2C .x =-1D .x =-22.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( C )A .-43B .-1C .-34D .-123 .抛物线28y x =的焦点到直线0x =的距离是( D )A .B .2CD .12.若抛物线22y px =的焦点坐标为(1,0)则p =_2___;准线方程为_1x =-____.3243221169x y -=455.抛物线y 2=4x 的准线方程为_____x =-1___.6.已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为___2213y x -=___.7.已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为322,求抛物线C 的方程;24x y =。

人教版高二文科数学《圆锥曲线》基础练习题

人教版高二文科数学《圆锥曲线》基础练习题

圆锥曲线文科基础练习题姓名: 班别:一、选择题:1. 已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为 ( )A .B .C .D .2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的方程为 ( )A .B .C .或D .以上都不对3.动点到点及点的距离之差为,则点的轨迹是 ( )A .双曲线B .双曲线的一支C .两条射线D .一条射线4.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )A .椭圆B .线段C .双曲线D .两条射线5.方程11122=-++ky k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k6. 双曲线14122222=--+m y m x 的焦距是 ( )A .4B .22C .8D .与m 有关 7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( )A .28B .22C .14D .129.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( )A .1或5B . 6C . 7D . 910.抛物线的焦点到准线的距离是 ( )A .B .C .D . 11.若抛物线上一点到其焦点的距离为,则点的坐标为 1162522=+y x P 3P 2357186116922=+y x 1162522=+y x 1162522=+y x 1251622=+y x P )0,1(M )0,3(N 2P x y 102=2552151028y x =P 9P( )A .B .C .D .12.抛物线上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .B .C .D .0二、解答题17.为何值时,直线和曲线有两个公共点?有一个公共点?没有公共点?18.在抛物线上求一点,使这点到直线的距离最短。

最新人教版高二第一学期:圆锥曲线测试及答案

最新人教版高二第一学期:圆锥曲线测试及答案

第一学期高二年级圆锥曲线测试、选择题(本大题共 10小题,每小题5分,共50 分)2 爲 1 ( a >b>0)离心率为,则双曲线 b 2 1. 椭圆爲 a A.- 4 B . 2. 抛物线顶点在原点,焦点在 A. x 2 8y 2 X~2 a 2 y b 2 1的离心率为3•圆的方程是(x — cos A. 2、" 2 4.若过原点的直线与圆 A. y 25.椭圆x 9. 5 2 y 轴上,其上一点 2 3 P(m , 1)到焦点距离为5,则抛物线方程为 ( 2 x 2 8y C. 1 )2+(y — sin )2= ,当 从0变化到2时,动圆所扫过的面积是 B . x 2 16y C. (1 , 2) x 2+ y 2 + 4x +3=0相切,若切点在第三象限,唾x3B . y .. 3x C. y 1的焦点为F i 和F 2,点P 在椭圆上, 如果线段 2 D. x 16yD (1邛2 则该直线的方程是 D 43 D. y T x PF i 中点在y 轴上, 那么|PF i | A. 7倍 B . 5倍 C. 4倍 D. 3倍以原点为圆心,且截直线 3x 4y 15 0所得弦长为 8的圆的方程是 ( A. 2 x 2 2 y 5 B . x 2 y 2 2 25 C. x y 4 D. 2 2x y 16 曲线 x 2cos (为参数)上的点到原点的最大距离为( y sin A. 1 B . 2 C. 2 D. .3( 6. 7.如果实数 (X 、 2 12是|PF 2|的 y 满足等式(x 2)2 A.- 23,贝V —最大值 x 仝 2 D. ..3 过双曲线 2Z=1 2 的右焦点F 作直线 交双曲线于A B 两点,若 | AB =4 , 则这样的直 线l 有( ) A. 1条 10.如图,过抛物线C. 3条 y 2 C,若 BC 2BF ,且 AF B . 2条 2px (p 0)的焦点F 的直线l 交抛物线于点 3 ,则此抛物线的方程为D. 4条 A . B ,交其准线于点( )2y2C y2D. 3x 9x、填空题(本大题共4小题,每小题6分,共24 分)11•椭圆的焦点是F i (- 3, 0)F2 (3, 0), P为椭圆上一点,且|F I F2|是|PF i|与|PF2|的等差中项,则椭圆的方程为____________________________________ .12.若直线mx ny 3 0与圆x2 y2 3没有公共点,则m,n满足的关系式为_____________________ .2 2以(m,n)为点P的坐标,过点P的一条直线与椭圆J L L 1的公共点有个.7 313.设点P是双曲线x2 1 上一点,焦点F (2, 0),点A (3, 2),使|PA+ 1| PF 有最2小值时,则点P的坐标是 ____________________________________ .214. AB是抛物线y=x的一条弦,若AB的中点到x轴的距离为1,则弦AB的长度的最大值为.________三、解答题(本大题共6小题,共76分)215. P为椭圆251上一点,F1、F2为左右焦点,若F1PF2 60 (1)求厶F1PF2的面积;(2)求P点的坐标.(12分)16.已知抛物线y2 4x ,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.(12分)17.已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,.. 2)为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线y x对称.(1)求双曲线C的方程;(2)设直线y mx 1与双曲线C的左支交于A,B两点,另一直线I经过M(—2, 0)及AB的中点,求直线I在y轴上的截距b的取值范围.(12分)18.如图,过抛物线y2 2px(p 0)上一定点P(X o,y。

(word完整版)高二数学圆锥曲线测试题以及详细答案(2021年整理)

(word完整版)高二数学圆锥曲线测试题以及详细答案(2021年整理)

(word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高二数学圆锥曲线测试题以及详细答案(word版可编辑修改)的全部内容。

圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为( )D 。

2。

椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对4.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A 。

1或5 B. 1或9 C 。

1 D. 95、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )。

C. 21 6.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .387. 若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3 (C )4 8.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A 。

圆锥曲线基础训练题及答案

圆锥曲线基础训练题及答案

圆锥曲线基础训练题姓名____________分数______________一、选择题1 .抛物线y 2=ax 的焦点坐标为(-2,0),则抛物线方程为( )A .y 2=-4x B .y 2=4x C .y 2=-8x D .y 2=8x2 .如果椭圆的两个焦点三等分它所在的准线间的垂线段,那么椭圆的离心率为 ( )A .23 B .33 C .36 D .66 3 .双曲线191622=-y x 的渐近线方程为 ( )A . x y 34±= B .x y 45±= C .x y 35±= D .x y 43±= 4 .抛物线 x y 42= 的焦点坐标是( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)5 .双曲线221916y x -=的准线方程是 ( ) A 165x =±B 95x =±C 95y =±D 165y =± 6 .双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到点(-5,0)的距离是 ( )A .7B .23C .5或23D .7或237 .双曲线1322=-y x 的两条渐近线方程是 ( )A .03=±y xB .03=±y xC .03=±y xD .03=±y x8 .以椭圆的焦点为圆心,以焦距为半径的圆过椭圆的两个顶点,则椭圆的离心率为 ( )A .43)D (23)C (22)B (219 .抛物线y x 42=上一点A 纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .510.抛物线()042<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛041,a B .⎪⎭⎫ ⎝⎛a 1610,C .⎪⎭⎫ ⎝⎛-a 1610,D .⎪⎭⎫⎝⎛0161,a 11.椭圆2x 2=1-3y 2的顶点坐标为( )A .(±3,0),(0,±2)B .(±2,0),(0,±3)C .(±22,0),(0,±33) D .(±12,0),(0,±13) 12.焦距是10,虚轴长是8,经过点(23, 4)的双曲线的标准方程是( )A .116922=-y x B .116922=-x y C .1643622=-y x D .1643622=-x y 13.双曲线22124x y -=-的渐近线方程为( )A .y =B .x =C .12y x =±D .12x y =±14.已知椭圆方程为1322=+y x ,那么左焦点到左准线的距离为 ( )A .22 B .223 C .2D .2315.抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )A .y 2=16xB .y 2=12xC .y 2= -16xD .y 2= -12x16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12 D .217.下列表示的焦点在y 轴上的双曲线方程是( )A .13422=+y xB .14322=+y xC .13422=-y xD .13422=-x y 18.抛物线y =2px 2(p ≠0)的焦点坐标为( )A .(0,p )B .(10,4p ) C .(10,8p) D .(10,8p±) 19.与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程是( )A .x y 42=B .x y 42±=C .y x 42=D .y y 42±=20.已知双曲线的渐近线方程为x y43±=,则此双曲线的( )A .焦距为10B .实轴和虚轴长分别是8和6C .离心率是45或35 D .离心率不确定21.双曲线122=-y x 的渐近线方程是( )A .±=x 1B .y =C .x y ±=D .x y 22±= 22.若命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,则以下命题中正确的是( )A .方程(x ,y)=0的曲线是CB .坐标满足方程f(x ,y)=0的点都在曲线C 上 C .曲线C 是方程f(x ,y)=0的轨迹D .方程f(x ,y)=0的曲线不一定是C23.双曲线221916y x -=的准线方程是 ( )A .165x =±B .95x =±C .95y =±D .165y =±24.双曲线191622=-x y 的焦点坐标是 ( )A .()0,5和()0,5-B .()5,0和()5,0-C .()0,7和()0,7- D .()7,0和()7,0-25.已知抛物线的焦点坐标为(-3,0),准线方程为x =3,则抛物线方程是( )A .y 2+6x =0B .y 2+12x =0C .y +6x 2=0D .y +12x 2=0 26.双曲线 191622=-y x 的渐近线的方程是( )A .x y 43±= B .x y 34±= C .x y 169±= D .x y 916±= 27.对抛物线24y x =,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)1628.双曲线2y 2-x 2=4的一个焦点坐标是( )A .(0,-)6B .(6,0)C .(0,-2)D .(2,0)29.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .430.到直线x=-2与定点P (2,0)距离相等的点的轨迹是( )A .抛物线B .双曲线C .椭圆D .直线二、填空题31.(1)短轴长为6,且过点(1,4)的椭圆标准方程是(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是 32.与两坐标轴距离相等的点的轨迹方程是________________________33.椭圆4422=+y x 的焦点坐标为___________,__________. 34.抛物线x y 42=的准线方程为______ 35.到x 轴,y 轴距离相等的点的轨迹方程_________.36.已知两个定点1(4,0)F -,2(4,0)F ,动点P 到12,F F 的距离的差的绝对值等于6,则点P 的轨迹方程是 ;37.若双曲线22145x y -=上一点P 到右焦点的距离为8,则P 到左准线的距离为38.若定点(1,2)A 与动点(),Px y 满足,4OP OA ⋅=则点P 的轨迹方程是39.已知双曲线的离心率为2,则它的实轴长和虚轴长的比为 。

高二数学圆锥曲线测试题(含答案)

高二数学圆锥曲线测试题(含答案)

高二数学圆锥曲线检测题(文科) 2015.1一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆22146x y +=的长轴长为 ( )A .2 B.3 C.3 D.622.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆交于点P , ||2PF = ( ) A .23 B .3 C .27D .4 3.若方程x 2+ky 2=2表示焦点在x 轴上的椭圆,则实数k 的取值范围为( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件621≥+PF PF ,则点P 的轨迹是 ( ) A .椭圆B .线段C .不存在D .椭圆或线段5.设椭圆1422=+m y x 的离心率为21,则m 的值是( ) A .3 B.316或3 C.316 D.316或2 6.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 97.在同一坐标系中,方程12222=+by a x 与)0(02>>=+b a bx ay 的曲线大致是 ( )8、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ). C. 21-9.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) A .1053B .11C .22D .1010.设椭圆)0(12222>>b a b y a x =+的离心率为e =21,右焦点为F(c ,0),方程ax 2+bx-c =0的两个实根分别为x 1和x 2,则点P(x 1,x 2) ( ) A .必在圆x 2+y 2=2上 B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=2内 D .以上三种情形都有可能6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A.(7, B.(14, C.(7,± D.(7,-± 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对二、填空题(本题共5小题,每小题4分,共20分)11.双曲线221412y x -=的焦点坐标为________________. 12.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点;③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .13.已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为 。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为()2.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF =()A .23B .3C .27D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A.抛物线 B.双曲线C.椭圆D.以上都不对41,023F y x =-、F 2分别是双曲线的左、右56.双曲线)0(122≠=-mn ny m x 离心率为2A .163B .83C .316D .387.若双曲线2221613x y p-=的左焦点在抛物线y 2=2px(A)2(B)3(C)48.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是() A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是()A.双曲线B.抛物线C.椭圆D.以上都不对10.方程02=+ny mx 与)02>+mx 的曲线在同一坐标系中的示意图应是()A BCD11.的右焦点为圆心,且与其渐近线相切的圆的方程是A .C.12.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为()A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 二、填空题:13.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是.14相切,则a 的值为15PF 1中点在y 轴上,161718.P 为椭圆192522=+y x 上一点,1F 、2F (1)求△21PF F 的面积;(2)求P 点的坐标.(1419、求两条渐近线为02=±y x 且截直线3=--y x 320在平面直角坐标系xOy 中,点P 到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少? 21.A 、B 是双曲线x 2-=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?22、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

圆锥曲线的基础训练题

圆锥曲线的基础训练题

圆锥曲线典型例题一.求标准方程1.讨论192522=−+−ky k x 表示何种圆锥曲线,它们有何共同特征.2.求适合条件的椭圆的标准方程:(1)长轴长是短轴长的2倍,且过点()62−,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.3.根据下列条件,求双曲线的标准方程.(1)过点⎟⎠⎞⎜⎝⎛4153,P ,⎟⎠⎞⎜⎝⎛−5316,Q 且焦点在坐标轴上.(2)6=c ,经过点(-5,2),焦点在x 轴上.(3)与双曲线141622=−y x 有相同焦点,且经过点()223,(4)过点)2,3(−P ,离心率25=e .(5)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,且°=∠6021PF F ,31221=∆F PF S ,离心率为2.(6)双曲线的渐近线方程为023=±y x ,两条准线间的距离为131316。

4.(1)求与双曲线191622=−y x 共渐近线且过()332−,A 点的双曲线方程及离心率.(2)求以曲线0104222=−−+x y x 和222−=x y 的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.(3)中心在原点,一个焦点为()01,F 的双曲线,其实轴长与虚轴长之比为m ,求双曲线标准方程.二.求离心率说明:求离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.1.一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.2.已知椭圆19822=++y k x 的离心率21=e ,求k 的值.3.已知双曲线的渐近线方程是043=+y x ,043=−y x ,求双曲线的离心率.4.设双曲线12222=−by a x )0(b a <<的半焦距为c ,直线l 过)0,(a 、),0(b 两点,且原点到直线l 的距离为c 43,求双曲线的离心率.三.求值问题1.已知双曲线116922=−y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠.2.已知1F 、2F 是双曲线1422=−y x 的两个焦点,点P 在双曲线上且满足�9021=∠PF F ,求21PF F ∆的面积.3.若椭圆122=+n y m x )0(>>n m 和双曲线122=−ty s x )0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ⋅的值是.4.过抛物线()022>=p px y 的焦点作倾斜角为的直线,设交抛物线于A 、B 两点,求AB 。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A. B. C. 2 D.1-4.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 35.已知点)0,2(-A 、)0,3(B ,动点2),(y PB PA y x P =⋅满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( ) A. 双曲线B.抛物线C. 椭圆D.以上都不对8.若抛物线)0(22≠=a ax y 的焦点与双曲线1322=-y x 的左焦点重合,则a 的值为 A .2-B .2C .4-D .49.已知点F 、A 分别为双曲线C :22221x y a b-=(0,0)a b >>的左焦点、右顶点,点(0,)B b 满足0FB AB ⋅=u u u r u u u r,则双曲线的离心率为A B C .D 10.方程02=+ny mx )0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )B二、填空1191697=-有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .12. 若中心在坐标原点,对称轴为坐标轴的椭圆经过两点(4,0)和(0,2),则该椭圆的离心率等于 。

(完整版)高二圆锥曲线经典练习题含答案(可编辑修改word版)

(完整版)高二圆锥曲线经典练习题含答案(可编辑修改word版)

一.求离心率问题1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+13.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ]5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A.B.C.D.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.28.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.二、圆锥曲线小题综合9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.810.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.1111.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.613.已知椭圆与双曲线有相同的焦点F1,F2,点P 是两曲线的一个公共点,且PF1⊥PF2,e1,e2 分别是两曲线C1,C2 的离心率,则的最小值是()A.4 B.6 C.8 D.1614.已知点M(1,0),A,B 是椭圆+y2=1 上的动点,且=0,则•的取值是()A.[ ,1] B.[1,9] C.[ ,9] D.[ ,3]15.已知双曲线的右焦点与抛物线y2=12x 的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.已知抛物线y2=2px (p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.917.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.1218.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+120.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.三.求轨迹方程问题21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).四、直线和圆锥的关系问题26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.27.已知椭圆的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆C 的方程;(2)已知定点P(0,2),是否存在过P 的直线l,使l 与椭圆C 交于A,B 两点,且以|AB|为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.28.已知椭圆C:=1(a>b>0)的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线x+y﹣2=0 相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过椭圆右焦点且不重合于x 轴的动直线与椭圆C 相交于A、B 两点,探究在x 轴上是否存在定点E,使得•为定值?若存在,试求出定值和点E 的坐标;若不存在,请说明理由.29.已知椭圆的左右顶点分别为A1,A2,右焦点F 的坐标为,点P 坐标为(﹣2,2),且直线PA1⊥x 轴,过点P 作直线与椭圆E 交于A,B 两点(A,B 在第一象限且点 A 在点B 的上方),直线OP 与AA2交于点Q,连接QA1.(1)求椭圆E 的方程;(2)设直线QA1 的斜率为k1,直线A1B 的斜率为k2,问:k1k2 的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.30.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),O 为坐标原点,A,B 是抛物线C上异于O 的两点.(I)求抛物线C 的方程;(Ⅱ)若直线OA,OB 的斜率之积为,求证:直线AB 过定点.31.已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,离心率为,点A 在椭圆C 上,|AF1|=2,∠F1AF2=60°,过F2 与坐标轴不垂直的直线l 与椭圆C 交于P,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若P,Q 的中点为N,在线段OF2上是否存在点M(m,0),使得MN⊥PQ?若存在,求实数m 的取值范围;若不存在,说明理由.32.已知椭圆C:(a>b>0)的离心率为,且抛物线y2=4 x 的焦点恰好使椭圆C 的一个焦点.(1)求椭圆C 的方程(2)过点D(0,3)作直线l 与椭圆C 交于A,B 两点,点N 满足=(O 为原点),求四边形OANB 面积的最大值,并求此时直线l 的方程.33.已知椭圆C:+=1(a>b>0)的右焦点到直线x﹣y+3 =0 的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C 的标准方程;(2)给出定点Q(,0),对于椭圆C 的任意一条过Q 的弦AB,+是否为定值?若是,求出该定值,若不是,请说明理由.34.已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F1,F2 是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.35.如图,已知椭圆C:=1(a>b>0)的离心率是,一个顶点是B(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设P,Q 是椭圆C 上异于点B 的任意两点,且BP⊥BQ.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.36.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l:y=kx+m(k≠0),与该椭圆交于P、Q 两点,直线OP、OQ 的斜率依次为k1、k2,满足4k=k1+k2,试问:当k 变化时,m2 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.37.在平面直角坐标系xOy 中,已知椭圆C:+=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C 的右焦点F,且交椭圆C 于A,B 两点.(1)求椭圆C 的标准方程;(2)已知点D(,0),连结BD,过点A 作垂直于y 轴的直线l1,设直线l1与直线BD 交于点P,试探索当m 变化时,是否存在一条定直线l2,使得点P 恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.38.已知动点P 到定点F(1,0)和直线l:x=2 的距离之比为,设动点P 的轨迹为曲线E,过点F 作垂直于x 轴的直线与曲线E 相交于A,B 两点,直线l:y=mx+n 与曲线E 交于C,D 两点,与线段AB 相交于一点(与A,B 不重合)(Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆x2+y2=1 相切时,四边形ACBD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.39.已知椭圆C 的中心在坐标原点,焦点在x 轴上,其左、右焦点分别为F1,F2,短轴长为2.点P 在椭圆C 上,且满足△PF1F2 的周长为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(﹣1,0)的直线l 与椭圆C 相交于A,B 两点,试问在x 轴上是否存在一个定点M,使得•恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.40.已知椭圆C:的离心率为,右焦点F2 到直线l1:3x+4y=0 的距离为.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l 与椭圆C 相交于E、F 两点,A 为椭圆的右顶点,直线AE,AF 分别交直线x=3 于点M,N,线段MN 的中点为P,记直线PF2 的斜率为k′,求证:k•k′为定值.一.选择题(共20 小题)1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.【分析】求出椭圆的左焦点与下顶点坐标连线的斜率,然后求解椭圆的离心率即可.【解答】解:椭圆和直线,若过C 的左焦点和下顶点的直线与平行,直线l 的斜率为,所以,又b2+c2=a2,所以,故选:A.【点评】本题考查椭圆的简单性质的应用,是基本知识的考查.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+1【分析】如图所示,△PF1F2 为直角三角形,可得∠PF1F2=90°,可得|PF1|=2c,|PF2=2 c,利用椭圆的定义可得2c+2c=2a,即可得出.【解答】解:如图所示,∵△PF1F2为直角三角形,∴∠PF1F2=90°,∴|PF1|=2c,|PF2=2 c,则2c+2c=2a,解得e==﹣1.故选:A.【点评】本题考查了椭圆与圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.3.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.【分析】利用已知条件求出P 的坐标,然后求解E 的坐标,推出M 的坐标,利用中点坐标公式得到双曲线的离心率即可.【解答】解:可令F(﹣c,0),由x=﹣c,可得y=±b =±,由题意可设P(﹣c,),B(a,0),可得BP 的方程为:y=﹣(x﹣a),x=0 时,y=,E(0,),A(﹣a,0),则AE 的方程为:y=(x+a),则M(﹣c,﹣),M 是线段PF 的中点,可得2•(﹣)=,即2a﹣2c=a+c,即a=3c,可得e==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ] 【分析】由题意画出图形,可得四边形AF2BF1 为矩形,则AB=F1F2=2c,结合AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,列式可得e 关于∠ABF2 的三角函数,利用辅助角公式化积后求解椭圆离心率的取值范围.【解答】解:如图,设椭圆的另一焦点为F1,连接AF1,AF2,BF1,则四边形AF2BF1 为矩形,∴AB=F1F2=2c,∵AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,∴2c•sin∠ABF2+2c•cos∠ABF2=2a,得e==.∵∠ABF2∈[ ],∴,则∈[].则椭圆离心率的取值范围为[].故选:B.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.【分析】由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C 的离心率.【解答】解:如图,由题意,把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e=.故选:A.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A. B. C. D.【分析】不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解.【解答】解:如图,不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立,得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0.∴.由题意,方程得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0 的两根异号,则a>b,此时<0,>0.则,即a=2b.∴a2=4b2=4(c2﹣a2),∴4c2=5a2,即e=.故选:B.【点评】本题考查双曲线的简单性质,考查计算能力,是中档题.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.2【分析】渐近线与直线x+3y+1=0 垂直,得a、b 关系,再由双曲线基本量的平方关系,得出a、c 的关系式,结合离心率的定义,可得该双曲线的离心率.【解答】解:∵双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直.∴双曲线的渐近线方程为y=±3x,∴=3,得b2=9a2,c2﹣a2=9a2,此时,离心率e==.故选:C.【点评】本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.8.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.【分析】连接OP,运用等边三角形的定义和垂直平分线的性质,以及点到直线的距离公式,可得|OP|=c,O 到PF1的距离为a,再由锐角三角函数的定义可得所求离心率的值.【解答】解:连接OP,可得|OP|=|OF1|=|OF2|=|PF2|=c,F1到渐近线bx+ay=0 的距离为d==b,在等腰三角形OPF1 中,O 到PF1 的距离为a,即sin∠OPF1=sin30°==,可得e==2.故选:B.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查垂直平分线的性质以及化简运算能力,属于基础题.9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.8【分析】根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得:3p﹣p=()2,解得p=8.故选:D.【点评】本题考查了抛物线与椭圆的性质,属基础题.10.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.11【分析】由双曲线方程求出a 及c 的值,利用双曲线定义把|PF|+|PF1|转化为|PF1|+|PF2|+2a,连接FF2 交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,由两点间的距离公式求出|FF2|,则|PF|+|PF1|的最小值可求.【解答】解:如图由双曲线双曲线=1,得a2=3,b2=5,∴c2=a2+b2=9,则c=3,则F2(3,0),∵|PF1|﹣|PF2|=4,∴|PF1|=4+|PF2|,则|PF|+|PF1|=|PF|+|PF2|+4,连接FF2交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,∵F 的坐标为(0,4),F2(3,0),∴|FF2|=5,∴|PF|+|PF1|的最小值为5+4=9.故选:C.【点评】本题考查双曲线的标准方程,考查了双曲线的简单性质,训练了双曲线中最值问题的求法,体现了数学转化思想方法,是中档题.11.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.【分析】求出双曲线的渐近线方程可得,①求出椭圆的焦点坐标,可得c=2 ,即a2+b2=8,②,解方程可得a,b 的值,进而得到双曲线的方程.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2 ,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.【点评】本题考查双曲线的方程的求法,注意运用双曲线的渐近线方程和椭圆的焦点,考查运算能力,属于基本知识的考查.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.6【分析】利用抛物线方程求出准线方程,然后代入双曲线方程求出M,N.利用三角形是直角三角形,转化求解即可.1 2 1 21 2 1 2 【解答】解:由题设知抛物线 y 2=2px 的准线为 x =﹣ ,代入双曲线方程﹣x 2=1 解得 y =±,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN =,∴tan ∠FMN = =1,∴p 2=3+ ,即 p =2 ,故选:A .【点评】本题考查抛物线的定义及抛物线的几何性质,双曲线方程的应用,考查计算能力.13. 已 知 椭 圆 与 双 曲 线有相同的焦点 F 1,F 2,点 P 是两曲线的一个公共点,且 PF 1⊥PF 2,e 1,e 2 分别是两曲线 C 1,C 2 的离心率,则的最小值是( )A .4B .6C .8D .16【分析】由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2,令 P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出 a 2+a 2=2c 2,由此能求出 9e 2+e 2 的最小值.【解答】解:由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2, 令 P 在双曲线的右支上,由双曲线的定义|PF 1|﹣|PF 2|=2a 2,① 由椭圆定义|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2, ∴|PF 1|2+|PF 2|2=4c 2,③①2+②2,得|PF 1|2+|PF 2|2=2a 2+2a 2,④将④代入③,得 a 2+a 2=2c 2,∴9e 12+e 22=+=5++≥8,即的最小值是 8.1 2 故选:C .【点评】本题考查 9e 2+e 2的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用. 14. 已知点 M (1,0),A ,B 是椭圆+y 2=1 上的动点,且=0,则 • 的取值是()A .[ ,1]B .[1,9]C .[ ,9]D .[,3]【分析】利用=0,可得 •=•(﹣)=,设 A (2cos α,sin α),可得=(2cos α﹣1)2+sin 2α,即可求解数量积的取值范围.【解答】解:∵=0,可得•=•(﹣)=,设 A (2cos α,sin α), 则=(2cos α﹣1)2+sin 2α=3cos 2α﹣4cos α+2=3(cos α﹣ )2+,∴cos α= 时, 的最小值为;cos α=﹣1 时,的最大值为 9,故选:C .【点评】本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力, 属于中档题. 15. 已知双曲线的右焦点与抛物线 y 2=12x 的焦点相同,则此双曲线的渐近线方程为( ) A .B .C .D .【分析】由已知条件求出双曲线的一个焦点为(3,0),可得 m +5=9,求出 m =4,由此能求出双曲线的渐近线方程.【解答】解:∵抛物线 y 2=12x 的焦点为(3,0), ∴双曲线的一个焦点为(3,0),即 c =3.双曲线可得∴m +5=9,∴m =4,∴双曲线的渐近线方程为:.故选:A.【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.16.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.9【分析】根据抛物线的焦半径公式得1+=5,p=8.取M(1,4),双曲线的左顶点为A(﹣a,0),AM 的斜率为,双曲线的渐近线方程是,由已知得,由双曲线一条渐近线与直线AM 平行能求出实数a.【解答】解:∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+=5,p=8.∴抛物线y2=16x,∴M(1,±4),∵m>0,∴取M(1,4),∵双曲线的左顶点为A(﹣,0),∴AM 的斜率为,双曲线的渐近线方程是,由已知得,解得a=.故选:A.【点评】本题考查圆锥曲线的综合应用,解题时要认真审题,仔细解答,注意双曲线和抛物线性质的灵活运用.17.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B 坐标,即可求解所求结果.【解答】解:椭圆E 的中心在坐标原点,离心率为,E 的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.18.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)【分析】先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0 求得 a 和 b 的关系,进而求得 a 和 c 的关系,则双曲线的离心率可得.【解答】解:依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y 得x2± x+2=0∵渐近线与抛物线有交点∴△=﹣8≥0,求得b2≥8a2,∴c=≥3a∴e=≥3.则双曲线的离心率 e 的取值范围:e≥3.故选:A.【点评】本题主要考查了双曲线的简单性质和圆锥曲线之间位置关系.常需要把曲线方程联立根据判别式和曲线交点之间的关系来解决问题.19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+1【分析】利用抛物线的定义,确定M 的坐标,利用点差法将线段AB 中点M 的坐标代入,即可求得结论.【解答】解:∵M 在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,∴M 的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB 中点M 的坐标代入,可得∴∴故选:A.【点评】本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.20.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.【分析】根据抛物线的定义,可得点M 到抛物线的准线x=﹣的距离也为5,即即|1+|=5,解可得p=8,可得抛物线的方程,进而可得M 的坐标;根据双曲线的性质,可得A 的坐标与其渐近线的方程,根据题意,双曲线的一条渐近线与直线AM 平行,可得=,解可得a 的值,即可得答案.【解答】解:根据题意,抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,则点M 到抛物线的准线x=﹣的距离也为5,即|1+ |=5,解可得p=8;即抛物线的方程为y2=16x,易得m2=2×8=16,则m=4,即M 的坐标为(1,4)双曲线的左顶点为A,则a>0,且A 的坐标为(﹣,0),其渐近线方程为y=±x;而K AM=,又由若双曲线的一条渐近线与直线AM 平行,则有=,解可得a=;故选:B.【点评】本题综合考查双曲线与抛物线的性质,难度一般;需要牢记双曲线的渐近线方程、定点坐标等.二.解答题(共20 小题)21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.【分析】(Ⅰ)直接利用距离的比,列出方程即可求点M 的轨迹方程,然后说明轨迹是什么图形;(Ⅱ)设出直线方程,利用圆心到直线的距离,半径与半弦长满足的勾股定理,求出直线l 的方程.【解答】解:(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,得=5,即=5,化简得x2+y2﹣2x﹣2y﹣23=0.即(x﹣1)2+(y﹣1)2=25.∴点M 的轨迹方程是(x﹣1)2+(y﹣1)2=25,所求轨迹是以(1,1)为圆心,以5 为半径的圆.(Ⅱ)当直线l 的斜率不存在时,过点A(﹣2,3)的直线l:x=﹣2,此时过点A(﹣2,3)的直线l 被圆所截得的线段的长为:2=8,∴l:x=﹣2 符合题意.当直线l 的斜率存在时,设过点A(﹣2,3)的直线l 的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,圆心到l 的距离d=,由题意,得()2+42=52,解得k=.∴直线l 的方程为x﹣y+ =0.即5x﹣12y+46=0.综上,直线l 的方程为x=﹣2,或5x﹣12y+46=0.【点评】本题考查曲线轨迹方程的求法,直线与圆的位置关系的应用,考查计算能力,属于中档题.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.【分析】(1)由左焦点为F(﹣),右顶点为D(2,0),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x 轴上求得方程.(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,将P 代入椭圆方程,即可求得线段PA 中点M 的轨迹方程【解答】解:(1)由题意可知:椭圆的焦点在x 轴上,设+ =1(a>b>0),由椭圆的左焦点为F(﹣,0),右顶点为D(2,0),即a=2,c=,则b2=a2﹣c2=1,∴椭圆的标准方程为:+y2=1(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,整理得:,由点P 在椭圆上,∴+(2y﹣)2=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(10 分)∴线段PA 中点M 的轨迹方程是:(x﹣)2+4(y﹣)2=1.【点评】本题考查椭圆的标准方程与性质,考查轨迹方程的求法,中点坐标公式的应用,考查计算能力,属于中档题.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.【分析】欲求点M 的轨迹方程,设M(x,y),只须求得坐标x,y 之间的关系式即可.再设P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)结合中点坐标公式即可求得x,y 的关系式.【解答】解:设M(x,y),P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⇒,又Q 是OP 的中点∴⇒,∵P 在抛物线y2=4x 上,∴(4y)2=4(4x﹣2),所以M 点的轨迹方程为【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合运用基础知识解决问题的能力.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.【分析】(Ⅰ)设动点E 的坐标为(x,y),由点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,知,由此能求出动点E 的轨迹C 的方程.(Ⅱ)设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,得(2k2+1)x2﹣4k2x+2k2﹣2=0,由题设条件能推导出直线MN 的垂直平分线的方程为y+=﹣,由此能求出点P 纵坐标的取值范围.【解答】解:(Ⅰ)设动点E 的坐标为(x,y),∵点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,∴,整理,得,x≠,∴动点E 的轨迹C 的方程为,x .(Ⅱ)当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0,当直线l 的斜率存在时,设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,并整理,得(2k2+1)x2﹣4k2x+2k2﹣2=0,△=8k2+8>0,设M(x1,y1),N(x2,y2),则,x1x2=,设MN 的中点为Q,则,,∴Q(,﹣),由题意知k≠0,又直线MN 的垂直平分线的方程为y+=﹣,令x=0,得y P=,当k>0 时,∵2k+ ,∴0<;当k<0 时,因为2k+≤﹣2 ,所以0>y P≥﹣=﹣.综上所述,点P 纵坐标的取值范围是[﹣].【点评】本题考查动点的轨迹方程的求法,考查点的纵坐标的取值范围的求法,解题时要认真审题,仔细解答,注意直线与椭圆位置的综合运用.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).【分析】利用斜率的计算公式即可得出.【解答】解:设点P(x,y),则直线AP 的斜率,直线BP 的斜率.由题意得.化简得:.∴点P 的轨迹方程是椭圆.【点评】熟练掌握斜率的计算公式及椭圆的标准方程是解题的关键.只有去掉长轴的两个端点.26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)利用已知条件求解a,b,然后求解椭圆的方程.(Ⅱ)假设存在点M(x0,0),使得为定值,联立,设A(x1,y1),B(x2,y2),利用韦达定理,结合向量的数量积,转化求解即可.【解答】解:(Ⅰ)由已知得a=2,c=1,∴,则E 的方程为;… ....................... (4 分)(Ⅱ)假设存在点M(x0,0),使得为定值,联立,得(3m2+4)y2+6my﹣9=0…(6 分)设A(x1,y1),B(x2,y2),则,… ...... (7 分),∴。

高二文科数学圆锥曲线基础训练一

高二文科数学圆锥曲线基础训练一

高二文科数学圆锥曲线基础训练(一)1.k 为何值时,直线y=kx+2和椭圆632x 22=+y 有两个交点 (A .B .k< C . D.k ≤ 【解析】 :(2+3k 2)x 2+12kx+6=0,由△=144k 2-24k<2.抛物线4x y 2=上一点M 到焦点的距离为1,则点M 的纵坐标是( )A. 0 D. 【答案】A 1,所以110=+x ,所以得00=y 。

3.过点(0,1共有 ( )A.1条B.2条C.3条D.4条 【答案】D4.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为( )5.值是( A .m-a B C .22a m - D【答案】A【解析】设P 是第一象限的交点,P 到1F 、2F 的距离BC D 7.已知k <4,( ) A. 相同的准线C. 相同的离心率D. 相同的长轴 8( )9.抛物线212y x =的准线与双曲线B. C.2A10.右两焦点分别为21,F F ,点A在椭圆上,e 等于(D.得112AFF F ⊥,又4521=∠AF F,x 轴上,若长轴长为18,且两个焦点恰好___________18,即2a=18,得a=9,因为两个焦点恰好将长轴三等分,∴,得c=3,因此,b 2=a 2-c 2=81-9=72,再结合椭圆焦点在y 121的右焦点作一条斜率为2的直线与椭圆交于A 、B1314满足3-试题分析:不妨设P 为双曲线右支上一点,则|PF 1|-|PF 2|=4………………①又|PF 1|,|F 1F 2|,|PF 2|成等差数列,|F 1F 2|=10,所以|PF 1|+|PF 2|=20………………②由①②可得|PF 1|=12,|PF 2|=8.所以由余弦定理得:cos∠F1PF2所以sin∠F1||PF2|sin∠F1PF218.(本题满分12分)双曲线与椭圆212736x y+=有相同焦点,且经过点4),求其方程.解:椭圆2213627y x+=的焦点为(0,±3),c=3,设双曲线方程为222219y xa a-=-,∵过点4),则22161519a a-=-得a2=4或36,而a2<9,∴a2=4,双曲线方程为22145y x-=.(1)求椭圆C的方程;(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.①求证:直线MA,MB的斜率之积为定值;②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.【解析】(1)(-2,0),(2,0),离心率则在椭圆C中故在椭圆C中c b=1,所以椭圆C(2)①设0≠±2)A(-2,0),则k MA k MB故k MA·k MB点M在椭圆C上,故k MA·k MB MA,MB的斜率之积为定值。

完整版)高二数学圆锥曲线基础练习题(一)

完整版)高二数学圆锥曲线基础练习题(一)

完整版)高二数学圆锥曲线基础练习题(一)高二数学圆锥曲线基础练题(一)1.抛物线 $y^2=4x$ 的焦点坐标为()A.$(1,0)$ B.$(0,1)$ C.$(-1,0)$ D.$(0,-1)$2.双曲线 $mx+y=1$ 的虚轴长是实轴长的2倍,则$m=$()A.$-\frac{1}{2}$ B.$-4$ C.$4$ D.$\frac{1}{4}$3.双曲线 $\frac{x^2}{9}-\frac{y^2}{16}=1$ 的一个焦点到渐近线距离为3,则双曲线的另一个焦点到渐近线的距离为()A.$6$ B.$5$ C.$4$ D.$3$4.已知 $\triangle ABC$ 的顶点 $B$、$C$ 在椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$ 上,顶点 $A$ 是椭圆的一个焦点,且椭圆的另一个焦点在 $BC$ 边上,则 $\triangleABC$ 的周长是()A.$23$ B.$6$ C.$43$ D.$12$5.已知椭圆 $\frac{x^2}{4}+\frac{y^2}{9}=1$ 右支上的一点,双曲线 $\frac{x^2}{16}-\frac{y^2}{9}=1$ 的一条渐近线方程为 $3x-y=0$。

设该点到该渐近线的距离为 $a$,则该点到双曲线的焦点距离为()A.$5\sqrt{2}$ B.$4\sqrt{2}$ C.$3\sqrt{2}$ D.$2\sqrt{2}$6.已知 $P$ 是双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的右焦点为 $F_1$、左焦点为 $F_2$。

若$PF_2=3$,则 $PF_1=$()A.$5\sqrt{2}$ B.$4$ C.$3$ D.$2$7.将抛物线 $y=(x-2)^2+1$ 按向量 $a$ 平移,使顶点与原点重合,则向量 $a$ 的坐标是()A.$(-2,-1)$ B.$(2,1)$ C.$(2,-1)$ D.$(-2,1)$8.已知双曲线的两个焦点为 $F_1(-5,0)$,$F_2(5,0)$,$P$ 是此双曲线上的一点,且 $PF_1\perp PF_2$,$|PF_1|\cdot|PF_2|=2$,则该双曲线的方程是()A.$\frac{x^2}{16}-\frac{y^2}{9}=1$ B.$\frac{x^2}{9}-\frac{y^2}{16}=1$ C.$y^2=1-\frac{x^2}{16}$ D.$x^2-\frac{y^2}{9}=1$9.设 $A(x_1,y_1)$,$B(4,0)$,$C(x_2,y_2)$ 是右焦点为$F$ 的椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$ 上三个不同的点,则“$AF,BF,CF$ 成等差数列”是“$x_1+x_2=8$”的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既非充分也非必要条件10.已知双曲线 $\frac{x^2}{9}-\frac{y^2}{16}=1$ 的左右焦点分别为 $F_1$,$F_2$,$P$ 为此双曲线上一点,且$PF_2=F_1F_2$,则 $\triangle PF_1F_2$ 的面积等于()A.$24$ B.$36$ C.$48$ D.$96$11.已知点 $P$ 在抛物线 $y=4x$ 上,那么点 $P$ 到点$Q(2,-1)$ 的距离与点 $P$ 到抛物线焦点距离之和取得最小值时,点 $P$ 的坐标为()A.$(\frac{1}{3},1)$ B.$(-\frac{1}{3},-1)$ C.$(1,2)$ D.$(1,-2)$12.设 $P$ 是双曲线 $\frac{x^2}{4}-\frac{y^2}{2}=1$ 上的一点,若 $2P$ 是该双曲线上的点,则 $P$ 的坐标为()A.$(\sqrt{2},\sqrt{2})$ B.$(\sqrt{2},-\sqrt{2})$ C.$(-\sqrt{2},\sqrt{2})$ D.$(-\sqrt{2},-\sqrt{2})$1.在第一行加上“已知”,并且将“F1、F2”改为“左、右焦点”,将“ab圆”改为“以线段PF2为直径的圆”,将“双曲线的实轴”改为“实轴”,最后将选项改为“内切、外切或不相切”。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为( )2.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23B .3C .27D .43.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( )A. 抛物线B.双曲线C. 椭圆D.以上都不对4.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 95、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A.B. C. 2 D. 16.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 7. 若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2 (B)3(C)48.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A. 双曲线B.抛物线C. 椭圆D.以上都不对10.方程02=+ny mx 与)02>+n mx 的曲线在同一坐标系中的示意图应是( )B 11.以双曲线169的右焦点为圆心,且与其渐近线相切的圆的方程是( )A . B.C .D.12.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x二、填空题:13.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .14.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 15、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的16.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 .; 三、解答题:17.已知双曲线与椭圆125922=+y x 共焦点,它们的离心率之和为514,求双曲线方程.(12分) 18.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F(1)求△21PF F 的面积; (2)求P 点的坐标.(14分) 19、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为338的双曲线方程.(14分)20 在平面直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少? 21.A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?22、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

圆锥曲线练习题含答案很基础很好的题

圆锥曲线练习题含答案很基础很好的题

7B.— 46.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( 1 72 1 721 721 72(4-^) B.(8-7)C . (4,丁)D .(8,7)2 2—=1上一点P 与椭圆的两个焦点 F 1、F 2的连线互相垂直,则^ PF 1F 2的面积为49 2420 B . 22 C . 28 D . 24C .(1,72)D . (2,2)29.与椭圆 一+ y 2=1共焦点且过点Q (2,1)的双曲线方程是()4圆锥曲线练习题21抛物线y= 10x 的焦点到准线的距离是( 5 A.— 2 2.若抛物线 B . 5 C . 15D . 10 2 y 2 =8x 上一点P 到其焦点的距离为9,则点P 的坐标为( A . (7, ±774) B . (14,±714) C . (7,±2714) D . (-7,±2714) 3-以椭圆25 2 2 —+ =1的顶点为顶点,离心率为 16 2的双曲线方程( 2 x A . 一 16 2 —1 48 B . 2 厶=1 27 2 x 16 2 2 丄=1或三 48 9 227 D .以上都不对2x 4. F 1,F 2是椭圆一 9 =1的两个焦点, A 为椭圆上一点,且/ AF 1F 2 =45° ,则△ AF 1F 2 的面积(5.以坐标轴为对称轴, 以原点为顶点且过圆 x 2 + y 2 -2x + 6y + 9 = 0的圆心的抛物线的方程是2 2A . y = 3x 或 y = -3x 2B . y = 3x 2C . y = -9x 或 y = 3xD . y = -3x 2或2 y =9x7^5 27.椭圆 8 .若点 A 的坐标为(3,2), 2F 是抛物线y =2x 的焦点,点M 在抛物线上移动时,使 MF + M A 取得最小值的 M 的坐标为(22 2 2 2x 2 」 x 2 」 x y A. ——-y =1 B. ——-y =1 C . ——=12 43 3310.若椭圆宀吋2/的离心率为一,则它的长半轴长为11.双曲线的渐近线方程为 x±2y =0,焦距为10,这双曲线的方程为 12.抛物线y 2 =6x 的准线方程为. 13•椭圆5x 2+ ky2=5的一个焦点是(0,2),那么k = _____ 。

圆锥曲线基础练习题及答案

圆锥曲线基础练习题及答案

圆锥曲线基础练习题及答案一、选择题:x2y2??1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 1.已知椭圆2516A.2B. C.D.72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为x2y2x2y2x2y2x2y2??1B.??1 C.??1或??1 D.以上都不对A.9162516251616253.动点P到点M及点N的距离之差为2,则点P的轨迹是A.双曲线 B.双曲线的一支 C.两条射线D.一条射线4.抛物线y2?10x的焦点到准线的距离是51 B.C. D.1025.若抛物线y2?8x上一点P到其焦点的距离为9,则点P的坐标为 A.A.,那么k?三、解答题11.k为何值时,直线y?kx?2和曲线2x2?3y2?6有两个公共点?有一个公共点?没有公共点?12.在抛物线y?4x上求一点,使这点到直线y?4x?5的距离最短。

13.双曲线与椭圆有共同的焦点F1,F2,点P是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。

22214.已知双曲线x?y?1的离心率e?2,过A,B的直线到原点的距离是.223ab求双曲线的方程;已知直线y?kx?5交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.2y21 经过坐标原点的直线l与椭圆?1相交于A、B两2点,若以AB为直径的圆恰好通过椭圆左焦点F,求直线l的倾斜角.16.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=,求椭圆方程.参考答案1.D 点P到椭圆的两个焦点的距离之和为2a?10,10?3?72.C a?2b?18,a?b?9,2c?6,c?3,c2?a2?b2?9,a?b?1 x2y2x2y2??1或??1 得a?5,b?4,?251616253.D PM?PN?2,而MN?2,?P在线段MN的延长线上4.B p?10,p?5,而焦点到准线的距离是p5.C 点P到其焦点的距离等于点P到其准线x?? 2的距离,得xP?7,yp??x2y2??1,a?1;.1,或2当m?1时,1my2x2a2?b231212??1,e??1?m?,m?,a??4,a?当0?m?1时,11a244mmx2y21设双曲线的方程为x2?4y2??,,焦距2c?10,c2?25.205当??0时,x2??y24?1,4?25,??20;x21,?25,20 当??0时,??4?48.??0,?0,k?1,或k??49.x??y23p32p?6,p?3,x22y2x25??1,c2??1?4,k?1 10.1焦点在y轴上,则51k k三、解答题11.解:由??y?kx?222?2x?3y?6,得2x2?32?6,即x2?12kx?6?0??144k2?24?72k2?48当??72k?48?0,即k?时,直线和曲线有两个公共点;或k??33 时,直线和曲线有一个公共点;或k??3 当??72k?48? 0,即k?2当??72k?48?0,即2时,直线和曲线没有公共点。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A. 2B. 12 C. 214.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 35.已知点)0,2(-A 、)0,3(B ,动点2),(y PB PA y x P =⋅满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( ) A. 双曲线B.抛物线C. 椭圆D.以上都不对8.若抛物线)0(22≠=a ax y 的焦点与双曲线1322=-y x 的左焦点重合,则a 的值为 A .2-B .2C .4-D .49.已知点F 、A 分别为双曲线C :22221x y a b-=(0,0)a b >>的左焦点、右顶点,点(0,)B b 满足0FB AB ⋅=u u u r u u u r,则双曲线的离心率为A .2B .3C .13+ D .15+ 10.方程02=+ny mx 与)0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )A B C D二、填空题:11.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .12. 若中心在坐标原点,对称轴为坐标轴的椭圆经过两点(4,0)和(0,2),则该椭圆的离心率等于 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二文科数学圆锥曲线(五)
基础训练一
一、选择题:
1.k 为何值时,直线y=kx+2和椭圆632x 2
2
=+y 有两个交点 ( ) A .
B .
k<
C .
D .
k ≤
2.抛物线4x y 2
=上一点M 到焦点的距离为1,则点M 的纵坐标是 ( )
A. 0
B.
C.
D. 3.过点(0,1)与双曲线22
1x y -=仅有一个公共点的直线
共有 ( )
A.1条
B.2条
C.3条
D.4条 4.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离
心率为( )
5.
相同的焦点1F 、2F ,P 是两曲线的一个公共点,则||||21PF PF ⋅的值是( )
A .m - a
B C .2
2a m - D
6.已知点)0,4(1-F 和)0,4(2F ,曲线上的动点P 到1F 、2F 的距离之差为6,则曲线方程为(

B
C
D 7
.已知k <4,
( ) A. 相同的准线 B. 相同的焦点 C. 相同的离心率 D. 相同的长轴 8.抛物线)0(2<=a ax y 的焦点坐标是
( )
9.抛物线2
12y x =的准线与双曲线成的三角形面积等于(

B. C.2
10.右两焦点分别为21,F F ,
点A 在椭圆上,0211=⋅F F AF ,
4521=∠AF F
,则椭圆的离心率e 等于
( )
D. 二、填空题:
11.中心在原点,焦点在x 轴上,若长轴长为
18,且两个焦点恰好将长轴三等分,则此椭圆的标准方程为_________________ 121的右焦点作一条斜率为2的直线与椭圆交于A
、B 两点,O 为坐标原点,求弦AB 的长_______
13F 作一条渐近线
的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 .
14.过点(1,2)总可作两条直线与圆2
2
2
2150x y kx y k ++++-=相切,则实数k 的取值范围是 .
15.已知抛物线2:2(0)C x py p =>上一点(,4)A m 到其焦点的距离为
5,则m = .
16.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,
F F 在x 轴上,
过F 1的直线交椭圆C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为
17.,12,F F 分别为它的左、右焦点,P 为成等差数列,则21F PF ∆的面积为 .
姓 名: .
一、选择题:
二、填空题:
11、_______________ 12、_______________
13、_______________ 14、_______________
15、_______________ 16、_______________
17、_______________
三、解答题;
18.双曲线与椭圆
22
12736
x y +=有相同焦点,且经过点
4),求其方程.
19.已知椭圆142
2=+y x 及直线m x y +=.
(1)当m 为何值时,直线与椭圆有公共点?
(2
20.过点(1,0)直线L 交抛物线x y 42
=于A(x 1,y 1),B(x 2,y 2)两点,抛物线的顶点是O .
(ⅰ)证明:OB OA ⋅为定值;
(ⅱ)若AB 中点横坐标为2,求AB 的长度及L 的方程.
21.已知椭圆G
F
G 上的点到点F
1的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2) (1)求椭圆G 的方程; (2)求PAB ∆的面积。

22.已知椭圆C
点为顶点,其离心率与双曲线的离心率互为倒数. (1)求椭圆C 的方程;
(2)若椭圆C 的左、右顶点分别为点A ,B ,点M 是椭圆C 上异于A ,
B 的任意一点.
①求证:直线MA ,MB 的斜率之积为定值;
②若直线MA ,MB 与直线x =4分别交于点P ,Q ,求线段PQ 长度
的最小值.。

相关文档
最新文档