三角形的内角和 (2)

合集下载

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)〖人教版数学四年级下册三角形的内角和优秀教案第【1】篇〗《三角形内角和》教学设计教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平行与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握“三角形的内角和是 180°”这一规律具有重要意义。

首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。

三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是 180 度。

二是把三个内角折叠在一起,发现也能组成一个平角。

每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于 90 度,钝角三角形里的两个锐角和小于90 度。

本节课的教学重点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

而教学难点则放在对不同探究方法的指导和学生对规律的灵活运用。

学情分析:四年级的学生已初步具备了动手操作的意识和能力,并能够在探究问题的过程中,运用已有的知识和经验,通过交流、比较、评价等寻找解决问题的途径和策略。

“三角形的内角和是 180°”这一结论,大多数学生在四年级上册“角的度量”也有接触,但不一定清楚道理,所以本课的重点不在于了解,而在于验证,让学生在课堂上经历研究问题的全过程。

学生在本课学习前已经认识了三角形的基本特征及分类,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。

2020春四年级数学下册课件-第5课时 三角形的内角和(二)+习题

2020春四年级数学下册课件-第5课时  三角形的内角和(二)+习题

(3)将一个三角形截去一个角,得到一个四边形,已知 截去的角是30°。剩下的图形的内角和是( 360 )°。
(4)连接四边形的一条对角线,把它分割成( 两 )个三 角形。因为三角形的内角和是180°,所以四边形 的内角和是180°×( 2 )=( 360 )°。
2.计算未知角的度数。 (1)
360°-95°-110°-90°=65° (2)
1个三角形 3个三角形 6个三角形 10个三角形 规律:相邻两个图形中,三角形个数的 差依次为2、3、4。
提示:点击 进入习题
1
2
3
4
5
6
知识点
1.填空。
四边形的内角和
(1)长方形和正方形的四个角都是( 直 )角,所以长 方形和正方形的内角和都是( 360°)。
(2)将任意一个四边形的四个角剪下来,可以拼成一个 ( 周 )角,所以四边形的内角和是( 360°)。
四边形的内角和是多少度?
四边形的内角和是360°
作 业 请完成教材第69~70页练习十六第4题、第5 题、第6题、第7题。
补充作业 请完成《典中点》剩余习题,具体内容见 习 题课件。
5 三角形
多边形的内角和
RJ 四年级上册
习题课件
教材习题 (选题源于教材P69第4题)
1. 画一画,算一算,你发现了什么?
3.一个直角梯形的一个内角是75°(如图), 这个直角梯形中∠1的度数是多少度?
360°-90°-90°-75°=105°
易错辨析 (选题源于《典中点》经典题库) 4.任意四边形的四个内角中,最多可以有( 4 )
个直角,( 3 )个钝角,( 3 )个锐角。
辨析:要清楚的知道四边形四个内角中最多 可以有几个锐角、几个钝角

《三角形内角和》说课稿

《三角形内角和》说课稿

《三角形内角和》说课稿《三角形内角和》说课稿范文(通用5篇)《三角形内角和》说课稿1一、说教材“三角形的内角和”是九年义务教育六年制小学四年级下册第六单元第3节的内容。

“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。

主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。

从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。

基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:1、知识目标:知道三角形内角和是180°。

2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。

②能运用三角形内角和是180°这一规律解决实际问题。

3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。

教学重点:三角形内角和是180°的实际应用。

教学难点:探索三角形的内角和是180°二、说教法新课程标准的基本理念就是要让学生“人人学有价值的数学”。

强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

三角形内角和

三角形内角和

方法一: 方法一: 度量法
60° ° 45° ° 90° ° 30° °
90° °
30°+60°+ 80°= 180° ° ° °
45° °
45°+45°+90°=180 ° ° ° ° 其它三角形可以用量角器来度量。 其它三角形可以用量角器来度量。
方法二 :拼合法
拼法一
拼法二
刚才拼角的过程中你能想出证明的方法吗? 从刚才拼角的过程中你能想出证明的方法吗?
F
B
C
证法2: 证法 :
已知: 已知:△ABC 求证: 求证:∠A+∠B+∠C=180° ∠ ∠ ° 延长BC到 , 延长 到D,过C作CE∥BA 作 ∥ ∴∠A=∠ ∴∠ ∠1 两直线平行,内错角相等) (两直线平行,内错角相等) A ∠B=∠2 ∠ 两直线平行,内错角相等) (两直线平行,内错角相等) 又∵∠1+∠2+∠ACB=180° ∵∠1+∠2+∠ACB=180° 1+∠2+∠ACB=180 平角的定义) (平角的定义) B ∴∠A+∠B+∠ACB=180° ∴∠A+∠B+∠ACB=180° 等量代换) (等量代换)
B A
C
三角形内角和定理
三角形三个内角的和等于180 三角形内角和定理 三角形三个内角的和等于1800. ∠A+∠B+∠C=1800. △ABC中,∠A+∠B+∠C= 中 ∠A+∠B+∠C=
的几种变形: 三角形内角和定理的几种变形 ∠A=1800 –(∠B+∠C). ∠A= (∠B+∠C). ∠B=1800 –(∠A+∠C). ∠B= (∠A+∠C). ∠C=1800 –(∠A+∠B). ∠C= (∠A+∠B). B ∠A+∠B=1800-∠C. ∠A+∠B= ∠C. ∠B+∠C=1800-∠A. ∠B+∠C= ∠A. ∠A+∠C=1800-∠B. ∠A+∠C= ∠B. 这里的结论,以后可以直接运用.

《三角形的内角和 》PPT课件(共24张PPT)

《三角形的内角和 》PPT课件(共24张PPT)
600 拿出准备好的三角形,小组合作,动手验证:三角形的内角和是不是180度?
我有一个钝角,比你三个角都大,所以我的内角和才是最大的。
900 算一算,三角形的内角和是多少度呢?
一个三角形的三个内角度数分别是65°,35°,80°. 三角形内角和等于1800。
540
(1) 这个三角形的内角和是多少度?
抢答游戏:
(3)把这个小三角形再分成一 大一小两个三角形,这两个三角 形的内角和分别是多少度?
抢答游戏:
(4)把两个小三角形拼成一个 大三角形,这个大三角形的内角 和是多少度?
抢答游戏:
(5) 3个小三角形拼成一个更 大的三角形,它的内角和是多少 度?
判断(用手语表示)
√ 1.一个三角形的三个内角度数分别是65°,35°,80°.( )
2.三角形的内角和与三角形的大小无关。( ) √
× 3.一个直角三角形,一个内角是37°,另一个内角是48°。( )
4、一个三角形中不可能有2个直角。 ( )

∠1=40º

∠ 2=48º
3
∠ 3=92º

猜猜∠3有多少度?
你能求出等边三角形每个角的度数吗?
等边三角形
400 1800-700 -700
520
300
800
东东把一块三角形的玻璃打碎成三 片,现在他要到玻璃店去配一块形状完 全一样的玻璃,那么最省事的办法是带 ( )去。 为什么?
帕斯卡:法国的数学家、物理 学家,为人类创造了无数的奇
迹,早在300年前这位法国著名
的科学家就已经发现了:
任何三角形的内角和 都是180°
当时才12岁
460 拿出准备好的三角形,小组合作,动手验证:三角形的内角和是不是180度?

三角形的内角和

三角形的内角和

1 认识三角形第1课时三角形与三角形的内角和【教材分析】本节课内容选自北京师范大学出版社的七年级数学下册第四章《三角形》第一节的第一课时:三角形的内角和。

主要内容包括三角形的有关概念、符号表示、三角形的三个角的大小关系以及内角和等基本性质。

呈现顺序是:观察一些生活中常见的物体图片——抽象出三角形的模型,概括出三角形的本质特点——认识三角形的有关概念、基本要素及三角形的符号表示——撕、拼三角形纸片得出三角形内角和——通过“议一议”活动,引出三角形按角分类——直角三角形的符号表示与直角三角形两锐角互余的结论.【学习目标】1.了解三角形及相关概念,能正确识别和表示三角形;2. 会按角的大小对三角形进行分类;3.掌握三角形的内角和等于180°,并会据此解决简单的问题.【教学重难点】重点:掌握三角形三个内角的和等于180°及其应用.难点:三角形三个内角的和等于180°的说理过程.)从古埃及的金字塔到现代的飞机,从宏伟的建筑物到实用的三角梯,都有什么样的形象?为什么不选A、B、D?得出关键词:不在同一直线、首尾顺次相接1.定义:由不在同一直线上的三条线段由学生指出.二、三角形的内角和为180°如何来验证?度量或撕、拼角,通过撕角和拼角,我们把三角形的三个角拼成了一个平角.问:此时三角形的那个底边和这条虚线是什么关系?如果只撕一个角的话怎么来验证,小组讨论,动手操作。

证法2:过点C作l∥BA∴∠A=∠1 .两直线平行,内错角相等三、三角形的分类猜一猜:总结:锐角三角形:三个角都是锐角的三角形;直角三角形:有一个角是直角的三角形;(Rt▲ABC钝角三角形:有一个角是钝角的三角形.直角三角形中有一个角为直角,那么剩下的两个锐角的关系是:直角三角形两锐角互余.(平板分类活动:)典例精析:(学生讲)【课堂总结】【板书设计】三角形与三角形的内角和三角形的定义与表示由不在同一直线上的三条线段首尾顺次相接所组成的图. ▲ABC三角形的内角和为180°三角形的分类:锐角三角形。

《三角形内角和定理》第2课时示范公开课教学课件【北师大数学八年级上册】

《三角形内角和定理》第2课时示范公开课教学课件【北师大数学八年级上册】
△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.如图,∠1是△ABC的∠ABC的外角. 想一想:一个三角形的外角应具备哪些条件呢?
归纳
三角形的外角应具备的条件:
(1)角的顶点是三角形的顶点; (2)角的一边是三角形的一边; (3)另一边是三角形中一边的延长线.
要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.
证明:∵∠EAC=∠B+∠C (三角形的一个外角等于和它不相邻的两个内角的和), ∠B=∠C (已知), ∴∠C= ∠EAC(等式的性质). ∵AD平分 ∠EAC(已知). ∴∠DAC= ∠EAC(角平分线的定义). ∴∠DAC=∠C(等量代换). ∴AD∥BC(内错角相等,两直线平行).
2.如图,AB//CD,∠A=37°,∠C=63°,那么∠F等于 ( ) A.26° B.63°C.37° D.60°
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,∵ ∠ABD=28° ,∠BEC=91°,∴ ∠BFC=119°.
解:
F
A
C
D
E
B
三角形内角和定理
三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.
△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角. 注意:每一个三角形都有6个外角.每一个顶点相对应的外角都有2个,且这2个角为对顶角.
教科书 第183页习题7.7 第2、3题
三角形内角和定理第2课时
准备好了吗?一起去探索吧!
三角形内角和定理
1.了解三角形外角的定义,掌握三角形外角的两个定理.2.能综合运用三角形内角和定理的推论即外角的两个定理进行几何证明与计算.3.引导学生从内和外、相等和不等的不同角度对三角形的角作全面的思考,体会几何中简单不等关系的证明.4.进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识.

《三角形的内角和》教案

《三角形的内角和》教案

《三角形的内角和》教案《三角形的内角和》教案1一、学生知识状况分析学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.二、教学任务分析上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。

为此,本节课的教学目标是:知识与技能:(1)掌握三角形内角和定理的证明及简单应用。

(2)灵活运用三角形内角和定理解决相关问题。

数学能力:用多种方法证明三角形定理,培养一题多解的能力。

情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.三、教学过程分析本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结第一环节:情境引入活动内容:(1)用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果(1) (2) (3) (4)试用自己的语言说明这一结论的证明思路。

想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。

想一想,如果只剪下一个角呢?活动目的:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

三角形的内角和(2)

三角形的内角和(2)
按小丽的分法n边形就可以分得(n-1)个三角形,这(n-1)个三角形的内角和为(n-1)×180°,但是有一个平角是多算的,应该减掉,所以n边形的内角和等于(n-1)×180°-180°,即(n-2)×180°
解:(n-2)×180°=(8-2)×180°=1080°
解:(1)设多边形边数为n,则有
课时编号
备课时间
课题
7.5三角形的内角和(2)
教学目标
1、通过将多边形分割成三角形,从而探索出多边形内角和的计算公式,并能进行应用
2、掌握求多边形内角和的公式
教学重点
探索多边形内角和的计算公式,并能进行应用
教学难点
多边形内角和公式的推导
教学过程
教学内容
教师活动
学生活动
1、在小学计算不规则多边形的面积大多采用什么方法?
多边形的边数
3
4
5
6

n
分成的三角形的个数
3
4
5
6

n
多边形的内角和
180°
360°
540°
720°

(n-2)×180°
结论:n边形的内角和等于(n-2)×180°
按小明的分法,n边形就可以分得n个三角形,这n个三角形的内角和为n×180°,但是中间的一个周角是多算的,应该减掉,所以n边形的内角和等于n×180°-360°,即
(n-2)×180°
例1求八边形的内角和。
例2(1)一个多边形的内角和是是2340°,求它的边数;
(2)一个正多边形的一个内角是150°,你知道它是几边形吗?
1.一个多边形的每一个外角都等于144°,求它的边数。
2.如果四边形有一个角是直角,另外三个角的度数比是2:3:4,那么这三个内角的度数分别是多少?

《三角形的内角和》优质ppt课件

《三角形的内角和》优质ppt课件

45° 90°
90° 60°
1
23 锐角三角形
1
1
23
23
直角三角形 钝角三角形
所有三角形的内角 猜想:和都是180°吗?
请同学们打开课本第67页,自主学 习,并完成下面的问题:
1.画几个不同类型的三角形。量一量,算一 算,三角形三个内角的和各是多少度。
2.先把一个三角形的三个角剪下来,在拼一 拼,看一看,拼成了一个什么角。
答: ∠2的度数是15°。 Nhomakorabea一个等腰三角形的风筝,它的一 个底角是70,它的顶角是多少度?
方法一: 180°-70°-70°=40° 方法二: 180°-70°×2=40°
答:顶角是40°。
把下面这个三角形沿虚线剪成两个小三角形, 每个小三角形的内角和是多少度?
因为:三角形的内角和是180°, 所以:这个三角形沿虚线剪成两个小三角形,
每个小三角形的内角和也是180°。
课堂小结:
三角形真奇怪,有胖有瘦有高矮。 内角和是180,我们时刻牢记它。
课后准备一个长方形、一个正方形 一个四边形。
谢谢观看
三角形的内角和是180度。
三角形的内角和
3 平角:1800
平角:1800
平角:1800
活动三:
折一折 拼一拼
1 1
1
1
2
2
3
3
钝角三角形
1
1
2
2
3
3
锐角三角形
2
2
3
3
直角三角形
三角形的内角和
一、测量法
活动记录表
三角形形状
每个角的度数
三个内角和
二、撕拼法
三、折叠法

三 角 形 的 内 角 和 ( 2 0 2 0 )

三 角 形 的 内 角 和 ( 2 0 2 0 )

数学三角形的所有定理!所有!等腰三角形:定义:有两条边相等的三角形是等腰三角形.在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.性质:1.等腰三角形的两条腰相等;2.等腰三角形的两个底角相等;3.等腰三角形是轴对称图形;4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴.判定:1.有两条边相等的三角形是等腰三角形;2.如果一个三角形有两个角相等,那么这两个角所对的边也相等.等边三角形:定义:三边都相等的三角形是等边三角形,也叫正三角形.性质:1.等边三角形是轴对称图形,有三条对称轴,任意边的垂直平分线都是它的对称轴;2.等边三角形的三个角都相等,每个角都是60°.判定:1.三条边都相等的三角形是等边三角形;2.有一个角是60°的等腰三角形是等边三角形;3.有两个角是60°的三角形是等边三角形.直角三角形:定义:有一个内角是直角的三角形叫做直角三角形.其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边.性质:1.直角三角形的两个余角互余;2.直角三角形斜边上的中线等于斜边的一半;3.直角三角形中30°角所对的直角边等于斜边的一半;4.勾股定理.判定:1.有一个角是直角的三角形是直角三角形;2.有两个角互余的三角形是直角三角形;3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;4.如果三角形的三边长a、b、c满足于a^2+b^2=c^2,那么这个三角形是直角三角形.15 定理三角形两边的和大于第三边?16 推论三角形两边的差小于第三边?17 三角形内角和定理三角形三个内角的和等于180°?18 推论1 直角三角形的两个锐角互余?19 推论2 三角形的一个外角等于和它不相邻的两个内角的和?20 推论3 三角形的一个外角大于任何一个和它不相邻的内角?21 全等三角形的对应边、对应角相等?22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等?23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等?24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等?25 边边边公理(SSS) 有三边对应相等的两个三角形全等?26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等?27 定理1 在角的平分线上的点到这个角的两边的距离相等?28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上?29 角的平分线是到角的两边距离相等的所有点的集合?30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)?31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边?32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合?33 推论3 等边三角形的各角都相等,并且每一个角都等于60°?34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)?35 推论1 三个角都相等的三角形是等边三角形?36 推论 2 有一个角等于60°的等腰三角形是等边三角形?37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半?38 直角三角形斜边上的中线等于斜边上的一半?39 定理线段垂直平分线上的点和这条线段两个端点的距离相等?40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上?41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合?42 定理1 关于某条直线对称的两个图形是全等形?43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线?44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上?45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称?46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2?47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形?48定理四边形的内角和等于360°?49四边形的外角和等于360°?50多边形内角和定理 n边形的内角的和等于(n-2)×180°?51推论任意多边的外角和等于360°?52平行四边形性质定理1 平行四边形的对角相等?53平行四边形性质定理2 平行四边形的对边相等?54推论夹在两条平行线间的平行线段相等?55平行四边形性质定理3 平行四边形的对角线互相平分?56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形?57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形?58平行四边形判定定理3 对角线互相平分的四边形是平行四边形?59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形?60矩形性质定理1 矩形的四个角都是直角?61矩形性质定理2 矩形的对角线相等?62矩形判定定理1 有三个角是直角的四边形是矩形?63矩形判定定理2 对角线相等的平行四边形是矩形?64菱形性质定理1 菱形的四条边都相等?65菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角?66菱形面积=对角线乘积的一半,即S=(a×b)÷2?67菱形判定定理1 四边都相等的四边形是菱形?68菱形判定定理2 对角线互相垂直的平行四边形是菱形?69正方形性质定理1 正方形的四个角都是直角,四条边都相等?70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角?71定理1 关于中心对称的两个图形是全等的?72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分?73逆定理如果两个图形的对应点连线都经过某一点,并且被这一?点平分,那么这两个图形关于这一点对称?74等腰梯形性质定理等腰梯形在同一底上的两个角相等?75等腰梯形的两条对角线相等?76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形?77对角线相等的梯形是等腰梯形?78平行线等分线段定理如果一组平行线在一条直线上截得的线段?相等,那么在其他直线上截得的线段也相等?79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰?80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边?81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半?82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h?83 (1)比例的基本性质如果a:b=c:d,那么ad=bc?如果ad=bc,那么a:b=c:d?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d?85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么?(a+c+…+m)/(b+d+…+n)=a/b?86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例?87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例?88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边?89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例?90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似?91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)?92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似?93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)?94 判定定理 3 三边对应成比例,两三角形相似(SSS)?95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三?角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似?96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平?分线的比都等于相似比?97 性质定理2 相似三角形周长的比等于相似比?98 性质定理3 相似三角形面积的比等于相似比的平方?99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等?于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值?101圆是定点的距离等于定长的点的集合?102圆的内部可以看作是圆心的距离小于半径的点的集合?103圆的外部可以看作是圆心的距离大于半径的点的集合?104同圆或等圆的半径相等?105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线?107到已知角的两边距离相等的点的轨迹,是这个角的平分线?108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线?109定理不在同一直线上的三点确定一个圆.?110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧?111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧?②弦的垂直平分线经过圆心,并且平分弦所对的两条弧?③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧?112推论2 圆的两条平行弦所夹的弧相等?113圆是以圆心为对称中心的中心对称图形?114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等?115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两?弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等?116定理一条弧所对的圆周角等于它所对的圆心角的一半?117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等?118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所有的弦是直径?119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形?120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角?121①直线L和⊙O相交 d<r?②直线L和⊙O相切d=r?③直线L 和⊙O相离 d>r?122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线?123切线的性质定理圆的切线垂直于经过切点的半径?124推论1 经过圆心且垂直于切线的直线必经过切点?125推论2 经过切点且垂直于切线的直线必经过圆心?126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,?圆心和这一点的连线平分两条切线的夹角?127圆的外切四边形的两组对边的和相等?128弦切角定理弦切角等于它所夹的弧对的圆周角?129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等?130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等?131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的?两条线段的比例中项?132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割?线与圆交点的两条线段长的比例中项?133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等?134如果两个圆相切,那么切点一定在连心线上?135①两圆外离 d>R+r ②两圆外切d=R+r?③两圆相交 R-r<d<R+r(R>r)?④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)?136定理相交两圆的连心线垂直平分两圆的公共弦?137定理把圆分成n(n≥3):?⑴依次连结各分点所得的多边形是这个圆的内接正n边形?⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形?138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆?139正n边形的每个内角都等于(n-2)×180°/n?140定理正n边形的半径和边心距把正n边形分成2n 个全等的直角三角形?141正n边形的面积Sn=pnrn/2 p表示正n边形的周长?142正三角形面积√3a/4 a表示边长?143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为?360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4?144弧长计算公式:L=n兀R/180?145扇形面积公式:S扇形=n兀R^2/360=LR/2?146内公切线长= d-(R-r) 外公切线长= d-(R+r) 三角函数公式?两角和公式?sin(A+B)=sinAcosB+cosAsinB?sin(A-B)=sinAcosB-sinBcosA?co s(A+B)=cosAcosB-sinAsinB?cos(A-B)=cosAcosB+sinAsinB?tan(A+B )=(tanA+tanB)-(1-tanAtanB)?tan(A-B)=(tanA-tanB)-(1+tanAtanB )?ctg(A+B)=(ctgActgB-1)-(ctgB+ctgA)?ctg(A-B)=(ctgActgB+1)-( ctgB-ctgA)?倍角公式?tan2A=2tanA-(1-tan2A) ctg2A=(ctg2A-1)-2ctga?cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a?半角公式?sin(A-2)=√((1-cosA)-2)?sin(A-2)=-√((1-cosA)-2)?cos(A-2 )=√((1+cosA)-2)?cos(A-2)=-√((1+cosA)-2)?tan(A-2)=√((1-co sA)-((1+cosA))?tan(A-2)=-√((1-cosA)-((1+cosA))?ctg(A-2)=√((1+cosA)-((1-cosA))?ctg(A-2)=-√((1+cosA)-((1-cosA))?积化和差?2sinAcosB=sin(A+B)+sin(A-B)?2cosAsinB=sin(A+B)-sin(A-B)? 2cosAcosB=cos(A+B)-sin(A-B)?-2sinAsinB=cos(A+B)-cos(A-B)?和差化积sinA+sinB=2sin((A+B)-2)cos((A-B)-2?cosA+cosB=2cos((A+B)-2)s in((A-B)-2)?tanA+tanB=sin(A+B)-cosAcosBtanA-tanB=sin(A-B)-cosAcosB?ctgA+ctgBsin(A+B)-sinAsinB-ctgA+ctgBsin(A+B)-sinAsinB?正弦定理a-sinA=b-sinB=c-sinC=2R 注:其中 R 表示三角形的外接圆半径?余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角?诱导公式?sin(-a)=-sin(a)?cos(-a)=cos(a)?sin(pi-2-a)=cos(a)?cos(pi -2-a)=sin(a)?sin(pi-2+a)=cos(a)?cos(pi-2+a)=-sin(a)?sin(pi-a)=sin(a)?cos(pi-a)=-cos(a)?sin(pi+a)=-sin(a)?cos(pi+a)=-co s(a)?tgA=tanA=sinA-cosA?万能公式?sin(a)= (2tan(a-2))-(1+tan^2(a-2))?cos(a)=(1-tan^2(a-2))-(1+tan^2(a-2))?tan(a)=(2tan(a-2))-(1-tan^2(a-2))?其它公式?a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b-a]?a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a-b]?1+sin(a)=(sin(a-2)+cos(a-2))^2?1-sin(a)=(sin (a-2)-cos(a-2))^2?其他非重点三角函数?csc(a)=1-sin(a)?sec(a)=1-cos(a)当三角【现场实战追-女孩教-学】形由一般的三角形变化为特殊的三角形时,其几个心的位置关系会发生相应的变化。

9.1.2三角形的内角和与外角和(2)

9.1.2三角形的内角和与外角和(2)

解:
BP平分ABC, 1 1= ABC 2
PC平分ACD, 1 2= ACD 2 2是 BPC外角
2=1 BPC
1
2
ACD是 ABC外角
ACD A ABC
BPC=2 1 1 ACD ABC 2
1 BPC A ABC ABC 2 1 A 2
∴ ∠AGF= ∠C+∠E 又∵∠AGF+ ∠AFG+ ∠A= 180 ˚ ,
∴ ∠A+∠B+∠C+∠D+∠E = 180 ˚
小结:怎样计算类似图形的角度的和?
利用三角形的内角和与外角的知识,将其中 几个角转化为某个三角形(图形)内部,再 利用内角和知识来解答。
变式
如下几个图形是五角星和它的变形. (2)图(2)中的点A向下移到BE上时,五个角的和(即 ∠CAD+∠B+∠C+∠D+∠E)有无变化 说明你的结论的正确性. (3)把图(2)中的点C向上移到BD上时(1)如图(3)所示,五 个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化说明你的 结论的正确性.
解:
BP平分ABC, 1 1= ABC 2
BPC 1800
1
2
PC平分ACB, 1 2= ACB 2 BPC中, 1 2 BPC 1800
BPC 1800 1 2 1 1 0 180 ABC ACB 2 2
1 ABC ACB 2 1 1800 A 2
F
O
B
C
如图, ∠A= 51 ,∠B= 20 ,∠C= 30 , A 计算∠BOC

有关三角形和直线的定理及公式

有关三角形和直线的定理及公式

有关三角形和直线的定理及公式一、三角形的角度定理:1.三角形内角和定理:任意三角形的三个内角和等于180度。

2.外角定理:三角形的一个外角等于其不相邻的两个内角的和。

二、三角形的边长定理:1.直角三角形的勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

2. 三角形的海伦公式:设三角形的三边长分别为a、b、c,其中s=(a+b+c)/2是半周长,则三角形面积S=sqrt(s*(s-a)(s-b)(s-c)),其中sqrt表示平方根运算。

三、三角形的相似定理和公式:1.AAA相似定理:两个三角形的对应角相等,则它们相似。

2.SSS相似定理:两个三角形的对应边成比例,则它们相似。

3.SAS相似定理:两个三角形中有两对边分别成比例,并且所夹角相等,则它们相似。

4.相似三角形的边长比例定理:若两个相似三角形的相似比为k,则有任意两边之间的比例也为k。

四、三角形的重心、外心、内心和垂心等公式:1.重心:三角形三条中线的交点,将三角形划分为面积相等的六个小三角形,重心到三个顶点的距离比例为2:12.外心:三角形外接圆的圆心,外接圆过三个顶点且每条边的中垂线上的交点都在外心上。

3.内心:三角形内切圆的圆心,内切圆与三条边相切,且角平分线都过内心。

4.垂心:三角形三条高线上的交点,垂心到三个顶点的距离相等。

五、直线与平面的关系:1.平行定理:若两条直线分别与第三条直线平行,则它们互相平行。

2.垂直定理:若两条直线分别与第三条直线垂直,则它们互相垂直。

3.倾斜角定理:两条直线互相垂直时,它们的斜率之积为-1六、直线的方程:1.一般式:Ax+By+C=0,其中A、B、C为常数。

2. 斜截式:y = kx + b,其中k为斜率,b为y轴截距。

3.点斜式:y-y1=k(x-x1),其中(x1,y1)为直线上一点的坐标,k为斜率。

4.两点式:(y-y1)/(x-x1)=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)为直线上的两个点。

小学三角形知识点归纳

小学三角形知识点归纳

小学三角形知识点归纳
一、三角形的定义
三角形是由三条线段所组成的图形,其中每相邻两条线段的端点相连或重合。

二、三角形的高
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段称为三角形的高,对边称为三角形的底。

一个三角形只有三条高。

三、三角形的特性
1.物理特性:稳定性,例如自行车的三角架和电线杆上的三角架。

2.边的特性:任意两边之和大于第三边。

四、表示三角形
为了方便表达,我们用字母A、B、C来表示一个三角形的三个顶点,即三角形可以表示为△ABC。

五、三角形的分类
1.根据角的大小:
(1)锐角三角形:三个角都是锐角的三角形。

(2)直角三角形:有一个角是直角的三角形。

(3)钝角三角形:有一个角是钝角的三角形。

2.根据边的长度:
(1)不等边三角形:三条边长度都不相等的三角形。

(2)等腰三角形:两条边相等的三角形。

特殊情况下,等腰三
角形的三条边都相等,这种三角形叫做等边三角形或正三角形。

3.特殊情况:
(1)等边三角形:三条边都相等的三角形,也叫做正三角形。

(2)等腰三角形是等边三角形的特例。

六、三角形的内角和
(1)一个三角形的内角和等于180度。

(2)图形的拼组:
a.两个完全相同的三角形可以拼成一个平行四边形。

b.两个相同的直角三角形可以拼成一个平行四边形、一个长方形或一个大三角形。

c.两个相同的等腰直角三角形可以拼成一个平行四边形、一个正方形和一个大的等腰直角三角形。

七、密铺
可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。

2022-2023学年七年级数学下册课件之三角形的内角和外角 第二课时(冀教版)

2022-2023学年七年级数学下册课件之三角形的内角和外角 第二课时(冀教版)

3 如果三角形的一个外角小于与它相邻的内角,那么这个三角
形一定是( C )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.任意三角形
4 下列条件:①∠A+∠B=∠C;②∠A : ∠B : ∠C=1 : 2 : 3;
11
③∠A=90°-∠B;④∠A= 2∠B= 3 ∠C.能确定△ABC 是直
角三角形的条件有( D )
3 如图,在△ABC 中∠BAD=∠CAD,∠B=64°,∠C=55°, 请各用两种方法求∠ADB 和∠ADC 的度数.
解:方法一:在△ABC 中,∠BAC+∠B+∠C=180°, ∠B=64°,∠C=55°,所以∠BAC=180°-64°- 55°=61°,因为∠BAD=∠CAD,所以∠BAD= ∠CAD= 1 ∠BAC=30.5°.在△ABD 中,∠BAD+
A.1个
B.2个
C.3个
D.4个
如图,在△ABC 的边BC 的延长线上取点D,E,连接AD,AE,
则下列式子中正确的是( C )
A.∠ACB>∠ACD B.∠ACB>∠1+∠2+∠3 C.∠ACB>∠2+∠3
D.以上都正确
易错点:忽略外角的性质中“不相邻”这一条件.
1 下面给出的四个三角形都有一部分被遮挡,其中不能判断三角 形类型的是( C )
解:能分成两个直角三角形,折的方法是沿三角形的一条高折;不能分 成两个锐角三角形.如图.与原来的三角形纸片一边相交的折痕把原 来的三角形纸片分成了两部分,形成了两个新三角形纸片,因为 ∠1和∠2是邻补角,它们的和是180°,所以如果其中一个角是直角, 那么另一个角也一定是直角;如果其中一个角是锐角,那么另一个 角一定是钝角.
分别为36°,72°,72°.

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。

三角形内角和定理:三角形三个内角和等于180°。

用数学符号表示为:在△ABC中,△1+△2+△3=180°。

奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。

《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

六、课前准备1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形的内角和》教学设计
教学内容:人教版四年级下册67页
教学目标:
1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。

并运
用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:课件、学生准备不同类型的三角形各一个,量角器、剪刀、直尺。

教学过程:
一、激趣引入
师:今天老师请来了两位图形王国的成员,我们一起看看它是谁,好吗?(课件演示:在钝角三角形与锐角三角形的争论中,提出了一个问题:三角形三个角的度数之和是不是相等?)
师:大大的钝角三角形认为不相等,小小的锐角三角形认为相等,你们认为谁说得更有道理呢?带着这个疑问,这节课我们就来探究三角形的内角和
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。

为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和
师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。

(多让几个学生说一说)
2、猜一猜。

师:三角形的内角和是多少度呢?你能肯定吗?
师:大家意见不统一,我们得想个办法验证才行,可以用什么方法验证呢?
生:用量角器量
师:这是一个好方法,还有其他方法吗?
【设计意图】先让学生整体感知三角形内角和的知识,有效地避免了新知识的“横空出现”。

接着是产生猜测:三角形的内角和是不是180°呢?学生产生了进行验证的需要。

3、操作验证:小组合作。

选1个自己喜欢的三角形,用量的方法进行验证。

4、学生汇报。

(1)量角求和
师:你量的是什么三角形?各个角的度数是多少?内角和算出来是多少度?
生汇报
师:我们只研究一种类型的三角形能代表所有的三角形的内角和都是180°吗?
生:不能
师:如果我们各种类型的三角形都考虑到就更全面了,哪些小组量的是其他类型的三
角形呢?
生继续汇报
预设一:三角形的内角和是180°
预设二:三角形的内角和接近180°
教师:汇报的测量结果,有的是180°,有的接近180°,为什么会出现这种情况?(2)拼角求和
师生协商方法
讨论得出:测量会有误差,那还有什么办法能帮助我们更科学、更严谨地验证出三角
形的内角和是 180°呢?
生:把一个三角形的三个角都剪下来,把这三个角拼在一起,如果能拼成一个平角就对了。

师:他想到的180°是应该是什么角呢?
生:平角
师:(出示一个平角)是不是像这样平平的角。

不在一个位置的三个角,怎样做就可以把它们拼在一起组成平角呢?
②独立操作
师:同学们想不想尝试一下?老师给每个小组提供了各种形状的三角形,你可以任选其中一个
师:选好了吗?为了大家一会实验方便,(出示教具画角标记)你们可以像老师一样为这三个内角做上标记。

(演示剪角过程)
学生做标记后开始操作
③汇报展示
师:(先请这位同学将三角形还原)大家看看,他的是一个怎样的三角形呢?
生:我选择的是锐角三角形,把三个角剪下来可以拼成一个平角,所以得出锐角三角形的内角和是180°。

师:你是怎么知道拼成的角是平角呢?
生回答(生如果答不出来,师加以引导,用尺子比一比,拼成的角如果在同一条直线上就证明是平角)
师:我们再来看看这位同学的。

生:我选择的是钝角三角形,把三个角剪下来也能拼成一个平角。

所以得出钝角三角形的内角和是180°
师:再来看看这位同学选的是什么三角形?
生:我选择的是直角三角形,把三个角剪下来也能拼成一个平角。

所以得出直角三角形的内角和是180°
(3)折角求和
①协商方法
师:看来所有的三角形通过这么一剪,一拼都能将三个内角组成一个平角。

只不过剪完以后,我们原先的三角形就不完整了,有没有什么方法能在不破坏三角形完整性的情况下,也能把三个内角拼在一起呢?
师:老师提供大家一种方法,我们一起来看屏幕
②课件演示
师:大家看这是一个三角形,我们首先要找到其中两条边的中点,连接两条边的中点画一条线,把上面的角沿着这条线向下折,左边的角向中间折,右边的角也向中间折,这样我们就把三个角拼在了一起,组成了一个平角。

(4)分角求和。

如果不通过动手操作,能用推算的方法得出三角形的内角和是180°吗?
师:大家看这是一个长方形,它有几个内角?它的内角和是多少度?你们能利用长方形的内角和360°,推算出直角三角形的内角和是180°吗?
请学生回答并进行补充
沿着长方形的对角线将它分成两个相同的直角三角形,因为两个完全一样的三角形组在一起就是360°,用360°除以2,就得到一个直角三角形的内角和是180°。

相关文档
最新文档