广东省珠海十中九年级数学上册《25.1.2概率的意义》教案 人教新课标版【精品教案】

合集下载

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计

人教版数学九年级上册25.1.2《概率》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率》是学生在学习了统计学基础知识之后,进一步了解和掌握概率学的基本概念和简单计算方法。

本节内容主要包括概率的定义、条件概率以及独立事件的概率计算。

通过本节课的学习,学生能够理解概率的概念,掌握利用树状图和列表法求解概率的方法,为后续深入学习概率论打下基础。

二. 学情分析学生在学习本节内容之前,已经掌握了统计学的一些基本知识,如平均数、中位数、众数等。

在思维方式上,学生已经具备了一定的逻辑分析能力和抽象概括能力。

但概率概念较为抽象,学生理解起来可能存在一定的困难。

因此,在教学过程中,教师需要运用生动具体的实例,帮助学生直观地理解概率的概念,引导学生运用已有的知识解决新问题。

三. 教学目标1.知识与技能:使学生理解概率的概念,掌握利用树状图和列表法求解概率的方法。

2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习概率的兴趣,培养学生的合作交流意识。

四. 教学重难点1.重点:概率的定义,条件概率,独立事件的概率计算。

2.难点:概率公式的灵活运用,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解概率的概念。

2.合作学习法:分组讨论,培养学生团队合作精神。

3.问题驱动法:设置问题,激发学生思考,引导学生主动探究。

六. 教学准备1.教学素材:准备与概率相关的实例,如抽奖、投篮等。

2.教学工具:多媒体课件,黑板,粉笔。

3.学生活动:提前分组,准备进行合作学习。

七. 教学过程1.导入(5分钟)教师通过一个简单的抽奖实例,引导学生思考:如何计算抽中一等奖的概率?从而引出本节课的主题——概率。

2.呈现(10分钟)教师讲解概率的定义,通过PPT展示概率的符号表示方法,如P(A)、P(B)等。

同时,介绍条件概率和独立事件的概率计算方法,并用具体的例子进行说明。

九年级数学上册25.1.2概率教案(新版)新人教版【精品教案】

九年级数学上册25.1.2概率教案(新版)新人教版【精品教案】

25.1.2 概率一、教学目标1.理解一个事件概率的意义.2.会在具体情境中求出一个事件的概率.3.会进行简单的概率计算及应用.二、课时安排1课时三、教学重点会在具体情境中求出一个事件的概率.四、教学难点会进行简单的概率计算及应用.五、教学过程(一)导入新课1.什么是必然事件,不可能事件和随机事件?2.下列事件是必然事件,不可能事件还是随机事件?(1)北京市举办2022年冬季奥运会.(2)篮球明星Stephen·Curry投10次篮,次次命中.(3)打开电视正在播恒大夺冠的比赛.(4)一个正方形的内角和为361度.(二)讲授新课探究1: 概率的定义及适用对象思考在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?活动1 从分别有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1,2,3,4,5.因为纸团看上去完全一样,又是随机抽取,所以每个数字被抽取的可能性大小相等,所以我们可以用15表示每一个数字被抽到的可能性大小.活动2 掷一枚骰子,向上一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每一种点数出现的可能性大小.探究2:概率的定义数值15和16刻画了实验中相应随机事件发生的可能性大小.一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).1.试验具有两个共同特征:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.具有这些特点的试验称为古典概率.在这些试验中出现的事件为等可能事件.具有上述特点的实验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.探究3:概率计算公式一般地,如果在一次实验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m种结果,那么事件A发生的概率()mP An活动2:探究归纳事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.(三)重难点精讲例1 掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)= 13.例2 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.解:一共有7种等可能的结果.(1)指向红色有3种结果,P(指向红色)=__ 37 _;(2)指向红色或黄色一共有5种等可能的结果,P( 指向红或黄)=__57__;(3)不指向红色有4种等可能的结果P( 不指向红色)= _47 _.例3、如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?分析 下一步应该怎样走取决于点击哪部分遇到地雷的概率小,只要分别计算点击两区域内的任一方格遇到地雷的概率并加以比较就可以了.解:A 区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A 区域的任一方格,遇到地雷的概率是38; B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772 ; 由于38> 772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.(四)归纳小结用P(A)=n m 计算概率的步骤: 1.列举出一次试验出现的所有等可能的结果(即求出 ). 2.找出要研究的事件中包括哪些事件(即求出 ). 3. 用P(A)= 计算出所求事件的概率.(五)随堂检测1. 1.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是( ) A. 15 B. 310 C. 13 D. 122.话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着今天由谁来刷碗,可半天也没个好主意.还是悟空聪明,他灵机一动,扒根猴毛一吹,变成一粒骰子,对八戒说道:我们三人来掷骰子:如果掷到2的倍数就由八戒来刷碗;如果掷到3就由沙僧来刷碗;如果掷到7的倍数就由我来刷碗;徒弟三人洗碗的概率分别是多少!3.如图,能自由转动的转盘中, A 、B 、C 、D 四个扇形的圆心角的度数分别为180°、 30 °、 60 °、 90 °,转动转盘,当转盘停止时, 指针指向B 的概率是_____,指向C 或D 的概率是_____.【答案】1.B2. 1(=2P 八戒刷碗);1(=6P 沙僧刷碗);(=0P 悟空刷碗) 3. 512;112六.板书设计 25.1.2随机事件与概率用P(A)= nm 计算概率的步骤: 1.列举出一次试验出现的所有等可能的结果(即求出 ).2.找出要研究的事件中包括哪些事件(即求出 ).3.用P(A)= 计算出所求事件的概率.例题1: 例题2: 例题3:七、作业布置课本P133练习1、2、3练习册相关练习八、教学反思。

人教版数学九年级上册25.1.2《概率的意义》教学设计

人教版数学九年级上册25.1.2《概率的意义》教学设计

人教版数学九年级上册25.1.2《概率的意义》教学设计一. 教材分析人教版数学九年级上册第25.1.2节《概率的意义》是概率统计部分的重要内容。

本节主要介绍概率的定义、表示方法及其在实际问题中的应用。

通过本节课的学习,学生能够理解概率的基本概念,会用概率表示事件发生的可能性,并能运用概率解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有一定的了解。

但是,对于概率这一抽象的概念,学生可能存在一定的困难。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率的概念,并通过大量的例子让学生加深对概率的理解。

三. 教学目标1.理解概率的定义,掌握概率的表示方法。

2.能够运用概率解决一些实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.概率的定义和表示方法。

2.运用概率解决实际问题。

五. 教学方法1.讲授法:讲解概率的基本概念和表示方法。

2.案例分析法:通过具体的例子让学生理解概率的应用。

3.小组讨论法:让学生在小组内讨论概率问题,培养学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的案例和实际问题。

2.准备课件和教学素材。

七. 教学过程1.导入(5分钟)通过一个简单的游戏引出概率的概念,让学生感受到概率在日常生活中的应用。

2.呈现(10分钟)讲解概率的定义和表示方法,让学生明确概率的基本概念。

3.操练(10分钟)让学生通过计算一些简单的概率问题,加深对概率的理解。

4.巩固(10分钟)让学生解决一些实际的概率问题,巩固所学知识。

5.拓展(10分钟)让学生讨论一些与概率相关的实际问题,培养学生的解决问题的能力。

6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识。

7.家庭作业(5分钟)布置一些有关的练习题,让学生巩固所学知识。

8.板书(5分钟)对本节课的主要内容进行板书,方便学生复习。

通过本节课的教学,学生应该能够理解概率的基本概念和表示方法,并能够运用概率解决一些实际问题。

人教版数学九年级上册25.1.2《概率的意义》说课稿

人教版数学九年级上册25.1.2《概率的意义》说课稿

人教版数学九年级上册25.1.2《概率的意义》说课稿一. 教材分析《概率的意义》是人教版数学九年级上册第25章第1节的一部分,本节课的主要内容是让学生理解概率的定义,掌握概率的基本性质和运算方法。

教材通过具体的例子让学生体会概率在实际生活中的应用,培养学生的数学应用意识。

二. 学情分析九年级的学生已经具备了一定的数学基础,对数学概念和运算方法有一定的了解。

但是,对于概率这一概念,学生可能比较陌生,难以理解其本质和应用。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,培养学生的抽象思维能力。

三. 说教学目标1.知识与技能目标:让学生理解概率的定义,掌握概率的基本性质和运算方法,能解决一些简单的实际问题。

2.过程与方法目标:通过具体的例子,让学生体会概率在实际生活中的应用,培养学生的数学应用意识。

3.情感态度与价值观目标:激发学生对概率学习的兴趣,培养学生积极思考、合作交流的良好学习习惯。

四. 说教学重难点1.教学重点:概率的定义,概率的基本性质和运算方法。

2.教学难点:概率的本质理解,如何从实际问题中抽象出概率模型。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过具体的例子引导学生理解概率的概念,运用概率的知识解决实际问题。

2.教学手段:利用多媒体课件,展示具体的例子和概率运算过程,帮助学生形象地理解概率的概念。

六. 说教学过程1.导入新课:通过一个简单的摸球游戏,引导学生思考概率的概念。

2.讲解概率的定义:解释概率的概念,让学生理解概率的本质。

3.讲解概率的基本性质:介绍概率的基本性质,让学生掌握概率的运算方法。

4.应用举例:通过具体的例子,让学生运用概率的知识解决实际问题。

5.课堂练习:布置一些简单的练习题,巩固学生对概率知识的掌握。

6.总结与反思:让学生总结本节课所学的内容,反思自己在学习过程中的收获和不足。

七. 说板书设计板书设计如下:1.概率的定义:反映事件A发生的可能性。

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案

人教版九年级数学上册25.1.2《概率》教案一. 教材分析人教版九年级数学上册第25.1.2节《概率》是概率统计部分的重要内容。

本节主要介绍了概率的定义、计算方法以及如何运用概率解决实际问题。

通过本节的学习,学生能够理解概率的概念,掌握基本的概率计算方法,并能够运用概率知识解决生活中的问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算方法有一定的了解。

但是,对于概率这一抽象的概念,学生可能难以理解和接受。

因此,在教学过程中,需要注重引导学生从实际问题中理解概率的概念,并通过大量的实例让学生掌握概率的计算方法。

三. 教学目标1.知识与技能:让学生理解概率的概念,掌握基本的概率计算方法,能够运用概率知识解决实际问题。

2.过程与方法:通过实例分析,让学生体验概率的计算过程,培养学生的逻辑思维能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的数学应用意识。

四. 教学重难点1.重点:概率的定义,概率的计算方法。

2.难点:如何从实际问题中抽象出概率模型,运用概率解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入概率的概念,让学生感受数学与生活的联系。

2.启发式教学法:在教学过程中,引导学生主动思考,通过讨论、交流等方式,让学生理解概率的计算方法。

3.巩固练习法:通过大量的练习,让学生掌握概率的计算方法,并能够运用到实际问题中。

六. 教学准备1.教学课件:制作相关的教学课件,以便于直观地展示概率的计算过程。

2.练习题:准备一些与本节课内容相关的练习题,以便于学生在课堂上进行操练。

七. 教学过程1.导入(5分钟)通过一个简单的实例引入概率的概念,如抛硬币、抽签等,让学生思考:这些事件的结果是随机的,那么我们如何来描述这种随机性呢?2.呈现(10分钟)讲解概率的定义,让学生理解概率的意义。

如:抛一枚硬币,正面朝上的概率是1/2。

同时,介绍如何用数学符号表示概率,如P(A)、P(B)等。

人教版九年级数学上册(教案)25.1.2 概 率教案

人教版九年级数学上册(教案)25.1.2 概 率教案

25.1.2概率教学目标1.了解概率的意义,渗透随机观念.2.能计算一些简单事件的概率.教学重点概率的意义.教学难点概率的意义及判断试验条件的意识.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标盒子里装有三个红球和一个白球,它们除颜色外完全相同,小明从盒子中任意摸出一球.1.你认为小明摸出的球可能是什么颜色?2.如果将每个球编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(白),那么摸到每个球的可能性一样吗?3.任意摸出一球,说出所有可能出现的结果.二、自主学习指向目标1.自读教材第130至133页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一概率的定义活动一:回顾上节课的两个问题,思考:1.有哪些事件是随机事件?2.这些随机事件发生的可能性究竟有多大?你能不用数值来刻画其大小?【展示点评】在问题1中,每个数字被抽到的可能性大小相等,可以用“1,5”来表示被抽到的可能性大小;在问题2中,每种点数出现的可能性大小也相等,我们用“1,6”表示每种点数被抽到的可能性大小.【反思小结】一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A的概率.【针对训练】见学生用书“当堂练习”知识点一探究点二等可能随机事件的发生概率的计算公式活动二:回顾上节课所做的两个试验,思考下面问题:(1)比较上面两个试验,它们有什么共同特点?(2)在抽签试验中,随机抽取一次,共有几种等可能的结果出现?其中抽到1号签的结果有几种?你能求出抽到1号签的概率吗?抽到的签号小于3的概率呢?【展示点评】一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都________,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m,n.【小组讨论】用P(A)=m,n计算随机事件的概率,有什么前提条件?随机事件A发生的概率P(A)的取值范围.【反思小结】用此公式求概率,一定要满足一次实验出现的可能的结果是有限的个数n,且每种结果出现的可能性都相等,其中事件包含的结果有m种,这里0≤m≤n..由此可以推导出0≤m,n≤1.即事件A发生的概率P(A)的取值范围是0≤P(A)≤1.特别地:当事件A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.活动三:出示教材第131页中的例1,思考下列问题:(1)掷一枚骰子,向上一面的点数可能有哪些结果?它们出现的可能性相等吗?(2)点数为2、点数为奇数、点数大于2且小于5分别有几种结果?(3)如何计算这三个事件的概率?活动四:出示教材第132页例2,思考下列问题:(1)转盘中的七个扇形有什么特征?指针指向某一个扇形的可能性都相等吗?(2)指针指向红色有几种结果?指向红色或黄色呢?不指向红色呢?(3)如何计算这三个事件的概率?【反思小结】利用公式P(A)=m,n求等可能事件的概率,必须指出一次实验可能出现的结果的数量n,且每一种结果出现的可能性相等,然后统计事件A包含的结果的数量m,最后套公式即可.用不同的符号表示易混的结果(如红1、红2等)也是一种重要的“符号化”思想.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标1.概率的定义:刻画事件发生________的数值,称为事件发生的概率.2.对于各种情况发生可能性都相同的随机事件,计算概率的公式是:________五、达标检测反思目标1.随机掷两枚硬币,落地后全部正面朝上的概率是( D )A.1B.1,2C.1,3D.1,42.书包里有数学书3本,英语书2本,语文书5本,则从中任意抽取一本是数学书的概率是__3,10__.3.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是__1,2__.六、布置作业巩固目标1.上交作业:教材第139页习题25.2第1、2题.2.课后作业:见学生用书的“课后作业”部分.教学反思__。

人教版九年级数学上册教案:25.1.2概率的意义

人教版九年级数学上册教案:25.1.2概率的意义
举例:以抛硬币为例,讲解概率的定义和表示方法,使学生理解正面朝上的概率是0.5,这是教学过程中的重点。
2.教学难点
-概率的意义:学生可能难以理解概率是一个相对的概念,需要通过实例和练习来强化。
-概率的求法:在实际问题中,如何正确运用列举法、树状图法求解概率,对于学生来说是难点。
-概率的性质:学生可能难以理解为何概率的取值范围在0到1之间,需要通过具体实例解释。
人教版九年级数学上册教案:25.1.2概率的意义
一、教学内容
人教版九年级数学上册教案:25.1.2概率的意义
1.了解概率的定义,理解概率是反映事件发生机会的大小的概念。
2.掌握概率的表示方法,能准确表示事件发生的概率。
3.理解必然事件、不可能事件和随机事件的概念,并能区分实际生活中的这三种事件。
4.通过实例,理解并掌握概率的求法,包括列举法、树状图法等。
-解决实际问题:将概率知识应用于实际问题时,学生可能不知道如何下手,需要教师引导。
举例:讲解掷骰子的概率问题时,学生可能难以理解为什么每个面朝上的概率都是1/6,这时教师可以通过绘制树状图或列举所有可能的结果来帮助学生突破这个难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率的意义》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛硬币或掷骰子的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了概率的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

九年级数学上册 25.1.2 概率教案 (新版)新人教版(1)

九年级数学上册 25.1.2 概率教案 (新版)新人教版(1)

25.1.2概率教学目标:了解概率的定义,会进行简单事件概率的计算.教学重点:简单事件概率的计算.教学难点:对概率的理解.一、问题引入:试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根.抽出签的简记号码有种可能,即它们分别是,每个号码被抽到的可能性,都是 .试验2:掷一个骰子,向上的一面的点数有种可能,即它们分别是,每种结果的可能性,都是.二、新知探究:1.概念:一般地,对于一个随机事件A,我们把刻画其发生,称为随机事件A发生的概率,记为P(A).总结:以上两个试验有两个共同的特点:(1)每一次试验中,可能出现的结果只有(2)每一次试验中,各种结果出现的可能性 .对于具有上述特点的试验,我们用事件所包含的各种可能的结果个数在全部可能的结果总数中所占的比,表示事件发生的概率.如:在试验1中,“抽到5号”这个事件包含种可能结果,在全部5种等可能的结果中所占的比是,所以这一事件的概率:P(抽到5号)=再如:在试验1中,“抽到奇数号”这个事件包含种可能结果,在全部5种等可能的结果中所占的比是,所以这一事件的概率:P(抽到奇数号)=归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= .事件A发生的概率P(A)的范围是 .特别地:当A为必然事件时,P(A)= ;当A为不可能事件时,P(A)=例1. 掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.例2:如图所示,有一个转盘,转盘分成7个相同的扇形,颜色分别为红、绿、简记黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会 恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形) 求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.三、课堂小结:用P(A)= n m计算概率的步骤:1. 列举出一次试验出现的所有等可能的结果(即求出 ).2. 找出要研究的事件中包括哪些事件(即求出 ).3. 用P(A)= 计算出所求事件的概率.四、当堂达标:1.在100件产品中,有95件合格品,有5件次品,从中抽取一件,下列说法正确的是( )A. 抽到合格品的概率是951; B. 抽到次品的概率是51;C. 抽到合格品的概率是95%;D.抽到次品的概率是1%2.从一副扑克牌中任意抽取一张,抽到K 牌的概率是3.袋子中有除颜色不同外其余均相同的3个红球,2个白球,1个黑球.从中随意 摸出一球是红球的概率是多少?五、教后反思:。

广东省珠海十中九年级数学上册《25.1.2随机事件的概率》教案 人教新课标版

广东省珠海十中九年级数学上册《25.1.2随机事件的概率》教案 人教新课标版

◆教学目标(一)教学知识点1.必然事件,不可能事件,随机事件的概念.2.概率的统计定义.(二)能力训练要求1.了解必然事件,不可能事件,随机事件的概念.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.(三)德育渗透目标1.培养学生的辩证唯物主义观点.2.增强学生的科学意识.◆教学重点1.事件的分类.2.概率的统计定义.3.概率的基本性质.◆教学难点随机事件发生存在的统计规律性.◆教学方法发现法引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件.指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性.◆教学准备多媒体课件◆教学过程Ⅰ.课题导入(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b, 那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”;首先,请同学们来看这样一些事件,并从这些事件的发生与否的角度,分析一下它们各有什么特点?事件(1)是必然要发生的.还有必然要发生的事件吗?有,还有事件(4)、(6)都是一定会发生的事件.那么,其余的事件……事件(2)、(9)、(10)是一定不发生的事件.也就是说,这些事件是不可能发生的事件.事件(3)、(5)、(7)、(8)有可能发生,也有可能不发生.好的,下面再请同学们思考一个问题:在实际生活中,我们遇到的事件若从其发生与否的角度来看,是否可分为一定要发生的事件,一定不会发生的事件,有可能发生也有可能不发生的事件?是.Ⅱ.讲授新课不妨,将这些事件称为:必然事件:在一定的条件下必然要发生的事件,如上述事件(1)、(4)、(6).不可能事件:在一定的条件下不可能发生的事件.如上述事件(2)、(9)、(10).随机事件:在一定的条件下可能发生也可能不发生的事件. 如上述事件(3)、(5)、(7)、(8).再如,“检验某件产品,合格”,“某地10月1日,下雨”等也都是随机事件,在实际生活中,我们会经常碰到随机事件.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生是否会呈现出一定的规律性呢?下面请同学们两人一组做一试验:每组抛掷硬币20次,并统计正、反面次数.统计每组正面向上次数如下:12,9,11,13,8,10,11,12,9,13,7,12,10,13,11,11,8,10,14,9,7,12,6,8,7.那么,在抛掷硬币试验中,出现正面的次数占总次数的百分比为多少呢?或者说,出现正面的频率为多少?总试验次数为500次,出现正面的次数为253次,出现正面的频率为0.506.请同学们来看这样一组数据:历史上曾有人作过抛掷硬币的大量重复试验,这便是试验结果.大家从这组数据中,是否可获得什么结论呢?抛掷硬币试验结果表抛掷次数(n ) 正面向上次数(频数m ) 频率(nm ) 2048 4040 12000 24000 30000 720881061 2048 6019 12012 14984 361240.5181 0.5069 0.5016 0.5005 0.4996 0.5011出现正面的频率值都接近于0.5. 再请同学们看这样两组数据,某批乒乓球产品质量检验表抽取球数n 50 100 200 500 1000 2000 优等品数m 45921944709541902优等品频率nm0.9 0.92 0.97 0.94 0.954 0.951某种油菜籽在相同条件下的发芽试验结果表每批粒数n 2 5 10 70 130 310 700 1500 2000 3000 发芽粒数m 2 4960116282639133918062715发芽频率nm1 0.8 0.9 0.857 0.892 0.910 0.913 0.893 0.903 0.905从表2可看到, 当抽查的球数很多时,抽到优等品的频率接近于0.95. 从表3可看到, 当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于0.9. 随机事件在一试验中是否发生虽然不能事先确定,但随着试验次数的不断增加,它的发生会呈现出一定的规律性,正如我们刚才看到的:某事件发生的频率在大量重复的试验中总是接近于某个常数.一般地,在大量重复进行同一试验时,事件A 发生的频率nm总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P ( A ).如上:记事件A 为抛掷硬币时“正面向上”.则P ( A ) = 0.5,即:抛掷一枚硬币出现“正面向上”的概率是0.5. 若记事件A 为抽取乒乓球试验中出现优等品,则P ( A ) = 0.95,即:任取一乒乓球得到优等品的概率是0.95.若记事件A :油菜籽发芽,则P ( A ) = 0.9, 即任取一油菜籽,发芽的概率为0.9.概率这一常数从数量上反映了一个事件发生的可能性的大小.如上:抛掷一枚硬币出现“正面向上”的可能性是50%;任取一乒乓球得到优等品的可能性是95%;任取一油菜籽,发芽的可能性是90%.这一数值会给我们的生活和统计工作带来很多方便,很有研究价值.上述有关概率的定义,也就是求一个事件的概率的基本方法:进行大量的重复试验,用这个事件发生的频率近似地作为它的概率.即:若记随机事件A 在n 次试验中发生了m 次,则有0≤m ≤n ,0≤nm≤1. 于是可得:0 ≤ P ( A ) ≤1.显然:(1)必然事件的概率是1,(2)不可能事件的概率是0. 下面我们来看一例题:[例]指出下列事件是必然事件,不可能事件,还是随机事件. (1)某地1月1日刮西北风; (2)当x 是实数时,x2≥ 0;(3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%.解:由题意可知,(2)是必然要发生的,即为必然事件;(3)是不可能发生的,即为不可能事件;(1)、(4)有可能发生也有可能不发生,即为随机事件.Ⅲ.课堂练习(讨论)课本P 114 练习1. Ⅳ.课时小结通过本节学习,要了解事件的分类,理解随机事件发生的规律性,掌握概率的统计定义及概率的基本性质.Ⅴ.课后作业(一)课本P 120 1.(1)、(2) (二)1.预习:课本P 115~P 116. 2.预习提纲:(1)何为基本事件,等可能性事件? (2)如何求等可能性事件的概率? ◆板书设计。

广东省珠海十中九年级数学上册《25.1.2概率的意义》教案 人教新课标版

广东省珠海十中九年级数学上册《25.1.2概率的意义》教案 人教新课标版

《概率的意义》教案1、教学任务分析(1)正确理解概率的含义。

在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从盒子中摸球的试验,解释中奖概率为10001的含义,纠正“如果中奖率为10001,那么买1000张彩票一定能中奖”的错误认识。

②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。

(2)了解概率在实际问题中的应用。

①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。

可以从正反两个方面举例让学生进行判断。

②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。

这种思想是“风险与决策”中经常使用的。

③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。

2、教学重点与难点重点:概率的正确理解及其在实际中的应用。

难点:概率与频率的区别与联系,随机试验结果的随机性与规律性的关系。

3、教学基本流程纠正日常生活中的一些错误认4、教学情景设计问题问题设计意图师生活动(1)你能回忆一下随机事件发生的概率的定义吗? 复习上节课相关知识,加深对概率定义的印象。

师:提出问题,引导学生回忆概率的定义。

生:回忆、叙述概率的定义。

(2)有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。

你认为这种想法正确吗? 分析学生的解释,引出概率含义的正确理解。

师:提出问题,引导学生讨论,讲出自己的想法,肯定正确的,指出错误的地方,用试验来验证。

生:思考、讨论、叙述自己的理解。

(3)有人说,中奖率为10001的彩票,买1000张一定中奖,这种理解对吗?进一步强化对概率含义的正确理解。

九年级数学上册 2512概率精品教案 人教新课标版 教案

九年级数学上册 2512概率精品教案 人教新课标版 教案
作课类 别
教学媒 体 知 识 技
教能 过
学 程
目方 法
标情 感 态 度
教学重点
示范课
课题
25.1.2 概率
课 型 新授
多媒体
1.理解什么是随机事件的概率,认识概率是反映随机事件发生可能性大小的量. 2.理解“事件 A 发生的概率是 P(A)= m (在一次试验中有 n 种等可能的结果,其中事件
n
A 包含 m 种)”的求概率的方法,并能求出简单问题的概率.
历经实验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率求法.
理解概率意义,渗透辩证思想,感受数学现实生活的联系,体会数学在现实生活中的应 用价值.
随机事件的概率的定义;“事件 A 发生的概率是 P(A)= m (在一次试验中有 n 种等可能 n
的结果,其中事件 A 包含 m 种)”求概率的方法及运用
学生思考,尝试 回答,理解每种 结果的等可能
从实际问题出发, 使学生理解概率 定义,理解概率是
由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结 性.
从数量上刻画了
果的可能性大小相等,都是全部可能结果总数的多少.
一个随机事件发 生的大小.
给出概率定义
分析:可以看出概率
教师给出随机事 件的概率的定义,
(二)概率求法
讲解分析,学生理 总结条件“每一次
回顾上述掷骰子试验,有以下特点:
解.
试验中可能出现
(1)每一次试验中可能出现的结果只有有限个;
的结果只有有限
(2)每一次试验中,各种结果出现的可能性相等.
个;每一次试验
教学难点
理解 P(A)= m 并运用
n
教学过程设计

新人教九年级上册第25章25.1.2 概率(教案)

新人教九年级上册第25章25.1.2 概率(教案)

新人教九年级上册第25章25.1.2 概率【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.一、情境导入,初步认识请同学讲“守株待兔”的故事.问:(1)这是个什么事件?(2)这个事件发生的可能性有多大?引入课题.【教学说明】通过熟悉的故事激起学生的学习兴趣,同时结合上节课所学,思考如何衡量一个随机事件发生的可能性的大小,从而引出课题.二、思考探究,获取新知探究试验1:从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,回答下列问题:①抽出的号码有多少种情况?②抽到1的可能性与抽到2的可能性一样吗?它们的可能性是多少呢?【讨论结果】①抽出的号码有1、2、3、4、5等5种可能的结果.②由于纸签的形状、大小相同,又是随机抽取的,所以每个号码被抽到的可能性大小相等,抽到一个号码即5种等可能的结果之一发生,于是:1/5就表示每一个号码被抽到的可能性的大小.【教学说明】通过本试验,帮助学生理解、体会在一次试验中,可能出现的结果为有限多个,并且每种结果发生的可能性相同.试验2:投一枚骰子,向上一面的点数有多少种可能?向上一面的点数是1或3的可能性一样吗?是多少呢?【教学说明】学生通过试验,交流得出结论,感知在这个过程中,每种结果的可能性,在一次试验中,可能结果只有有限种.思考(1)概率是从数量上刻画一个随机事件发生的可能性的大小,根据上述两个试验分析讨论,你能给概率下定义吗?(2)以上两个试验有什么共同特征?【讨论结果】(1)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A发生的概率,记作:P(A).(2)以上两个试验有两个共同特征:①一次试验中,可能出现的结果有有限多个.②一次试验中,各种结果发生的可能性相等.【教学说明】对于具有上述特点的试验,我们常从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.问:(1)根据上面的理解,你认为问题2中向上的一面为偶数的概率是多少?(2)像上述试验,可列举的有限等可能事件的概率,可以怎样表达事件的概率?【讨论结果】(1)“向上一面为偶数”这个事件包括2、4、6三种可能结果,在全部6种可能的结果中所占的比为3/6=1/2.∴P(向上一面为偶数)=1/2.(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n.问:(3)请同学们思考P(A)的取值范围是多少?分析:∵m≥0,n>0,∴0≤m≤n,∴0≤mn≤1,即0≤P(A)≤1.问:(4)P(A)=1,P(A)=0各表示什么事件呢?【讨论结果】当A为必然事件时,P(A)=1.当A为不可能事件时,P(A)=0.由此可知:事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0,如下图:三、典例精析,掌握新知例1掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.分析:(1)掷一个质地均匀的骰子,向上一面的点数共有几种情况?(2)点数为2时有几种可能?点数为奇数有几种可能?点数大于2且小于5有几种可能呢?【教学说明】例1是教材的例1,以此规范简单事件的概率求值的一般步骤,并在运用中进一步体会概率的意义.教师板书完整的解题过程.例2如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作向右的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.分析:①指针停止后所指向的位置是否是有限等可能性事件?为什么?②指针指向红色有几种可能?③指针指向红色或黄色是什么意思?④指针不指向红色等价于什么说法?【教学说明】教师引导学生分析问题,学生通过对问题的思考和交流,写出完整的解题过程,这个转盘问题,实际上是几何概率的模型,是通过面积的大小关系来刻画概率的.例3 教材第133页例3.分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.问1:若例3中,小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?答案:一样,每个区域遇雷的概率都是1/8.问2:谁能重新设计,通过改换雷的总数,使得下一步踩在A区域合适?并计算说明.这是开放性问题,答案不唯一,仅举一例供参考:把雷的总数由10颗改为31颗,则:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各有1颗地雷,因此踩A区域遇雷概率是:3/8B区域中共有:9×9-8-1=72(个)小方格,其中有31-3=28(个)方格内各藏有1颗地雷,因此踩B区域的任一方格遇到地雷的概率是:28 72而328872,∴踩A区域遇雷的可能性小于踩B区域遇雷的可能性.【教学说明】这个问题对于有游戏经验的同学来说容易理解题意,若是没有经验就不是很容易理解的,教师要引导学生理解题意,进而分析问题.对于第二步应怎样走关键只要分别计算两个区域内遇雷的概率,这是学生解决这一问题的关键所在.当学生完成问题后,顺势提出后面的2个问题,从正、反两方面对题目进行变式练习.四、运用新知,深化理解1.“从一布袋中随机摸出一球恰是黑球的概率为1/3”的意思是()A.摸球三次就一定有一次摸到黑球B.摸球三次就一定有两次不能摸到黑球C.如果摸球次数很多,那么平均每摸球三次就有一次摸到黑球D.布袋中有一个黑球和两个别的颜色的球2.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.1/41C.2/41D.13.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为1/5,四位同学分别采用了下列装法,你认为他们中装错的是()A.口袋中装入10个小球,其中只有两个是红球B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球C.装入红球5个,白球13个,黑球2个D.装入红球7个,白球13个,黑球2个,黄球13个4.从一副未曾启封的扑克牌中取出1张红桃,2张黑桃的牌共3张,洗匀后,从这3张牌中任取1张牌,恰好是黑桃的概率是()A.1/2B.1/3C.2/3D.15.在四张完全相同的卡片上,分别画上圆、矩形、等边三角形、等腰梯形,现从中随机抽取1张,是中心对称图形的概率是______.6.下列事件的概率,哪些能作为等可能性事件的概率求?哪些不能?(1)抛掷一枚图钉,钉尖朝上.(2)随意地抛一枚硬币,背面向上与正面向上.7.摸彩券100张,分别标有1,2,3,……100的号码,只有摸中的号码是7的倍数的彩券才有奖,小明随机地摸出一张,那么他中奖的概率是多少?8.从一副扑克牌中找出所有红桃的牌共13张,从这13张牌中任意抽取一张,求下列事件的概率.(1)抽到红桃5;(2)抽到花牌J、Q、K中的一张;(3)若规定花牌点为0.5,其余牌按数字记点,抽到点数大于5的可能性有多大?【教学说明】上述练习一方面从正反对照的角度深化了对有限等可能的理解,进一步明确了古典概型的使用条件;另一方面还能帮助学生熟练掌握有限等可能的随机事件概率的计算方法,教师应先让学生自主完成,再进行评讲.【答案】1.C2.C【解析】所有可能结果数是41,而每个学生被提问的可能性相等,其中有2个学生是习惯用左手写字,故习惯用左手写字的同学被选中的概率为2/41.3.C4.C5.1/2【解析】圆、矩形是中心对称图形,所以P(中心对称图形)=2/4=1/2.6.(1)不能(2)能7.7/50(提示:本题的关键是找公式P(A)=m/n中的m:从7的1倍到7的14倍,一共14个数.)8.(1)因为13张牌中只有一张红桃5,故抽到红桃5的概率为1/13;(2)13张牌中有1张J、1张Q、1张K,共3张花牌,故抽到一张花牌的概率为3/13;(3)13张牌中点数大于5的牌共有6、7、8、9、10共5张,故抽到点数大于5的牌的概率为5/13.五、师生互动,课堂小结本堂课你学到了哪些概率知识?你有什么疑问和困惑?1.布置作业,从教材“习题25.1”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能,要求学生去仔细体会.。

九年级数学上 25.1.2概率的意义教案人教版

九年级数学上 25.1.2概率的意义教案人教版

课题: 25.1.2 概率的意义教学目标:〈一〉知识与技能〈二〉过程与方法1.让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.2.在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈三〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一X球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造某某和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、新课讲解1.教师布置试验任务.(1)明确规则.把全班分成每两人1组,每组中有一名学生投掷硬币,另一名同学作记录,(2)明确任务,每组掷币20次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5.“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )=p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.并不是每次求概率都要做大量的试验的,看书上的试验.给出概念的古典定义(P129) 例题:P130例1、例2。

人教版九年级数学上册教案:25.1.2 概率的意义

人教版九年级数学上册教案:25.1.2 概率的意义
练习1抛掷1枚质地均匀的硬币,向上一面有几种可能的结果?它们的可能性相等吗?由此能得到“正面向上”的概率吗?
练习2把一幅普通扑克牌中的13张黑桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,求下列事件的概率:
(1)抽出的牌是黑桃6;
(2)抽出的牌是黑桃10;
(3)抽出的牌带有人像;
(4)抽出的牌上的数小于5;
注意指出:概率是随机事件发生的可能性的大小的数量反映.
问题:在问题1和问题2的试验中,有哪些共同特点?
(1)每一次试验中,可能出现的结果只有有限个;
(2)每一次试验中,各种结果出现的可能性相等.
问题:在问题1中,你能求出“抽到偶数”、“抽到奇数”这两个事件的概率吗?对于具有上述特点的试验,如何求某事件的概率?
(5)抽出的牌的花色是黑桃.
四.归纳总结,交流收获:
(1)什么是概率?
(2)如何求事件的概率?求概率时应注意哪些问题?
作业
设计
必做
完成P134习题25.12、3、
选做
课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.




二、合作探究
问题:在上节课的问题1中,从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,这个纸团里的数字有几种可能?每个数字被抽到的可能性大小是多少?
问题:在上节课的问题2中,掷一枚六个面上分别刻有1到6的点数的骰子,向上一面上出现的点数有几种可能?每种点数出现的可能性大小是多少?
归纳:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).
25.1.2概率的意义




知 识

九年级数学(人教版)上册教案:25.1.2 概率

九年级数学(人教版)上册教案:25.1.2 概率

25. 1. 2 概率教学目标知识技能1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系.2.理解概率的定义及计算公式P(A)=m n,明确概率的取值范围,能求简单的等可能性事件的概率.数学思考与问题解决1.让学生经历概率意义的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.2.经历用试验的方法获得概率的过程,积累数学活动经验,发展学生合作交流的意识,培养学生分析问题的能力和抽象思维的能力,锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.情感态度在合作探究、动手操作的过程中,利用生活素材,激发学生的好奇心与求知欲,体验数学价值.结合随机试验的随机性和规律性,让学生了解偶然性寓于必然性之中的辩证唯物主义思想.重点难点重点:在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=m n. 难点:了解概率的定义,理解概率计算的两个前提条件.教学设计一、引入新课教师先让学生看两个试验活动,然后让学生独立思考猜测,再分组交流.试验1 分别从标有1,2,3,4,5号的5根纸签中随机地抽取一根.(1)抽出的纸签上的号码会出现哪些可能的结果?(2)每个号码出现的可能性相同吗?猜猜它们的可能性是全部可能结果的几分之几?试验2 随机掷出一枚质地均匀的骰子.(1)向上的一面的点数会出现几种可能?(2)每个点数出现在向上的一面的可能性相同吗?猜猜它们的可能性是全部可能结果的几分之几?设计意图:这两个试验没有像教材一样直接描述,而是以环环相扣的问题串的形式引导学生很快进入思考状态,然后经历思考—猜测—交流—再思考的过程,让学生体会到随机事件可能性的大小是可以用数量来刻画描述的,这样就很容易引入概率的定义.二、揭示新知1.教师引导学生通过上面两个试验活动给出“概率”这一描述随机事件可能性大小的名称,且随机事件A 发生的概率记为P(A).2.教师再引导学生观察以上两个试验的共同特点是什么?即每一次试验中,可能出现的结果只有有限个,且各种结果出现的可能性相等.这是概率计算时的两个前提条件.3.教师追问:(1)在上面的抽签试验中,“抽到1号”的概率是多少?(2)在上面的抽签试验中,“抽到偶数号”的概率是多少?4.教师引导学生归纳出概率的古典定义:一般地,如果一个试验有n 个可能的结果,且它们发生的可能性相等,事件A 包含其中的m 个结果,那么事件A 发生的概率P(A)=m n. 三、课堂练习1.教材第131页例1.2.教材第135页第6题.接着引导学生观察归纳出:P(A)=m n中,0≤m ≤n ,因此0≤P(A)≤1.还可用教材中的线段图来表示,参见教材第131页的图25.1-1.设计意图:例1让学生知道利用概率的古典定义可以计算事发生的概率;第6题让学生在计算摸球的概率的同时初步体会概率是描述不确定现象的数学模型.四、拓展延伸教师引导学生分析讲解教材第132~133页的例2,例3.设计意图:通过对教材中的这两个例子的解决,让学生应用概率的古典定义计算古典概型(包括可化为古典概型的几何概型)中事件发生的概率,明确应用概率的古典定义计算概率的两个前提条件:结果有限个和可能性均等.以此达到突出本课重点与化解本课难点的目的.五、课堂小结1.随机事件A 发生的概率=事件A 发生的可能性的大小,即 P(A)=m n,其中n 表示一次试验中全部可能的结果,m 表示事件A 发生的结果数.2.概率的取值范围是0≤P(A)≤1.当P(A)为必然事件时,P(A)=1;当P(A)为不可能事件时,P(A)=0.3.用概率的古典定义计算概率有两个前提条件:(1)可能的结果只有有限个;(2)所有结果的可能性相等.六、作业布置教材第133页练习第1~3题;教材第134页习题25.1第3~5题.板书设计概率1.概率的定义:……2.概率计算公式及取值范围:……3.概率计算的条件:(1)……(2)……试验1:……试验2:……课堂练习:……拓展延伸:……课堂小结作业布置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率的意义》教案
1、教学任务分析
(1)正确理解概率的含义。

在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:
①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从
盒子中摸球的试验,解释中奖概率为10001的含义,纠正“如果中奖率为1000
1
,那么买
1000张彩票一定能中奖”的错误认识。

②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。

(2)了解概率在实际问题中的应用。

①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。

可以从正反两个方面举例让学生进行判断。

②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。

这种思想是“风险与决策”中经常使用的。

③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。

2、教学重点与难点
重点:概率的正确理解及其在实际中的应用。

难点:概率与频率的区别与联系,随机试验结果的随机性与规律性的关系。

3、教学基本流程
4、教学情景设计
硬币出现正面的概率为0.5上,一次反面朝上。

你。

相关文档
最新文档