高中数学 第10-11节 曲线的参数方程教案 新人教A版选修4-4

合集下载

高中数学《参数方程的概念》教案新人教A版选修

高中数学《参数方程的概念》教案新人教A版选修

高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,了解参数方程与普通方程的区别和联系。

2. 培养学生运用参数方程解决实际问题的能力。

3. 通过对参数方程的学习,提高学生的数学思维能力和创新意识。

二、教学内容:1. 参数方程的定义及基本形式。

2. 参数方程与普通方程的互化。

3. 参数方程在实际问题中的应用。

三、教学重点与难点:1. 重点:参数方程的概念,参数方程与普通方程的互化。

2. 难点:参数方程在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探索参数方程的概念及应用。

2. 利用数形结合法,帮助学生直观地理解参数方程与普通方程的关系。

3. 运用实例分析法,让学生学会将实际问题转化为参数方程求解。

五、教学过程:1. 导入:引导学生回顾普通方程的知识,激发学生对参数方程的兴趣。

2. 新课讲解:讲解参数方程的定义、基本形式及与普通方程的关系。

3. 案例分析:分析参数方程在实际问题中的应用,如物体的运动轨迹、电路问题等。

4. 练习与讨论:学生分组讨论,尝试将实际问题转化为参数方程求解,教师给予指导。

5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生深入研究参数方程的性质和应用。

六、教学评估:1. 课后作业:布置有关参数方程的概念理解、形式转换和实际应用的练习题,以巩固所学知识。

2. 课堂问答:通过提问的方式检查学生对参数方程的理解程度,以及能否将实际问题转化为参数方程。

3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力,以及他们在解决问题时的创造性思维。

七、课后作业:1. 复习参数方程的概念和基本形式。

2. 完成课后练习题,包括将普通方程转化为参数方程,以及运用参数方程解决实际问题。

3. 探索参数方程在其他学科中的应用,如物理学、工程学等。

八、教学资源:1. 教材:新人教A版选修《高中数学》。

2. 多媒体课件:用于展示参数方程的图形和实例。

高中数学:2.1《参数方程的概念》教案(新人教A版选修4-4)

高中数学:2.1《参数方程的概念》教案(新人教A版选修4-4)

1. 参数方程的概念一)目标点击:1. 理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标;2. 熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3. 能掌握消去参数的一些常用技巧:代人消参法、三角消参等; 4. 能了解参数方程中参数的意义,运用参数思想解决有关问题; 二)概念理解: 1、例题回放:问题1:(请你翻开黄岗习题册P122,阅读例题)已知圆C 的方程为1)2(22=+-y x ,过点P 1(1,0) 作圆C 的任意弦,交圆C 于另一点P 2,求P 1P 2的中点M 的轨迹方程。

书中列举了六种解法,其中解法六运用了什么方法求得M 点的轨迹方程?此种方法是如何设置参数的,其几何意义是什么?设M(y x ,),由⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x,消去k,得41)23(22=+-y x ,因M 与P 1不重合,所以M 点的轨迹方程为41)23(22=+-y x (1≠x ) 解法六的关键是没有直接寻求中点M 的轨迹方程0),(=y x F ,而是通过引入第三个变量k(直线的斜率),间接地求出了x 与y 的关系式,从而求得M点的轨迹方程。

实际上方程⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x (1)和41)23(22=+-y x (1≠x )(2)都表示同一个曲线,都是M 点的轨迹方程.这两个方程是曲线方程的两种形式。

方程组(1)是曲线的参数方程,变数k 是参数,方程(2)是曲线的普通方程。

由此可以看出参数方程和普通方程是同一曲线的两种不同的表达形式.我们对参数方程并不陌生,在求轨迹方程的过程中,我们通过设参变量k ,先求得曲线的参数方程再化为普通方程,进而求得轨迹方程.参数法是求轨迹方程的一种比较简捷、有效的方法。

问题2:几何课本3.1曲线的参数方程一节中,从研究炮弹发射后的运动规律,得出弹道曲线的方程.在这个过程中,选择什么量为参数,其物理意义是什么?参数的取值范围?通过研究炮弹发射后弹道曲线的方程说明:【例1】 形如⎩⎨⎧==)()(t g y t f x 的方程组,描述了运动轨道上的每一个位置(y x ,) 和时间t 的对应关系.【例2】 我们利用“分解与合成”的方法研究和认识了形如⎩⎨⎧==)()(t g y t f x 的方程组表示质点的运动规律.3)参数t 的取值范围是由t 的物理意义限制的. 2、曲线的参数方程与曲线C 的关系在选定的直角坐标系中,曲线的参数方程⎩⎨⎧==)()(t g y t f x t D ∈(*)与曲线C 满足以下条件:(1) 对于集合D 中的每个t 0,通过方程组(*)所确定的点()(),(0t g t f )都在曲线C 上;(2) 对于曲线C 上任意点(00,y x ),都至少存在一个t 0,满足⎩⎨⎧==)()(0000t g y t f x则 曲线C ⇔ 参数方程⎩⎨⎧==)()(t g y t f x t D ∈3、曲线的普通方程与曲线的参数方程的区别与联系曲线的普通方程),(y x F =0是相对参数方程而言,它反映了坐标变量x 与y 之间的直接联系;而参数方程⎩⎨⎧==)()(t g y t f x t D ∈是通过参数t 反映坐标变量x 与y 之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的.参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式. 问题3:方程222a y x =+(0≠a );方程λ=-2222by a x (0≠λ)是参数方程吗?参数方程与含参数的方程一样吗?方程222a y x =+(0≠a )表示圆心在原点的圆系,方程λ=-2222by a x (0≠λ)表示共渐近线的双曲线系.曲线的参数方程⎩⎨⎧==)()(t g y t f x(t 为参数,t D ∈)是表示一条确定的曲线;含参数的方程),,(t y x F =0却表示具有某一共同属性的曲线系,两者是有原则区别的. 三)基础知识点拨:例1:已知参数方程⎩⎨⎧==θθsin 2cos 2y x ∈θ[0,2π)判断点A (1,3)和B (2,1)是否在方程的曲线上。

[教学设计]《参数方程的概念--曲线的参数方程》(新人教选修4-4精品教案

[教学设计]《参数方程的概念--曲线的参数方程》(新人教选修4-4精品教案

曲线的参数方程教学目标1.通过圆及弹道曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路.2.通过弹道曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力.3.从弹道曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点.教学重点与难点曲线参数方程的探求及其有关概念是本节课的重点;难点是弹道曲线参数方程的建立.教学过程师:满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线?生:1.必须同时满足两个条件:(1)曲线上任一点的坐标都是这个方程的解;(2)同时以这个方程的第一组解作为坐标的点都在曲线上.那么,这个方程就称作曲线的方程,而这条曲线就称作这个方程的曲线.师:请写出圆心在原点,半径为r的圆O的方程,并说明求解方法.(师板书——⊙O:)师:求圆的方程事实上是探求圆上任一点M(x,y)的横、纵坐标之间的关系式.能用别的方法来探x、y之间的关系吗?生:……师:(诱导一下)不用刚才的方法给我们直接求x、y的关系带来了困难,能否考虑用间接的方法来求?即在x、y之间是否能建立一座桥梁,使之联系起来?(计算机演示动画,如图3-1)师:驱使M运动的因素是什么?生:旋转角θ.师:当我们把x轴作为θ角始边,并使OM绕O点逆时针旋转,请考虑θ在什么范围内取值就可以形成整个圆了?生:师:至此x、y之间的关系已通过θ联系起来了,谁能具体地说说它们之间的关系?生3:(c∈[0,2π],θ为变量,r为常数)(生3叙述,师板书)师:①式是⊙O的方程吗?生4:①式是⊙O的方程.师:请说明理由.生4:(生4叙述,师板书)(1)任取⊙O上一点,总存在,由三角函数定义知,显然满足方程①;(2)任取,由①得即M().所以.所以M在⊙O上.由(1)、(2)知①是⊙O的方程.师:既然①是⊙O的方程,那么它应该和是一致的,两者能统一起来吗?生:能,消去θ即可.师:这里,我们从另一个角度重新审视了圆,通过第三个变量θ把圆上任意一点的横、纵坐标x、y联系了起来,获得了圆的方程的另一种形式.通过间接的方法把某两个变量联系起来的例子不仅几何中有,在生产实践、军事技术、工程建设中也有.特别在两个变量之间的直接关系不易建立时,常用间接的方法将它们联系起来.请同学们再看一个例子.炮兵在射击目标时,需要考虑炮弹的飞行轨迹、射程等等.现在,我们假设一个炮兵射击目标,炮弹的发射角为α,发射的初速度为ν0.请同学们帮他求出弹道曲线的方程。

《参数方程》教案(新人教选修44)

《参数方程》教案(新人教选修44)

参数方程考点要求1 了解参数方程的定义。

2 分析直线,圆,圆锥曲线的几何性质。

会选择适当的参数,写出他们的参数方程。

并理解直线参数方程标准形式中参数的意义。

3掌握曲线的参数方程与普通方程的互化。

考点与导学1参数方程的定义:在取定的坐标系中。

如果曲线上任意一点的坐标y x ,都是某个变量t 的函数⎩⎨⎧==)()(t g y t f x (t ∈T) (1) 这里T 是)(),(t g t f 的公共定义域。

并且对于t 的每一个允许值。

由方程(1)所确定的点 ),(y x M 。

都在这条曲线上;那么(1)叫做这条曲线的参数方程,辅助变数t 叫做参数。

2过点),,(000y x p 倾斜角为α的直线l 的参数方程(I )⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) (i )通常称(I )为直线l 的参数方程的标准形式。

其中t 表示),,(000y x p 到l 上一点),(y x p 的有向线段p 0的数量。

t>0时,p 在0p 上方或右方;t<0时,p 在0p 下方或左方,t=0时,p 与0p 重合。

(ii )直线的参数方程的一般形式是:⎩⎨⎧+=+=bt y y at x x 00(t 为参数) 这里直线l 的倾斜角α的正切ba =αtan (00900==αα或时例外)。

当且仅当122=+b a 且b>0时. (1)中的t 才具有(I )中的t 所具有的几何意义。

2 圆的参数方程。

圆心在点),,(00'y x o 半径为r 的圆的参数方程是⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)3 椭圆12222=+b y a x 的参数方程。

⎩⎨⎧==θθsin cos b y a x (θ为参数) 4 双曲线12222=-b y a x 的参数方程:⎩⎨⎧==θθtan sec b y a x (θ为参数)5 抛物线px y 22=的参数方程。

高中数学新人教A版选修4-4 双曲线的参数方程 抛物线的参数方程

高中数学新人教A版选修4-4  双曲线的参数方程 抛物线的参数方程
解:法一:设抛物线的参数方程为xy==88tt2, (t 为参数), 可设 M(8t12,8t1),N(8t22,8t2),则 kMN=88tt222--88tt211=t1+1 t2. 又设 MN 的中点为 P(x,y),则yx==88tt121++22 88tt222.,
由 kPA=x-y 1,又 k MN=xy11--xy22=y1+8 y2=4y, ∴x-y 1=4y.∴y2=4(x-1). ∴线段 MN 的中点 P 的轨迹方程为 y2=4(x-1).
“应用创新演练”见“课时跟踪检测(十一)” (单击进入电子文档)
是________.
x=tan t,
(2)将方程y=11- +ccooss
2t 2t
化为普通方程是________.
[思路点拨] (1)可先将方程化为普通方程求解; (2)利用代入法消去 t. [解析] (1)将yx==62se3ctαan α, 化为3y62 -1x22=1, 可知双曲线焦点在 y 轴上,且 c= 36+12=4 3, 故焦点坐标是(0,±4 3). (2)由 y=11- +ccooss 22tt=22csions22tt=tan2t, 将 tan t=x 代入上式,得 y=x2 即为所求方程. [答案] (1)(0,±4 3) (2)y=x2
二 圆锥曲线的参数方程
2~3.双曲线的参数方程 抛物线的参数方程
1.双曲线的参数方程 (1)中心在原点,焦点在 x 轴上的双曲线xa22-yb22=1 的参数
方程是xy==batsaenc
φ, φ,
规定参数 φ 的取值范围为[0,2π)且 φ≠π2,
φ≠32π.
(2)中心在原点,焦点在 y 轴上的双曲线ya22-bx22=1 的参数 方程是yx==absteacnφφ.,

参数方程的概念曲线的参数方程》教案(新人教选修

参数方程的概念曲线的参数方程》教案(新人教选修

“参数方程的概念-曲线的参数方程》教案(新人教选修”一、教学目标1. 让学生理解参数方程的概念,了解参数方程与普通方程的区别和联系。

2. 让学生掌握曲线的参数方程的求解方法,能够根据实际问题建立参数方程。

3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 参数方程的概念2. 曲线的参数方程的求解方法3. 参数方程的应用三、教学重点与难点1. 教学重点:参数方程的概念,曲线的参数方程的求解方法。

2. 教学难点:参数方程的应用,曲线的参数方程的求解过程。

四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中发现参数方程的建立过程。

2. 通过实例讲解,让学生掌握曲线的参数方程的求解方法。

3. 利用数形结合的思想,帮助学生理解参数方程与曲线的关系。

五、教学过程1. 引入:通过一个实际问题,引导学生思考如何用参数方程来表示曲线。

2. 讲解:讲解参数方程的概念,解释参数方程与普通方程的区别和联系。

3. 实例分析:分析一组曲线的参数方程,引导学生掌握求解方法。

4. 练习:让学生尝试求解一些曲线的参数方程,巩固所学知识。

5. 应用:通过一些实际问题,让学生运用参数方程解决实际问题。

6. 总结:对本节课的内容进行总结,强调参数方程的概念和求解方法。

7. 作业布置:布置一些有关参数方程的练习题,巩固所学知识。

六、教学评价1. 评价目标:通过课堂讲解、练习和作业,评价学生对参数方程的概念和曲线的参数方程求解方法的掌握程度。

2. 评价方法:课堂提问、练习解答、作业完成情况。

3. 评价内容:参数方程的概念理解、曲线的参数方程求解方法、实际问题分析与解决能力。

七、教学反思1. 在教学过程中,观察学生对参数方程概念的理解程度,是否能够正确区分参数方程与普通方程。

2. 分析学生在求解曲线参数方程时的困难点,是否能够熟练运用求解方法。

3. 反思教学方法的有效性,是否能够激发学生的学习兴趣,提高学生的参与度。

数学新人教A版选修第二讲《参数方程》全部教案

数学新人教A版选修第二讲《参数方程》全部教案

数学新人教A版选修4-4 第二讲《参数方程》全部教案曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析圆的几何性质,选择适当的参数写出它的参数方程。

3.会进行参数方程和普通方程的互化。

教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

参数方程和普通方程的互化。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

参数方程和普通方程的等价互化。

教学过程一.参数方程的概念1.探究:(1)平抛运动:练习:斜抛运动:2.参数方程的概念(见教科书第22页)说明:(1)一般来说,参数的变化范围是有限制的。

(2)参数是联系变量x,y的桥梁,可以有实际意义,也可无实际意义。

例1.(教科书第22页例1)已知曲线C的参数方程是 (t 为参数)(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。

A、一个定点B、一个椭圆C、一条抛物线D、一条直线二.圆的参数方程说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(2)在建立曲线的参数方程时,要注明参数及参数的取值范围。

例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?[来源:Z三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。

注意,在参数方程和普通方程的互化中,必须使x,y 的取值范围保持一致。

例3.(教科书第25页例3)例4.(教科书第26页例4)2.你能回答教科书第26页的思考吗?四.课堂练习(教科书第26页习题)五.巩固与反思1.本节学习的数学知识2.本节学习的数学方法巩固与提高1.与普通方程xy=1表示相同曲线的参数方程(t为参数)是(D)A. B.C. D.2.下列哪个点在曲线上(C)[来源:]A.(2,7)B.C.D.(1,0)3.曲线的轨迹是(D)A.一条直线B.一条射线C.一个圆D.一条线段4.方程表示的曲线是(D)A.余弦曲线B.与x轴平行的线段C.直线D.与y轴平行的线段5.曲线上的点到两坐标轴的距离之和的最大值是(D)A.B.C.1D.6.方程(t为参数)所表示的一族圆的圆心轨迹是(D)A.一个定点B.一个椭圆C.一条抛物线D.一条直线7.直线与圆相切,那么直线的倾斜角为(A)A.或B.或C.或D.或8.曲线的一个参数方程为。

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的概念与基本形式1.1 参数方程的定义引入参数方程的概念,让学生理解参数方程是一种描述曲线运动的数学工具。

通过实际例子,让学生了解参数方程在现实中的应用。

1.2 参数方程的基本形式介绍参数方程的两种基本形式:圆锥曲线的参数方程和直线的参数方程。

通过图形和实例,让学生理解参数方程与普通方程之间的关系。

第二章:参数方程的图像与性质2.1 参数方程的图像利用图形软件,绘制常见参数方程的图像,让学生直观地了解参数方程的特点。

引导学生观察图像,探讨参数方程与坐标轴之间的关系。

2.2 参数方程的性质引导学生研究参数方程的单调性、周期性和奇偶性等性质。

通过实例,让学生了解参数方程的性质在实际问题中的应用。

第三章:参数方程的变换与化简3.1 参数方程的变换介绍参数方程的基本变换,如平移、旋转和缩放等。

通过实例,让学生学会如何对参数方程进行变换。

3.2 参数方程的化简引导学生利用数学方法对参数方程进行化简,使其形式更加简洁。

通过实例,让学生了解参数方程化简的意义和应用。

第四章:参数方程的应用4.1 参数方程在物理中的应用以机械运动为例,介绍参数方程在描述物体运动中的应用。

引导学生利用参数方程解决实际物理问题。

4.2 参数方程在工程中的应用以电子电路为例,介绍参数方程在描述系统动态行为中的应用。

引导学生利用参数方程解决实际工程问题。

第五章:参数方程的综合练习5.1 参数方程的解题技巧通过实例,让学生学会如何运用不同的技巧解决参数方程问题。

5.2 综合练习题提供一系列与参数方程相关的综合练习题,让学生巩固所学知识。

对练习题进行讲解和解析,帮助学生提高解题能力。

第六章:参数方程在圆锥曲线中的应用6.1 圆锥曲线的参数方程复习圆锥曲线的普通方程,并引入其参数方程。

通过图形和实例,让学生了解圆锥曲线的参数方程表示方法。

6.2 圆锥曲线的参数性质引导学生研究圆锥曲线的参数性质,如渐近线、焦点、顶点等。

人教A版数学【选修4-4】ppt课件:第二讲《参数方程》小结

人教A版数学【选修4-4】ppt课件:第二讲《参数方程》小结
第二讲 参数方程
本讲小结
知识结构
知识要点
方法技巧
本讲主要介绍了参数方程的概念,以及常用曲线的参数方程和 它们的应用. 1.曲线参数方程的定义 一般地,在给定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变量t的函数
x=ft, y=gt.
(1)
并且对于t的每一个允许值,由方程(1)所确定的点M(x,y) 都在这条曲线上,那么方程(1)就叫作这条曲线的参数方程, 联系x,y之间关系的变数叫作参变数,简称参数.参数方程的 参数可以有物理意义,几何意义,也可以没有明显的意义.
(t为参数).
代入圆的方程x2+y2=7,得 3 2 1 2 (-4+ t) +( t) =7,化简得 2 2 t2-4 3t+9=0.
(1)设点A,B所对应的参数分别为t1和t2,由韦达定理,得t1+ t2=4 3,t1· t2=9. ∴|AB|=|t1-t2| = t1+t22-4t1t2 = 4 32-4×9=2 3. (2)设过P0作圆的切线为P0T. 由切割线定理及参数t的几何意义得 |P0T|2=|P0A|· |P0B|=|t1t2|=9. ∴切线长|P0T|=3.
在互化后某个变量的范围扩大了(或缩小了),则必须注明,将 扩大(或缩小)的部分去掉(或补上).由于选取参数不同,同一 曲线的参数方程也不一样.因此,一般曲线的参数方程不唯 一.另外,不是所有的参数方程都能用初等方法化为普通方程 的. 化参数方程为普通方程,常用的方法有:代入法、三角恒 等式消参数法、代数恒等式消参数法等.
(φ 为参数).
【答案】
x=2cosφ+φsinφ, y=2sinφ-φcosφ
(φ为参数)
x=2φ-sinφ, y=21-cosφ

高中数学 曲线的参数方程导学案 新人教版数学选修4-4

高中数学 曲线的参数方程导学案 新人教版数学选修4-4

高二数学导学案主备人: 备课时间:备课组长:课题:曲线的参数方程一、三维目标:知识与技能:通过平抛曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路。

过程与方法:通过平抛曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力。

情感态度价值观:从平抛曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点。

二、学习重、难点:重点:曲线参数方程的探求及其有关概念。

难点:平抛曲线参数方程的建立及对参数方程的理解。

三、学法指导:认真阅读教材P21—24,结合实例,理解平抛曲线及圆的参数方程的建立、进而理解曲线的参数方程的概念,类比求普通方程的方法,掌握求参数方程的一般思路。

四、知识链接:满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线?五、学习过程(一)、引入:在生产实践、军事技术、工程建设中有许多通过间接的方法把某两个变量联系起来的例子.特别在两个变量之间的直接关系不易建立时,常用间接的方法将它们联系起来.如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行。

为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?提示:即求飞行员在离救援点的水平距离多远时,开始投放物资?问题1:物资投出机舱后,它的运动由哪两种运动合成?(1)在水平方向上做运动,其水平位移S=.(2)在竖直方向上做运动,其竖直下落高度H= 。

问题2:在上述运动中水平位移S和竖直下落高度H中是否有一个相同的变量,是什么?问题3:你能否建立适当的坐标系用含有t 的式子表示出物资的位置?问题4:通过对上述问题的分析,飞行员在离救援点的水平距离多远时投放物资,可以使其准确落在指定地点?(二)、参数方程的定义:在给定的坐标系中,如果曲线上任一点的坐标x 、y 都是某个变量t的函数()()x f t y t ϕ=⎧⎨=⎩(1),且对t 每一个允许值,由(1)所确定的点M (x,y )都在这条曲线上,则(1)就叫做这条曲线的参数方程,t 称作参变数,简称参数。

高中数学 第二讲参数方程全部教案 新人教A版选修4-4

高中数学 第二讲参数方程全部教案 新人教A版选修4-4

曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析圆的几何性质,选择适当的参数写出它的参数方程。

3.会进行参数方程和普通方程的互化。

教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

参数方程和普通方程的互化。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

参数方程和普通方程的等价互化。

教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化范围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。

)0,1(21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(2)在建立曲线的参数方程时,要注明参数及参数的取值范围。

例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。

人教A版高中数学选修4—4《坐标系与参数方程》简析

人教A版高中数学选修4—4《坐标系与参数方程》简析

烧 全鱼” ,是 解 析 几 何 教 学 中 必须 予 以 充 分 重 视 的 问 题。 教科 书在 这 方 面 作 出 了 努 力 , 如 , 出 问题 背 景 例 给
球 坐 标 系 简 介 , 中 以极 坐 标 系 为 重 点 ; 二讲 《 数 其 第 参
方程 》 内容 包 括 : , 曲线 的 参 数 方程 、 圆锥 曲线 的参 数 方 程 、 线 的参 数 方程 和 渐 开 线 与摆 线 , 中 以参 数 方程 直 其
_ — ■一 ■■ — ● 锹 千
—隧卿——●■●
人教A 高中数学选修4 4 版 —
《 坐标系与参数方程》 简析
人 民教 育 出版社 中学数 学室 章建跃 郭慧清
一பைடு நூலகம்

内容安排与说明
二、 编写时 考虑的几个主要问题
1突 出 坐 标 法 的 核 心 概 念 地 位 , 调 数 形 结 合 。 . 强
坐 标 法 是 解 析 几 何 的 核 心 , 本 专 题 的 主 要 目 的 是
通 过 认 识 不 同 的坐 标 系的 特 点和 在 刻 画 几何 图形 或 描 述 自然 现 象 中 的 作 用 , 促 使 学 生 学 习 如 何 根 据 问 题 的
需要 建 立 适 当 的坐 标 系、 引 入适 当的 参 变量 来 表 示 曲 线 上点 的坐 标 及 其 方程 , 从而 更 深 入地 体 会 坐 标 法 。 因
为 重 点 。 专 题 中 , 形 结合 、 动 变化 、 对 与 绝 对 、 本 数 运 相
程 的 对 应 关 系 , 一 步 体 会 数 形 结 合 的 思 想 。 3) 为 解 进 ( 做
析 几 何 初 步 、 面 向量 、 角 函 数 等 内 容 的 综 合 与 深 化 , 平 三

高中数学《参数方程的概念》教案新人教A版选修

高中数学《参数方程的概念》教案新人教A版选修

高中数学《参数方程的概念》教案新人教A版选修一、教学目标:1. 让学生理解参数方程的概念,掌握参数方程的基本形式和特点。

2. 培养学生运用参数方程解决实际问题的能力。

3. 提高学生对数学方程美的欣赏能力,激发学生学习数学的兴趣。

二、教学内容:1. 参数方程的定义和基本形式。

2. 参数方程与直角坐标方程的互化。

3. 参数方程在实际问题中的应用。

三、教学重点与难点:1. 重点:参数方程的概念,参数方程的基本形式和特点。

2. 难点:参数方程与直角坐标方程的互化,以及参数方程在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生从实际问题中发现参数方程的必要性。

2. 运用数形结合法,帮助学生直观地理解参数方程的特点。

3. 采用合作学习法,鼓励学生相互讨论,共同探讨参数方程的解题方法。

五、教学过程:1. 导入:通过一个实际问题,引导学生思考如何用数学方法描述物体的运动轨迹。

2. 新课讲解:讲解参数方程的定义、基本形式和特点,举例说明参数方程在实际问题中的应用。

3. 案例分析:分析几个典型的实际问题,让学生学会运用参数方程解决问题。

5. 巩固练习:布置一些练习题,让学生巩固所学知识。

7. 作业布置:布置一些有关参数方程的应用题,让学生课后思考。

六、教学评估:1. 课堂问答:通过提问,了解学生对参数方程概念的理解程度。

2. 练习题:收集学生完成的练习题,评估学生对参数方程的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。

七、教学拓展:1. 介绍其他形式的参数方程,如极坐标方程、参数曲线等。

2. 探讨参数方程在其他学科中的应用,如物理学、工程学等。

八、课后反思:2. 学生反思:让学生写下对本节课学习的收获和困惑,以便教师了解学生的学习情况。

九、教学资源:1. 教材:新人教A版选修《高中数学》。

2. 网络资源:有关参数方程的图片、视频和案例。

3. 教具:黑板、粉笔、投影仪等。

高中数学人教A版选修4-4课件:2.1曲线的参数方程

高中数学人教A版选修4-4课件:2.1曲线的参数方程
因为 θ∈ 0,

2
所以 sin θ +

4
,所以 θ+ ∈

4

2
,1
2
3
,
4 4

4
Hale Waihona Puke ..,即 2sin θ +
故 x+y 的最大值是 2,最小值是 1.

4
∈ 1, 2 .
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
关系比较明显,容易列出方程.
首 页
1
2
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
3
思考 2 求曲线参数方程的步骤是什么?
提示:第一步,画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画图
时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.
C.相切
D.相离
解析:圆的普通方程为 x2+y2=4,圆心(0,0)到直线 xcos φ+ysin φ-2=0 的距离
2
1
d= =2.因为圆的半径为 2,所以直线与圆相切.
答案:C
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
x = 1 + 2θ,
3.将参数方程
HONGDIAN NANDIAN
1
2
1.与普通方程 xy=1 表示相同曲线的参数方程(t 为参数)是(

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的概念1.1 参数方程的定义与形式引入参数的概念,解释参数方程与普通方程的区别。

举例说明参数方程的形式,如圆的参数方程。

1.2 参数方程的图像利用图形展示参数方程所表示的曲线。

引导学生观察参数变化时,曲线的变化情况。

1.3 参数方程的应用结合实际问题,介绍参数方程的应用,如物体的运动轨迹。

引导学生理解参数方程在实际问题中的作用。

第二章:参数方程的变换2.1 参数变换的概念引入参数变换的概念,解释参数变换的作用。

举例说明参数变换的形式,如从直角坐标系到极坐标系的变换。

2.2 参数变换的方法引导学生掌握参数变换的方法,如代数变换、三角变换等。

利用实例演示参数变换的过程。

2.3 参数变换的应用结合实际问题,介绍参数变换的应用,如解三角方程。

引导学生理解参数变换在实际问题中的作用。

第三章:参数方程的求解3.1 参数方程的求解概念引入参数方程的求解概念,解释求解的目的。

举例说明参数方程的求解方法,如代数方法、图形方法等。

3.2 参数方程的求解方法引导学生掌握参数方程的求解方法,如代数求解、图形求解等。

利用实例演示参数方程的求解过程。

3.3 参数方程的求解应用结合实际问题,介绍参数方程的求解应用,如求解物理问题。

引导学生理解参数方程的求解在实际问题中的作用。

第四章:参数方程的综合应用4.1 参数方程与普通方程的转换引导学生理解参数方程与普通方程之间的转换关系。

利用实例演示参数方程与普通方程的转换过程。

4.2 参数方程在实际问题中的应用结合实际问题,介绍参数方程在实际问题中的应用,如工程问题、物理问题等。

引导学生理解参数方程在实际问题中的重要性。

4.3 参数方程的综合实例分析提供综合实例,让学生运用所学知识解决实际问题。

引导学生进行讨论和思考,提高学生解决问题的能力。

第五章:参数方程的进一步研究5.1 参数方程的性质研究引导学生研究参数方程的性质,如对称性、周期性等。

[推荐学习]高中数学第10课参数方程的概念学案新人教A版选修4_4

[推荐学习]高中数学第10课参数方程的概念学案新人教A版选修4_4

第10课 参数方程的概念一、学习要求1.了解参数方程的概念;2.了解参数方程的意义。

二、先学后讲 1. 探究:一架飞机在离灾区地面500高处以100的速度作水平直线飞行,为使投放的救援物资准确落于灾区指定的地面(不计空气阻力),飞行员应如何确定投放时机?在经过的航线与垂直于地平 面的平面上建立直角坐标系,其 中地平面与该平面的交线为轴, 经过物资投出机舱点为轴。

设物资投出秒后的位置为 点。

由于水平位移量与高度,所满足的关系式并不易。

实际上,物资出船舱后,它的运动是由:①沿水平方向匀速直线运动;②沿垂直(向下)方向作自由落体运动,这两种运动的合成。

于是,物资出船舱后的时刻,有:. ①在的取值范围内,给定的一个值,由方程组①可以唯一确定的值,即当确定时,点的位置就唯一确定了。

2.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,都是某个变数的函数,②并且对于的每一个允许值,由方程组②所确定的点都在这条曲线上,那么方程组②就叫做这条曲线的参数方程,联系变数,的变数叫做参变数,简称参数。

M(x x=100t y=500t 2相对于参数方程而言,直接给出点的坐标关系的方程叫做普通方程。

【要点说明】(1)参数方程是曲线上点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来。

参数方程实际上是一个方程组,其中,分别为曲线上点的横坐标和纵坐标。

(2)参数方程中的参数可以有物理意义、几何意义,也可以没有明显的意义;同一曲线选取的参数不同,曲线的参数方程的形式也不一样;在实际部量中要确定参数的取值范围。

(3)研究运动问题时,常选时间为参数。

三、问题探究■合作探究例1.已知曲线的参数方程是.(为参数)(1)判断点,与曲线的位置关系;(2)已知点在曲线上,求的值。

【要点说明】①判断点与曲线的位置关系,可转化为判断点的坐标是否满足曲线的方程。

对于参数方程,判断点是否在曲线上,等价于是否存在参数的一个值,使点的坐标同时是参数方程中两个方程的解。

高中数学第二章参数方程2.1参数方程的概念教案新人教A版选修4_4

高中数学第二章参数方程2.1参数方程的概念教案新人教A版选修4_4

2.1 参数方程的概念【课标要求】1、了解抛物运动轨迹的参数方程及参数的意义。

2、理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。

3、会进行曲线的参数方程与普通方程的互化。

一、教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析曲线的几何性质,选择适当的参数写出它的参数方程。

二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

三、教学方法:启发诱导,探究归纳 四、教学过程(一).参数方程的概念1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为0ν,与地面成α角,如何来刻画铅球运动的轨迹呢? 2.分析探究理解: (1)、斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα (2)、抽象概括:参数方程的概念。

说明:(1)一般来说,参数的变化范围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

(3)平抛运动:为参数)t gt y t x (215001002⎪⎩⎪⎨⎧-== (4)思考交流:把引例中求出的铅球运动的轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用。

(二)、应用举例:例1、已知曲线C 的参数方程是⎩⎨⎧+==1232t y t x (t 为参数)(1)判断点1M (0,1), 2M (5,4)与曲线C 的位置关系;(2)已知点3M (6,a )在曲线C 上,求a 的值。

分析:只要把参数方程中的t 消去化成关于x,y 的方程问题易于解决。

学生练习。

反思归纳:给定参数方程要研究问题可化为关于x,y 的方程问题求解。

例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为60πrad/s,试以时间t 为参数,建立质点运动轨迹的参数方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10、11节:曲线的参数方程(1)(2)
教学目的:
知识目标:弄清曲线参数方程的概念;
能力目标:能选取适当的参数,求简单曲线的参数方程。

教学重点:曲线参数方程的定义及方法。

教学难点:求简单曲线的参数方程。

授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行。

为使投放的救援物资准确落于灾区指定的地面(不计空气阻力),飞行员应如何确定投放时机?
二、讲解新课:
1、 参数方程的定义:
一般地,在平面直角坐标系中,如果曲线C 上任一点P 的坐标x 和y 都可以表示为某个变量t 的函数:⎩
⎨⎧==)()(t g y t f x 反过来,对于t 的每个允许值,由函数式:⎩⎨⎧==)
()(t g y t f x
所确定的点),(y x P 都在曲线C 上,那么方程⎩⎨
⎧==)()(t g y t f x
叫做曲线C 的参数方程,变量t 是参变数,简称参数。

2、 关于参数几点说明:
(1) 参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。

(2) 同一曲线选取的参数不同,曲线的参数方程形式也不一样。

(3) 在实际问题中要确定参数的取值范围。

3、 参数方程的意义:
参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。

4、 参数方程求法
(1)建立直角坐标系,设曲线上任一点P 坐标为),(y x ;
(2)选取适当的参数;
(3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;
(4)证明这个参数方程就是所由于的曲线的方程。

5、 关于参数方程中参数的选取
选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。

与运动有关的问题选取时间t 做参数
与旋转的有关问题选取角θ做参数
或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。

二. 典型例题:
例1.设炮弹发射角为α,发射速度为0v ,
(1)求子弹弹道典线的参数方程(不计空气阻力);
(2)若s m V o /100=,6πα=
,当炮弹发出2秒时。

① 求炮弹高度 ;
② 求出炮弹的射程。

例2.已知曲线C 的参数方程是⎩
⎨⎧+==1232t y t x (t 为参数) (1) 判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系;
(2)已知点M 3(6,a )在曲线C 上,求a 的值。

例3.把圆0622=-+x y x 化为参数方程
(1) 用圆上任一点过原点的弦和x 轴正半轴夹角θ为参数
(2) 用圆中过原点的弦长t 为参数
三、巩固与练习
1. 已知椭圆⎩⎨
⎧==θθsin 2cos 3y x (θ为参数) 求 (1)6π
θ=时对应的点P 的坐标
(2)直线OP 的倾斜角
2 A 点椭圆长轴一个端点,若椭圆上存在一点P ,使∠OPA=90°,其中O 为椭圆中心,求椭圆离心率e 的取值范围。

四、小 结:本节课学习了以下内容:
1.参数方程的定义;
2.参数方程求法。

五、课后作业:。

相关文档
最新文档