2018年中考数学试题分项版解析汇编(第02期)专题4.4 圆(含解析)

合集下载

2018中考数学《中考数学复习模块4-圆》之典型中考题讲解有详细答案

2018中考数学《中考数学复习模块4-圆》之典型中考题讲解有详细答案

《中考数学复习模块4-圆》之典型中考题讲解1、(2017·金华)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O 的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°.①求∠OCE的度数.②若⊙O的半径为2 ,求线段EF的长.2、(2017浙江台州).如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.3、(2017山东枣庄).如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).4、(2017山东聊城).如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.5、(2017山东东营).如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.6、(2017山东潍坊).如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)7、(2017江苏无锡).如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.8、(2017江苏盐城).如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.9、(2017湖北襄阳).如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.10、(2017湖北恩施).如图,AB、CD是⊙O的直径,BE是⊙O 的弦,且BE∥CD,过点C的切线与EB的延长线交于点P,连接BC.(1)求证:BC平分∠ABP;(2)求证:PC2=PB•PE;(3)若BE﹣BP=PC=4,求⊙O的半径.11、(2017湖北随州).如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).12、(2017湖北宜昌).已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D.B点在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:四边形ABCD是菱形.答案:1、(1)解:∵直线与⊙O相切,∴OC⊥CD;又∵AD⊥CD,∴AD//OC,∴∠DAC=∠OCA;又∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OAC;∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°;∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG,∵OC=2,∠OCE=45°.∴CG=OG=2,∴FG=2;∵在RT△OGE中,∠E=30°,∴GE=2,∴EF=GE-FG=2-2.2、(1)证明:∵AB=AC,∠BAC=90°,∴∠C=∠ABC=45°,∴∠AEP=∠ABP=45°,∵PE是直径,∴∠PAB=90°,∴∠APE=∠AEP=45°,∴AP=AE,∴△PAE是等腰直角三角形.(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=PM,PB=PN,∴PC2+PB2=2(PM2+PN2)=2(AN2+PN2)=2PA2=PE2=22=4.3、解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,∴S==,扇形AOB=×2×2﹣=2﹣.则阴影部分的面积为S△ODB﹣S扇形DOF故阴影部分的面积为2﹣.4、(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.5、(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.6、(1)证明:连接OD,∵D为的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF•tan30°=6,在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA•sin30,EA=DA•cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,∴CD∥AB,故S△ACD=S△COD,∴S阴影=S △AED ﹣S 扇形COD =×9×3﹣π×62=﹣6π.7、解:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),P A =m +3,PB =3﹣m .∵EH ∥AP ,∴△ACP ∽△ECH ,∴===,∴CH =2n ,EH =2m =6,∵CD ⊥AB ,∴PC =PD =n ,∵PB ∥HE ,∴△DPB ∽△DHE ,∴===,∴=, ∴m =1,∴P (1,0).(2)由(1)可知,P A =4,HE =8,EF =9,连接OP ,在Rt △OCP 中,PC ==2,∴CH =2PC =4,PH =6, ∴E (9,6), ∵抛物线的对称轴为CD ,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y =a (x +3)(x ﹣5),把E (9,6)代入得到a =,∴抛物线的解析式为y =(x +3)(x ﹣5),即y =x 2﹣x ﹣. 8、(1)证明:连接EF ,∵AE 平分∠BAC ,∴∠FAE=∠CAE ,∵FA=FE ,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.9、(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)连接OD,DC,∵∠DAC=DOC,∠OAC=BOC,∵ED=1,DC=2,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l==π.10、解:(1)∵BE∥CD,∴∠1=∠3,又∵OB=OC,∴∠2=∠3,∴∠1=∠2,即BC平分∠ABP;(2)如图,连接EC、AC,∵PC是⊙O的切线,∴∠PCD=90°,又∵BE∥DC,∴∠P=90°,∴∠1+∠4=90°,∵AB为⊙O直径,∴∠A+∠2=90°,又∠A=∠5,∴∠5+∠2=90°,∵∠1=∠2,∴∠5=∠4,∵∠P=∠P,∴△PBC∽△PCE,即PC2=PB•PE;(3)∵BE﹣BP=PC=4,∴BE=4+BP,∵PC2=PB•PE=PB•(PB+BE),∴42=PB•(PB+4+PB),即PB2+2PB﹣8=0,解得:PB=2,则BE=4+PB=6,∴PE=PB+BE=8,作EF⊥CD于点F,∵∠P=∠PCF=90°,∴四边形PCFE为矩形,∴PC=FE=4,FC=PE=8,∠EFD=∠P=90°,∵BE∥CD,∴DE=BC,在Rt△DEF和Rt△BCP中,∴Rt△DEF≌Rt△BCP(HL),∴DF=BP=2,则CD=DF+CF=10,∴⊙O的半径为5.11、(1)证明:连接DE,OD.∵BC相切⊙O于点D,∴∠CDA=∠AED,∵AE为直径,∴∠ADE=90°,∵AC⊥BC,∴∠ACD=90°,∴∠DAO=∠CAD,∴AD平分∠BAC;(2)∵在Rt△ABC中,∠C=90°,AC=BC,∴∠B=∠BAC=45°,∵BC相切⊙O于点D,∴∠ODB=90°,∴OD=BD,∴∠BOD=45°,设BD=x,则OD=OA=x,OB=x,∴BC=AC=x+1,∵AC2+BC2=AB2,∴2(x+1)2=(x+x)2,∴x=,∴BD=OD=,=﹣=1﹣∴扇形DOE.12、解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE,∴AB=CD,∴四边形A∴D是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.。

2022年中考数学试题分项版解析汇编(第02期)专题4.2 三角形(含解析)

2022年中考数学试题分项版解析汇编(第02期)专题4.2 三角形(含解析)

专题4.2 三角形一、单选题1.【四川省眉山市2018年中考数学试题】将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45° B.60° C.75° D.85°【答案】C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.2.【山东省聊城市2018年中考数学试卷】如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.【答案】A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 3.【台湾省2018年中考数学试卷】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A. 115 B. 120 C. 125 D. 130【答案】C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.4.【湖北省襄阳市2018年中考数学试卷】如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC 的周长为()A. 16cm B. 19cm C. 22cm D. 25cm【答案】B【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.5.【湖北省黄石市2018年中考数学试卷】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°【答案】A点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.6.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【山东省淄博市2018年中考数学试题】如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4 B. 6 C. D. 8【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.详解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【四川省达州市2018年中考数学试题】如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°【答案】B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.9.【湖北省荆门市2018年中考数学试卷】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【答案】C【详解】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键.10.【河北省2018年中考数学试卷】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.11.【山东省东营市2018年中考数学试题】如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.12.【浙江省台州市2018年中考数学试题】如图,等边三角形ABC边长是定值,点O是它的外心,过点O 任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】DB、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=S△ABC(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC-S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F 的面积也变化,可作判断.详解:A、连接OA、OC,∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=S△ABC(定值),故选项C正确;点睛:本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键,13.【浙江省台州市2018年中考数学试题】如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. B. 1 C. D.【答案】B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE-AB=1,故选:B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.14.【河北省2018年中考数学试卷】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.二、填空题15.【吉林省长春市2018年中考数学试卷】如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为_____度.【答案】37【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.16.【山东省东营市2018年中考数学试题】如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是_____.【答案】15【解析】分析:作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.详解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.点睛:本题主要考查作图-基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.17.【黑龙江省哈尔滨市2018年中考数学试题】在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.【答案】130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.18.【江苏省徐州巿2018年中考数学试卷】如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_____cm.【答案】7【解析】【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.【详解】在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4,由翻折的性质,得CE=AE,△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7,故答案为:7.【点睛】本题考查了翻折的性质、勾股定理等,利用翻折的性质得出CE与AE的关系是解题的关键.19.【湖南省邵阳市2018年中考数学试卷】如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.【答案】【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.20.【湖北省襄阳市2018年中考数学试卷】已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为_____.【答案】或【解析】【分析】分两种情况:△ABC是锐角三角形,△ABC是钝角三角形,分别画出符合条件的图形,然后分别根据勾股定理计算AC和BC即可.【详解】分两种情况:当是锐角三角形,如图1,当是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=;综上所述,BC的长为或,故答案为:或.【点睛】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握,运用分类讨论思想进行解答是关键.21.【2018年湖南省湘潭市中考数学试卷】如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=_________.【答案】30°点睛:考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.22.【广西壮族自治区桂林市2018年中考数学试题】如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3【解析】分析:由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.23.【江苏省泰州市2018年中考数学试题】已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.【答案】5点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.24.【江苏省淮安市2018年中考数学试题】如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题25.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.【解析】【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.26.【湖北省武汉市2018年中考数学试卷】如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【答案】证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.27.【广西壮族自治区桂林市2018年中考数学试题】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【答案】(1)证明见解析;(2)37°【解析】分析:(1)先证明AC=DF,再运用SSS证明△ABC≌△DEF;(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB,从而可得结论.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.28.【陕西省2018年中考数学试题】如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 29.【浙江省台州市2018年中考数学试题】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△CFG=.【解析】分析:(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.详解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,三角形的中位线定理,三角形的面积公式,勾股定理,作出辅助线求出△CFG的边CF上的是解本题的关键.30.【湖北省荆门市2018年中考数学试卷】如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.【答案】(1)证明见解析;(2)BH+EH的最小值为3.【解析】【分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.(2)如图,作点E关于直线AC点E',连接BE'交AC于点H,则点H即为符合条件的点,由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°,∴∠EAE'=60°,∴△EAE'为等边三角形,∴E E'=EA=AB,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,BC=,∴AB=2,A E'=AE=,∴B E'= =3,∴BH+EH的最小值为3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键. 31.【山东省淄博市2018年中考数学试题】(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【答案】(1)MG=NG; MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析详解:(1)连接BE,CD相交于H,如图1,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,(2)连接CD,BE,相交于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC并延长相交于点H,如图3.同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.∴△GMN是等腰直角三角形.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.32.【黑龙江省哈尔滨市2018年中考数学试题】已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【答案】(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF 【解析】分析:即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE 得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE×DE=×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.。

专题4.4 圆(第03期)-2018年中考数学试题分项版解析汇编

专题4.4 圆(第03期)-2018年中考数学试题分项版解析汇编

一、单选题1.如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.πC.2πD.π【来源】辽宁省沈阳市2018年中考数学试卷【答案】A【解析】【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【详解】连接OA、OB,【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.2.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣【来源】四川省广安市2018年中考数学试题【答案】C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD=,AC=2CD=2,∵sin∠COD= ,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=B×AC=×2×2=2,S扇形AOC=,则图中阴影部分面积为S菱形ABCO﹣S扇形AOC=,故选:C.点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=,有一定的难度.学科#网3.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°【来源】内蒙古通辽市2018年中考数学试卷【答案】D【解析】【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C 的度数,再根据圆内接四边形的性质求出∠E的度数即可.【详解】由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.4.下列说法错误的是()A.通过平移或旋转得到的图形与原图形全等B.“对顶角相等”的逆命题是真命题C.圆内接正六边形的边长等于半径D.“经过有交通信号灯的路口,遇到红灯”是随机事件【来源】内蒙古通辽市2018年中考数学试卷【答案】B【点睛】本题考查了旋转的性质、圆内接多边形的性质、随机事件等知识点,熟练掌握各知识点的相关内容是解题的关键.5.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6B.8C.5D.5【来源】湖北省咸宁市2018年中考数学试卷【答案】B【解析】【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【详解】如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB==8,故选B.【点睛】本题考查了弧、弦、圆心角的关系,圆周角定理等,正确添加辅助线以及熟练应用相关的性质与定理是解题的关键.6.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.C.D.【来源】四川省资阳市2018年中考数学试卷【答案】B【解析】【分析】利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积),即可得出结果.【详解】∵正六边形的边长为a,∴⊙O的半径为a,∴⊙O的面积为π×a2=πa2,∵空白正六边形为六个边长为a的正三角形,∴每个三角形面积为×a×a×sin60°=a2,∴正六边形面积为6×a2=a2,∴阴影面积为(πa2﹣a2)×=(﹣)a2,故选B.【点睛】本题主要考查了正多边形和圆的面积公式,注意到阴影面积=(圆的面积﹣正六边形的面积)是解答此题的关键.7.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【来源】广西壮族自治区贵港市2018年中考数学试卷【答案】A【解析】【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【详解】∵∠A=66°,∴∠COB=2∠A=132°,∵CO=BO,∴∠OCB=∠OBC=×(180°﹣132°)=24°,故选A.【点睛】本题考查了圆周角定理、等腰三角形的性质等,熟练掌握圆周角定理的内容是解题的关键.8.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°【来源】广西壮族自治区玉林市2018年中考数学试卷【答案】D【解析】【分析】由圆锥的主视图为等边三角形知圆锥的底面圆直径为4、侧面展开图扇形的半径为4,据此利用弧长公式求解可得.【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.熟练掌握这两个关系是解题的关键.9.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°【来源】贵州省铜仁市2018年中考数学试题【答案】D【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.详解:根据圆周角定理,得∠ACB=(360°-∠AOB)=×250°=125°.故选:D.点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.10.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7【来源】上海市2018年中考数学试卷【答案】A【解析】【分析】作半径AD,根据直角三角形30度角的性质得:OA=4,再确认⊙B与⊙A相切时,OB的长,即可得结论.【详解】设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选A.【点睛】本题考查了两圆间的位置关系,分两圆内切与外切分别画出符合题意的图形进行讨论是解题的关键.11.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.4【来源】湖南省湘西州2018年中考数学试卷【答案】D【解析】【分析】由AB是圆的切线知AO⊥AB,结合CD∥AB知AO⊥CD,从而得出CE=4,Rt△COE中求得OE=3及AE=8,在Rt△ACE中利用勾股定理可得答案.【详解】∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,【点睛】本题考查了垂径定理、切线的性质,解题的关键是掌握切线的性质:圆的切线垂直于经过切点的半径.学科#网12.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2【来源】广西钦州市2018年中考数学试卷【答案】D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为BC•AD==,S扇形BAC==,∴莱洛三角形的面积S=3×﹣2×=2π﹣2,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.13.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸【来源】四川省乐山市2018年中考数学试题【答案】C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选:C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题14.如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°【来源】辽宁省盘锦市2018年中考数学试题【答案】B【解析】分析:连接OB,由垂径定理及圆心角定理可得∠AOB=∠AOC=50°,再利用圆周角定理即可得出答案.详解:如图连接OB,∵OA⊥BC,∠AOC=50°,∴∠AOB=∠AOC=50°,则∠ADB=∠AOB=25°,故选:B.点睛:本题主要考查圆周角定理,解题的关键是掌握垂径定理与圆周角定理.15.如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3πB.6πC.9πD.12π【来源】辽宁省盘锦市2018年中考数学试题【答案】B点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.二、填空题16..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.【来源】广西壮族自治区梧州市2018年中考数学试题【答案】4【解析】【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC 中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA的长是解本题的关键.17.同一个圆的内接正方形和正三角形的边心距的比为_____.【来源】内蒙古呼和浩特市2018年中考数学试卷【答案】【解析】【分析】先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.【详解】设⊙O的半径为r,⊙O的内接正方形ABCD,如图,过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,∴O为正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;设⊙O的内接正△EFG,如图,过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案为::1.【点睛】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.18.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是_____(结果保留π)【来源】重庆市2018年中考数学试卷(b卷)【答案】8﹣2π【解析】【分析】根据S阴=S△ABD-S扇形BAE计算即可;【详解】S阴=S△ABD-S扇形BAE=×4×4-=8-2π,故答案为8-2π.【点睛】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.19.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为______.【来源】四川省乐山市2018年中考数学试题【答案】详解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,),∴O′M=,OM=1,∵AO=2,∴AM=2-1=1,∴tan∠O′AM=,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′-S△OAC-S扇形CAC′=S扇形OAO′-S扇形CAC′==,故答案为:.点睛:本题考查了解直角三角形,旋转的性质、扇形的面积计算等知识点,能把求不规则图形的面积转化成求出规则图形的面积是解此题的关键.20.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为_____.【来源】河南省2018年中考数学试卷【答案】【解析】分析:连接DB、DB′,先利用勾股定理求出DB′=,A′B′=,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.详解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,连接DB、DB′,则DB′=,A′B′=,∴S阴=.故答案为.点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.学科#网21.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为_____.(结果保留π)【来源】广东省2018年中考数学试题【答案】π【解析】【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【详解】连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π,故答案为:π.【点睛】本题考查了切线的性质、矩形的性质和扇形的面积公式,正确添加辅助线、仔细识图从中得到阴影部分面积的由来是解题的关键.22.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.【来源】广东省2018年中考数学试题【答案】50°【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.23.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是_____度.【来源】贵州省贵阳市2018年中考数学试卷【答案】72【解析】【分析】连接OA、OB、OC,根据正多边形的中心角的计算公式求出∠AOB,证明△AOM≌△BON,根据全等三角形的性质得到∠BON=∠AOM,得到答案.【详解】如图,连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.【点睛】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.24.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.【来源】黑龙江省龙东地区2018年中考数学试卷【答案】2-2【解析】【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【详解】如图:取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,由以上作图可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由两点之间线段最短可知,此时PD+PG最小,∵D′C=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值为-2,故答案为:-2.【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.25.用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为_____.【来源】黑龙江省龙东地区2018年中考数学试卷【答案】【解析】【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【详解】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高=,故答案为:.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.26.如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为_____(结果保留π).【来源】广西壮族自治区贵港市2018年中考数学试卷【答案】4π【解析】【分析】由将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,可得△ABC≌△A′BC′,由题给图可知:S阴影=S扇形ABA′+S△ABC﹣S扇形CBC′﹣S△A′BC′可得出阴影部分面积.【点睛】本题考查了旋转的性质、扇形面积的计算等,确定出S阴影=S扇形ABA′﹣S扇形CBC′是解题的关键. 27.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是_____cm.【来源】广西壮族自治区玉林市2018年中考数学试卷【答案】10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为:10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.28.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.【来源】黑龙江省大庆市2018年中考数学试卷【答案】0<m<【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×m×m,∵m>0,解得OD=m,由直线与圆的位置关系可知m <6,解得m<,故答案为:0<m<.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.学科#网29.如图,已知在⊙O 中,半径OA=,弦AB=2,∠BAD=18°,OD 与AB 交于点C,则∠ACO=______ 度.【来源】广西壮族自治区梧州市2018年中考数学试题【答案】81【解析】【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.【点睛】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.30.如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=_____°.【来源】云南省曲靖市2018年中考数学试题【答案】n【解析】【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n【点睛】本题考查了圆内接四边形的性质.解决本题的关键是掌握:圆内接四边形的对角互补.三、解答题31.如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF 交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.【来源】辽宁省葫芦岛市2018年中考数学试卷【答案】(1)证明见解析;(2)BD=.【解析】【分析】(1)连接OC,由已知可得∠BOC=90°,根据SAS证明△OCE≌△BFE,根据全等三角形的对应角相等可得∠OBF=∠COE=90°,继而可证明直线BF是⊙O的切线;(2),由(1)的全等可知BF=OC=2,利用勾股定理求出AF的长,然后由S△ABF=,即可求出BD=.【详解】(1)连接OC,∵AB是⊙O的直径,,∴∠BOC=90°,∵E是OB的中点,∴OE=BE,在△OCE和△BFE中,,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直线BF是⊙O的切线;(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF=,∴S△ABF=,即4×2=2BD,∴BD=.【点睛】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、三角形面积的不同表示方法,熟练掌握相关的性质与定理是解题的关键.32.如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC 相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.【来源】辽宁省盘锦市2018年中考数学试题【答案】(1)证明见解析;(2)⊙O的半径为2;(3)四边形OAFE是菱形,理由见解析.详解:(1)如图1,连接OE,∴OA=OE,∴∠BAE=∠OEA,∵∠BAE=30°,∴∠OEA=30°,∴∠AOE=∠BAE+∠OEA=60°,在△BOE中,∠B=30°,∴∠OEB=180°-∠B-∠BOE=90°,∴OE⊥BC,∵点E在⊙O上,∴BC是⊙O的切线;(2)如图2,∵∠B=∠BAE=30°,∴∠AEC=∠B+∠BAE=60°,在Rt△ACE中,AC=3,sin∠AEC=,∴AE=,连接DE,∵AD是⊙O的直径,∴∠AED=90°,在Rt△ADE中,∠BAE=30°,cos∠DAE=,∴AD=,∴⊙O的半径r=AD=2;(3)以A、O、E、F为顶点的四边形是菱形,理由:如图3,在Rt△ABC中,∠B=30°,∴∠BAC=60°,连接OF,∴OA=OF,∴△AOF是等边三角形,∴OA=AF,∠AOF=60°,连接EF,OE,∴OE=OF,∵∠OEB=90°,∠B=30°,∴∠AOE=90°+30°=120°,∴∠EOF=∠AOE-∠AOF=60°,∵OE=OF,∴△OEF是等边三角形,∴OE=EF,∵OA=OE,∴OA=AF=EF=OE,∴四边形OAFE是菱形.点睛:此题是圆的综合题,主要考查了圆的切线的性质,三角形的外角的性质,锐角三角函数,等边三角形的判定和性质,菱形的判定,求出∠AEC=60°是解本题的关键.33.如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.【来源】四川省乐山市2018年中考数学试题【答案】(1)证明见解析;(2).详解:(1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,∴PA=PB,且PO平分∠BPA,∴PO⊥AB.∵BC是直径,∴∠CAB=90°,∴AC⊥AB,∴AC∥PO;(2)连结OA、DF,如图,∵PA、PB是⊙O的两条切线,A、B是切点,∴∠OAQ=∠PBQ=90°.在Rt△OAQ中,OA=OC=3,∴OQ=5.由QA2+OA2=OQ2,得QA=4.在Rt△PBQ中,PA=PB,QB=OQ+OB=8,由QB2+PB2=PQ2,得82+PB2=(PB+4)2,解得PB=6,∴PA=PB=6.∵OP⊥AB,∴BF=AF=AB.又∵D为PB的中点,∴DF∥AP,DF=PA=3,∴△DFE∽△QEA,∴设AE=4t,FE=3t,则AF=AE+FE=7t,∴BE=BF+FE=AF+FE=7t+3t=10t,∴.点睛:本题考查了切线的判定与性质:圆的切线垂直于经过切点的半径;经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和相似三角形的判定与性质.34.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.【来源】辽宁省沈阳市2018年中考数学试卷【答案】(1)∠C=40°;(2)⊙O的半径为2.【解析】【分析】(1)连接OA,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.【详解】(1)如图,连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;(2)∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,【点睛】本题考查了切线的性质、圆周角定理、含30度角的直角三角形的性质等,熟练掌握相关的性质与定理是解题的关键.学科#网35.如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC.(2)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若cos∠P=,CF=10,求BE的长【来源】四川省广安市2018年中考数学试题【答案】(1)证明见解析;(2)BE=24.【解析】分析:(1)连接半径OC,根据切线的性质得:OC⊥PC,由圆周角定理得:∠ACB=90°,所以∠PCA=∠OCB,再由同圆的半径相等可得:∠OCB=∠ABC,从而得结论;(2)先证明∠CAF=∠ACF,则AF=CF=10,根据cos∠P=cos∠FAD=,可得AD=8,FD=6,得CD=CF+FD=16,设OC=r,OD=r﹣8,根据勾股定理列方程可得r的值,再由三角函数cos∠EAB=,可得AE的长,从而计算BE的长.详解:证明:(1)连接OC,交AE于H,∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠ACO=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠PCA=∠OCB,∵OC=OB,∴∠OCB=∠ABC,∴∠PCA=∠ABC;(2)∵AE∥PC,∴∠CAF=∠PCA,∵AB⊥CG,∴,∴∠ACF=∠ABC,∵∠ABC=∠PCA,∴∠CAF=∠ACF,∴AF=CF=10,∵AE∥PC,∴∠P=∠FAD,∴cos∠P=cos∠FAD=,在Rt△AFD中,cos∠FAD=,AF=10,∴AD=8,∴FD==6,∴CD=CF+FD=16,在Rt△OCD中,设OC=r,OD=r﹣8,r2=(r﹣8)2+162,r=20,∴AB=2r=40,∵AB是直径,∴∠AEB=90°,在Rt△AEB中,cos∠EAB=,AB=40,∴AE=32,∴BE==24.点睛:本题考查了切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,连接OC构造直角三角形是解题的关键.36.如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.【来源】内蒙古通辽市2018年中考数学试卷【答案】(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.【详解】(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.37.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【来源】云南省2018年中考数学试卷【答案】(1)证明见解析;(2)阴影部分面积为【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴阴影部分面积为.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.学科#网38.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC 交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=25,BC=,求DE的长.【来源】湖北省咸宁市2018年中考数学试卷【答案】(1)证明见解析;(2)DE=.。

中考数学试题分项版解析汇编第02期专题2.2不等式24142

中考数学试题分项版解析汇编第02期专题2.2不等式24142

专题2.2 不等式一、单选题1.【山东省聊城市2018年中考数学试卷】已知不等式,其解集在数轴上表示正确的是()A. B.C. D.【答案】A点睛:此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.2.【四川省眉山市2018年中考数学试题】已知关于x的不等式组仅有三个整数解,则a 的取值范围是().A.≤a<1 B.≤a≤1 C.<a≤1 D. a<1【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.详解:由x>2a-3,由2x>3(x-2)+5,解得:2a-3<x≤1,由关于x的不等式组仅有三个整数:解得-2≤2a-3<-1,解得≤a<1,故选:A.点睛:本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.3.【湖北省恩施州2018年中考数学试题】关于x的不等式的解集为x>3,那么a的取值范围为()A. a>3 B. a<3 C.a≥3 D.a≤3【答案】D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.【台湾省2018年中考数学试卷】如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112 B. 121 C. 134 D. 143【答案】C点睛:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5.【湖北省襄阳市2018年中考数学试卷】不等式组的解集为()A. x> B. x>1 C.<x<1 D.空集【答案】B【解析】【分析】先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.【详解】解不等式2x>1-x,得:x>,解不等式x+2<4x-1,得:x>1,则不等式组的解集为x>1,故选B.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【湖北省孝感市2018年中考数学试题】下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【答案】B点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.7.【湖北省荆门市2018年中考数学试卷】已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B. 4<m<7 C.4≤m≤7 D. 4<m≤7【答案】A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8.【广西钦州市2018年中考数学试卷】若m>n,则下列不等式正确的是()A. m﹣2<n﹣2 B. C. 6m<6n D.﹣8m>﹣8n【答案】B【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.【湖南省湘西州2018年中考数学试卷】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【解析】【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组的解集在数轴上表示如下:故选C.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.10.【湖南省长沙市2018年中考数学试题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】C点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【吉林省长春市2018年中考数学试卷】不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【答案】B【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】3x﹣6≥0,3x≥6,x≥2,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确求出不等式的解集是解此题的关键.12.【广西壮族自治区贵港市2018年中考数学试卷】若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B. a<﹣3 C. a>3 D.a≥3【答案】A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.二、填空题13.【贵州省铜仁市2018年中考数学试题】一元一次不等式组的解集为_____.【答案】x>﹣1【解析】分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.详解:,由①得:x>-1,由②得:x>-2,所以不等式组的解集为:x>-1.故答案为x>-1.点睛:主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分.14.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.15.【黑龙江省哈尔滨市2018年中考数学试题】不等式组的解集为_____.【答案】3≤x<4.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.16.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】不等式组的解集是_____.【答案】x<3.【解析】分析:首先把两个不等式的解集分别解出来,再根据“大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解”的原则,把不等式的解集求解出来.详解:由(1)得,x<4,由(2)得,x<3,所以不等式组的解集为:x<3.故答案为:x<3.点睛:本题考查不等式组的解法,一定要把每个不等式的解集正确解出来.17.【北京市2018年中考数学试卷】用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.18.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.19.【山东省菏泽市2018年中考数学试题】不等式组的最小整数解是__________.【答案】0【解析】分析:分别解不等式,找出解集的公共部分,找出嘴角整数解即可.详解:解不等式①,得解不等式②,得原不等式组的解集为原不等式组的最小整数解为0.故答案为:0.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.【贵州省贵阳市2018年中考数学试卷】已知关于x的不等式组无解,则a的取值范围是_____.20.【答案】a≥2【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.21.【黑龙江省龙东地区2018年中考数学试卷】若关于x的一元一次不等式组有2个负整数解,则a的取值范围是_____.【答案】﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.22.【河南省2018年中考数学试卷】不等式组的最小整数解是_____.【答案】-2点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.三、解答题23.【湖南省怀化市2018年中考数学试题】解不等式组,并把它的解集在数轴上表示出来.【答案】不等式组的解为:2<x≤4,在数轴上表示见解析.【解析】分析:分别解两不等式,进而得出公共解集.详解:解①得:x≤4,解②得:x>2,故不等式组的解为:2<x≤4,其解集在数轴上表示为:点睛:此题主要考查了解一元一次不等式组的解法,正确掌握基本解题思路是解题关键.24.【上海市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.25.【黑龙江省大庆市2018年中考数学试卷】某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】(1)每个排球的价格是60元,每个篮球的价格是120元;(2)m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值为6000元.【解析】【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.【详解】(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等关系列出不等式是解题的关键.26.【湖南省湘西州2018年中考数学试卷】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.27.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A 种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.28.【湖南省郴州市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】﹣4<x≤0,在数轴上表示见解析.【解析】【分析】先分别求出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.29.【云南省昆明市2018年中考数学试题】(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【答案】(1)每立方米的基本水价是2.45元,每立方米的污水处理费是1元;(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【解析】分析:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米.点睛:本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式.30.【黑龙江省哈尔滨市2018年中考数学试题】春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【答案】(1)每个A型放大镜和每个B型放大镜分别为20元,12元;(2)最多可以购买35个A型放大镜.【解析】分析:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.31.【浙江省台州市2018年中考数学试题】解不等式组:【答案】原不等式组的解集为3<x<4.【解析】分析:根据不等式组的解集的表示方法:大小小大中间找,可得答案.详解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.32.【江苏省徐州巿2018年中考数学试卷】解不等式组,并写出它的所有整数解.【答案】不等式组的整数解哟﹣1、0、1、2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.33.【浙江省宁波市2018年中考数学试卷】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.34.【湖北省孝感市2018年中考数学试题】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元. 【解析】分析:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量-a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.35.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.详解:==3(x+1)-(x-1)=2x+4,,解①得:x≤1,解②得:x>-3,故不等式组的解集为:-3<x≤1,把x=-2代入得:原式=0.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.36.【湖南省邵阳市2018年中考数学试卷】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【答案】(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.【详解】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得,解得x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥,∵a是整数,∴a≥14,答:至少购进A型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.37.【山东省烟台市2018年中考数学试卷】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?。

专题4.4 圆(第02期)-2018年中考数学试题分项版解析汇编(原卷版)

专题4.4 圆(第02期)-2018年中考数学试题分项版解析汇编(原卷版)

一、单选题1.【湖北省襄阳市2018年中考数学试卷】如图,点A ,B ,C ,D 都在半径为2的⊙O 上,若OA ⊥BC ,∠CDA=30°,则弦BC 的长为( )A . 4B . 2C .D . 22.【江苏省盐城市2018年中考数学试题】如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A . 35°B . 45°C . 55°D . 65°3.【湖北省黄石市2018年中考数学试卷】如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则的长为( )A .B .C . 2πD .4.【江苏省淮安市2018年中考数学试题】如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A.70°B.80°C.110°D.140°5.【江苏省无锡市2018年中考数学试题】如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.36.【山东省烟台市2018年中考数学试卷】如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°7.【湖北省随州市2018年中考数学试卷】正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.8.【台湾省2018年中考数学试卷】如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8D.﹣79.【台湾省2018年中考数学试卷】如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.B.C.D.10.【山东省威海市2018年中考数学试题】如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD 为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π11.【湖南省张家界市2018年初中毕业学业考试数学试题】如图,是⊙的直径,弦⊥于点,,则( )A.B.C.D.12.【湖北省武汉市2018年中考数学试卷】如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.13.【四川省眉山市2018年中考数学试题】如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于().14.【湖北省荆门市2018年中考数学试卷】如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)15.【浙江省宁波市2018年中考数学试卷】如图,在中,,,,以点B为圆心,BC长为半径画弧,交AB于点D,则的长为A.B.C.D.16.【广西钦州市2018年中考数学试卷】如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.217.【江苏省徐州巿2018年中考数学试卷】⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是()A.内含B.内切C.相交D.外切18.【湖南省湘西州2018年中考数学试卷】已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定二、填空题19.【浙江省台州市2018年中考数学试题】如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.20.【浙江省宁波市2018年中考数学试卷】如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.21.【湖北省荆门市2018年中考数学试卷】如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.22.【山东省聊城市2018年中考数学试题】用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是_____cm.23.【湖北省孝感市2018年中考数学试题】已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.24.【山东省烟台市2018年中考数学试卷】如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_____.25.【北京市2018年中考数学试卷】如图,点,,,在上,,,,则________.26.【湖北省恩施州2018年中考数学试题】在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为_____.(结果不取近似值)27.【四川省眉山市2018年中考数学试题】如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.28.【江苏省泰州市2018年中考数学试题】如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C 顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为_____.29.【浙江省湖州市2018年中考数学试题】如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.30.【山东省威海市2018年中考数学试题】如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.三、解答题31.【湖南省怀化市2018年中考数学试题】已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留);(2)求证:CD是⊙O的切线.32.【吉林省长春市2018年中考数学试卷】如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)33.【湖南省郴州市2018年中考数学试卷】已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE 是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.34.【山东省东营市2018年中考数学试题】如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.35.【云南省昆明市2018年中考数学试题】如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.36.【浙江省台州市2018年中考数学试题】如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB 上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?37.【浙江省宁波市2018年中考数学试卷】如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE并延长交于点F.求直线l的函数表达式和的值;如图2,连结CE,当时,求证:∽;求点E的坐标;当点C在线段OA上运动时,求的最大值.38.【湖北省荆门市2018年中考数学试卷】如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.39.【湖北省孝感市2018年中考数学试题】如图,中,,以为直径的交于点,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)已知,,求和的长.40.已知:如图,以等边△ABC的边BC为直径作⊙O,分别交AB,AC于点D,E,过点D作DF⊥AC交AC 于点F.(1)求证:DF是⊙O的切线;(2)若等边△ABC的边长为8,求由、DF、EF围成的阴影部分面积.41.【山东省聊城市2018年中考数学试题】如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.42.【湖北省随州市2018年中考数学试卷】如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.43.【江苏省淮安市2018年中考数学试题】如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC 交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.44.【江苏省盐城市2018年中考数学试题】如图,在以线段AB为直径的⊙O上取一点,连接AC、BC.将△ABC沿AB翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长. 45.【四川省内江市2018年中考数学试题】如图,以Rt△ABC的直角边AB为直径作⊙O交斜边AC于点D,过圆心O作OE∥AC,交BC于点E,连接DE.(1)判断DE与⊙O的位置关系并说明理由;(2)求证:2DE2=CD•OE;(3)若tan C=,DE=,求AD的长.46.【湖北省恩施州2018年中考数学试题】如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE 交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.47.【新疆自治区2018年中考数学试题】如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.48.【2018年湖南省湘潭市中考数学试卷】如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.。

2020中考数学试题分项版解析汇编(第02期)专题4.2 三角形(含解析)

2020中考数学试题分项版解析汇编(第02期)专题4.2 三角形(含解析)

专题4.2 三角形一、单选题1.【四川省眉山市2018年中考数学试题】将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45° B.60° C.75° D.85°【答案】C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.2.【山东省聊城市2018年中考数学试卷】如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.【答案】A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 3.【台湾省2018年中考数学试卷】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A. 115 B. 120 C. 125 D. 130【答案】C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.4.【湖北省襄阳市2018年中考数学试卷】如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A. 16cm B. 19cm C. 22cm D. 25cm【答案】B【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.5.【湖北省黄石市2018年中考数学试卷】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°【答案】A点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.6.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【山东省淄博市2018年中考数学试题】如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4 B. 6 C. D. 8【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.详解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【四川省达州市2018年中考数学试题】如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°【答案】B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.9.【湖北省荆门市2018年中考数学试卷】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC 边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【答案】C【详解】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键.10.【河北省2018年中考数学试卷】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.11.【山东省东营市2018年中考数学试题】如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.12.【浙江省台州市2018年中考数学试题】如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】DB、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=S△ABC(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC-S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F 的面积也变化,可作判断.详解:A、连接OA、OC,∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=S△ABC(定值),故选项C正确;点睛:本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键,13.【浙江省台州市2018年中考数学试题】如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. B. 1 C. D.【答案】B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE-AB=1,故选:B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.14.【河北省2018年中考数学试卷】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.二、填空题15.【吉林省长春市2018年中考数学试卷】如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为_____度.【答案】37【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.16.【山东省东营市2018年中考数学试题】如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是_____.【答案】15【解析】分析:作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.详解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.点睛:本题主要考查作图-基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.17.【黑龙江省哈尔滨市2018年中考数学试题】在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.【答案】130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.18.【江苏省徐州巿2018年中考数学试卷】如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_____cm.【答案】7【解析】【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.【详解】在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4,由翻折的性质,得CE=AE,△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7,故答案为:7.【点睛】本题考查了翻折的性质、勾股定理等,利用翻折的性质得出CE与AE的关系是解题的关键.19.【湖南省邵阳市2018年中考数学试卷】如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A 沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.【答案】【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.20.【湖北省襄阳市2018年中考数学试卷】已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC 的长为_____.【答案】或【解析】【分析】分两种情况:△ABC是锐角三角形,△ABC是钝角三角形,分别画出符合条件的图形,然后分别根据勾股定理计算AC和BC即可.【详解】分两种情况:当是锐角三角形,如图1,当是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=;综上所述,BC的长为或,故答案为:或.【点睛】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握,运用分类讨论思想进行解答是关键.21.【2018年湖南省湘潭市中考数学试卷】如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=_________.【答案】30°点睛:考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.22.【广西壮族自治区桂林市2018年中考数学试题】如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3【解析】分析:由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.23.【江苏省泰州市2018年中考数学试题】已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.【答案】5点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.24.【江苏省淮安市2018年中考数学试题】如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题25.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.【解析】【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.26.【湖北省武汉市2018年中考数学试卷】如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【答案】证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.27.【广西壮族自治区桂林市2018年中考数学试题】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【答案】(1)证明见解析;(2)37°【解析】分析:(1)先证明AC=DF,再运用SSS证明△ABC≌△DEF;(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB,从而可得结论.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.28.【陕西省2018年中考数学试题】如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.29.【浙江省台州市2018年中考数学试题】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC 上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△CFG=.【解析】分析:(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.详解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,三角形的中位线定理,三角形的面积公式,勾股定理,作出辅助线求出△CFG的边CF上的是解本题的关键.30.【湖北省荆门市2018年中考数学试卷】如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.【答案】(1)证明见解析;(2)BH+EH的最小值为3.【解析】【分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.(2)如图,作点E关于直线AC点E',连接BE'交AC于点H,则点H即为符合条件的点,由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°,∴∠EAE'=60°,∴△EAE'为等边三角形,∴E E'=EA=AB,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,BC=,∴AB=2,A E'=AE=,∴B E'= =3,∴BH+EH的最小值为3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键.31.【山东省淄博市2018年中考数学试题】(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【答案】(1)MG=NG; MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析详解:(1)连接BE,CD相交于H,如图1,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,(2)连接CD,BE,相交于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC并延长相交于点H,如图3.同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.∴△GMN是等腰直角三角形.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.32.【黑龙江省哈尔滨市2018年中考数学试题】已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【答案】(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.【解析】分析:(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF 即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE×DE=×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.。

2018中考数学圆试题解析

2018中考数学圆试题解析

2018中考数学圆试题解析以下是查字典数学网为您推荐的2018中考数学圆试题解析,希望本篇文章对您学习有所帮助。

2018中考数学圆试题解析一、选择题1. (2018江苏常州2分)已知两圆半径分别为7,3,圆心距为4,则这两圆的位置关系为【】A.外离B.内切C.相交D.内含【答案】B。

【考点】两圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

因此,∵两半径之差7-3等于两圆圆心距4,两圆内切。

故选B。

2. (2018江苏淮安3分)如图,AB是⊙O的直径,点C在⊙O 上,若A=400,则B的度数为【】A、800B、600C、500D、400【答案】C。

【考点】圆周角定理,三角形内角和定理。

【分析】根据直径所对圆周角不直角的性质,由AB是⊙O的直径,点C在⊙O上得根据三角形内角和定理,由A=400,得B=1800-900-400=500。

故选C。

3. (2018江苏苏州3分)如图,已知BD是⊙O直径,点A、C 在⊙O上,,AOB=60,则BDC的度数是【】A.20B.25C.30D. 40【答案】C。

【考点】圆周角定理,圆心角、弧、弦的关系。

【分析】利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得BDC的度数:∵ ,AOB=60,BDC= AOB=30。

故选C。

4. (2018江苏宿迁3分)若⊙O1,⊙O2的半径是r1=2, r2=4,圆心距d=5,则这两个圆的位置关系是【】A.内切B.相交C.外切D.外离【答案】B。

【考点】两圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。

中考数学试题分项版解析汇编(第02期)专题11 圆(含解析)-人教版初中九年级全册数学试题

中考数学试题分项版解析汇编(第02期)专题11 圆(含解析)-人教版初中九年级全册数学试题

专题11:圆一、选择题1.(2017某某第8题)如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.2. (2017某某第10题)如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是( )A .23πB .233π C.2233π D .2433π 【答案】C.【解析】试题分析:连接O 'O 、'O B ,根据旋转的性质及已知条件易证四边形AOB 'O 为菱形,且∠'O OB=∠O 'O B=60°,又因∠A 'O 'B =∠A 'O B=120°,所以∠B 'O 'B =120°,因∠O 'O B+∠B 'O 'B =120°+60°=180°,即可得O 、'O 、'B 三点共线,又因'O 'B ='O B ,可得∠'O 'B B=∠'O B 'B ,再由∠O 'O B=∠'O 'B B+∠'O B 'B =60°,可得∠'O 'B B=∠'O B 'B =30°,所以△OB 'B 为Rt 三角形,由锐角三角函数即可求得B 'B =3所以2''16022=S 2232323603OBB BOO S S ππ⨯-=⨯⨯=阴影扇形,故选C.考点:扇形的面积计算.3. (2017某某某某第9题)如图5,在O 中,在O 中,AB 是直径,CD 是弦,AB CD ⊥,垂足为E ,连接0,,20CO AD BAD ∠=,则下列说法中正确的是( )A .2AD OB = B .CE EO = C. 040OCE ∠= D .2BOC BAD ∠=∠【答案】D考点: 垂径定理的应用4.(2017某某某某第6题)如图3,O 是ABC ∆的内切圆,则点O 是ABC ∆的( )图3A . 三条边的垂直平分线的交点B .三角形平分线的交点C. 三条中线的交点 D .三条高的交点【答案】B【解析】试题分析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B 。

全国2018年中考数学试题分知识点汇编02科学记数法,近似数

全国2018年中考数学试题分知识点汇编02科学记数法,近似数

全国2018年中考数学试题分知识点汇编02科学记数法,近似数一、选择题1. (2018广东省,2,3)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为A. B. C. D.71.44210⨯0.144210⨯81.44210⨯8⨯70.144210【答案】A【解析】科学记数法最后化简形式a×10n(),如果这个数为大数,那么n的计算方式为整数个数减1,如果为极小数,那么n为0的个数110≤<a【知识点】科学记数法2. (2018广西省桂林市,6,3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学计数法表示为( )A.1.28×1014 B.1.28×10-14 C .128×1012 D.0.126×1015【答案】A.【解析】128 000 000 000 000是一个整数数位有15位的数,科学记数法表示一个数,就是把一个数写成a×10n的形式(其中1≤|a|<10,n为整数),故在用科学记数法表示时,a=1.28,n=15-1=14,即128 000 000 000 000=1.28×1014,故选择A.【知识点】科学记数法3. (2018广西省柳州市,5,3分)世界人口约7 000 000 000人,则科学记数法可表示为( )A.9×107B.7×1010C.7×109D.0.7×109【答案】C【解析】科学记数法的表示形式为a×10n,其中1≤|a|<10.若用科学记数法表示绝对值较大的数,则n的值等于该数的整数位数减去1,则a=7,n=10-1=9,故7 000 000 000=7×109.【知识点】科学记数法4. (2018海南省,3,3分)在海南省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注,据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000用科学记数法表示为()A.485×105 B.48.5×106 C.4.85×107 D. 485×108【答案】C【解析】用科学记数法表示较大的数时,其形式为a×10n,其中1≤|a|<10,n是正整数,这里的n等于原数的整数位减1,∴48500000=4.85×107,故选择C.【知识点】科学记数法--------表示较大的数5. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2018甘肃省兰州市,3,4分)据中国电子商务研究中心()发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( )A.1159.56×108元B. 11.5956×1010元C.1.15956×1011元D.1.15956×108元【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.故1159.56亿=1.15956×1011.【知识点】科学记数法7. (2018黑龙江省齐齐哈尔市,题号3,分值3)“厉害了,我的国!” 2018年1月18日,国家统计周对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为()A. 8.2xlO13B. 8.2xl012C.D. 8.2xlO9118.210⨯【答案】A【解析】由科学记数法的定义可知,82万亿=82000000000000= 8.2xlO13 .【知识点】科学记数法.8. (2018湖北省江汉油田潜江天门仙桃市,3,3分) 2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.B.C.D.2⨯11⨯103.5103.510⨯103.510⨯3510【答案】B【解析】本题主要考查科学记数法.科学记数法表示数的标准形式为(且,为整数),所以350亿用科学记数法表示为.故选B .n a 10⨯101<≤a n 103.510⨯【知识点】科学记数法9.(湖北省咸宁市,3,3) 2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元,增速在全省17个市州中排名第三.将.123 500 000 000用科学记数法表示为( )A .123.5×109 B.12.35×1010 C.1.235×108D .1.235×1011【答案】D【解析】123 500 000 000的整数数位有12位,所以a ×10中,a 的值为1.235,n的值为12-1=11,即123 500 000 000=1.235×1011,故选D .n【知识点】科学记数法10. (2018湖南省怀化市,3,4分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列。

2018年北京市中考数学试卷解版析.docx

2018年北京市中考数学试卷解版析.docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】2018年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B.C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:D.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出= =2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,【分析】即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)∵PA=6时,AB=6,BC=4.37,AC=4.11,∴AB2=AC2+BC2,∴∠ACB=90°,∴AB是直径.当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 7979 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.(3)估计A课程成绩跑过75.8分的人数为300×=180人.【点评】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)根据坐标轴上点的坐标特征可求点B的坐标,根据平移的性质可求点C的坐标;(2)根据坐标轴上点的坐标特征可求点A的坐标,进一步求得抛物线的对称轴;(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解.【解答】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.【点评】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【分析】(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt △DFG≌Rt△DCG,可得结论;(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:EM=AE,得结论;证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【解答】证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH,∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH,∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.【点评】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;(3)⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,由d(⊙T,△ABC)=1知此时t=﹣4;②当⊙T在△ABC内部时,当点T与原点重合时,d(⊙T,△ABC)=1,知此时t=0;当点T位于T3位置时,由d(⊙T,△ABC)=1知T3M=2,∵AB=BC=8、∠ABC=90°,∴∠C=∠T3DM=45°,则T3D===2,∴t=4﹣2,故此时0≤t≤4﹣2;③当⊙T在△ABC右边时,由d(⊙T,△ABC)=1知T4N=2,∵∠T4DC=∠C=45°,∴T4D===2,∴t=4+2;综上,t=﹣4或0≤t≤4﹣2或t=4+2.【点评】本题主要考查圆的综合问题,解题的关键是理解并掌握“闭距离”的定义与直线与圆的位置关系和分类讨论思想的运用.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

2022年中考数学试题分项版解析汇编(第02期)专题4.1 几何图形初步(含解析)

2022年中考数学试题分项版解析汇编(第02期)专题4.1 几何图形初步(含解析)

专题4.1 几何图形初步一、单选题1.【湖南省长沙市2018年中考数学试题】将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.【答案】D点睛:本题考查立体图形的判断,关键是根据面动成体以及圆台的特点解答.2.【河北省2018年中考数学试卷】如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.3.【江苏省徐州巿2018年中考数学试卷】下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A. B. C. D.【答案】B【点睛】本题考查了正方体的展开图,熟记正方体的特征以及正方体展开图的各种情形是解题的关键. 4.【浙江省湖州市2018年中考数学试题】如图所示的几何体的左视图是()A. B. C. D.【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.5.【湖南省怀化市2018年中考数学试题】如图,直线a∥b,∠1=60°,则∠2=()A.30° B.60° C.45° D.120°【答案】B点睛:本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.6.【吉林省长春市2018年中考数学试卷】如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC 交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°【答案】C【解析】【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选C.【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.7.【湖南省郴州市2018年中考数学试卷】如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠3【答案】D【点睛】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键. 解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.8.【湖北省荆门市2018年中考数学试卷】已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80° B.70° C.85° D.75°【答案】A【解析】【分析】如图,先根据三角形外角的性质求出∠4的度数,再根据平行线的性质求出∠5的度数,最后根据邻补角的定义进行求解即可得.【详解】如图,【点睛】本题考查了平行线的性质,三角形内角和定理,三角形的外角的性质等知识,结合图形灵活运用相关的知识解决问题是关键.9.【湖南省邵阳市2018年中考数学试卷】如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC 的大小为()A.20° B.60° C.70° D.160°【答案】D【点睛】本题考查对顶角、邻补角,熟知对顶角、邻补角的图形特征以及对顶角相等的性质是解题的关键. 10.【江苏省淮安市2018年中考数学试题】如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35° B.45° C.55° D.65°【答案】C【解析】分析:求出∠3即可解决问题;详解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.点睛:此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.11.【台湾省2018年中考数学试卷】如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【答案】D【解析】分析:甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.详解:甲:如图1,乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.点睛:本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确地理解题意是解题的关键.12.【湖北省恩施州2018年中考数学试题】如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125° B.135° C.145° D.155°【答案】A【解析】分析:如图求出∠5即可解决问题.详解:点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.13.【山东省聊城市2018年中考数学试卷】如图,直线,点是直线上一点,点是直线外一点,若,,则的度数是()A. B. C. D.【答案】C详解: 延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.点睛:此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.14.【山东省菏泽市2018年中考数学试题】如图,直线,等腰直角三角形的两个顶点分别落在直线、上,若,则的度数是()A. B. C. D.【答案】C【解析】分析:根据平行线的性质和等腰直角三角形的性质进行计算即可.详解:即根据等腰直角三角形的性质可知:故选C.点睛:考查平行线的性质和等腰直角三角形的性质,掌握两直线平行,同旁内角互补是解题的关键. 15.【湖北省孝感市2018年中考数学试题】如图,直线,若,,则的度数为()A. B. C. D.【答案】C点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.16.【湖北省随州市2018年中考数学试卷】如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【答案】A【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.【湖北省襄阳市2018年中考数学试卷】如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,17.则∠2的度数为()A.55° B.50° C.45° D.40°【答案】D【解析】【分析】如图,根据平行线的性质求出∠3的度数即可解决问题.【详解】如图,∵AB//CD,∴∠3=∠1=50°,∵∠2+∠3=180°-90°=90°,∴∠2=90°-∠3=40°,故选D.【点睛】本题考查了平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.18.【新疆自治区2018年中考数学试题】如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D 为()A.85° B.75° C.60° D.30°【答案】B点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.二、填空题19.【黑龙江省大庆市2018年中考数学试卷】已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为【答案】240【解析】【分析】根据圆柱体积=底面积×高,即可求出结论.【详解】V=S•h=60×4=240(cm3),故答案为:240.【点睛】本题考查了圆柱体的体积,熟练掌握圆柱体的体积公式是解题的关键.20.【云南省昆明市2018年中考数学试题】如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC 的度数为_____.【答案】150°42′点睛:此题主要考查了角的计算,正确理解互为邻补角的和等于180°是解题关键.21.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】∠α=35°,则∠α的补角为_____度.【答案】145【解析】分析:根据两个角的和等于180°,则这两个角互补计算即可.详解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.点睛:本题考查的是补角,若两个角的和等于180°,则这两个角互补.22.【湖南省湘西州2018年中考数学试卷】如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.23.【山东省淄博市2018年中考数学试题】如图,直线a∥b,若∠1=140°,则∠2=__________°.【答案】40【解析】分析:由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1的度数可得答案.详解:∵a∥b,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.点睛:本题主要考查平行线的性质,解题的关键是掌握两直线平行同旁内角互补.24.【2018年湖南省湘潭市中考数学试卷】如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)【答案】∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE点睛:本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题25.【湖北省宜昌市2018年中考数学试卷】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【答案】(1) 65°;(2) 25°.【解析】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.。

2018年中考数学真题专题汇编------圆综合题

2018年中考数学真题专题汇编------圆综合题
( 1)求证: AC CE ; ( 2)求证: BC 2 AC 2 AB AC ; ( 3)已知 O 的半径为 3.
① 若 AB 5 ,求 BC 的长; AC 3
② 当 AB 为何值时, AB AC 的值最大? AC
26.(2018 四川内江) 如图,以 Rt ABC 的直角边 AB 为直径作 O 交斜边 AC 于
长线上一点,且 BC CD , CE AD 于点 E .
( 1)求证:直线 EC 为 ⊙ O 的切线; ( 2)设 BE 与⊙ O 交于点 F , AF 的延长线与 CE 交于点 P .已知 PCF , PC 5 , PF 4 ,求 sin PEF 的值 .
CBF
21. (2018 浙江金华) 如图,在 Rt△ABC 中,点 O 在斜边 AB 上,以 O 为圆心,
OB 为 半 径 作 圆 , 分 别 与 BC,AB 相 交 于 点 D,E, 连 结 AED.已 知 ∠ 的切线 .
( 2)若 BC=8, tanB= 1 ,求 ⊙O 的半径 .
A
2
O
C
D
B
22.( 2018 浙江衢州) 如图,已知 AB 为⊙ O 直径, AC 是⊙ O 的切线,连接 BC 交 ⊙O 于点 F,取 的中点 D,连接 AD 交 BC 于点 E,过点 E 作 EH⊥AB 于 H. ( 1)求证: △HBE∽△ ABC ; ( 2)若 CF=4, BF=5,求 AC 和 EH 的长.
2018 年中考数学真题专题汇编 ------ 圆综合题
20.(2018 安徽) 如图 ,⊙O 为锐角 △ABC 的外接圆 ,半径为 5. ( 1)用尺规作图作出 ∠BAC 的平分线,并标出它与劣弧 BC 的交点 E(保留作 图痕迹 ,不写作法 ); ( 2)若( 1)中的点 E 到弦 BC 的距离为 3,求弦 CE 的长 .

2018年中考数学真题汇编圆.docx

2018年中考数学真题汇编圆.docx

2018 年中考数学真题汇编: 圆(填空 +选择 46 题)答案一、选择题1.已知的半径为,的半径为,圆心距,则与的位置关系是( C )A. 外离 B 外.切 C 相.交 D 内 .切2.如图,为的直径,是的弦,,则的度数为( C )A. B. C. D.3.已知半径为 5 的⊙ O 是△ ABC 的外接圆,若∠ ABC=25 °,则劣弧的长为( C )A. B. C. D.4.如图,在中,,的半径为3,则图中阴影部分的面积是( C )A. B. C. D.5.如图, AB是圆 O 的弦, OC ⊥ AB ,交圆 O 于点 C,连接 OA , OB , BC ,若∠ ABC=20 °,则∠ AOB 的度数是( D )A.40 °B.50 °C.70 °D.80 °6.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm 2,圆柱高为3m ,圆锥高为 2m 的蒙古包,则需要毛毡的面积是( A )22A. B.40 πm C. D.55 πm7.如图 ,从一块直径为的圆形铁皮上剪出一个圆心角为90 °的扇形 .则此扇形的面积为( A )A.B. C.D.8.用反证法证明时,假设结论“点在圆外 ”不成立,那么点与圆的位置关系只能是(D )A. 点在圆内B 点.在圆上C 点.在圆心上D 点.在圆上或圆内9.如图, AB 是圆锥的母线,BC 为底面直径,已知BC=6cm ,圆锥的面积为15πcm2, 则 sin ∠ ABC 的值为( C )A. B.C.D.10.如图所示, AB 是⊙ O 的直径, PA 切⊙ O 于点 A,线段PO交⊙O于点 C,连结 BC ,若∠ P=36 °,则∠ B 等于( A )。

A.27 °B.32C.36°°D.54°11. 如图,过点,,,点是轴下方上的一点,连接,,则的度数是( B )A. B. C. D.12. 如图, AC 是⊙ O 的直径,弦BD ⊥ AO 于 E ,连接BC ,过点O 作 OF ⊥ BC 于 F ,若 BD=8cm , AE=2cm ,则 OF 的长度是( D )A. 3cmB. cmC. 2.5cmD.cm13. 如图,在△ABC 中,∠ ACB=90 °,∠ A=30 °, AB=4 ,以点 B 为圆心,BC 长为半径画弧,交AB 于点D,则边的长为( C)A. B. C. D.14. 如图,点A, B,C 在⊙ O 上,∠ACB=35°,则∠AOB 的度数是( B )A. 75°B. 70C. 65°D. 35°°15. 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( D )A.3B.C.D.16. 如图,已知AB 是的直径,点P 在BA的延长线上,PD 与相切于点D,过点 B 作 PD 的垂线交PD 的延长线于点C,若的半径为4,,则PA 的长为(A)A. 4B.C. 3D. 2.517. 在中,若为边的中点,则必有成立 .依据以上结论,解决如下问题:如图,在矩形中,已知,点在以为直径的半圆上运动,则的最小值为( D )A. B. C. 34 D. 1018. 如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是( A ) A. ①②③B①.C①② .D②③.∵∠ BEA= ∠ CDA∠ PME=∠ AMD∴ P、E、D、A四点共圆∴∠ APD=AED=90°2∵∠ CAE=180°-∠ BAC-∠ EAD=90°∴△ CAP∽△ CMA∴ AC =CP?CM∵ AC=AB∴ 2CB 2=CP?CM所以③正确二、填空题19. 已知扇形的弧长为2,圆心角为60 °,则它的半径为___6 _____ .20. 一个扇形的圆心角是120 °,它的半径是3cm ,则扇形的弧长为___ _____cm .21. 如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A, D,量得AD=10cm ,点 D 在量角器上的读数为60 °,则该直尺的宽度为________ cm 。

【优质部编】2019-2020中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)

【优质部编】2019-2020中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)

专题2.1 方程一、单选题1.【北京市2018年中考数学试卷】方程组的解为A. B. C. D.【答案】D【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.2.【山东省东营市2018年中考数学试题】小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19 B. 18 C. 16 D. 15【答案】B点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.【湖南省湘西州2018年中考数学试卷】若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A. 1 B.﹣3 C. 3 D. 4【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.4.【云南省昆明市2018年中考数学试题】关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m 的取值范围是()A. m<3 B. m>3 C.m≤3 D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m 的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选:A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.【广西钦州市2018年中考数学试卷】某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100 B. 100(1﹣x)2=80 C. 80(1+2x)=100 D. 80(1+x2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6.【四川省眉山市2018年中考数学试题】我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8% B. 9% C. 10% D. 11%【答案】C点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.【湖南省怀化市2018年中考数学试题】一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km 7.所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.= C.= D.=【答案】C点睛:此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.8.【云南省昆明市2018年中考数学试题】甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.9.【黑龙江省哈尔滨市2018年中考数学试题】方程的解为()A. x=﹣1 B. x=0 C. x= D. x=1【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.【山东省淄博市2018年中考数学试题】“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【答案】C点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选:A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.【湖南省张家界市2018年初中毕业学业考试数学试题】若关于的分式方程的解为,则的值为( )A. B. C. D.【答案】C点睛:此题主要考查了分式方程的解,正确解方程是解题关键.13.【台湾省2018年中考数学试卷】若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24 B. 0 C.﹣4 D.﹣8【答案】A【解析】分析:利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.详解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.点睛:本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.14.【新疆自治区2018年中考数学试题】某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A. B. C. D.【答案】B点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.15.【湖南省常德市2018年中考数学试卷】阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为【答案】C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;B、D x==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;C、D y==2×12﹣1×3=21,故C选项不正确,符合题意;D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.16.【广西壮族自治区桂林市2018年中考数学试题】若,则x,y的值为()A. B. C. D.【答案】D点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.【浙江省台州市2018年中考数学试题】甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.18.【河北省2018年中考数学试卷】有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.【答案】A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.19.【湖南省邵阳市2018年中考数学试卷】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【答案】A【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20【湖北省恩施州2018年中考数学试题】.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元【答案】C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题22.【上海市2018年中考数学试卷】方程组的解是_____.【答案】,【解析】【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【详解】,②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为,.【点睛】本题考查了解二元二次方程组,根据方程组的结构特点灵活选取合适的方法求解是关键.这里体现的消元与转化的数学思想.23.【湖南省长沙市2018年中考数学试题】已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】2点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.24.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【详解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.25.【山东省聊城市2018年中考数学试题】已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是_____.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.26.【湖南省邵阳市2018年中考数学试卷】已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是_____.【答案】0【解析】【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为:0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax2+bx+c=0(a≠0)的两根之和等于﹣、两根之积等于是解题的关键.27.【山东省烟台市2018年中考数学试卷】已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.【答案】3<m≤5.点睛:本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.28.【江苏省淮安市2018年中考数学试题】若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=_____.【答案】4【解析】分析:把x与y的值代入方程计算即可求出a的值.详解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.点睛:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.29.【湖北省襄阳市2018年中考数学试卷】我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.【答案】53【解析】【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【详解】设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:,故答案为:53.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解题的关键.30.【四川省内江市2018年中考数学试题】已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b (x+1)+1=0的两根之和为__________.【答案】1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.31.【四川省内江市2018年中考数学试题】关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.【答案】k≥﹣4【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+4x-k=0有实数根,∴△=42-4×1×(-k)=16+4k≥0,解得:k≥-4.故答案为:k≥-4.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.32.【四川省内江市2018年中考数学试卷】已知关于的方程的两根为,,则方程的两根之和为___________.【答案】1【解析】分析:设t=x+1,则方程a(x+1)2+b(x+1)+1=0化为at2+at+1=0,利用方程的解是x1=1,x2=2得到t1=1,t2=2,然后分别计算对应的x的值可确定方程a(x+1)2+b(x+1)+1=0的解.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.33.【四川省内江市2018年中考数学试】关于的一元二次方程有实数根,则的取值范围是__________.【答案】k≥﹣4.点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.34.【山东省威海市2018年中考数学试题】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__.【答案】44﹣16.【解析】分析:图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得:,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6+6)2=44﹣16,故答案为:44﹣16.点睛:本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.35.【山东省威海市2018年中考数学试题】关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.【答案】m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.36.【湖南省张家界市2018年初中毕业学业考试数学试题】关于x的一元二次方程有两个相等的实数根,则______.【答案】【解析】分析:根据题意可得△=0,进而可得k2-4=0,再解即可.详解:由题意得:△=k2-4=0,解得:k=±2,故答案为:±2.点睛:此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.37.【新疆自治区2018年中考数学试题】某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_____元.【答案】4详解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.38.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.39.【山东省聊城市2018年中考数学试卷】已知关于的方程有两个相等的实根,则的值是__________.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.三、解答题40.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.41.【北京市2018年中考数学试卷】关于的一元二次方程.(1)当时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.【答案】(1)原方程有两个不相等的实数根.(2),,.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.42.【湖北省随州市2018年中考数学试卷】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若=﹣1,求k的值.【答案】(1)k>﹣;(2)k=3.【解析】【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合=﹣1找出关于k的分式方程.43.【湖北省孝感市2018年中考数学试题】已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.44.【山东省东营市2018年中考数学试题】关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【答案】(1)sinA=;(2)△ABC的周长为或16.【解析】分析:(1)利用判别式的意义得到△=25sin2A-16=0,解得sinA=;(2)利用判别式的意义得到100-4(k2-4k+29)≥0,则-(k-2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.详解:(1)根据题意得△=25sin2A-16=0,∴sin2A=,∴sinA=±,∵∠A为锐角,∴sinA=;分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5,∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=2.∴△ABC的周长为10+2;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为10+2或16.点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.45.【湖北省黄石市2018年中考数学试卷】已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.【答案】(1)m<1;(2)0.(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.点睛:本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.46.【江苏省盐城市2018年中考数学试题】一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价。

专题4.4 圆(第03期)-2018年中考数学试题分项版解析汇编(原卷版)

专题4.4 圆(第03期)-2018年中考数学试题分项版解析汇编(原卷版)

一、单选题1.如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.πC.2πD.π2.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣3.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°4.下列说法错误的是()A.通过平移或旋转得到的图形与原图形全等B.“对顶角相等”的逆命题是真命题C.圆内接正六边形的边长等于半径D.“经过有交通信号灯的路口,遇到红灯”是随机事件5.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6B.8C.5D.56.如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.C.D.7.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°8.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°9.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°10.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP 相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<711.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.412.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.213.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸14.如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°15.如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3πB.6πC.9πD.12π二、填空题16..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.17.同一个圆的内接正方形和正三角形的边心距的比为_____.18.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是_____(结果保留π)19.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为______.20.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为_____.21.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为_____.(结果保留π)22.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.23.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是_____度.24.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.25.用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为_____.26.如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为_____(结果保留π).27.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是_____cm.28.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.29.如图,已知在⊙O 中,半径OA=,弦AB=2,∠BAD=18°,OD 与AB 交于点C,则∠ACO=______ 度.30.如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=_____°.三、解答题31.如图,AB是⊙O的直径,,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.32.如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC 相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.33.如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O 于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.34.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.35.如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC.(2)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若cos∠P=,CF=10,求BE的长36.如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.37.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.38.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC 交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=25,BC=,求DE的长.39.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.40.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.41.如图,AB 是⊙M 的直径,BC 是⊙M 的切线,切点为B,C 是BC 上(除B 点外)的任意一点,连接CM 交⊙M 于点G,过点C 作DC⊥BC 交BG 的延长线于点D,连接AG 并延长交BC 于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD 的长度.42.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.43.如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.44.问题:已知α、β均为锐角,tanα=,tanβ=,求α+β的度数.探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出α+β的度数;延伸:(2)设经过图中M、P、H三点的圆弧与AH交于R,求的弧长.45.如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且.(1)求证:PD是⊙O的切线;(2)若AD=12,AM=MC,求的值.46.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.47.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.(1)求证:FG是⊙O的切线;(2)若tanC=2,求的值.48.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC 于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题4.4 圆
一、单选题
1.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()
A. 4 B. 2 C. D. 2
【来源】湖北省襄阳市2018年中考数学试卷
【答案】B
【点睛】本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.
2.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()
A.35° B.45° C.55° D.65°
【来源】江苏省盐城市2018年中考数学试题
【答案】C
【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,
则由∠CAB=90°-∠B即可求得.
详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
∴∠B=∠ADC=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠B=55°,
故选C.
点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
3.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()
A. B. C. 2π D.
【来源】湖北省黄石市2018年中考数学试卷
【答案】D
【解析】分析:先计算圆心角为120°,根据弧长公式=,可得结果.
详解:连接OD,
∵∠ABD=30°,
∴∠AOD=2∠ABD=60°,
∴∠BOD=120°,
∴的长==,
故选:D.
点睛:本题考查了弧长的计算和圆周角定理,熟练掌握弧长公式是关键,属于基础题.
4.如图,点A、B、C都在⊙O上,若∠A OC=140°,则∠B的度数是()
A.70° B.80° C.110° D.140°
【来源】江苏省淮安市2018年中考数学试题
【答案】C
【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.
详解:作对的圆周角∠APC,如图,
∵∠P=∠AOC=×140°=70°
∵∠P+∠B=180°,
∴∠B=180°﹣70°=110°,
故选:C.
点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
5.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()
A. 0 B. 1 C. 2 D. 3
【来源】江苏省无锡市2018年中考数学试题
【答案】C。

相关文档
最新文档