生物化学 第三章 酶化学
生物化学第三章 酶
(四)酶的比活力(比活性) • 酶的比活力是指每单位质量样品中的酶 活力,即每毫克酶蛋白中所含的活力单 位数或每千克酶蛋白中所含的Kat数。
比活力=
酶活力单位数 酶蛋白质量(mg)
• 比活力是表示酶制剂纯度的一个重要指 标,对同一种酶而言,酶的比活力越高, 纯度越高。
七、酶促反应动力学
• 酶促反应动力学主要研究酶催化的反 应速度及影响反应速度的各种因素。 • 在探讨各种因素对酶促反应速度的影 响时,通常测定其初始速度来代表酶
单纯酶 酶→ 结合酶(全酶)→ 辅助因子→ 酶蛋白 辅酶 辅基 金属离子
●
●酶蛋白与辅助因子单独存在时均无催化活性,二 者只有结合成完整的分子时,才具有催化活性。 ●一种酶蛋白只与一种辅酶结合,组成一种全酶, 催化一种或一类底物进行某种化学反应。 ●一种辅酶可以和多种酶蛋白结合,组成多种全酶, 分别催化不同底物进行同一类反应。
(三) 诱导契合学说-关于酶作用专一性的假说 ●1890年,Emil Fischer提出“锁钥学说” :底 物的结构和酶活性部位的结构非常吻合,就象 锁和钥匙一样,这样它们就能紧密结合形成中 间产物。
底物
+
酶
酶 –底物复合物
●1958年,Koshland提出“诱导契合学说”: 酶活性部位的结构与底物的结构并不特别 吻合,但活性部位具有一定的柔性,当底 物与酶接近时,可以诱导酶活性中心的构 象发生改 变,使之 成为能与 底物分子 密切结合 的构象 。
促反应速度,即底物转化量 <5% 时的
反应速度。
(一)酶浓度对反应速度的影响 • 当反应系统中底物的浓度足够大时, 酶促反应速度与酶浓度成正比,即 ν =k[E]。
(二) 底物浓度对反应速度的影响
生物化学I 第三章 酶学
根据国际生化协会酶命名委员会的规定,每一个酶都用 四个打点隔开的数字编号,编号前冠以EC(酶学委员会缩 写),四个数字依次表示该酶应属的大类、亚类、亚亚类 及酶的顺序号,这种编码一种酶的四个数字即是酶的标码。
例如:EC1.1.1.27(乳酸脱氢酶) 酶
乳酸:NAD+氧化还原
u u u u
第一大类 氧化还原酶 第一亚类 —CHOH被氧化 第一亚亚类 氢受体为NAD+ 排序 顺序号为27
4. 1878年, Kü hne赋予酶统一的名称 “Enzyme”, 其意思为“在酵母中”。
Enzyme 酶
德国生物化学家
5. 1930~1936年,Northrop和Kunitz先后得到了胃蛋 白酶、胰蛋白酶和胰凝乳蛋白酶结晶,并用相应方法 证ቤተ መጻሕፍቲ ባይዱ酶是蛋白质。
为此, Northrop和Kunitz于1949年共同 获得诺贝尔奖。
(1)旋光异构专一性:
(2)顺反异构专一性:
例如:不同的酶有不同的活性中心,故对底物有严格的特异性。例如乳 酸脱氢酶是具有立体异构特异性的酶,它能催化乳酸脱氢生成丙酮酸 的可逆反应:
A、B、C分别为LDH活性中心的三个功能基团
消化道内几种蛋白酶的专一性
氨肽酶
(芳香) (硷性)
羧肽酶 羧肽酶
(丙)
Ser
His 活性中心重要基团: His57 , Asp102 , Ser195
Asp
(4)酶的活性中心与底物形状不是正好互补的。
(5)酶的活性中心是位于酶分子表面的一个裂 缝(Crevice)内。
(6)底物通过次级键较弱的作用力与酶分子结 合,这些次级键为:氢键、离子键(盐键)、 范德华力和疏水相互作用。 (7)酶的活性中心具有柔性或可运动性。
生物化学 第三章 酶(共65张PPT)
含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
生物化学03 酶
1、酶的别构(变构)效应 •概念:有些酶分子表面除了具有活性中心外,还存在被称为调节位
点(或变构位点)的调节物特异结合位点,调节物结合到调 节位点上引起酶的构象发生变化,导致酶的活性提高或下降, 这种现象称为别构效应,具有上述特点的酶称别构酶。
效应剂
别
构 中
活性 中心
心
2、酶的多种分子形式——同工酶
最适 温度
温度
4、pH对酶促反应速度的影响
v
•过酸过碱导致酶蛋白变性
•酶的最适pH不是一个固定 不变的常数
最
pH
适
pH
5、激活剂对酶作用的影响
凡是能提高酶活力的物质,称为酶的激活剂。
类别
金属离子:K+、Na+、 Mg2+、Cu2+、Mn2+、Zn2+、Se3+ 、 Co2+、Fe2+ 阴离子: Cl-、Br有机分子 抗坏血酸、半胱氨酸、谷胱甘肽
v
Vm axS K m S
PE
(2)米氏常数Km的意义
① 当v=Vmax/2时,Km=[S]( Km的单位为浓度单位) ②是酶在一定条件下的特征物理常数,通过测定Km的数值,可
鉴别酶。 ③可近似表示酶和底物亲合力,Km愈小,E对S的亲合力愈大,
Km愈大,E对S的亲合力愈小。 ④在已知Km的情况下,应用米氏方程可计算任意[s]时的v,或
相对专一性:要求底物具有一定的化学键,且对键的某 一端所连的基团也有一定的要求,如胰蛋白酶。
键专一性:只作用于一定的键,而对键两端的基团并无 严格要求,如二肽酶。
2、 立体异构专一性 只能催化一种立体异构体,对另一种立体异构体无
作用,如乳酸脱氢酶能催化L-乳酸,而不能催化D-乳酸。
生物化学 第3章 酶
生物化学第3章酶生物化学第3章酶第3章酶自学建议1.掌握酶及所有相关的概念、酶的结构与功能的关系、酶的工作原理、酶促反应动力学特点、意义及应用。
2.熟识酶的分子共同组成与酶的调节。
3.了解酶的分类与命名及酶与医学的关系。
基本知识点酶是对其特异底物起高效催化作用的蛋白质。
单纯酶是仅由氨基酸残基组成的蛋白质,融合酶除所含蛋白质部分外,还所含非蛋白质辅助因子。
辅助因子就是金属离子或小分子有机化合物,后者称作辅酶,其中与酶蛋白共价紧密结合的辅酶又称辅基。
酶分子中一些在一级结构上可能相距很远的必需基团,在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这一区域称为酶的活性中心。
同工酶就是指催化剂相同化学反应,酶蛋白的分子结构、化学性质乃至免疫学性质相同的一组酶,就是由相同基因编码的多肽链,或同一基因mRNA分解成的相同mrna所译者的相同多肽链共同组成的蛋白质。
酶促反应具有高效率、高度特异性和可调节性。
酶与底物诱导契合形成酶-底物复合物,通过邻近效应、定向排列、表面效应使底物容易转变成过渡态。
酶通过多元催化发挥高效催化作用。
酶促反应动力学研究影响酶促反应速率及其影响因素,后者包括底物浓度、酶浓度、温度、ph、抑制剂和激活剂等。
底物浓度对反应速率的影响可用米氏方程表示。
v?vmax[s]km?[s]其中,km为米氏常数,其值等同于反应速率为最小反应速率一半时的底物浓度,具备关键意义。
vmax和km需用米氏方程的双倒数作图去求得。
酶在拉沙泰格赖厄县ph和拉沙泰格赖厄县温度时催化活性最低,但拉沙泰格赖厄县ph和拉沙泰格赖厄县温度不是酶的特征性常数,受到许多因素的影响。
酶的抑制作用包含不可逆遏制与对称遏制两种。
对称遏制中,竞争抑制作用的表观km值减小,vmax维持不变;非竞争抑制作用的km值维持不变,vmax增大,反竞争抑制作用的km值与vmax均增大。
在机体内酶活性与含量的调节是代谢调节的重要途径。
《生物化学》第三章 酶化学与辅酶及答案
D.缺乏辅酶或辅基
E.是已经变性的蛋白质
3.磺胺类药物的类似物是:
A.四氢叶酸B.二氢叶酸C.对氨基苯甲酸D.叶酸E.嘧啶
4.关于酶活性中心的叙述,哪项不正确?
A.酶与底物接触只限于酶分子上与酶活性密切有关的较小区域
B.必需基团可位于活性中心之内,也可位于活性中心之外
C.一般来说,总是多肽链的一级结构上相邻的几个氨基酸的残基相对集中,形成酶的活性中心
(6)合成酶类:催化两分子底物合成为一分子化合物,同时偶联有ATP的磷酸键断裂释能的酶类。
3.金属辅助因子的作用是多方面的,主要是以下几方面:
(1)作为酶活性中心的催化基团参与催化反应、传递电子。
(2)作为连接酶与底物的桥梁,便于酶与底物起作用
(3)稳定酶的构象
(4)中和阴离子,降低反应中的静电斥力。
7.L-精氨酸只能催化L-精氨酸的水解反应,对D-精氨酸则无作用,这是因为该酶具有_________专一性。
8.酶所催化的反应称________,酶所具有的催化能力称_________。
9.参与琥珀酸脱氢生成延胡索酸反应的辅酶是。
10.生物素是的辅酶,其作用是。
三、判断题
1. 按照国际系统分类法,柠檬酸合酶应属裂解酶类。
C.一种辅助因子只能与一种酶蛋白结合成一种全酶
D.酶蛋白决定结合酶蛋白反应的专一性
E.辅助因子直接参加反应
7.如果有一酶促反应其〔8〕=1/2Km,则v值应等于多少Vmax?
A.0.25 B.0.33 C.0.50 D.0.67 E.0.75
8.有机磷杀虫剂对胆碱酯酶的抑制作用属于:
A.可逆性抑制作用
2.4倍9倍
3.不同也不同酶的最适底物
生物化学03第三章 酶
三、 酶的命名与分类
(一)酶的命名
1.习惯命名法——推荐名称
通常以酶催化的底物、反应的性质以及酶的来源命名。 (1) 依据酶所催化的底物命名,如淀粉酶等。 (2) 依据催化反应类型命名,如脱氢酶、转氨酶等。 (3) 综合上述两项原则命名,如乳酸脱氢酶等。 2. 系统命名法——系统名称 规定各种酶名称要明确标示酶的底物与反应类型,如 果一种酶催化两个底物,应在酶系统名称中同时写入 两种底物的名称,用“:”把它们分开,如果底物之 一是水,则水可省略不写。
底物
反应总能量改变
产物 应 过 程
酶促反应活化能的改变
反
一、酶的活性中心(active center)
(一)什么是活性中心(活性部位)
指在整个酶分子中,只有一小部分区域 的aa残基参与对底物的结合和催化作用,这
些特异的aa残基比较集中的区域称为酶的活
性中心或称活性部位。
(二)酶活性中心的组成
结合部位:酶分子中与结合底物有关的部位。
1. 结合酶的酶蛋白与辅助因子协同作用才能发挥 催化作用。
酶蛋白
(无催化活性)
+ 辅助因子
(无催化活性)
全酶
(有催化活性)
2.全酶各部分在催化反应中的作用
(1)酶蛋白决定反应的特异性。 (2)辅助因子决定反应的种类与性质。
3.辅酶:属于有机分子类型的辅因子;辅酶又可
分为一般的辅酶和辅基两类(按其与酶蛋白结合
酶的调节部位可以与某些化合物可逆地非共价结 合,使酶发生结构的改变,进而改变酶的催化活性, 这种酶活性的调节方式称~。
别构酶:多为寡聚酶
正效应物(别构激活剂) 负效应物(别构抑制剂)
效应物(别构效应剂) (多为小分子化合物)
生物化学第三章酶化学
通式:AH2+B→BH2+A
系统命名可分为19亚类,习惯上可分为4个亚类: (1)脱氢酶:受体为NAD或NADP,不需氧。
(2)氧化酶:以分子氧为受体,产物可为水或H2O2,常需黄素辅基。
(3)过氧化物酶:以H2O2为受体,常以黄素、血红素为辅基。 (4)氧合酶(加氧酶):催化氧原子掺入有机分子,又称羟化酶。按
His 活性中心重要基团: His57 , Asp102 , Ser195
Asp
3 活性中心的研究方法 1.酶分子侧链基团修饰法 (1)非共价特异修饰法: (2)特异性共价修饰法 (3)亲和标记法
2.动力学参数测定方法 3.X-射线晶体结构分析法 4.定点诱变法
二 酶原及酶原的激活 没有催化活性的酶的前体称为酶原(zymogen)。
V max 初 速 度 v c b 1/2 V max
a
0
Km
[S]
图5-14 底物 浓度对 酶促反 应速度 的影响
酶促反应速度V与底物浓度[S]的关系
(二)Michaelis-Menten方程和米氏常数
米氏方程式推导来源于中间产物学说 解释酶促反应中底物浓度和反应速率关系的最合理的
学说是中间产物学说。该学说认为酶促反应形成酶-
通式: AB→A+B
包括醛缩酶、水化酶、脱羧酶等。共7个亚 类。
5、异构酶类 催化同分异构体之间的相互转化。
通式:A→B
其中:A、B为同分异构
包括消旋酶、异构酶、变位酶等。共6个亚 类。
6、合成酶类 催化由两种物质合成一种物质,必须与ATP 分解相偶联。也叫连接酶,如DNA连接酶。
通式:A+B+ATP→AB+ADP+Pi 或 A+B→AB+AMP+PPi
生物化学:第三章 酶学
为Tyr 248 为Arg 145
Zn
为Glu 270 为底物
R
R R
A.非差 示标记
差 示 标 记 法 图 解
B. 差示 标记
(底物)
R
R
R
Hale Waihona Puke R*RR*
亲和标记法
根据酶与底物特异结合的性质,设计或合成一种含有反应基团的底物类似
物作为活性部位基团的标记试剂。这种试剂象底物一样进入活性部位,接
近结合位点,并以其活泼的化学基团与活性部位的某一基团共价结合,而 指示出酶活性部位的特征。
“锁钥学说”
(lock and key thoery):
Fischer, (1890):酶 的活性中心 结构与底物 的结构互相 吻合,紧密 结合成中间 络合物。
诱导嵌合学说 (induced-fit hypothesis): Koshland,(1958): 酶活性中心的结构有 一定的柔性,当底物 (激活剂或抑制剂) 与酶分子结合时,酶 蛋白的构象发生了有 利于与底物结合的变 化,使反应所需的催 化基团和结合基团正 确地排列和定向,转 入有效的作用位置, 这样才能使酶与底物 完全吻合,结合成中 间产物。
当ΔG<0,反应能自发进行。 活化能:分子由常态转变为活化状态所需的能量。 是指在一定温度下,1mol 反应物全部进入活化 状态所需的自由能。
化学反应要能够 发生,关键的是反应 体系中的分子必须分 子处于活化状态,活 化分子比一般分子多 含的能量就称为活化 能。反应体系中活化 分子越多,反应就越 快。增加反应体系的 活化分子数有两条途 径:一是向反应体系 中加入能量 ,另一 途径是降低反应活化 能。酶的作用就在于 降低化学反应活化能。
活酶的专一性研究 酶分子的化学修饰:差示标记法,亲和标记法 X-射线衍射法
03第三章 普通生物化学第四版酶化学
注意:六大酶类的顺序不能搞错,也不能 颠倒位置,否则就不符合国际分类法。
编号:
在每一大类酶中,又可根据不同的原则,分为 几个亚类,每个亚类再分为几个亚亚类。然后再把 原于这一亚亚类的酶按顺序排好,这样就把已知的 酶分门别类地排列一个表,叫做酶表。每一种酶在 此表中的位置均可用一个统一的编号来表示,这种 编号包括四个数字。
⑤ 酶催化反应无副产物,且自身在不断的自我更新。 ⑥ 酶的催化活性是受调节控制的。
二、酶的化学组成、分类及命名
(一) 酶的化学本质——蛋白质
酶的化学本质问题在历史上曾引起长时间的激烈争论。 J.H.Northrop和J.B.sumner这两位美国科学家作出了卓越的贡 献。Sumner于1926年首次结晶出脲酶(Vrease),Northrop于 1930年结晶出胃蛋白酶(Pepsin),后来几年里又结晶出了胰蛋 白酶(Trgpsin)和胰凝蛋白酶(Chymotrypisn),并以确凿的证据证 明了酶是蛋白质。直到1934年以后,人们才真正确立酶的本 质。争论才宣告结束,二位学者也因此获得1949年诺贝尔化 学奖。
5 1
α-葡萄糖 OH 苷酶 OH
5
O
O
1
O R
+H2O
OH
OH
+ ROH
OH
OH OH
3、立体异构专一性
酶对底物要求特定的立 体结构方能起催化作用。这种对 底 物空间结构具有高度的选择性与专一性称立体异构专一性。 实际上也是一种绝对专一。
如:延胡索酸酶只能催化反丁烯二酸加水转化成苹果酸,对顺 丁烯二酸不起作用。L-AA氧化酶只能催化L-AA而D-AA无作用。
6/29/2014 2
一、酶的概念及生物学特性
《生物化学》考研内部课程配套练习第三章酶化学和第四章辅酶与维生素
第三章酶化学和第四章辅酶与维生素练习1、米氏常数(Km值):用Km值表示,是酶的一个重要参数。
Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度。
2、辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。
3、单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。
4、寡聚酶:有几个或多个亚基组成的酶称为寡聚酶。
寡聚酶中的亚基可以是相同的,也可以是不同的。
亚基间以非共价键结合,容易为酸碱,高浓度的盐或其它的变性剂分离。
5、多酶体系:由几个酶彼此嵌合形成的复合体称为多酶体系。
多酶复合体有利于细胞中一系列反应的连续进行,以提高酶的催化效率,同时便于机体对酶的调控。
6、变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节。
7、同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。
8、酶原:酶的无活性前体,通常在有限度的蛋白质水解作用后,转变为具有活性的酶。
9、酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式表示:比活力=活力单位数/蛋白质量(mg)10、活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。
11、别构效应:调节物(效应物)与别构酶分子中的别构中心(调节中心)结合后,诱导产生或稳定住酶分子的某种构象,使酶活性中心对底物的结合催化作用受到影响,从而调节酶促反应的速度。
12、抗体酶:是一种具有催化能力的免疫球蛋白,又称催化性抗体。
二、写出英文缩写符号代表的意思1、NAD+:烟酰胺腺嘌呤二核苷酸;辅酶Ⅰ。
2、FAD:黄素腺嘌呤二核苷酸。
3、THFA:四氢叶酸。
4、TPP:焦磷酸硫胺素5、FMN:黄素单核苷酸。
6、CoA:辅酶A。
三、填空题1.酶是活细胞产生的,具有催化活性的蛋白质。
2.酶具有高效性;专一性;作用条件温和;受调控等催化特点。
生物化学酶化学
底物与酶结合诱导酶得分子构象变化,变化得酶分 子又使底物分子得敏感键产生“张力”甚至“形 变” ,从而促使酶-底物中间产物进入过渡态。
(3)酸碱催化:
酸-碱催化可分为狭义得酸-碱催化和广义得酸-碱催化。酶 参与得酸-碱催化反应一般都就是广义得酸-碱催化方式。
广义酸-碱催化就是指通过质子酸提供部分质子,或就是通 过质子碱接受部分质子得作用,达到降低反应活化能得过程。
(1)键专一性:在键专一性中,对酶来说,重要得就是连 接A和B得键必须“正确”(酯酶)
(2)基团专一性:具有基团专一性得酶除了需要有“正 确”得化学键以外,还需要基团A和B中得一侧必须 “正确” (胰蛋白酶)
(3)绝对专一性:具有绝对专一性得酶要求底物得键 和A、B都必须严格得“正确” (脲酶)
3、酶与底物结合形成中 间络合物得方式(理论)
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
三、酶得分类及命名
1、 酶得分类(催化反应得类型) (1) 氧化-还原酶 Oxidoreductase
氧化-还原酶催化氧化-还原反应。 主要包括脱氢酶(Dehydrogenase)和氧化酶
(Oxidase)。 如,乳酸(Lactate)脱氢酶催化乳酸得脱氢反应。
合物形成得速率与酶和底物得性质有关。
4、 使酶具有高效催化得因素
(1)临近定向效应:
在酶促反应中,底物分子结合到酶得活性中心,一方 面底物在酶活性中心得有效浓度大大增加,有利于 提高反应速度;
另一方面,由于活性中心得立体结构和相关基团得 诱导和定向作用,使底物分子中参与反应得基团相 互接近,并被严格定向定位,使酶促反应具有高效率 和专一性特点。
1、立体化学专一性
《生物化学》第三章
- 14 -
第一节 酶的结构与功能
三、酶的特性与作用机制
4.表面效应
酶的活性中心多由氨基酸残基 的疏水基团组成,构成相对稳定的 疏水环境。底物与酶在酶活性中心 内部的疏水环境中结合,可防止底 物与酶之间形成水化膜,有利于两 者之间的接触反应。
- 15 -
第一节 酶的结构与功能
四、酶活性的调节
酶原与酶原激活
现已发现有数种同工酶,如6-磷酸葡萄糖脱氢酶、乳酸脱氢酶、肌酸磷酸激 酶、核糖核酸酶等。其中乳酸脱氢酶(lactate dehydrogenase,LDH)是最早 发现的同工酶。不同类型的LDH同工酶在不同组织中的比例不同,心肌中以 LDH1及LDH2较为丰富,骨骼肌及肝中含LDH4及LDH5较多,这种分布与 各器官的生理功能相关。LDH同工酶相对含量的改变在一定程度上更敏感地 反映了某些脏器的功能状况。
一、酶的分子组成
现知大多数维生素是组成许多酶的辅酶或辅基的 成分(详见第十五章)。体内酶的种类很多,而辅酶 (基)的种类却较少,通常一种酶蛋白只能与一种辅 酶结合,成为一种特异的酶,但一种辅酶往往能与不 同的酶蛋白结合构成许多种特异性酶。
-6-
第一节 酶的结构与功能
二、酶的活性中心
生物化学生物化学生物化学第三章酶
特点:
*抑制剂只与ES结合; *抑制程度取决与[I]及[S]; *动力学特点:Vmax↓,表观Km↓。
各种可逆性抑制作用的比较
作用特征
与I结合的组分 表观Km Vmax
竞争性 抑制 E 增大 不变
非竞争性 反竞争性
抑制
抑制
E、ES
ES
不变
减小
降低
降低
六、激活剂对反响速度的影响
激活剂(activator)
单位时间内产物的生成量来表示 *反响速度取其初速度,即底物的消耗量很小
〔一般在5﹪以内〕时的反响速度 *底物浓度远远大于酶浓度
V
Vmax
[S] 1、当底物浓度较低时,反响速度与底物浓度成正比;反响为一级反响。
V
Vmax
响。
[S] 2、随着底物浓度的增高,反响速度不再成正比例加速;反响为混合级反
V
Vmax
结合基团
活性中心 必需基团
催化基团
酶
活性中心外基团
非必需基团
二、酶作用专一性的机制 1、锁钥学说(lock and key hypothesis) 2、诱导契合学说(induced-fit hypothesis)
1. 锁 钥 学 说
锁钥学说:
认为整个酶分子的天然构象是具有刚性构造, 酶:钥匙, 底物:锁。一一对映。
〔2〕国际单位Kat:1972年,指在最适条件下1秒钟内转化1mol底物 所需的酶量。 即 1 Kat=1mol/s
Kat和IU的换算关系:1 Kat=6×107 IU, 1 IU =16.67n Kat
(3)比活力〔specific activity〕 酶的比活力〔比活性〕:每单位〔一般是mg〕蛋白质中的 酶活力单位数〔酶单位/mg蛋白〕。
生物化学酶化学3
Mechanism and regulationEnzymeChemistry 3To teach is not to fill a vase but to light a fireSer195HHChymotrypsin 顺序式催化反应A1N CCN[HOOC ]HOC C NC C[NH 2]CO一、酶的活性部位(一)酶的活性部位酶的活性部位是指结合底物和将底物转化为产物的区域,通常是相隔很远的氨基酸残基形成的三维实体。
酶的结构必需基团其它部分活性部位活性部位以外的必需基团结合部位催化部位有七种a.a在酶活性中心出现的频率最高,它们是Ser、His、Cys、Tyr、Asp、Glu、Lys。
活性中心的a.a残基往往分散在相互较远的a.a顺序中,有的甚至分散在不同的肽链上,如α-胰凝乳蛋白酶活性中心的几个a.a残基,分别位于B、C两个肽链上,靠分子空间结构的形成,集中在酶分子特定区域,成为具有催化功能的活性中心。
一些酶活性中心的基团(二)判断和研究活性中心的主要方法(1)通过酶的专一性(2)酶的化学修饰法(3)亲合标记法(4)X射线晶体衍射法二、酶催化反应的独特性质(略)三、影响酶催化效率的有关因素(一)底物与酶的邻近效应(Proximity Effect )与定向效应酶把底物分子(一种或两种)从溶液中富集出来,使它们固定在活性中心附近,反应基团相互邻近,同时使反应基团的分子轨道以正确方位相互交叠,反应易于发生。
在酶促反应中,由于酶和底物分子之间的亲和性,底物分子有向酶的活性中心靠近的趋势,最终结合到酶的活性中心,使底物在酶活性中心的有效浓度大大增加的效应。
1. 邻近效应HNNC -O || O--NO 2HN NC -O -|| OHO --NO 2++H +11min 839-=k --NO 2HNNO ||H 3C -C -O +O ||H 3C -C -O -HO --NO 2++H +112min 35--=M k 咪唑催化乙酸对硝基苯酯的(分子间)反应慢;变为分子内反应后要快24倍。
生物化学——第三章酶
• 1926年,Sumner首次分离出脲酶结晶,证明具 有蛋白质性质。
• 1930年左右,Northrop又分离出胃蛋白酶、胰 蛋白酶及胰凝乳蛋白酶,并进行动力学探讨。
• 许多酶的一级结构已测定,1969年人工合成牛胰 核酸酶。
• 1981-1982年Cech实验室发现第一个有催化活 性的天然RNA,取名核酶ribozyme。
第三章 酶( ENZYME)
生物化学——第三章酶
第一节 酶的概念
一、对酶认识的发展
• 1857年,Paster提出酒精发酵是酵母细胞活动的结 果,并于1878年提出“酶(Enzyme)”的概念; • 1897年,Buchner提出了发酵与活细胞无关,而与细 胞液中的酶有关; • 1913年,Michaelis和Menten提出了酶促动力学原理-----米氏学说;
生物化学——第三章酶
5.异构酶 Isomerase
• 催化各种同分异构体的相互转化
• A====B 6-磷酸葡萄糖异构酶
CH2OHP O OH
OH
OH OH
CH2OHP
CH2OH
O OH
OH OH
生物化学——第三章酶
6.合成酶 Ligase or Synthetase
• (连接酶)能够催化与ATP分解反应相偶联的由小分 子合成大分子的反应。
NAD+ 该酶在此亚亚类中的编号
生物化学——第三章酶
第三节 酶的化学本质
生物化学——第三章酶
一、大多数酶是蛋白质
1、酶是蛋白质的证据 2、核酶
1981-1982,Cech发现: 核酶:四膜虫(Tetrahynena)细胞26SrRNA前体加工。
1983年S. Altman发现: 核糖核酸酶P(RNAaseP)的M1RNA组分具该酶催化特
(完整版)生物化学酶
第三章酶与辅酶一、知识要点在生物体的活细胞中每分每秒都进行着成千上万的大量生物化学反应,而这些反应却能有条不紊地进行且速度非常快,使细胞能同时进行各种降解代谢及合成代谢,以满足生命活动的需要。
生物细胞之所以能在常温常压下以极高的速度和很大的专一性进行化学反应,这是由于生物细胞中存在着生物催化剂——酶。
酶是生物体活细胞产生的具有特殊催化能力的蛋白质。
酶作为一种生物催化剂不同于一般的催化剂,它具有条件温和、催化效率高、高度专一性和酶活可调控性等催化特点。
酶可分为氧化还原酶类、转移酶类、水解酶类、裂解酶类、异构酶类和合成酶类六大类。
酶的专一性可分为相对专一性、绝对专一性和立体异构专一性,其中相对专一性又分为基团专一性和键专一性,立体异构专一性又分为旋光异构专一性、几何异构专一性和潜手性专一性。
影响酶促反应速度的因素有底物浓度(S)、酶液浓度(E)、反应温度(T)、反应pH值、激活剂(A)和抑制剂(I)等。
其中底物浓度与酶反应速度之间有一个重要的关系为米氏方程,米氏常数(K m)是酶的特征性常数,它的物理意义是当酶反应速度达到最大反应速度一半时的底物浓度。
竞争性抑制作用、非竞争性抑制作用和反竞争性抑制作用分别对Km 值与V max的影响是各不相同的。
酶的活性中心有两个功能部位,即结合部位和催化部位。
酶的催化机理包括过渡态学说、邻近和定向效应、锁钥学说、诱导楔合学说、酸碱催化和共价催化等,每个学说都有其各自的理论依据,其中过渡态学说或中间产物学说为大家所公认,诱导楔合学说也为对酶的研究做了大量贡献。
胰凝乳蛋白酶是胰脏中合成的一种蛋白水解酶,其活性中心由Asp102、His57及Ser195构成一个电荷转接系统,即电荷中继网。
其催化机理包括两个阶段,第一阶段为水解反应的酰化阶段,第二阶段为水解反应的脱酰阶段。
同工酶和变构酶是两种重要的酶。
同工酶是指有机体内能催化相同的化学反应,但其酶蛋白本身的理化性质及生物学功能不完全相同的一组酶;变构酶是利用构象的改变来调节其催化活性的酶,是一个关键酶,催化限速步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b. 立体化学(异构)专一性
Stereochemical Specificity,stereospecificity
(1) 旋光异构专一性
▪ 酶的一个重要特性是能专一性地与手性底物结合并催化这类底物 发生反应。即当底物具有旋光异构体时,酶只能作用于其中的一 种。
例如,淀粉酶只能选择性地水解D-葡萄糖形成的1,4-糖苷键; L-氨基酸氧ห้องสมุดไป่ตู้酶只能催化L-氨基酸氧化;乳酸脱氢酶只对L-乳酸 是专一的。
▪ 有些酶对底物的要求非常严格,只作用于一个特定的 底物。这种专一性称为绝对专一性(Absolute specificity)。
例如:脲酶、麦芽糖酶、淀粉酶、碳酸酐酶及延胡索酸 水化酶(只作用于反丁烯二酸)等。
(2)相对专一性
(Relative Specificity) 有些酶的作用对象不是一种底物,而是一类化合物或 一类化学键。这种专一性称为相对专一性(Relative Specificity)。包括:
酶促反应一般在pH 5-8 水溶液中进行,反应温度范围为 20-40C。 高温或其它苛刻的物理或化学条件,将引起酶的失活
2
3.高度专一性(Specificity)
▪ 酶的专一性 Specificity又称为特异性,是指酶在催化 生化反应时对底物的选择性,即一种酶只能作用于某 一类或某一种特定的物质。亦即酶只能催化某一类或 某一种化学反应。
(一)酶的共同特性
★ 都能降低反应的活化能 ★ 能加快反应速度,但不能改变反应的平衡点,反应前后 不发生质与量的变化 ★催化效率高
活化能
◆活化能—反应需要克服的障碍能阈,分子由常态变成 活化态所需的能量。
◆活化分子—携带足够的能量,能够发生有效碰撞的分子。 ◆有效碰撞—能够使反应顺利进行的分子碰撞。
※酶作为催化剂只降低活化能,但反
应前后底物和产物能量差异不变,只 是改变反应速率,不改变反应性质、 反应方向和反应平衡点。
E+S
ES E + P
(二)酶作为生物催化剂的特性
1.酶易失活 ▪ 凡能使蛋白质变性的因素如强酸、强碱高温等条件都能
使酶破坏而完全失去活性。所以酶作用一般都要求比较 温和的条件如常温、常压和接近中性的酸碱度。
第一节 酶的概述
▪ 酶的发现和提出:1897年,Buchner兄弟用不含细胞的酵母 汁成功实现了发酵。提出了发酵与活细胞无关,而与细胞液 中的酶有关。
▪ 1903年,Henri提出了酶与底物作用的中间复合物学说。 ▪ 1913年,Michaelis和Menten提出了酶促动力学原理—米氏
学说。 ▪ 1925年,Briggs和Handane对米氏方程做了修正,提出了稳
(2)几何异构专一性
geometrical specificity
▪ 有些酶只能选择性催化某种几何异构体底物的反应,而 对另一种构型则无催化作用。
如延胡索酸水合酶只能催化延胡索酸即反-丁烯二酸水合生成苹 果酸,对马来酸(顺-丁烯二酸)则不起作用;再如:丁二酸 (琥珀酸)脱氢酶
酶的立体化学专一性的实践意义
从而发现核酶 (ribozyme),打破了以往酶是蛋白质的传统观念。 1986年Schultz和Lerner等人研制成功抗体酶
一、酶的概念
▪酶是活细胞产生的一类具有催化功能的蛋白质,亦称为生物催
化剂Biocatalysts 。
▪绝大多数的酶都是蛋白质(除Ribozyme核酸酶)。 ▪酶催化的生物化学反应,称为酶促反应Enzymatic reaction。
第三章 酶
要求掌握: 一、酶的催化作用特点。 二、掌握酶的化学本质及其组成。 三、掌握酶的命名和分类。 四、掌握酶的活力测定和分离纯化。 五、熟识酶工程。 六、反应速率及其测定。 七、各级反应的特征。 八、底物浓度对酶反应速率的影响
(1)熟识米氏方程式的推导。 (2)米氏常数的意义。 九、酶的抑制作用。 (1)抑制作用的类型。 (2)抑制作用的鉴别。
▪ 例如:蛋白酶催化蛋白质的水解;淀粉酶催化淀粉 的水解;核酸酶催化核酸的水解。
酶的底物专一性即特异性(substrate specificity)指 酶对它所作用的底物有严格的选择性。一种酶只 能作用于某一种或某一类结构性质相似的物质。 类型:
结构专一性和立体化学专一性。
a. 结构专一性 (1)绝对专一性(Absolute specificity)
态学说。
▪ 1926年,Sumner从刀豆种子中分离、纯化得到了脲酶结晶,首 次证明酶是具有催化活性的蛋白质。
• 1930年 Northrop 分离得到胃蛋白酶、胰蛋白酶和胰凝乳蛋白 酶结晶并证实其均为蛋白质,酶的蛋白质本质确立。
1969年,Merrifield等人工合成了具有酶活性的胰RNase。 1982年,Cech和Altman对四膜虫的研究中发现RNA具有催化作用,
▪ 族(group)专一性——又叫—基团专一性(对键两端的 基团要求的程度不同,只对其中一个基团要求严格)。 如-D-葡萄糖苷酶,不但要求 -糖苷键,还要求 -糖 苷键的一断必须是葡萄糖残基,但对于糖苷键的另一 端R基团则没有严格要求。
键(Bond)专一性——有些酶只要求作用于底物一定的 键,而对键两端的基团无严格的要求。如酯酶催化酯 的水解,对于酯两端的基团没有严格的要求。
十、温度、pH、激活剂对酶反应的影响。 十一、酶的活性部位。 1、酶活性部位的定义、特点。 2、酶活性部位的研究方法。 十二、酶催化反应的独特性质。 十三、影响酶催化效率的有关因素。 十四、别构酶的性质、酶原的激活以及同工酶的理解。 十五、掌握酶的定义及分类。掌握核酶、抗体酶、单体酶、寡聚酶 以及多酶复合体的概念。 十六、维生素的概念与分类。 十七、掌握B族维生素与辅酶的关系。
4.酶活力可调节和控制
▪ (1)酶浓度的调节 ▪ 诱导或抑制酶的合成 ▪ 调节酶的降解 ▪ (2)激素调节酶的活性 ▪ (3)反馈抑制调节酶的活性 ▪ (4)抑制剂和激活剂的调节 ▪ (5)其他调节方式。 ▪ 共价修饰调节、别构调节、酶原激活、同功酶等。
二、
三、
单体酶-monomeric enzyme:一般由一条肽链组成,如溶菌酶、胰 蛋白酶、木瓜蛋白酶等。但有的单体酶有多条肽链组成,如胰凝乳 蛋白酶由3条肽链,链间由二硫键相连构成一个共价整体。 寡聚酶-oligomeric enzyme:由2个或2个以上亚基组成,亚基间可 以相同也可不同。亚基间以次级键缔合。如3-磷酸甘油醛脱氢酶、 乳酸脱氢酶、丙酮酸激酶等。