八年级数学上册 滚动小专题(二)等腰三角形中的分类讨论思想习题课件 (新版)湘教版

合集下载

【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版) 等腰三角形中的分类讨论(解析版)

【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版) 等腰三角形中的分类讨论(解析版)

等腰三角形中的分类讨论1.已知等腰三角形的两边长分别为a b且a b b﹣4|=0 则此等腰三角形的周长为()A.7B.10C.11D.10或11【答案】D【解析】【分析】先根据非负数的性质列式求出a、b的值再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得a-3=0 b-4=0解得a=3 b=4①4是腰长时三角形的三边分别为4、4、3∵4+4>3∴能组成三角形4+4+3=11②4是底边时三角形的三边分别为3、3、4能组成三角形周长=3+3+4=10所以三角形的周长为11或10.故选:D.【点睛】本题考查了等腰三角形的性质绝对值非负数偶次方非负数的性质根据几个非负数的和等于0 则每一个算式都等于0求出a、b的值是解题的关键难点在于要分情况讨论并且利用三角形的三边关系进行判断.2.已知a b是等腰三角形的两边长且a b()2+-=则此等腰三角23130a b形的周长为().A.8B.6或8C.7D.7或8【答案】D【解析】【分析】先根据非负数的性质列式求出a、b的值再分a的值是腰长与底边两种情况讨论求解.()223130a b+-=∴23+5023130a ba b-⎧⎨+-⎩==解得23ab⎧⎨⎩==①2是腰长时三角形的三边分别为2、2、3 能组成三角形周长=2+2+3=7;②2是底边时三角形的三边分别为2、3、3 能组成三角形周长=2+3+3=8所以该等腰三角形的周长为7或8.故选:D.【点睛】本题考查了等腰三角形的性质绝对值与算术平方根的非负性根据几个非负数的和等于0 则每一个算式都等于0求出a、b的值是解题的关键难点在于要分情况讨论并且利用三角形的三边关系进行判断.3.等腰三角形的一个角是70︒则它顶角的度数是()A.70︒B.70︒或40︒C.70︒或55︒D.40︒【答案】B【解析】【分析】因为题中没有指明该角是顶角还是底角所以要分两种情况进行分析.【详解】解:①若70°是底角则顶角为:180°-70°×2=40°;②若70°为顶角则顶角的度数是70°;综上所述顶角的度数为40°或70°.故选:B.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数做题时要注意分情况进行讨论这是十分重要的也是解答问题的关键.4.等腰三角形的一个内角是70°,则它顶角的度数是()A.70︒B.70︒或40︒C.70︒或50︒D.40︒【答案】B【分析】首先要进行分析题意“等腰三角形的一个内角”没明确是顶角还是底角所以要分两种情况进行讨论.【详解】解:本题可分两种情况:︒-⨯︒=︒;①当70︒角为底角时顶角为18027040②70︒角为等腰三角形的顶角;因此这个等腰三角形的顶角为40︒或70︒.故选:B.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数做题时要注意分情况进行讨论这是十分重要的也是解答问题的关键.5.等腰三角形的一个角比另一个角的2倍少20度则等腰三角形顶角的度数是()A.140B.20或80C.44或80D.140或44或80【答案】D【解析】【分析】设另一个角是x 表示出一个角是2x-20° 然后分①x是顶角2x-20°是底角②x是底角2x-20°是顶角③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x 表示出一个角是2x-20°①x是顶角2x-20°是底角时x+2(2x-20°)=180°解得x=44°∴顶角是44°;②x是底角2x-20°是顶角时2x+(2x-20°)=180°解得x=50°∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时x=2x-20°解得x=20°∴顶角是180°-20°×2=140°;综上所述这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【点睛】本题考查了等腰三角形两底角相等的性质三角形的内角和定理难点在于分情况讨论特别是这两个角都是底角的情况容易漏掉而导致出错.6.若等腰三角形的一个角是80° 则它的底角是()A.50°B.80°C.40°或80°D.50°或80°【答案】D【解析】【分析】分情况讨论:当这个角为底角或顶角两种情况讨论求解即可;【详解】当80°为底角时则底角为80°当80°为顶角时则底角为:18080=502︒-︒︒故选:D.【点睛】本题考查了等腰三角形的性质本题有两种情况注意不要漏掉;7.若等腰三角形的一个角是80° 则此等腰三角形的顶角为()A.80°B.20°C.80°或20°D.40°【答案】C【解析】【分析】可分两种情况:当80︒角为顶角时;当80︒角为底角时结合等腰三角形的性质利用三角形的内角和定理分别求解即可.【详解】解:当80︒角为顶角时则等腰三角形的顶角为80︒;当80︒角为底角时等腰三角形的顶角为180808020︒-︒-︒=︒即此等腰三角形的顶角为80︒或20︒.故选:C.【点睛】本题主要考查三角形的内角和定理等腰三角形的性质分类讨论是解题的关键.8.在ABC中AB AC=AB的垂直平分线与AC所在直线相交所得的锐角为50︒则B的度数为()A.20︒B.70︒C.70︒或20︒D.无法确定【答案】C【解析】【分析】此题根据△ABC中∠A为锐角与钝角分为两种情况画出相应图形求出∠BAC的度数进而根据三角形内角和定理求出即可.【详解】解:如图1 当∠A为锐角时∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°∴∠A=40°又∵AB AC=∴∠B=1802A︒-∠=180402︒-︒=70°;如图2 当∠A为钝角时∵AB的垂直平分线与AC所在的直线相交所得到锐角为50° ∴∠NAB=40°∴∠BAC=140°又∵AB AC =∴∠B =∠C =1801402︒-︒=20°. 故选:C .【点睛】本题考查了等腰三角形性质 三角形内角和定理 线段垂直平分线的应用 关键是运用分类讨论思想画出图形 求出∠BAC 的度数.9.若等腰三角形一腰上的高和另一腰的夹角为50° 则该三角形底角的度数为( ) A .20°B .20°或70°C .70°D .无法确定 【答案】B【解析】【分析】分两种情况讨论:①若90A ∠<︒;②若90A ∠>︒;先求出顶角BAC ∠ 即可求出底角的度数.【详解】解:分两种情况讨论:①若90A ∠<︒ 如图1所示:BD AC ⊥90A ABD ∴∠+∠=︒50ABD ∠=︒905040A ∴∠=︒-︒=︒AB AC =1(18040)702ABC C ∴∠=∠=︒-︒=︒; ②若90A ∠>︒ 如图2所示:同①可得:905040DAB ∠=︒-︒=︒18040140BAC ∴∠=︒-︒=︒AB AC =1(180140)202ABC C ∴∠=∠=︒-︒=︒; 综上所述:等腰三角形底角的度数为70︒或20︒故选:B .【点睛】本题考查了等腰三角形的性质以及余角和邻补角的定义 解题的关键是注意分类讨论方法的运用 避免漏解.10.等腰三角形的一个内角是50度 它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40【答案】C【解析】【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时 底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时 此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质 等腰三角形中两个底角相等.同时考查了分类讨论的思想. 11.等腰三角形一腰上的高与另一腰的夹角为60° 则其顶角度数为( ).A .60°或120°B .30°或150°C .30°D .60° 【答案】B【解析】根据等腰三角形、直角三角形两锐角互余的性质分析 即可得到答案.【详解】分两种情况讨论;如下图 过点B 作BD AC ⊥交AC 于点D∴90ADB ∠=︒根据题意得:60ABD ∠=︒∴9030A ABD ∠=︒-∠=︒如下图 过点B 作BD AC ⊥交CA 延长线于点D∴90ADB ∠=︒根据题意得:60ABD ∠=︒∴9030DAB ABD ∠=︒-∠=︒∴180150BAC DAB ∠=︒-∠=︒故选:B .【点睛】本题考查了等腰三角形、直角三角形的知识;解题的关键是熟练掌握等腰三角形、直角三角形两锐角互余的性质 从而完成求解.12.在△ABC 中 AB AC 的垂直平分线相交于点O 如果∠BOC=100° 则∠A 等于( ) A .50°或120°B .60°或130°C .60°或120°D .50°或130°【答案】D【分析】画出符合条件的两种情况根据线段垂直平分线性质得出AO=BO、AO=OC推出∠BAO=∠ABO∠CAO=∠ACO根据三角形内角和定理和四边形内角和定理求出即可.【详解】解:分为两种情况:如图1 当∠BAC为锐角时连接AO∵在ABC中AB AC的垂直平分线相交于点O∴AO=BO CO=AO∴∠BAO=∠ABO∠CAO=∠ACO∵∠BOC=100°∴∠OBC+∠OCB=180°-100°=80°∵∠BOC=100° ∠BAC=∠BAO+∠CAO∠BAO+∠CAO+∠ACO+∠OCB+∠OBC+∠ABO =180°∴2∠BAC=180°-80°=100°∴∠BAC=50°;如图2 当∠BAC为钝角时同理2∠BAC=360°-∠BOC=360°-100°=260°∴∠BAC=130°;即∠BAC=50°或130°故选:D.【点睛】本题考查了线段垂直平分线性质等腰三角形性质多边形的内角和定理的应用注意:线段垂直平分线上的点到线段两个端点的距离相等.13.如果等腰三角形一腰上的高与另一腰的夹角45° 那么这个等腰三角形的底角为()A.67°50′B.22°C.67.5°D.22.5°或67.5°【解析】【分析】先知三角形有两种情况(1)(2)求出每种情况的顶角的度数再利用等边对等角的性质(两底角相等)和三角形的内角和定理即可求出底角的度数.【详解】有两种情况;(1)如图当△ABC是锐角三角形时BD⊥AC于D则∠ADB=90°已知∠ABD=45°∴∠A=90°-45°=45°∵AB=AC×(180°-45°)=67.5°;∴∠ABC=∠C=12(2)如图当△EFG是钝角三角形时FH⊥EG于H则∠FHE=90°已知∠HFE=45°∴∠HEF=90°-45°=45°∴∠FEG=180°-45°=135°∵EF=EG×(180°-135°)=22.5°∴∠EFG=∠G=12综合(1)(2)得:等腰三角形的底角是67.5°或22.5°故选D.本题考查了等腰三角形的性质 三角形的高 三角形内角和定理等 解题的关键是能否利用三角形的内角和定理和等腰三角形的性质 知三角形的一个角能否求其它两角.14.在等腰△ABC 中 AB =AC 一腰上的中线BD 将这个三角形的周长分为15和12两部分 则这个等腰三角形的底边长为( )A .7B .7或11C .11D .7或10【答案】B【解析】【分析】题中给出了周长关系 要求底边长 首先应先想到等腰三角形的两腰相等 寻找问题中的等量关系 列方程求解 然后结合三角形三边关系验证答案.【详解】解:设这个等腰三角形的腰长为a 底边长为b .∵D 为AC 的中点∴AD =DC =12AC =12a . 根据题意得31521122a a b ⎧=⎪⎪⎨⎪+=⎪⎩或31221152a a b ⎧=⎪⎪⎨⎪+=⎪⎩ 解得107a b =⎧⎨=⎩或811a b =⎧⎨=⎩ 又∵三边长为10 10 7和8 8 11均可以构成三角形.∴这个等腰三角形的底边长为7或11.【点睛】本题考查等腰三角形的性质及相关计算.学生在解决本题时 有的同学会审题错误 以为15 12中包含着中线BD 的长 从而无法解决问题 有的同学会忽略掉等腰三角形的分情况讨论而漏掉其中一种情况.注意:求出的结果要看看是否符合三角形的三边关系定理.15.等腰三角形ABC 中 ,AB AC AB =边上的垂直平分线与AC 边所在的直线相交所得的锐角为40︒ 则A ∠的度数为( )A .140B .50C .40或150 D .50或130【答案】D【解析】当△ABC为锐角三角形时在Rt△ADE中可求得∠A,再由三角形内角和定理可求得∠A;当△ABC为钝角三角形时求得△BAC的外角利用外角的性质求得∠A.【详解】解:当△ABC为锐角三角形时如图,设AB的垂直平分线交线段AC于点D,交AB于点E,∵∠ADE=40°, DE⊥AB,∴∠A=90°-40°=50°当△ABC为钝角三角形时如图设AB的垂直平分线交AB于点E,交AC于点D,∵∠ADE=40° DE⊥AB,∴∠DAB=50°,∴∠BAC=180°-∠DAB=130°故选:D【点睛】本题考查等腰三角形的性质及三角形内角和定理分两种情况分别求得等腰三角形的顶角是解题的关键.16.在平面直角坐标系中A(2 3)O为原点若点B为坐标轴上一点且△AOB为等腰三角形则这样的B点有()A.6个B.7个C.8个D.9个【答案】C【解析】【分析】分别以O、A为圆心以OA长为半径作圆与坐标轴交点即为所求点B再作线段OA的垂直平分线与坐标轴的交点也是所求的点B作出图形利用数形结合求解即可.【详解】解:如图满足条件的点B有8个故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定对于底和腰不等的等腰三角形若条件中没有明确哪边是底哪边是腰时应在符合三角形三边关系的前提下分类讨论.17.已知等腰ABC中AD BC⊥于点D且12AD BC=则ABC底角的度数为()A.30°或45°B.30°或45°或75°C.15°或45°或75°D.45°或75°【答案】C【解析】【分析】分三种情况讨论①当AB=AC时根据已知条件得出AD=BD=CD从而得出△ABC底角的度数;②当AB=BC∠B为锐角时先求出∠ABD的度数再根据AB=BC求出底角的度数;③当AB=BC∠CBA为钝角时根据AD12=BC AB=BC得出∠DBA=30° 从而得出底角的度数.【详解】①如图1 当AB=AC时.∵AD⊥BC∴BD=CD.∵AD12=BC∴AD=BD=CD ∴底角为45°;②如图2 当AB=BC∠B为锐角时.∵AD12=BC∴AD12=AB∴∠ABD=30°∴∠BAC=∠BCA=75°∴底角为75°.③如图3 当AB=BC∠CBA为钝角时.∵AD12=BC AB=BC∴AD12=AB∴∠DBA=30°∴∠BAC=∠BCA=15°∴△ABC底角的度数为45°或75°或15°.故选:C.【点睛】本题考查了含30度角的直角三角形和等腰三角形的性质关键是根据题意画出图形注意不要漏解.18.在△ABC中AB=AC若过△ABC的一个顶点的直线可将△ABC分成两个等腰三角形则∠BAC的度数为()A.90°或108°或36°或1807︒B.90°或108°或36°C.90°或54°或36°或5407︒D.90°或54°或36°【答案】A【解析】【分析】分别以点A、点B、点C为顶点做直线将△ABC分成两个等腰三角形由于AB=AC故以点B和以点C 为顶点作的等腰三角形结果是一样的 所以讨论点A 、点B 为顶点的情况 根据等腰三角形的性质找出角的关系 由三角形外角以及三角形内角和定理即可求解.【详解】如图1 当过点A 的直线交BC 于点D 将△ABC 分成两个等腰三角形使AD BD CD == 设B x ∠=AB AC =C B x ∴∠=∠=AD BD CD ==BAD B x ∴∠=∠= CAD C x ∠=∠=2BAC x ∴∠=在ABC 中 180B BAC C ∠+∠+∠=︒2180x x x ∴++=︒解得:45x =︒90BAC ∴∠=︒;如图2 当过点A 的直线交BC 于点D 将△ABC 分成两个等腰三角形使AD BD = AC CD = 设B x ∠=AB AC =C B x ∴∠=∠=AD BD =BAD B x ∴∠=∠=2ADB B BAD x ∴∠=∠+∠=AC CD =2DAC ADB x ∴∠=∠=23BAC x x x ∴∠=+=在ABC 中 180B BAC C ∠+∠+∠=︒3180x x x ∴++=︒解得:36x =︒108BAC ∴∠=︒;如图3 当过点B 的直线交AC 于点D 将△ABC 分成两个等腰三角形使AD BD BC ==设BAC x ∠=AD BD =ABD BAC x ∴∠=∠=2BDC ABD BAD x ∴∠=∠+∠=BD BC =2C BDC x ∴∠=∠=AB AC =2ABC C x ∴∠=∠=在ABC 中 180ABC BAC C ∠+∠+∠=︒22180x x x ∴++=︒解得:36x =︒36BAC ∴∠=︒;如图4 当过点B 的直线交AC 于点D 将△ABC 分成两个等腰三角形 使AD BD = BC CD = 设BAC x ∠=AD BD =ABD BAC x ∴∠=∠=2BDC ABD BAD x ∴∠=∠+∠=BC CD =2CBD BDC x ∴∠=∠=23ABC x x x ∴∠=+=AB AC =3C ABC x ∴∠=∠=在ABC 中 180ABC BAC C ∠+∠+∠=︒33180x x x ∴++=︒ 解得:180()7x =︒ 180()7BAC ∴∠=︒ 综上 BAC ∠可为90°或108°或36°或1807︒. 故选:A .【点睛】本题考查等腰三角形的判定、三角形内角和定理 画出符合条件的图形 根据等腰三角形的判定以及三角形内角和定理找出角的关系是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档