高一数学 第二三章试题检测 新人教A版秘修1
高中数学人教A版必修三课时习题:第一、二章滚动测试含答案
第一、二章转动测试班级 ____ 姓名____ 考号 ____ 分数 ____ 本试卷满分 150 分,考试时间 120 分钟.一、选择题:本大题共 12 题,每题 5 分,共 60 分.在以下各题的四个选项中,只有一个选项是切合题目要求的..设有一个回归方程为 ^= 5-6x ,那么它表示数据x 和 y 之间1 y ()A .必定是正有关关系B .必定是负有关关系C .必定是线性有关关系D .不拥有有关关系的数据 x 和 y 也可能获取这个回归直线方程答案: D分析:给出随意一组 x 和 y 的对应数据都能够依据最小二乘法获取一个回归直线方程, 假如这组数据不拥有有关关系, 那么这个回归方程就是毫无心义的.2.以下说法正确的选项是 ( ) A .数据 5,4,4,3,5,2的众数是 4B .一组数据的标准差是这组数据的方差的平方C .数据 2,3,4,5 的标准差是数据 4,6,8,10 的标准差的一半D .频次散布直方图中各小长方形的面积等于相应各组的频数 答案: C3.容量为 100 的样本数据,按从小到大的次序分为 8 组,以下表:组号 1 2 3 4 5 6 7 8频数 10 13 x 14 15 13 12 9第三组的频数和频次分别是 ( ) A .14 和 0.14 B .0.14 和 141 1 1C.14和 0.14D.3和14答案: A114100=0.14.4.在 120 个部件中,一级品 24 个,二级品 36 个,三级品 60 个,用分层抽样的方法从中抽取容量为 20 的样本,则每个个体被抽取的可能性占整体的 ()1 1A.24B.361 1C.60D.6答案: D5.对某中学的高中学生做专项检查.已知该校高一年级有320 人,高二年级有 280 人,高三年级有 360 人,若采纳分层抽样的方法,抽取一个容量为 120 的样本,则高一、高二、高三年级抽取的人数依次为()A.40、35、45 B.35、40、45C.45、25、50 D.25、45、50答案: A120分析: 320+280+ 360=960,高一、高二、高三年级各抽取960120120×320=40(人),960×280=35(人),960×360=45(人).6.三位七进制的数表示的最大的十进制的数是()A.322 B.332C.342 D.352答案: C分析:三位七进制数中最大的为666(7)=6×49+6×7+6=342.7.下面程序履行后输出的结果是()A .- 1B .2C .1D .0 答案: C8.在抽查某产品的尺寸的过程中,将其尺寸分红若干组,[a ,b)是此中一组,抽查出的个体落在该组的频次为 m ,该组的直方图的高为 h ,则 |a -b|=()A .h ·m B. hmmC. h D .与 m ,h 没关答案: C分析: 频次散布直方图中,每一小矩形概率为该地区内的频次,|a -b|为矩形宽.9.以下图的程序框图的输出结果为()A .2B .4C .8D .16 答案: C分析: 由程序语句得 s 1=2,s 2=2×2= 4,s 3=2s 2=8,当 k =4时,因为 k >3 停止循环.输出 s 3=8.10.某工厂对一批产品进行了抽样检测. 如图依据抽样检测后的产品净重 (单位:克 )数据绘制的频次散布直方图,此中产品净重的范围是 [96,106],样本数据分组为 [96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于 100 克的个数是 36,则样本中净重要于或等于 98 克而且小于 104 克的产品的个数是 ()A.90 B.75C.60 D.45答案: A11.履行下面的程序框图,假如输入的 n 是 4,则输出的 p 是() A.8 B.5C.3 D.2答案: C分析:运转程序框图可知, s,t,k,p 的值挨次以下:s0112t1123k1234p1123当 k=4 时,停止循环,输出p=3.12.为认识儿子身高与其父亲自高的关系,随机抽取5对父子的身高数据以下:父亲自高 x(cm)174176176176178儿子身高 y(cm)175175176177177则 y 对 x 的线性回归方程为 ()^^A.y=x-1B.y=x+1高中数学人教A版必修三课时习题:第一、二章滚动测试含答案^=88+1^=176C.y2xD.y答案: C^^^,分析:设 y 对 x 的线性回归方程为 y=bx+a因为^b-2× -1 +0× -1 +0×0+0×1+2×1=-2 2+221=2,^1×=,所以对的线性回归方程为^1a=176-2176 88y x y=2x+88.二、填空题:本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上.13.324,243,135三个数的最大条约数是________.答案: 27分析: 324=243×1+81,243=81×3+0,则 324 与 243 的最大条约数为 81.又 135=81×1+54,81=54×1+27,54=27×2,则 135 与 81 的最大条约数为27,故 324,243,135的最大条约数为 27.14.从 N 个号码中抽取 n 个号码构成样本,若采纳系统抽样方法抽取,则抽取的样本间距应为 ________.N答案:n15.若履行以下图的框图,输入 x1=1,x2=2,x3=4,x4=8,则输出的数等于 ________.15答案:41+2+4+815分析:出的四个数的均匀数,即出的是4=4 .16.某校甲、乙两个班各有 5 名号 1,2,3,4,5 的学生行投,每人投 10 次,投中的次数以下表:学生 1号 2号 3号 4号 5号甲班67787乙班67679以上两数据的方差中小的一个s2=________.2答案:51分析:甲班的均匀数7,方差 s2=5[(6-7)2+02+02+(8- 7)2 2+02]=;57,方差 s2=2 6-7 2+2 7-7 2+ 9-7 26乙班的均匀数5=5.三、解答:本大共 6 小,共 70 分.解答写出文字明、明程或演算步.17.(10 分)以下茎叶了甲、乙两各四名同学的植棵数,乙中有一个数据模糊,没法确,在中以 X 表示.假如 X=8,求乙同学植棵数的均匀数和方差;1(注:方差 s2=n[(x 1- x )2+(x 2- x )2+⋯+ (x n- x )2],此中 x x1,x2,⋯, x n的均匀数 ).解:当 X=8 时,由茎叶图可知,乙组同学的植树棵数是: 8,8,9,10,所以均匀数为8+8+9+1035x =4=4;方差为:21[(8-352+-352+-352-35211s=)(8)) +)]= .444(94(10416 18.(12 分)利用秦九韶算法求多项式f(x) =5x5+4x4+3x3+2x2+x+1 当 x=- 2 时的值,写出详尽步骤.解: f(x) =((((5x +4)x+3)x+2)x+1)x+1v0=5,v1=v0×(-2)+4=- 6,v2=v1×(-2)+3=15,v3=v2×(-2)+2=- 28,v4=v3×(-2)+1=57,v5=v4×(-2)+1=- 113,故 f( -2)=- 113.19.(12 分)对甲、乙两名自行车赛手在同样条件下进行了 6 次测试,测得他们的最大速度 (单位: m/s)的数据以下表 .甲27 38 30 37 3531乙33 28 38 34 2836(1)写出茎叶图.由茎叶图你能获取哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度数据的均匀数、中位数、标准差,并判断选谁参加竞赛更适合.解: (1)茎叶图:由茎叶图能够看出,甲、乙的得分状况都是散布均匀的,不过乙更好一些.乙的中位数是33.5,甲的中位数是33.所以乙发挥比较稳定,整体得分状况比甲好.--乙=;甲=,乙=;甲的中位数是,(2) x 甲=,x3333 s 3.96 s 3.5633乙的中位数是 35.综合比较,选乙参加竞赛较为适合.20 . (12 分 ) 设计一个算法,输入 x 的值,输出函数 y =x2,x≥1 ,2x-1,-2<x<1 ,)的值.要求画出程序框图,写出程序.-5, x≤- 2解:程序框图:程序:21.(12 分)某班同学进行数学测试,将所得成绩 (得分取整数 )进行整理后分红五组,并绘制成图 (如图 ),请联合图中供给的信息,回答以下问题:(1)该班共有多少名学生?(2)80.5~90.5 这一分数段的频数、频次分别是多少?(3)此次成绩的中位数落在哪个分数段内?(4)从左到右各小组的频次比是多少?解: (1)共有 4+6+10+12+18=50(名).12(2)80.5~90.5 这一分数段的学生频数为12,频次为50=0.24.(3)中位数落在 (70.5,80.5)内.(4)从左到右各小组的频次比为2∶5∶9∶6∶3.22.(12 分)某地近来十年粮食需求量逐年上涨,下表是部分统计数据:年份20022004200620082010需求量 /万236246257276286吨^ =^(1)利用所给数据求年需求量与年份之间的回归直线方程y bx+^;a(2)利用 (1)中所求出的直线方程展望该地2012 年的粮食需求量.解: (1)由所给数据看出,年需求量与年份之间是近似直线上涨,下面来求回归直线方程,先将数据办理以下:年份-4-2024—2006需求量-21-1101929—257对办理的数据,简单算得x =0, y =3.2,^=b-4× -21 +-2 × -11 +2×19+4×29-5×0×3.2-42+-2 2+22+ 42-5×02260=40=6.5,高中数学人教A版必修三课时习题:第一、二章滚动测试含答案^^ ^=由上述计算结果,知所求回归直线方程为^-257=y-ba 3.2.x y=6.5(x-2006)+3.2,即^=-+y 6.5(x 2006)260.2.(2) 利用所求得的直线方程,可展望2012 年的粮食需求量为6.5×(2012-2006)+260.2=6.5×6+260.2=299.2(万吨 ).10。
人教A版高中数学必修二第三章直线与方程 测试题(含答案)
高中数学 直线方程测试题一选择题(共55分,每题5分)1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A B C D4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( )A .32-B .32C .23-D .23 5.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是( )112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K 3 B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 27、直线2x+3y-5=0关于直线y=x 对称的直线方程为( )A 、3x+2y-5=0B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=08、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0L 1 L 2 x o L 39、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=5-;C.a=2-,b=5;D.a=2-,b=5-.10、直线2x-y=7与直线3x+2y-7=0的交点是( )A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;13两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 。
高中数学章末过关检测二一元二次函数方程和不等式新人教A版必修第一册
章末过关检测(二) 一元二次函数、方程和不等式一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合A ={x |x 2+2x >0},B ={x |x 2+2x -3<0},则A ∩B =( ) A .{x |-3<x <1} B .{x |-3<x <-2} C .R D .{x |-3<x <-2或0<x <1} 2.若x <y <0,z ∈R ,则( )A .x 3<y 3B .1x <1yC .xz 2<yz 2D .x 2<y 23.已知P =a 2+4a2(a ≠0),Q =b 2-4b +7(1<b ≤3).则P 、Q 的大小关系为( )A .P >QB .P <QC .P ≥QD .P ≤Q 4.若a >1,则a +1a -1有( ) A .最小值为3 B .最大值为3 C .最小值为-1 D .最大值为-15.设一元二次不等式ax 2+bx +1>0的解集为{x |-1<x <2},则ab 的值为( ) A .-1 B .-14 C .14 D .-126.[2022·山东菏泽高一期中]函数f (x )=x 2-4x +5x -2(x ≥52)有( )A .最大值52B .最小值52C .最大值2D .最小值27.用一段长为16 m 的篱笆围成一个一边靠墙的矩形菜地(墙的长大于16 m),则菜地的最大面积为( )A .64 m 2B .48 m 2C .32 m 2D .16 m 28.已知a >0,b >0,a +2b =ab ,若不等式2a +b ≥2m 2-9恒成立,则m 的最大值为( ) A .1 B .2 C .3 D .7二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知a ,b ,c 满足c <b <a ,且ac <0,则下列选项中一定成立的是( ) A .ab >ac B .1a -1c>0 C .cb 2<ab 2D .ac (a -c )<010.已知不等式ax 2+bx +c >0的解集是(-12,3),以下结论正确的有( )A .b <0B .c >0C .4a +2b +c <0D .a 2+b +c ≥-411.解关于x 的不等式:ax 2+(2-4a )x -8>0,则下列说法中正确的是( ) A .当a =0时,不等式的解集为{x |x >4}B .当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x >4或x <-2aC .当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2a <x <4 D .当a =-12时,不等式的解集为∅12.已知x >0,y >0,且x +y =1,则下列说法中正确的是( ) A .xy 有最大值为14B .1x +4y 有最小值为9C .x 2+2y 2有最小值为34 D .y x +1y 有最小值为3三、填空题(本题共4小题,每小题5分,共20分.) 13.不等式2-xx +4>0的解集为________.14.不等式kx 2+2kx +1>0的解集为R ,则k 的取值范围是________.15.某商品在最近30天内的价格y 1与时间t (单位:天)的关系式是y 1=t +10(0<t ≤30,t ∈N );销售量y 2与时间t 的关系式是y 2=-t +35(0<t ≤30,t ∈N ),则使这种商品日销售金额z 不小于500元的t 的取值范围为________________.16.已知定义在R 上的运算“”:x y =x (1-y ),关于x 的不等式(x -a )(x +a )>0.(1)当a =2时,不等式的解集为________________;(2)若∀x ∈{x |0≤x ≤1},不等式恒成立,则实数a 的取值范围是________. 四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)(1)若x ∈R ,试比较3x 2+6x 与4x 2-2x +16的大小; (2)已知-5<x <4,2<y <3.求x -2y 的取值范围.18.(本小题满分12分)已知关于x 的不等式(ax +1)(x -2a )<0的解集为M .(1)a =-1时,求集合M ;(2)若1∈M ,2∉M ,求实数a 的取值范围.19.(本小题满分12分)正数x ,y 满足1x +9y=1.(1)求xy 的最小值; (2)求x +2y 的最小值.20.(本小题满分12分)(1)已知a ,b ,c 是不全相等的正数,求证:a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2)>6abc . (2)已知a >0,b >0,且a +b =1,求证:4a +1b≥9.21.(本小题满分12分)某学校欲在广场旁的一块矩形空地上进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均种满宽度相同的鲜花.已知两块绿草坪的面积均为200平方米.(1)若矩形草坪的长比宽至少多10米,求草坪宽的最大值; (2)若草坪四周及中间的宽度均为2米,求整个绿化面积的最小值.22.(本小题满分12分)已知函数f (x )=(ax +1)(x -1),a ∈R . (1)若a =13,解不等式f (x )≥0;(2)解关于x 的不等式f (x )<0.章末过关检测(二) 一元二次函数、方程和不等式1.解析:A ={x |x 2+2x >0}={x |x <-2或x >0},B ={x |x 2+2x -3<0}={x |-3<x <1},∴A ∩B ={x |-3<x <-2或0<x <1}.答案:D2.解析:由x <y <0,则x 3<y 3,A 正确;1x >1y,B 错误;x 2>y 2,D 错误.当z =0时,xz 2=yz 2,C 错误.答案:A3.解析:P =a 2+4a2≥2a 2·4a2=4,当且仅当a =±2时等号成立,Q =b 2-4b +7=(b -2)2+3≤4,当b =3时等号成立,所以P ≥Q . 答案:C4.解析:∵a >1, ∴a -1>0, ∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a -1=1a -1即a =2时取等号,∴a +1a -1有最小值为3. 答案:A5.解析:由题意可知方程ax 2+bx +1=0的根为-1,2,由韦达定理得:-1+2=-b a,-1×2=1a ,解得b =12,a =-12,所以ab =-14.答案:B6.解析:方法一:∵x ≥52,∴x -2>0,则x 2-4x +5x -2=(x -2)2+1x -2=(x -2)+1(x -2)≥2,当且仅当x-2=1x -2,即x =3时,等号成立. 方法二:令x -2=t ,∵x ≥52,∴t ≥12,∴x =t +2.将其代入,原函数可化为y =(t +2)2-4(t +2)+5t =t 2+1t =t +1t≥2t ·1t=2,当且仅当t =1t,即t =1时等号成立,此时x =3.答案:D7.解析:根据题意,设篱笆的宽为x m ,则长为(16-2x )m ,所以菜地面积为S =x (16-2x )=12×2x (16-2x )≤12(2x +16-2x 2)2=32,当且仅当2x =16-2x ,即x =4时等号成立, 所以菜地的最大面积为32 m 2. 答案:C8.解析:因为a +2b =ab , 所以1b +2a=1,又a >0,b >0,所以2a +b =(2a +b )(2a +1b )=4+1+2b a +2ab≥5+24=9,当且仅当a =b =3时取等号,所以2m 2-9≤9,即-3≤m ≤3,m 的最大值为3. 答案:C9.解析:∵c <b <a 且ac <0,∴a >0,c <0且b 的符号不确定.对于A ,∵b >c ,a >0,由不等式的基本性质可得ab >ac ,故A 一定能成立; 对于B ,∵1a -1c =c -a ac ,∵ac <0,c -a <0,∴c -a ac >0,即1a -1c>0,故B 一定能成立;对于C ,取b =0,则cb 2=ab 2,若b ≠0,有cb 2<ab 2,故C 不一定成立; 对于D ,∵ac <0,a -c >0,∴ac (a -c )<0,故D 一定能成立. 答案:ABD10.解析:由不等式ax 2+bx +c >0的解集是(-12,3),知:-12,3是f (x )=ax 2+bx+c 的两个零点且a <0即函数图象开口向下,∴⎩⎪⎨⎪⎧-b a =52c a =-32,即b =-52a >0,c =-32a >0且f (2)=4a +2b +c >0,∵a 2+b +c +4=a 2-4a +4=(a -2)2≥0,所以D 正确. 答案:BD11.解析:对于A :当a =0时,不等式为2x -8>0,解得x >4,所以不等式的解集为{x |x >4},故选项A 正确;对于B 、C 、D :由ax 2+(2-4a )x -8>0可得(ax +2)(x -4)>0,对应方程(ax +2)(x -4)=0的两根分别为x 1=-2a,x 2=4,当⎩⎪⎨⎪⎧a <0-2a<4即a <-12时,原不等式解集为:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2a <x <4,当⎩⎪⎨⎪⎧a <0-2a>4即-12<a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪4<x <-2a , 当a =-12时,-2a =4,此时(ax +2)(x -4)>0的解集为∅,故选项BC 不正确,选项D 正确. 答案:AD12.解析:由x >0,y >0,且x +y =1,可知x +y ≥2xy ,即xy ≤(x +y2)2=14,当且仅当x =y =12时取等号,故A 正确;1x +4y=(1x +4y )(x +y )=5+y x +4xy≥5+24=9,当且仅当y x =4x y 即x =13,y =23时取等号,故B 正确; 由x >0,y >0,且x +y =1,可知0<x <1,故x 2+2y 2=x 2+2(1-x )2=3x 2-4x +2, 当x =23∈(0,1)时,x 2+2y 2=3x 2-4x +2取得最小值为3×49-4×23+2=23,故C 错误;y x +1y =y x +x +y y =y x +x y +1≥2+1=3,当且仅当y x =x y ,即x =y =12时取等号,故D 正确. 答案:ABD13.解析:原不等式可化为(2-x )(x +4)>0,解得-4<x <2. 答案:{x |-4<x <2}14.解析:①当k =0时,不等式可化为1>0,此时不等式的解集为R ,符合题意;②当k ≠0时,要使得不等式的解集为R ,则满足⎩⎪⎨⎪⎧k >0,Δ=(2k )2-4k ×1<0,解得0<k <1;综上可得,实数k 的取值范围是0≤k <1.答案:0≤k <115.解析:z =(t +10)(-t +35), 依题意有(t +10)·(-t +35)≥500,解得10≤t ≤15,t ∈N ,所以解集为{t |10≤t ≤15,t ∈N }. 答案:{t |10≤t ≤15,t ∈N }16.解析:(1)当a =2时,不等式(x -a )(x +a )>0为(x -2)(1-x -2)>0,即(x -2)(x +1)<0,解得-1<x <2,解集为{x |-1<x <2}.(2)不等式(x -a )(x +a )>0为(x -a )(1-x -a )>0,即-x 2+x +a 2-a >0,不等式对∀x ∈{x |0≤x ≤1}恒成立,设y =-x 2+x +a 2-a ,则只要∀x ∈{0≤x ≤1},y min >0,y =-(x -12)2+14+a 2-a ,当x =0或x =1时,y min =a 2-a ,所以y min =a 2-a >0,解得a <0或a >1.答案:{x |-1<x <2} a <0或a >117.解析:(1)由题设,4x 2-2x +16-(3x 2+6x )=x 2-8x +16=(x -4)2≥0, ∴4x 2-2x +16≥3x 2+6x .(2)由题设,-6<-2y <-4,而-5<x <4, ∴-11<x -2y <0.18.解析:(1)由题设,(x -1)(x +2)>0,解得x <-2或x >1, ∴M ={x |x <-2或x >1}.(2)由题设知:⎩⎪⎨⎪⎧(a +1)(1-2a )<0(2a +1)(2-2a )≥0,解得12<a ≤1.19.解析:(1)由1=1x +9y ≥21x ·9y得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )(1x +9y )=19+2y x +9xy≥19+22y x ·9xy=19+62,当且仅当2y x =9x y,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.20.证明:(1)∵a ,b ,c 是正数,∴b 2+c 2≥2bc ,a (b 2+c 2)≥2abc ,当b =c 时等号成立; 同理可得,b (c 2+a 2)≥2abc ,当a =c 时等号成立;c (a 2+b 2)≥2abc ,当a =b 时等号成立;又a ,b ,c 是不全相等的正数,∴a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2)>6abc . (2)∵a >0,b >0,且a +b =1, ∴4a +1b =(4a +1b )(a +b )=4+4b a +ab+1≥24b a ·ab+5=9,当且仅当4b a =a b 即⎩⎪⎨⎪⎧a =23b =13时取“=”,故4a +1b ≥9.21.解析:(1)设草坪的宽为x 米,长为y 米,由面积均为200平方米,得y =200x,因为矩形草坪的长比宽至少多10米, 所以200x≥x +10,又x >0,所以x 2+10x -200≤0,解得0<x ≤10, 所以宽的最大值为10米;(2)记整个绿化面积为S 平方米,由题意得,S =(2x +6)(y +4)=(2x +6)(200x +4)=424+8(x +150x)≥424+806,当且仅当x =56米时,等号成立,所以整个绿化面积的最小值为(424+806)平方米.22.解析:(1)a =13,f (x )≥0⇒(13x +1)(x -1)≥0⇒(x +3)(x -1)≥0;解得不等式的解集为{x |x ≤-3或x ≥1}; (2)由f (x )<0,得(ax +1)(x -1)<0, ①当a =0时,得x <1,②当a =-1时,(-x +1)(x -1)<0,(x -1)2>0,得x ≠1 ③当-1<a <0时,-1a >1,则x <1或x >-1a,④当a <-1时,-1a <1,则x <-1a或x >1⑤当a >0时,-1a<x <1,综上,当a =0时,解集为{x |x <1},当a =-1时,解集为{x |x ≠1},当-1<a <0时,解集为⎩⎨⎧⎭⎬⎫x |x <1或x >-1a ,当a <-1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1a或x >1,当a >0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1a <x <1.。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(56)
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1. 向量 a ⃗=(1,2),b ⃗⃗=(2,λ),且 a ⃗⊥b ⃗⃗,则实数 λ= ( ) A . 3 B . −3 C . 7 D . −12. 袋中共有完全相同的 4 只小球,编号为 1,2,3,4,现从中任取 2 只小球,则取出的 2 只球编号之和是偶数的概率为 ( ) A . 25B . 35C . 13D . 233. 下列命题正确的是 ( ) A .三点确定一个平面B .一条直线和一个点确定一个平面C .圆心和圆上两点可确定一个平面D .梯形可确定一个平面4. 复数 1+i 2= ( ) A . 0B . 2C . 2iD . 1−i5. 已知 ∣a ⃗∣=1,∣b ⃗⃗∣=2,a ⃗ 与 b ⃗⃗ 的夹角为 π3,则 a ⃗⋅b ⃗⃗ 等于 ( ) A . 1B . 2C . 3D . 46. 已知平面向量 a ⃗=(1,x ),b ⃗⃗=(y,1),若 a ⃗∥b ⃗⃗,则实数 x ,y 一定满足 ( ) A .xy −1=0B .xy +1=0C .x −y =0D .x +y =07. 在平行四边形 ABCD 中,A (1,2),B (3,5),AD ⃗⃗⃗⃗⃗⃗=(−1,2),则 AC ⃗⃗⃗⃗⃗⃗+BD ⃗⃗⃗⃗⃗⃗⃗= ( ) A . (−2,4)B . (4,6)C . (−6,−2)D . (−1,9)8. 若 AB ⃗⃗⃗⃗⃗⃗=(1,1),AD ⃗⃗⃗⃗⃗⃗=(0,1),BC ⃗⃗⃗⃗⃗⃗+CD ⃗⃗⃗⃗⃗⃗=(a,b ),则 a +b = ( ) A . −1B . 0C . 1D . 29. 已知直线 a 在平面 γ 外,则 ( ) A . a ∥γ B . a 与 γ 至少有一个公共点 C . a ∩γ=AD . a 与 γ 至多有一个公共点10. 下列四个长方体中,由图中的纸板折成的是 ( )A.B.C.D.二、填空题(共6题)11.思考辨析判断正误当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.( )12.复数加法与减法的运算法则设z1=a+bi,z2=c+di(a,b,c,d∈R)是任意两个复数,则(1)z1+z2=;(2)z1−z2=.13.利用“斜二测”法作多面体直观图时,需考虑个方向上的尺度.14.若向量a⃗与b⃗⃗的夹角为120∘,且∣a⃗∣=1,∣∣b⃗⃗∣∣=1,则∣∣a⃗−b⃗⃗∣∣=.15.当时,λa⃗=0⃗⃗.16.“直线a经过平面α外一点P”用集合符号表示为.三、解答题(共6题)=bsinA.17.△ABC的内角A,B,C的对边分别为a,b,c,已知asin A+C2(1) 求B;(2) 若△ABC为锐角三角形,且a=2,求△ABC面积的取值范围.18.画出如图水平放置的直角梯形的直观图.19.按图示的建系方法,画出水平放置的正五边形ABCDE的直观图.20. 根据图形用符号表示下列点、直线、平面之间的位置关系.(1) 点 P 与直线 AB ; (2) 点 C 与直线 AB ; (3) 点 M 与平面 AC ; (4) 点 A 1 与平面 AC ; (5) 直线 AB 与直线 BC ; (6) 直线 AB 与平面 AC ; (7) 平面 A 1B 与平面 AC .21. 有 4 条长为 2 的线段和 2 条长为 a 的线段,用这 6 条线段作为棱,构成一个三棱锥.问 a为何值时,可构成一个最大体积的三棱锥,最大值为多少?22. 类似于平面直角坐标系,我们可以定义平面斜坐标系:设数轴 x ,y 的交点为 O ,与 x ,y 轴正方向同向的单位向量分别是 i ⃗,j ⃗,且 i ⃗ 与 j ⃗ 的夹角为 θ,其中 θ∈(0,π2)∪(π2,π).由平面向量基本定理,对于平面内的向量 OP ⃗⃗⃗⃗⃗⃗,存在唯一有序实数对 (x,y ),使得 OP ⃗⃗⃗⃗⃗⃗=xi ⃗+yj ⃗,把 (x,y ) 叫做点 P 在斜坐标系 xOy 中的坐标,也叫做向量 OP⃗⃗⃗⃗⃗⃗ 在斜坐标系 xOy 中的坐标.在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如 θ=45∘ 时,方程x−24=y−1−5表示斜坐标系内一条过点 (2,1),且方向向量为(4,−5)的直线.),a⃗=(2,1),b⃗⃗=(m,6),且a⃗与b⃗⃗的夹角为锐角,求实数m的取值(1) 若θ=arccos(−13范围;(2) 若θ=60∘,已知点A(2,1)和直线l:3x−y+2=0.①求l一个法向量;②求点A到直线l的距离.答案一、选择题(共10题)1. 【答案】D【解析】由a⃗⊥b⃗⃗,所以有a⃗⋅b⃗⃗=1×2+2×λ=0⇒λ=−1.【知识点】平面向量数量积的坐标运算2. 【答案】C【解析】在编号为1,2,3,4的小球中任取2只小球,则有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6种取法,则取出的2只球编号之和是偶数的有{1,3},{2,4},共2种取法,即取出的2只球编号之和是偶数的概率为26=13,故选:C.【知识点】古典概型3. 【答案】D【解析】由不共线的三点确定一个平面,故A错误;由一条直线和该直线外一点确定一个平面,故B错误;当圆心和圆上两点在圆的直径上,不能说明该三点确定一个平面,故C错误;由于梯形是有一组对边平行的四边形,可得梯形确定一个平面,故D正确.故选:D.【知识点】平面向量的概念与表示4. 【答案】A【解析】因为i2=−1,所以1+i2=0.故选:A.【知识点】复数的乘除运算5. 【答案】A【解析】a⃗⋅b⃗⃗=∣a⃗∣∣b⃗⃗∣cosπ3=1×2×cosπ3=1.【知识点】平面向量的数量积与垂直6. 【答案】A【解析】因为a⃗∥b⃗⃗,所以1×1−xy=0,即xy−1=0.【知识点】平面向量数乘的坐标运算7. 【答案】A【解析】在平行四边形ABCD中,因为 A (1,2),B (3,5),所以 AB⃗⃗⃗⃗⃗⃗=(2,3), 又 AD ⃗⃗⃗⃗⃗⃗=(−1,2), 所以 AC ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+AD ⃗⃗⃗⃗⃗⃗=(1,5),BD ⃗⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗=(−3,−1), 所以 AC ⃗⃗⃗⃗⃗⃗+BD ⃗⃗⃗⃗⃗⃗⃗=(−2,4), 故选A .【知识点】平面向量和与差的坐标运算8. 【答案】A【解析】 BC ⃗⃗⃗⃗⃗⃗+CD ⃗⃗⃗⃗⃗⃗=BD ⃗⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗−AB⃗⃗⃗⃗⃗⃗=(0,1)−(1,1)=(−1,0), 故 a =−1,b =0, 所以 a +b =−1.【知识点】平面向量和与差的坐标运算9. 【答案】D【解析】直线在平面外,故直线与平面相交或直线与平面平行,直线 a 与平面 γ 平行时没有公共点,直线 a 与平面 γ 相交时有一个公共点,故选D . 【知识点】直线与平面的位置关系10. 【答案】A【解析】根据题图中纸板的形状及特殊面的阴影部分可以判断B ,C ,D 不正确,故选A . 【知识点】棱柱的结构特征二、填空题(共6题) 11. 【答案】 √【知识点】平面向量和与差的坐标运算12. 【答案】 (a +c)+(b +d)i ; (a −c)+(b −d)i【知识点】复数的加减运算13. 【答案】三【知识点】直观图14. 【答案】 √3【解析】因为向量 a ⃗ 与 b ⃗⃗ 的夹角为 120∘,∣a ⃗∣=1,∣∣b ⃗⃗∣∣=1,所以 a ⃗⋅b ⃗⃗=∣a ⃗∣∣∣b ⃗⃗∣∣cos120∘=−12,因此 ∣∣a ⃗−b ⃗⃗∣∣=√(a ⃗−b ⃗⃗)2=√∣a ⃗∣2+∣∣b ⃗⃗∣∣2−2a⃗⋅b ⃗⃗=√1+1+1=√3. 【知识点】平面向量的数量积与垂直15. 【答案】 λ=0 或 a ⃗=0⃗⃗【解析】若 λa ⃗=0⃗⃗,则 λ=0 或 a ⃗=0⃗⃗.【知识点】平面向量的数乘及其几何意义16. 【答案】 P ∈a ,P ∉α【知识点】平面的概念与基本性质三、解答题(共6题) 17. 【答案】(1) asinA+C 2=bsinA ,由正弦定理 sinAsinA+C 2=sinBsinA .因为 A ,B ,C 是 △ABC 的内角,sinA ≠0, 所以 sin A+C 2=sinB =sin (π−B )=sin (A +C ), 所以 sinA+C 2=2sinA+C 2cosA+C 2,因为 0<A +C <π, 所以 0<A+C 2<π2.所以 sinA+C 2≠0,cosA+C 2=12,A+C 2=π3,所以 A +C =2π3,B =π−(A +C )=π−2π3=π3(2) 由正弦定理得 asinA =bsinB =csinC =2sinA , 所以 c =2sinC sinA,由三角形内角和知 A +C =120∘, 所以 C =120∘−A , 所以 c =2sin (120∘−A )sinA=√3tanA+1,又 △ABC 为锐角三角形, 所以 120∘−A <90∘ 且 A <90∘, 即 30∘<A <90∘, 又 S △ABC =12acsinB =12ac ×√32=√32c =√32×(√3tanA +1),30∘<A <90∘,因为30∘<A<90∘,所以tanA>√33,得√3tanA <3,即1<√3tanA+1<4,所以S△ABC=√32×(√3tanA+1)∈(√32,2√3).【知识点】正弦定理18. 【答案】(1)在已知的直角梯形OBCD中,以OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.画出相应的xʹ轴和yʹ轴,使∠xʹOʹyʹ=45∘,如图①②所示.(2)在xʹ轴上截取OʹBʹ=OB,在yʹ轴上截取OʹDʹ=12OD,过点Dʹ作xʹ轴的平行线l,在l上沿xʹ轴正方向取点Cʹ,使得DʹCʹ=DC.连接BʹCʹ,如图②所示.(3)所得四边形OʹBʹCʹDʹ就是直角梯形OBCD的直观图,如图③所示.【知识点】直观图19. 【答案】画法:(1)在图①中作AG⊥x轴于G,作DH⊥x轴于H.(2)在图②中画相应的xʹ轴与yʹ轴,两轴相交于点Oʹ,使∠xʹOʹyʹ=45∘.(3)在图②中的xʹ轴上取OʹBʹ=OB,OʹGʹ=OG,OʹCʹ=OC,OʹHʹ=OH,yʹ轴上取OʹEʹ=1 2OE,分别过Gʹ和Hʹ作yʹ轴的平行线,并在相应的平行线上取GʹAʹ=12GA,HʹDʹ=12HD.(4)连接AʹBʹ,AʹEʹ,EʹDʹ,DʹCʹ,并擦去辅助线GʹAʹ,HʹDʹ,xʹ轴与yʹ轴,便得到水平放置的正五边形ABCDE的直观图五边形AʹBʹCʹDʹEʹ(如图③).【知识点】直观图20. 【答案】(1) 点P∈直线AB.(2) 点C∉直线AB.(3) 点M∈平面AC.(4) 点A1∉平面AC.(5) 直线AB∩直线BC=点B.(6) 直线AB⊂平面AC.(7) 平面A1B∩平面AC=直线AB.【知识点】点、线、面的位置关系、直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系21. 【答案】构成三棱锥,这6条线段作为棱有两种摆放方式.(1)2条长为a的线段放在同一个三角形中.如图所示,不妨设底面 BCD 是一个边长为 2 的正三角形.欲使体积达到最大,必有 BA ⊥底面BCD ,且 BA =2,AC =AD =a =2√2, 此时 V =13×√34×22×2=23√3.(2)2 条长为 a 的线段不在同一个三角形中,此时长为 a 的两条线段必处在三棱锥的对棱,不妨设 AD =BC =a ,BD =CD =AB =AC =2. 取 BC 中点 E ,连接 AE ,DE (见下图).则 AE ⊥BC,DE ⊥BC ⇒BC ⊥平面AED ,V =13S △AED ⋅BC , 在 △AED 中,AE =DE =√4−a 24,AD =a ,S △AED =12a √4−a 24−a 24=12a √4−a 22,所以 V =16a 2√4−a 22=16√a 2a 2(16−2a 2)⋅14,由均值不等式 a 2a 2(16−2a 2)≤(163)3,等号当且仅当 a 2=163时成立,即 a =43√3, 所以此时 V max =16√(163)3⋅14=1627√3.【知识点】棱锥的表面积与体积22. 【答案】(1) 由已知 a ⃗=2i ⃗+j ⃗,b ⃗⃗=mi ⃗+6j ⃗,且 a ⃗⋅b ⃗⃗=2m +6+(12+m )(i ⃗⋅j ⃗)=53m +2>0,得 m >−65;若 a ⃗ 和 b ⃗⃗ 同向,则存在正数 t ,使得 t (2i ⃗+j ⃗)=mi ⃗+6j ⃗, 由 i ⃗ 和 j ⃗ 不平行得,{2t =m t =6 得 m =12.故所求为 m >−65,m ≠12.(2) ①方程可变形为x−01=y−23,方向向量为 d⃗=(1,3), 设法向量为 n ⃗⃗=(a,b ),由 n ⃗⃗⋅d ⃗=0 得 a +3b +12(3a +b )=52a +72b =0, 令 a =−7,b =−5,n ⃗⃗=(−7,5);②取直线 l 上一点 B (0,2),则 BA⃗⃗⃗⃗⃗⃗=(2,−1),所求为 ∣∣BA ⃗⃗⃗⃗⃗⃗⋅n ⃗⃗∣∣∣n⃗⃗∣=∣√(⃗+5j ⃗)2=7√3926.【知识点】直线的点法向式方程(沪教版)、平面向量数量积的坐标运算。
人教a版数学高一单元测试卷第一二章滚动测试含解析-精选
第一、二章滚动测试班级____ 姓名____ 考号____ 分数____ 本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.设A (1,2),B (-2,5),则|AB →|=( ) A. 5 B.29 C .3 2 D .4 答案:C解析:AB →=(-2,5)-(1,2)=(-3,3),∴|AB →|=-2+32=3 2.2.如果函数f (x )=sin(2πx +θ)(0<θ<2π)的最小正周期是T ,且当x =1时取得最大值,那么( )A .T =1,θ=π2B .T =1,θ=πC .T =2,θ=π D.T =2,θ=π2答案:A解析:T =2π2π=1,sin(2π+θ)=1,θ=π2.3.已知sin(α-π)=23,且α∈⎝ ⎛⎭⎪⎫-π2,0,则tan α等于( ) A.255 B .-255C.52 D .-52 答案:B解析:sin(α-π)=-sin α=23,∴sin α=-23,cos α=53,∴tan α=-25=-255.4.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-1 答案:B解析:由角α的终边落在第三象限得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.5.已知平面内三点A (-1,0),B (5,6),P (3,4),且AP →=λPB →,则λ的值为( ) A .3 B .2 C.12 D.13 答案:B解析:因为AP →=λPB →,所以(4,4)=λ(2,2),所以λ=2.6.已知sin α-cos α=13,则tan α+1tan α等于( )A.89B.73C.94D.114 答案:C解析:由sin α-cos α=13可得(sin α-cos α)2=19,即1-2sin αcos α=19,sin αcos α=49,则tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=94.7.将函数y =f (x )的图象沿x 轴向右平移π3个单位长度,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y =sin x 的图象相同,则y =f (x )是( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π3B .y =sin ⎝ ⎛⎭⎪⎫2x -π3C .y =sin ⎝ ⎛⎭⎪⎫2x +2π3D .y =sin ⎝⎛⎭⎪⎫2x -2π3 答案:C解析:将y =sin x 的图象纵坐标不变,横坐标缩短为原来的一半,得到y =sin2x 的图象,再沿x轴向左平移π3个单位,得到y =sin2⎝ ⎛⎭⎪⎫x +π3=sin ⎝⎛⎭⎪⎫2x +23π的图象.8.设i 、j 是平面直角坐标系内x 轴、y 轴正方向上的单位向量,且AB →=8i +4j ,AC →=6i +8j ,则△ABC 的面积等于( )A .60B .40C .28D .20 答案:D解析:BC →=AC →-AB →=-2i +4j ,所以AB →⊥BC →.所以S △ABC =12|AB →|·|BC →|=1282+42·-2+42=20.9.若函数y =A sin(ωx +φ)(ω>0,|φ|<π2,x ∈R )的部分图象如图所示,则函数表达式为( )A .y =-4sin ⎝ ⎛⎭⎪⎫π8x +π4B .y =4sin ⎝ ⎛⎭⎪⎫π8x -π4C .y =-4sin ⎝ ⎛⎭⎪⎫π8x -π4D .y =4sin ⎝ ⎛⎭⎪⎫π8x +π4答案:A解析:先确定A =-4,由x =-2和6时y =0可得T =16,ω=π8,φ=π4.10.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈ZB.⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z C.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z D.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z 答案:C解析:本题主要考查三角函数的图象与性质.函数f (x )=2sin ⎝⎛⎭⎪⎫ωx +π6的图象与直线y =2的两个相邻交点就是函数f (x )的两个最大值点,周期为π=2πω,ω=2,于是f (x )=2sin ⎝⎛⎭⎪⎫2x +π6.由2k π-π2≤2x +π6≤2k π+π2得,k π-π3≤x ≤k π+π6,故选C. 11.设向量a 与b 的夹角为θ,定义a 与b 的“向量积”,a ×b 是一个向量,它的模等于|a ×b |=|a ||b |sin θ,若a =(1,3),b =(-3,-1),则|a ×b |=( )A. 3 B .2 C .2 3 D .4 答案:B解析:∵cos θ=a ·b |a |·|b |=-2 32×2=-32,又θ∈[0,π],∴sin θ=1-cos 2θ=12,|a ×b |=|a |·|b |sin θ=2.12.已知a =(λ,2),b =(-3,5),且a 与b 的夹角为锐角,则λ的取值范围是( )A .λ<103B .λ≤103C .λ≤103且λ≠-65D .λ<103且λ≠-65答案:D解析:由题可知a ·b =-3λ+10>0,λ<103,当a 与b 共线,且方向相同时,设a =(λ,2)=μ(-3,5)(μ>0),∴⎩⎪⎨⎪⎧λ=-3μ,2=5μ,得λ=-65,∴λ的取值范围是λ<103且λ≠-65.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设f (x )=a sin(πx +α)+b cos(πx +β)+4(a ,b ,α,β是常数),且f (2009)=5,则f (2010)=________.答案:3解析:f (2009)=αsin(π+α)+b cos(π+β)+4=-(a sin α+b cos β)+4=5 ∴a sin α+b cos β=-1.f (2010)=a sin α+b cos β+4=3.14.已知a =(2,1)b =(1,λ),若a 与b 的夹角为锐角,则λ的取值范围是________.答案:⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞ 解析:若a 与b 的夹角为锐角,则cos θ>0且cos θ≠1.cos θ=a ·b |a |·|b |=2+λ5·1+λ2∴λ>-2.又2+λ≠5·1+λ2∴λ≠12∴λ的范围是λ>-2且λ≠12.15.函数f (x )=2sin ⎝⎛⎭⎪⎫ωx +π3(x ∈R ),f (α)=-2,f (β)=0,且|α-β|的最小值等于π2,则正数ω的值为________.答案:1解析:由f (α)=-2,f (β)=0,且|α-β|的最小值等于π2可知T 4=π2,T =2π,∴ω=1.16.如图,在正方形ABCD 中,已知|AB →|=2,若N 为正方形内(含边界)任意一点,则AB →·AN →的最大值是________.答案:4解析:∵AB →·AN →=|AB →||AN →|·cos∠BAN ,|AN →|·cos∠BAN 表示AN →在AB →方向上的投影,又|AB →|=2,AB →·AN →的最大值是4.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知sin(α+π)=45,且sin α·cos α<0,求:α-+-αα-的值.解:∵sin(α+π)=45∴sin α=-45<0.∴cos 2α=1-sin 2α=1-1625=925又sin α·cos α<0∴cos α>0.∴cos α=35.原式=--α+-α-α-α=-2sin α+3sin α-cos α-4·cos α=2sin α·cos α+3sin α4cos 2α =2×⎝ ⎛⎭⎪⎫-45×35-45×34×925=-73.18.(12分)已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π6-tan α·cos x ,且f ⎝ ⎛⎭⎪⎫π3=12.(1)求tan α的值;(2)求函数g (x )=f (x )+cos x 的对称轴与对称中心.解:(1)∵f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫π3+π6-tan α·cos π3=1-12tan α=12,∴tan α=1. (2)g (x )=f (x )+cos x =sin ⎝ ⎛⎭⎪⎫x +π6-cos x +cos x =sin ⎝⎛⎭⎪⎫x +π6.∴x +π6=k π+π2,即对称轴:x =k π+π3,k ∈Z∴x +π6=k π,即对称中心:⎝ ⎛⎭⎪⎫k π-π6,0,k ∈Z . 19.(12分)设两个向量a ,b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线;(2)若 |a |=2,|b |=3,a 、b 的夹角为60°,求使向量k a +b 与a +k b 垂直的实数k .解:(1)AD →=AB →+BC →+CD →=a +b +2a +8b +3(a -b )=6(a +b )=6AB →, ∴AD →与AB →共线,即A 、B 、D 三点共线. (2)∵k a +b 与a +k b 垂直,∴(k a +b )·(a +k b )=0,k a 2+(k 2+1)a ·b +k b 2=0, k a 2+(k 2+1)|a ||b |·cos60°+k b 2=0, 3k 2+13k +3=0,解得:k =-13±1336.20.(12分)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数在区间[-2,4]上的最大值和最小值以及对应的x 的值.解:(1)由题可知A =2,T2=6-(-2)=8,∴T =16,∴ω=2πT =π8,则f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +φ. 又图象过点(2,2),代入函数表达式可得φ=2k π+π4(k ∈Z ).又|φ|<π2,∴φ=π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4.(2)∵x ∈[-2,4],∴π8x +π4∈⎣⎢⎡⎦⎥⎤0,3π4,当π8x +π4=π2,即x =2时,f (x )max =2; 当π8x +π4=0,即x =-2时,f (x )min =0. 21.(12分)已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →, 求:(1)t 为何值时,P 在第二象限?(2)四边形OABP 能否构成平行四边形?若能,求出相应的值,若不能,请说明理由.解:(1)∵OP →=OA →+tAB →=(3t +1,3t +2),∴当-23<t <-13时,P 在第二象限;(2)不能构成四边形. ∵OA →=(1,2),PB →=(3-3t,3-3t ),∴使OA →,PB →共线,则3-3t -(6-6t )=0,解得t =1,此时PB →=(0,0),∴四边形OABP 不能构成平行四边形.22.(12分)已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x +π3+1. (1)当x =43π时,求f (x )值;(2)若存在区间[a ,b ](a ,b ∈R 且a <b ),使得y =f (x )在[a ,b ]上至少含有6个零点,在满足上述条件的[a ,b ]中,求b -a 的最小值.解:(1)当x =43π时,f (x )=2sin ⎝⎛⎭⎪⎫2×4π3+π3+1=2sin(3π)+1=2sinπ+1=1.(2)f (x )=0⇒sin ⎝⎛⎭⎪⎫2x +π3=-12⇒x =k π-π4或x =k π-712π,k ∈Z , 即f (x )的零点相离间隔依次为π3和2π3,故若y =f (x )在[a ,b ]上至少含有6个零点,则b -a 的最小值为2×2π3+3×π3=7π3.。
人教A版高中数学选修2-3全册同步练习及单元检测含答案
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
人教A版数学必修二第三章第一课时同步练习3.1.1 直线的倾斜角和斜率
§3.1.1 直线的倾斜角和斜率(限时45分钟)1.直线x=1的倾斜角和斜率分别是---------------------------------------------() A.45°,1 B.135°,-1C.90°,不存在D.180°,不存在2.在下列四个命题中,正确的命题共有----------------------------------------()①坐标平面内的任何一条直线均有倾斜角与斜率;②直线的倾斜角的取值范围为[0°,180°];③若一直线的斜率为tan α,则此直线的倾斜角为α;④若一直线的倾斜角为α,则此直线的斜率为tan α.A.0个B.1个C.2个D.3个3.如图所示,若直线l1,l2,l3的斜率分别为k1,k2,k3,则------------ () A.k<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k24.设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转45°,得到直线l1,则直线l1的倾斜角为------------------------------------------------() A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,为α+45°;当135°≤α<180°时,为α-135°5.过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于--------().A.1 B.5 C.-1 D.-56.若直线AB与y轴的夹角为60°,则直线AB的倾斜角为________,斜率为________.7.若三点A (1,2),B (0,b ),C (6,0)共线,则b 的值为________.8.直线l 过点A (1,2),且不过第四象限,那么直线l 的斜率的取值范围是________.9.设斜率为m (m >0)的直线上有两点(m,3),(1,m ),则此直线的倾斜角为______.10.已知点A (1,2),在坐标轴上求一点P ,使直线P A 的倾斜角为60°.11.a 为何值时,过点A ( 2a,3)、B (2,-1)的直线的倾斜角是锐角?是钝角?是直角?12.点M (x ,y )在函数y =-2x +8图象上,当x ∈[2,5]时,求y +1x +1的取值范围.参考答案1.解析 直线x =1与y 轴平行,∴倾斜角为90°,但斜率不存在,∴选C. 答案 C2.解析 由于当倾斜角为90°时,其斜率不存在,故命题①、④不正确;由直线倾斜角的定义知;倾斜角的取值范围为[0°,180°),而不是[0°,180°],故命题②不正确;直线的斜率可以是tan 210°,但其倾斜角是30°,而不是210°,所以命题③也不正确.根据以上判断,四个命题均不正确,故应选择A.答案 A3.解析 设l 1,l 2,l 3的倾斜角分别为α1,α2,α3,由题图可知α1=0°, 0°<α2<90°,90°<α3<180°,∴k 2>k 1=0>k 3.故选B.答案 B4.解析 由倾斜角的取值范围知只有当0°≤α+45°<180°, 即0°≤α<135°时,l 1的倾斜角才是α+45°;而 0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°(如图所示),故选D.答案 D5.解析 由斜率公式可得:y +34-2=tan 135°, ∴y +32=-1,∴y =-5.∴选D.答案 D6.解析 如右图,直线AB 的倾斜角为30°或150°,其斜率为33或-33.答案 30°或150° 33或-337.解析 ∵A ,B ,C 三点共线,k AB =b -20-1=2-b ,k AC =0-26-1=-25, ∴k AB =k AC ,∴2-b =-25,∴b =125.答案 1258.解析 由图可知,当直线位于如图所示的区域内时才满足题意,即直线的斜率满足k ∈[0,2].答案 [0,2]9.解析 由m =m -31-m 得:m 2=3,∵m >0,∴m = 3.又在[0°,180°)内tan 60°=3,∴倾斜角为60°.答案 60°10.解 ①当点P 在x 轴上时,设点P (a,0),∵A (1,2),∴k =0-2a -1=-2a -1.又∵直线P A 的倾斜角为60°,∴tan 60°=-2a -1.解得a =1-233.∴点P 的坐标为⎝ ⎛⎭⎪⎫1-233,0.②当点P 在y 轴上时,设点P (0,b ),同理可得b =2-3,∴点P 的坐标为(0,2-3).11.解 因为过A 、B 的直线的倾斜角为锐角,所以k AB >0,根据斜率公式得k AB =3-(-1)2a -2=2a -1>0,∴a >1,同理,当倾斜角为钝角时,k AB <0,即2a -1<0,∴a <1,当倾斜角为直角时,A 、B 两点的横坐标相等,即2a =2,∴a =1. 故:当a >1时,直线的倾斜角是锐角;当a <1时,直线的倾斜角是钝角;当a =1时,直线的倾斜角是直角.12.解 y +1x +1=y -(-1)x -(-1)的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.点M 在2≤x ≤5上的直线y =-2x +8的线段AB 上运动,其中A (2,4),B (5,-2).由于k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为⎣⎢⎡⎦⎥⎤-16,53.。
2022版新教材高中数学第二章一元二次函数方程和不等式2基本不等式提升训练新人教A版必修第一册
基本不等式基础过关练题组一 对基本不等式的理解1.若a ,b ∈R,且ab >0,则下列不等式恒成立的是 ( ) A.a 2+b 2>2ab B.a +b ≥2√aa C.1a +1a >√aaD.a a +a a≥22.不等式(x -2y )+1a -2a ≥2成立的前提条件为 ( ) A.x ≥2y B.x >2y C.x ≤2y D.x <2y3.(2020山东德州夏津一中高一月考)不等式9a -2+(x -2)≥6(其中x >2)中等号成立的条件是 ( ) A.x =5 B.x =-3C.x =3 D.x =-54.(2020浙江杭州高一月考)下列不等式一定成立的是 ( ) A.3x +12a≥√6 B.3x 2+12a 2≥√6C.3(x 2+1)+12(a 2+1)≥√6D.3(x 2-1)+12(a 2-1)≥√6题组二 利用基本不等式比较大小5.(多选)(2021辽宁葫芦岛高一质量检测)已知两个不等正数a ,b 满足a +b =1,则下列说法正确的是 ( ) A.ab <14 B.1a +1a<4C.√a +√a <√2D.a 2+b 2>126.若0<a <b ,则下列不等式一定成立的是 ( ) A.b >a +a 2>a >√aa B.b >√aa >a +a 2>aC.b >a +a 2>√aa >aD.b >a >a +a 2>√aa7.小W 从A 地到B 地和从B 地到A 地的速度分别为m 和n (m >n ),其全程的平均速度为v ,则 ( ) A.a +a 2<v <m B.n <v <√aaC.√aa <v <a +a 2D.v =a +a 28.若a >b >c ,则a -a 2与√(a -a )(a -a )的大小关系是 .9.某商店出售的某种饮料需分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价a +a 2%,若p ,q >0,且p ≠q ,则提价多的方案是 .题组三 利用基本不等式求最值10.已知实数x ,y >0,则x +y +4a +1a 的最小值为 ( ) A.4√2 B.6 C.2√10 D.3√611.(2020浙江诸暨高二期末)已知函数y =x +4a -1(x >1),则函数的最小值等于 ( )A.4√2B.4√2+1C.5D.912.(2021宁夏大学附属中学高二上期中)若-2<x <0,则函数y =-x (x +2)的最大值为 ( ) A.1 B.2 C.4 D.513.已知a >b >0,则a 2+16a (a -a )的最小值为 ( ) A.8 B.8√2 C.16D.16√214.若正数x ,y 满足x +4y -xy =0,则当x +y 取得最小值时,x 的值为 ( )A.9B.8C.6D.315.(2021江苏溧阳高一期末检测)已知正实数x ,y 满足x +y =1,则1a +1a的最小值是 .16.(2021黑龙江鹤岗第一中学高一上月考)(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)已知x <54,求4x -2+14a -5的最大值.题组四 利用基本不等式证明不等式17.(2021福建三明第一中学高一上月考)已知a ,b 均为正实数,求证:a 2b 2+a 2+b 2≥ab (a +b +1).18.(2021安徽六安城南中学高二上开学考试)已知a ,b ,c 是三个不全相等的正数. 求证:a +a -a a +a +a -a a +a +a -aa>3.19.设x >0,求证:x +22a +1≥32.题组五 利用基本不等式解决实际问题20.某人要用铁管做一个形状为直角三角形且面积为1m 2的铁架框(铁管的粗细忽略不计),在下面四种长度的铁管中,最合理(够用,又浪费最少)的是 ( ) A.4.6m B.4.8m C.5mD.5.2m21.(2020广东广州荔湾高二期末)为满足人民日益增长的美好生活需要,实现群众对舒适的居住条件、更优美的环境、更丰富的精神文化生活的追求,某大型广场计划进行升级改造.改造的重点工程之一是新建一个矩形音乐喷泉综合体A1B1C1D1,该项目由矩形核心喷泉区ABCD(阴影部分)和四周的绿化带组成.规划核心喷泉区ABCD的面积为1000m2,绿化带的宽分别为2m和5m(如图所示).当整个项目A1B1C1D1占地面积最小时,核心喷泉区的边BC的长度为()A.20mB.50mC.10√10mD.100m22.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层,每层建筑面积为4000平方米的楼房.经初步估计得知,若将楼房建为x(x≥12,x∈N*)层,则每平方米的平均建筑费用s=3000+50x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用的最小值是多少? 注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积能力提升练题组一利用基本不等式求最值1.(2020广东惠州高二期末,)已知x>0,y>0,且2x+y=1,则xy的最大值是()A.14B.4C.18D.82.(2021黑龙江大庆实验中学高一上开学考试,)已知a >0,b >0,a +b =1,则a 2+4a +a 2+4a 的最小值为 ()A.6B.8C.15D.173.(2021河北辛集中学高一上月考,)已知a >0,b >0,a +b =4ab ,则a +b 的最小值为 ( )A.12 B.1 C.2 D.44.(2020河南三门峡外国语高级中学高一下期中,)设正数x ,y 满足x 2+a 22=1,则x √1+a 2的最大值为( )A.32 B.3√22C.34D.3√245.(2020浙江丽水高一期末,)设正数a ,b 满足a 2+4b 2+1aa =4,则a = ,b = .6.(2020河北唐山第一中学高一下月考,)已知x >0,则a 2+3a +6a +1的最小值是.7.(2020湖北麻城一中高一月考,)已知a ,b ∈R,且a >b >0,a +b =1,则a 2+2b 2的最小值为 ,4a -a +12a的最小值为 . 8.(2021江苏苏州高一期末,)已知a ,b 均为正实数且ab +a +3b =9,则a +3b 的最小值为 .9.(2021吉林长春东北师范大学附属中学高一上段考,)已知x >0,y >0,4x 2+y 2+xy =1,求:(1)4x 2+y 2的最小值; (2)2x +y 的最大值.题组二 利用基本不等式证明不等式 10.()已知a ,b为正数,求证:1a +4a ≥2(√2+1)22a +a.11.()若a>b,且ab=2,求证:a2+a2a-a≥4.12.(2021湖南长沙长郡中学高一上检测,)已知a>0,b>0,a+b=1,求证:(1)1a +1a+1aa≥8;(2)(1+1a )(1+1a)≥9.13.()(1)已知a,b,c∈R,求证:√a2+a2+√a2+a2+√a2+a2≥√2(a+b+c);(2)若0<x<1,a>0,b>0,求证:a2a +a21-a≥(a+b)2.题组三基本不等式在实际问题中的应用14.(2021山东日照五莲高一上期中,)某工厂过去的年产量为a,技术革新后,第一年的年产量增长率为p(p>0),第二年的年产量增长率为q(q>0,p≠q),这两年的年产量平均增长率为x,则()A.x=a+a2B.x=√aaC.x>a+a2D.x<a+a215.(2020湖北宜昌高三期末,)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似表示为y=12x2-300x+80000,为使每吨的平均处理成本最低,则该厂每月的处理量应为()A.300吨B.400吨C.500吨D.600吨16.(2021山东菏泽第一中学等六校高一上联考,)欲在如图所示的锐角三角形空地中建一个内接矩形花园(阴影部分),则矩形花园面积的最大值为m2.17.(2021四川绵阳南山中学高三上开学考试,)网店和实体店各有利弊,两者的结合将在未来一段时间内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月的运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足关系式x=3-2a+1.已知网店每月固定的各种费用支出为3万元,每1万件产品的进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是万元.18.(2020山东滨州高一上期末,)物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络,其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费为y1(单位:万元),仓库到车站的距离为x(单位:千米),x>0,其中y1与x+1成反比,每月库存货物费y2(单位:万元)与x成正比,若在距离车站9千米处建仓库,则y1和y2分别为2万元和7.2万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最少?最少费用是多少?答案全解全析基础过关练1.D∵a2+b2-2ab=(a-b)2≥0,∴A不符合题意;当a<0,b<0时,明显B,C不符合题意;∵ab>0,∴aa >0,aa>0,∴aa+aa≥2√aa·aa=2,当且仅当a=b时等号成立,∴D符合题意.2.B 因为不等式成立的前提条件是x -2y 和1a -2a均为正数,所以x -2y >0,即x >2y ,故选B .3.A 当x >2时,9a -2+(x -2)≥2√9a -2·(a -2)=6,等号成立的条件是9a -2=x -2,即(x -2)2=9,解得x =5(x =-1舍去).故选A .4.B 对于A,x 可能是负数,不成立;对于B,由基本不等式可知,3x 2+12a 2≥√6,当且仅当3x 2=12a 2,即x 4=16时取等号,故成立;对于C,当3(x 2+1)=12(a 2+1)时,(a 2+1)2=16,x 无解,不成立;对于D,x 2-1可能是负数,不成立.故选B .5.ACD A.因为a ,b 为两个不等正数,所以√aa <a +a 2=12,可得ab <14,故选项A 正确;B.因为1a +1a =a +aaa =1aa,所以由选项A 可知,1aa>4,故选项B 不正确;C.因为(√a +√a )2=a +b +2√aa =1+2√aa ,所以由选项A 可知选项C 正确; D.因为a 2+b 2=(a +b )2-2ab =1-2ab ,所以由选项A 可知,a 2+b 2=1-2ab >12,故选项D 正确.6.C ∵0<a <b ,∴2b >a +b ,∴b >a +a 2>√aa .∵b >a >0,∴ab >a 2,∴√aa >a. 故b >a +a 2>√aa >a.7.B 设从A 地到B 地的路程为s ,小W 从A 地到B 地和从B 地到A 地所用的时间分别为t 1,t 2,则t 1=aa ,t 2=aa ,其全程的平均速度为v =2aa 1+a 2=2aaa +aa=2aaa +a.∵m >n >0,∴v =2aaa +a <2√aa=√aa ,v -n =2aaa +a -n =2aa -aa -a 2a +a=a (a -a )a +a>0,∴n <v <√aa . 故选B . 8.答案a -a 2≥√(a -a )(a -a )解析 因为a >b >c ,所以a -a 2=(a -a )+(a -a )2≥√(a -a )(a -a ),当且仅当a -b =b -c ,即2b =a +c 时,等号成立.9.答案 乙解析 不妨设原价为1,则按方案甲提价后的价格为(1+p%)(1+q%),按方案乙提价后的价格为(1+a +a 2%)2,易知√(1+a %)(1+a %)≤1+a %+1+a %2=1+a %+a %2,当且仅当1+p%=1+q%,即p =q 时等号成立,又p ≠q ,故(1+p%)(1+q%)<(1+a +a 2%)2,所以提价多的方案是乙.10.B ∵x ,y >0,∴x +y +4a +1a≥2√a ·4a+2√a ·1a=4+2=6,当且仅当x =4a且y =1a,即x =2,y =1时等号成立.故选B .11.C 因为x >1,所以y =x +4a -1=(x -1)+4a -1+1≥2√(a -1)·4a -1+1=5,当且仅当x -1=4a -1,即x =3时,等号成立.故选C . 12.A ∵-2<x <0,∴-x >0,x +2>0,∴y =-x (x +2)≤(-a +a +22)2=1,当且仅当-x =x +2,即x =-1时等号成立. 故选A .规律总结 1.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,缺一不可.2.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分,消元或配凑因式.13.C ∵a >b >0,∴由基本不等式的变形可得b (a -b )≤(a +a -a 2)2=a 24,∴a 2+16a (a -a )≥a 2+16a 24=a 2+64a 2≥2√a 2×64a 2=16,当且仅当{a -a =a ,a 2=64a2,即{a =2√2,a =√2时,等号成立.误区警示 利用基本不等式求最值,若需多次应用基本不等式,则要注意等号成立的条件必须一致,如本题中第一次利用基本不等式取等号的条件为b =a -b ,第二次利用基本不等式取等号的条件为a 2=64a 2,故最终的最值应该是在这两个条件下共同取得的. 14.C ∵x >0,y >0,x +4y =xy ,∴4a +1a =1, ∴x +y =(x +y )(4a +1a )=5+a a +4a a ≥5+2√a a ·4aa=9,当且仅当x =2y 时,等号成立,此时{a =2a ,a +4a =aa ,解得{a =6,a =3.故选C . 15.答案 4解析 由题意可得,1a +1a =a +a a+a +aa=2+a a +aa ≥2+2√aa ·aa =4, 当且仅当x =y =12时等号成立.16.解析 (1)∵1=4a +b ≥2√4aa =4√aa ,∴√aa ≤14,∴ab ≤116,当且仅当4a =b ,即a =18,b =12时取等号, 故ab 的最大值为116.(2)∵x <54,∴5-4x >0, ∴4x -2+14a -5=-(5-4a +15-4a)+3≤-2√(5-4a )×15-4a +3=1, 当且仅当5-4x =15-4a ,即x =1时,等号成立,故4x -2+14a -5的最大值为1. 17.证明 由基本不等式得a 2b 2+a 2≥2a 2b ,a 2b 2+b 2≥2ab 2,b 2+a 2≥2ab , 三式相加得2a 2b 2+2a 2+2b 2≥2a 2b +2ab 2+2ab =2ab (a +b +1). 所以a 2b 2+a 2+b 2≥ab (a +b +1).18.证明 ∵a ,b ,c 是三个不全相等的正数,∴三个不等式a a +a a≥2,a a +a a≥2,a a +a a≥2的等号不能同时成立, 则a a +a a +a a +a a +a a +aa >6, ∴(aa +aa -1)+(aa +aa -1)+a a +aa-1>3,即a +a -a a +a +a -a a +a +a -aa>3. 19.证明 因为x >0,所以x +12>0,所以x +22a +1=x +1a +12=x +12+1a +12-12≥2√(a +12)·1a +12-12=32,当且仅当x +12=1a +12,即x =12时,等号成立.故x >0时,x +22a +1≥32.20.C 设直角三角形两直角边长分别为x m,y m,则12xy =1,即xy =2. 周长l =x +y +√a 2+a 2≥2√aa +√2aa =2√2+2≈4.83(m), 当且仅当x =y 时等号成立.结合实际问题,可知选C . 21.B 设BC =x m,则CD =1000am,所以a 矩形a 1a 1a 1a 1=(x +10)(1000a+4)=1040+4x +10000a≥1040+2√4a ·10000a=1440,当且仅当4x =10000a,即x =50时,等号成立,所以当BC 的长度为50m 时,整个项目占地面积最小.故选B . 22.解析 设楼房每平方米的平均综合费用为y 元. 依题意得y =s +8000×100004000a=50x +20000a+3000(x ≥12,x ∈N *).因为50x +20000a+3000≥2×√50a ·20000a+3000=5000,当且仅当50x =20000a,即x =20时,等号成立,所以当x =20时,y 取得最小值5000.所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用的最小值为5000元.能力提升练1.C 由题意得,xy =12×2xy ≤12×(2a +a 2)2=12×(12)2=18,当且仅当2x =y ,即x =14,y =12时等号成立,所以xy 的最大值是18.故选C . 2.D易得a 2+4a +a 2+4a =a +b +4a +4a =1+4(a +a )aa =1+4aa.又ab ≤(a +a 2)2=14,∴1aa ≥4,∴1+4aa ≥17,∴a 2+4a+a 2+4a ≥17,当且仅当a =b =12时取等号.故选D .3.B ∵a +b =4ab ,a >0,b >0,∴等式两边同除以ab ,得1a +1a =4, ∴a +b =(a +b )·14(1a +1a )=12+14(a a +aa ) ≥12+14×2√a a ·a a =12+12=1, 当且仅当a a =a a ,即a =b =12时取等号.故选B . 4.D ∵正数x ,y 满足x 2+a 22=1,∴2x 2+y 2=2, ∴x √1+a 2=√22×√2x ×√1+a 2≤√22×(√2a )2+(√1+a 2)22=√22×2a 2+a 2+12=3√24,当且仅当{2a 2+a 2=2,√2a =√1+a 2,即{a =√32,a =√22时取等号,∴x √1+a 2的最大值为3√24.5.答案 1;12解析 a 2+4b 2+1aa =(a -2b )2+4ab +1aa ≥(a -2b )2+2√4aa ·1aa =(a -2b )2+4,当且仅当a -2b =0且4ab =1aa ,即a =1,b =12时,等号成立,所以a =1,b =12. 6.答案 5解析 ∵x >0,∴x +1>1,∴a 2+3a +6a +1=(a +1)2+(a +1)+4a +1=x +1+1+4a +1≥2√(a +1)·4a +1+1=5, 当且仅当x +1=4a +1,即x =1时,等号成立, ∴a 2+3a +6a +1的最小值是5.7.答案 23;9解析 因为a +b =1,所以a =1-b ,因为a >b >0,所以0<b <12.所以a 2+2b 2=(1-b )2+2b 2=3b 2-2b +1=3(a -13)2+23,所以当b =13时,a 2+2b 2有最小值且最小值为23. 易得4a -a +12a =41-2a +12a ,故4a -a +12a =(41-2a +12a )(1-2b +2b )=5+8a1-2a +1-2a 2a ≥5+2√8a 1-2a ·1-2a 2a=5+4=9,当且仅当8a1-2a =1-2a 2a,即b =16时等号成立,故4a -a +12a 的最小值为9.8.答案 6解析 ∵ab +a +3b =9,∴a =9-3aa +1,由题意可知,a =9-3aa +1>0,故0<b <3, ∵a +3b =9-3aa +1+3b =12-3(a +1)a +1+3b =12a +1+3(b +1)-6≥2√12a +1×3(a +1)-6=6,当且仅当12a +1=3(b +1),即{a =3,a =1时取等号.方法点睛 求含多个字母的代数式的最值,常见的方法有消元法、基本不等式法等.应用消元法时要注意变元范围的传递.应用基本不等式法时,需遵循“一正、二定、三相等”的原则,如果原代数式中没有积为定值或和为定值,则需要将给定的代数式变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.9.解析 (1)∵4x 2+y 2≥2·2x ·y =4xy ,∴xy ≤4a 2+a 24,当且仅当2x =y 时等号成立,又4x 2+y 2+xy =1,∴1=4x 2+y 2+xy ≤4x 2+y 2+4a 2+a 24,∴4x 2+y 2≥45,当且仅当x =√1010,y =√105时等号成立, ∴4x 2+y 2的最小值是45.(2)由4x 2+y 2+xy =1,得(2x +y )2-1=3xy. 又∵2xy ≤(2a +a )24,当且仅当2x =y 时等号成立,∴(2x +y )2-1≤32×(2a +a )24,解得(2x +y )2≤85,∴2x +y ≤2√105.当且仅当x =√1010,y =√105时等号成立, ∴2x +y 的最大值是2√105.10.证明 因为a >0,b >0,所以(2a +b )(1a +4a )=6+a a +8a a ≥6+2√a a ·8aa=6+4√2=2(√2+1)2(当且仅当b =2√2a 时,等号成立).因为2a +b >0, 所以1a +4a ≥2(√2+1)22a +a.11.证明a 2+a 2a -a =(a -a )2+2aa a -a =(a -a )2+4a -a =(a -b )+4a -a ≥2√(a -a )·4a -a=4,当且仅当a =1+√3,b =-1+√3或a =1-√3,b =-1-√3时等号成立.所以a 2+a 2a -a≥4. 12.证明 (1)∵a +b =1,a >0,b >0, ∴1a +1a +1aa =1a +1a +a +aaa =2(1a +1a ), 1a +1a=a +a a +a +a a=2+a a +a a ≥2+2=4,当且仅当a =b =12时等号成立,∴1a +1a +1aa ≥8.(2)证法一:∵a >0,b >0,a +b =1, ∴1+1a =1+a +a a =2+aa, 同理,1+1a =2+aa ,∴(1+1a )(1+1a )=(2+a a )(2+aa)=5+2(a a +a a )≥5+4=9,当且仅当a =b =12时等号成立, ∴(1+1a )(1+1a)≥9. 证法二:(1+1a )(1+1a )=1+1a +1a +1aa . 由(1)知,1a +1a +1aa≥8,故(1+1a )(1+1a )=1+1a +1a +1aa ≥9,当且仅当a =b =12时,等号成立. 13.证明 (1)∵a +a 2≤√a2+a 22,∴√a 2+a 2≥√2=√22(a +b )(当且仅当a =b 时,等号成立).同理,√a 2+a 2≥√22(b +c )(当且仅当b =c 时,等号成立),√a 2+a 2≥√22(a +c )(当且仅当a =c 时,等号成立).三式相加得√a 2+a 2+√a 2+a 2+√a 2+a 2≥√22(a +b )+√22(b +c )+√22(a +c )=√2(a +b +c )(当且仅当a =b =c 时,等号成立). (2)∵0<x <1,∴1-x >0. 又∵a >0,b >0,∴不等式左边=(x +1-x )(a 2a+a 21-a )=a 2+b 2+a 1-a ·b 2+1-a a ·a 2≥a 2+b 2+2√a 1-a ·a 2·1-a a·a 2=a 2+b 2+2ab =(a +b )2=右边当且仅当a1-a ·b 2=1-aa·a 2,即x =aa +a 时,等号成立.故a 2a +a 21-a≥(a +b )2. 14.D 由题意可得a (1+p )(1+q )=a (1+x )2,即(1+p )(1+q )=(1+x )2. 易得(1+p )(1+q )≤(1+a +1+a 2)2,当且仅当p =q 时取等号,∵p ≠q ,∴(1+p )(1+q )<(1+a +1+a 2)2,则1+x <2+a +a2=1+a +a 2,即x <a +a 2.故选D .15.B 设每吨的平均处理成本为s 元, 由题意可得s =a a =12a 2-300a +80000a=a 2+80000a -300,其中300≤x ≤600.由基本不等式可得a 2+80000a -300≥2√a 2·80000a-300=400-300=100, 当且仅当a 2=80000a,即x =400时,每吨的平均处理成本最低.故选B .16.答案 400解析 如图,设矩形花园的一边DE 的长为x (x >0)m,邻边长为y (y >0)m,则矩形花园的面积为xy m 2,∵花园是矩形,∴△ADE 与△ABC 相似, ∴aa aa =aaaa ,又∵AG =BC =40, ∴AF =DE =x ,FG =y ,∴x +y =40.由基本不等式可得x +y ≥2√aa ,则xy ≤400,当且仅当x =y =20时,等号成立,故矩形花园的面积的最大值为400m 2. 17.答案 37.5解析 由题意,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足x =3-2a +1, 即t =23-a-1(1<x <3),设月利润为y 万元,则y =(48+a 2a )x -32x -3-t =16x -a 2-3=16x -13-a +12-3 =45.5-[16(3-a )+13-a ]≤45.5-2√16=37.5, 当且仅当16(3-x )=13-a ,即x =114时取等号, 故该公司的最大月利润为37.5万元. 18.解析 设y 1=aa +1(k ≠0),y 2=mx (m ≠0),其中x >0.当x =9时,y 1=a9+1=2,y 2=9m =7.2, 解得k =20,m =0.8, 所以y 1=20a +1,y 2=0.8x ,设两项费用之和为z (单位:万元), 则z =y 1+y 2=20a +1+0.8x =20a +1+0.8(x +1)-0.8 ≥2√20a +1·0.8(a +1)-0.8=7.2.=0.8(x+1),即x=4时,等号成立,当且仅当20a+1所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最少,最少费用是7.2万元.解题模板已知函数类型的应用问题,可以用待定系数法求出解析式;含分式的函数求最大(小)值,往往利用基本不等式求解,解题时要注意验证基本不等式成立的三个条件.。
新教材高考数学第二章直线和圆的方程章末复习练习含解析新人教A版选择性必修第一册
章末复习一、两直线的平行与垂直 1.判断两直线平行、垂直的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2. (2) 若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养. 例1 (1)已知A ⎝⎛⎭⎪⎫1,-a +13,B ⎝ ⎛⎭⎪⎫0,-13,C (2-2a ,1),D (-a ,0)四点,若直线AB 与直线CD 平行,则a =________.答案 3解析 k AB =-13+a +130-1=-a3,当2-2a =-a ,即a =2时,k AB =-23,CD 的斜率不存在.∴AB 和CD 不平行;当a ≠2时,k CD =0-1-a -2+2a =12-a.由k AB =k CD ,得-a 3=12-a,即a 2-2a -3=0.∴a =3或a =-1.当a =3时,k AB =-1,k BD =0+13-3=-19≠k AB ,∴AB 与CD 平行.当a =-1时,k AB =13,k BC =1+134=13,k CD =1-04-1=13,∴AB 与CD 重合.∴当a =3时,直线AB 和直线CD 平行.(2)若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________. 答案 垂直解析 将点A (4,-1)的坐标代入ax -y +1=0, 得a =-12,则12·l l k k =-12×2=-1,∴l 1⊥l 2. 反思感悟 一般式方程下两直线的平行与垂直:已知两直线的方程为l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2-A 2B 1=0且C 1B 2-C 2B 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.跟踪训练1 (1)已知直线l 1:ax -3y +1=0,l 2:2x +(a +1)y +1=0.若l 1⊥l 2,则实数a 的值为________. 答案 -3(2)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,若l 1∥l 2,则m =________. 答案 -1解析 因为直线x +my +6=0与(m -2)x +3y +2m =0平行,所以⎩⎪⎨⎪⎧1×3-m m -2=0,2m ≠6m -2,解得m =-1.二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题. 2.两直线的交点与距离问题,培养学生的数学运算的核心素养.例2 (1)若点(1,a )到直线y =x +1的距离是322,则实数a 的值为( )A .-1B .5C .-1或5D .-3或3答案 C解析 ∵点(1,a )到直线y =x +1的距离是322,∴|1-a +1|2=322,即|a -2|=3,解得a =-1或a =5,∴实数a 的值为-1或5.(2)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 反思感悟跟踪训练2 (1)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是关于x 的方程x 2+x -2=0的两个实数根,则这两条直线之间的距离为( ) A .2 3 B. 2 C .2 2 D.322答案 D解析 根据a ,b 是关于x 的方程x 2+x -2=0的两个实数根,可得a +b =-1,ab =-2, ∴a =1,b =-2或a =-2,b =1,∴|a -b |=3, 故两条直线之间的距离d =|a -b |2=32=322.(2)已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为( ) A .0 B .1 C .2 D .3 答案 C解析 方法一 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,即直线l 过点(1,2).设点Q (1,2),因为|PQ |=1-02+2-42=5>2,所以满足条件的直线l 有2条.故选C.方法二 依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ∈R ),即(2+λ)x +(3-2λ)y +3λ-8=0.由题意得|12-8λ+3λ-8|2+λ2+3-2λ2=2,化简得5λ2-8λ-36=0,解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0,故选C.三、直线与圆的位置关系 1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离. 2.研究直线与圆的位置关系,集中体现了直观想象和数学运算的核心素养. 例3 已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. (1)证明 直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线恒过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交. (2)解 圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--64-3=3,所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt△APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.反思感悟 直线与圆问题的类型(1)求切线方程:可以利用待定系数法结合图形或代数法求得.(2)弦长问题:常用几何法(垂径定理),也可用代数法结合弦长公式求解. 跟踪训练3 已知圆C 关于直线x +y +2=0对称,且过点P (-2, 2)和原点O . (1)求圆C 的方程;(2)相互垂直的两条直线l 1,l 2都过点A (-1, 0),若l 1,l 2被圆C 所截得的弦长相等,求此时直线l 1的方程.解 (1)由题意知,直线x +y +2=0过圆C 的圆心,设圆心C (a ,-a -2). 由题意,得(a +2)2+(-a -2-2)2=a 2+(-a -2)2, 解得a =-2.因为圆心C (-2,0),半径r =2, 所以圆C 的方程为(x +2)2+y 2=4.(2)由题意知,直线l 1,l 2的斜率存在且不为0, 设l 1的斜率为k ,则l 2的斜率为-1k,所以l 1:y =k (x +1),即kx -y +k =0,l 2:y =-1k(x +1),即x +ky +1=0.由题意,得圆心C 到直线l 1,l 2的距离相等, 所以|-2k +k |k 2+1=|-2+1|k 2+1,解得k =±1, 所以直线l 1的方程为x -y +1=0或x +y +1=0. 四、圆与圆的位置关系1.圆与圆的位置关系:一般利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. 2.圆与圆的位置关系的转化,体现直观想象、逻辑推理的数学核心素养. 例4 已知圆C 1:x 2+y 2+4x -4y -5=0与圆C 2:x 2+y 2-8x +4y +7=0. (1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程; (2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.解 (1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13.圆心与半径长分别为C 1(-2,2),r 1=13;C 2(4,-2),r 2=13.因为|C 1C 2|=-2-42+2+22=213=r 1+r 2,所以圆C 1与圆C 2相切.由⎩⎪⎨⎪⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0,即3x -2y -3=0,就是过切点的两圆公切线的方程. (2)由圆系方程,可设所求圆的方程为x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练4 (1)已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A , B 两点,则线段AB 的中垂线方程为________. 答案 x +y -3=0解析 AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2. 又C 1(3,0),C 2(0,3), 所以C 1C 2所在直线的方程为x +y -3=0.(2)已知圆C 1:x 2+y 2-4x +2y =0与圆C 2:x 2+y 2-2y -4=0. ①求证:两圆相交;②求两圆公共弦所在直线的方程.①证明 圆C 1的方程可化为(x -2)2+(y +1)2=5,圆C 2的方程可化为x 2+(y -1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为5, ∵|C 1C 2|=2-02+-1-12=22∈(0,25),∴两圆相交.②解 将两圆的方程相减即可得到两圆公共弦所在直线的方程, (x 2+y 2-4x +2y )-(x 2+y 2-2y -4)=0,即x -y -1=0.1.(2019·天津改编)设a ∈R ,直线ax -y +2=0和圆x 2+y 2-4x -2y +1=0相切,则a 的值为________. 答案 34解析 由已知条件可得圆的标准方程为(x -2)2+(y -1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得|2a -1+2|a 2+1=2,解得a =34. 2.(2017·北京改编)在平面直角坐标系中,点A 在圆C :x 2+y 2-2x -4y +4=0上,点P 的坐标为(1,0),则||AP 的最小值为________. 答案 1解析 x 2+y 2-2x -4y +4=0, 即(x -1)2+(y -2)2=1, 圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1.3.(2017·天津改编)已知点C 在直线l :x =-1上,点F (1,0),以C 为圆心的圆与y 轴的正半轴相切于点A . 若∠FAC =120°,则圆的方程为________________. 答案 (x +1)2+(y -3)2=1解析 由圆心C 在l 上,且圆C 与y 轴正半轴相切,可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°, 所以∠OAF =30°,所以|OA |=3, 所以点C 的纵坐标为 3.所以圆的方程为(x +1)2+(y -3)2=1.4.(2019·江苏改编)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:线段PB ,QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A ,B 到直线l 的距离分别为AC 和BD (C ,D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由. 解 (1)如图,过O 作OH ⊥l ,垂足为H .以O 为坐标原点,直线OH 为y 轴,建立如图所示的平面直角坐标系. 因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,-3. 因为AB 为圆O 的直径,AB =10, 所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (-4,-3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为-43,直线PB 的方程为y =-43x -253.所以P (-13,9),|PB |=-13+42+9+32=15.所以道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (-4,0),则EO =4<5, 所以P 选在D 处不满足规划要求.②若Q 在D 处,连接AD ,由(1)知D (-4,9),又A (4,3), 所以线段AD :y =-34x +6(-4≤x ≤4).在线段AD 上取点M ⎝⎛⎭⎪⎫3,154,因为|OM |=32+⎝ ⎛⎭⎪⎫1542<32+42=5,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.。
新教材高考数学第二章直线和圆的方程5-2圆与圆的位置关系练习含解析新人教A版选择性必修第一册
圆与圆的位置关系学习目标 1.了解圆与圆的位置关系.2.掌握圆与圆的位置关系的判断方法.3.能用圆与圆的位置关系解决一些简单问题.知识点 两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系 外离外切相交内切内含图示d 与r 1,r 2的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|< d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0), C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个数 2个 1个 0个 两圆的位置关系相交外切或内切外离或内含思考 根据代数法确定两个圆的位置关系时,若已知两圆只有一个交点,能否准确得出两圆的位置关系?答案 不能. 已知两圆只有一个交点只能得出两圆内切或外切.1.如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) 2.如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )3.从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )4.若两圆有公共点,则|r 1-r 2|≤d ≤r 1+r 2.( √ )一、两圆位置关系的判断例1 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14x+k=0相交、相切、相离?解将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k,圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=-2-12+3-72=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即34<k<50或k<14时,两圆相离.反思感悟判断两圆的位置关系的两种方法(1)几何法:将两圆的圆心距d与两圆的半径之差的绝对值,半径之和进行比较,进而判断出两圆的位置关系,这是在解析几何中主要使用的方法.(2)代数法:将两圆的方程组成方程组,通过解方程组,根据方程组解的个数进而判断两圆位置关系.跟踪训练1 (1)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )A.内切B.相交C.外切D.相离答案 B解析两圆的圆心分别为(-2,0),(2,1),半径分别为r=2,R=3,两圆的圆心距为-2-22+0-12=17,则R-r<17<R+r,所以两圆相交,选B.(2)到点A(-1,2),B(3,-1)的距离分别为3和1的直线有________条.答案 4解析到点A(-1,2)的距离为3的直线是以A为圆心,3为半径的圆的切线;同理,到B的距离为1的直线是以B为圆心,半径为1的圆的切线,所以满足题设条件的直线是这两圆的公切线,而这两圆的圆心距|AB|=3+12+-1-22=5.半径之和为3+1=4,因为5>4,所以圆A 和圆B 外离,因此它们的公切线有4条. 二、两圆的公共弦问题例2 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0. (1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.解 (1)将两圆方程配方化为标准方程,则C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,∴圆C 1的圆心坐标为(1,-5),半径为r 1=52, 圆C 2的圆心坐标为(-1,-1),半径为r 2=10. ∴|C 1C 2|=25,r 1+r 2=52+10, |r 1-r 2|=|52-10|, ∴|r 1-r 2|<|C 1C 2|<r 1+r 2, ∴两圆相交. (2)将两圆方程相减,得公共弦所在的直线方程为x -2y +4=0.(3)方法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离为d =|1-2×-5+4|1+-22=35, ∴公共弦长为l =2r 21-d 2=250-45=2 5.方法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎪⎨⎪⎧x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2,∴|AB |=-4-02+0-22=2 5.即公共弦长为2 5.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在的直线方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练2 (1)两圆x 2+y 2-10x -10y =0,x 2+y 2+6x +2y -40=0的公共弦的长为( ) A .5 B .5 2 C .10 2 D .10 答案 D(2)圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在的直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长为________.答案23解析 由题意将两圆的方程相减,可得圆C 1和圆C 2公共弦所在的直线l 的方程为x +y -1=0.又圆C 3的圆心坐标为(1,1),其到直线l 的距离为d =|1+1-1|12+12=22, 设圆C 3的半径为r ,由条件知,r 2-d 2=254-12=234,所以弦长为2×232=23.圆系方程的应用典例 (1)求圆心在直线x -y -4=0上,且过两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点的圆的方程.解 方法一 设经过两圆交点的圆系方程为x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0(λ≠-1),即x 2+y 2-41+λx -4λ1+λy -6=0, 所以圆心坐标为⎝⎛⎭⎪⎫21+λ,2λ1+λ.又圆心在直线x -y -4=0上,所以21+λ-2λ1+λ-4=0,即λ=-13.所以所求圆的方程为x 2+y 2-6x +2y -6=0.方法二 由⎩⎪⎨⎪⎧x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,得两圆公共弦所在直线的方程为y =x .由⎩⎪⎨⎪⎧y =x ,x 2+y 2-4y -6=0,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=3,y 2=3.所以两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点坐标分别为A (-1,-1),B (3,3), 线段AB 的垂直平分线所在的直线方程为y -1=-(x -1). 由⎩⎪⎨⎪⎧y -1=-x -1,x -y -4=0,得⎩⎪⎨⎪⎧x =3,y =-1,即所求圆的圆心坐标为(3,-1), 半径为3-32+[3--1]2=4.所以所求圆的方程为(x -3)2+(y +1)2=16.(2)求过直线x +y +4=0与圆x 2+y 2+4x -2y -4=0的交点且与直线y =x 相切的圆的方程. 解 设所求圆的方程为x 2+y 2+4x -2y -4+λ(x +y +4)=0.联立⎩⎪⎨⎪⎧y =x ,x 2+y 2+4x -2y -4+λx +y +4=0,得x 2+(1+λ)x +2(λ-1)=0.因为所求圆与直线y =x 相切,所以Δ=0,即(1+λ)2-8(λ-1)=0,解得λ=3, 故所求圆的方程为x 2+y 2+7x +y +8=0.[素养提升] (1)当经过两圆的交点时,圆的方程可设为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0,然后用待定系数法求出λ即可.(2)理解运算对象,选择运算方法,设计运算程序,求得运算结果,体现了数学运算的数学核心素养.1.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切答案 B解析 化为标准方程:圆O 1:(x -1)2+y 2=1,圆O 2:x 2+(y -2)2=4,则O 1(1,0),O 2(0,2),|O 1O 2|=1-02+0-22=5<r 1+r 2,又r 2-r 1<5,所以两圆相交.2.圆C 1:(x +2)2+(y -m )2=9与圆C 2:(x -m )2+(y +1)2=4外切,则m 的值为( ) A .2B .-5C .2或-5D .不确定答案 C解析 圆C 1:(x +2)2+(y -m )2=9的圆心为(-2,m ),半径长为3, 圆C 2:(x -m )2+(y +1)2=4的圆心为(m ,-1),半径长为2. 依题意有-2-m2+m +12=3+2,即m 2+3m -10=0, 解得m =2或m =-5.3.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0答案 C解析 AB 的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A ,B ,D.4.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程是__________________. 答案 (x -4)2+(y +3)2=16或(x -4)2+(y +3)2=36 解析 设圆C 的半径为r , 圆心距为d =4-02+-3-02=5,当圆C 与圆O 外切时,r +1=5,r =4, 当圆C 与圆O 内切时,r -1=5,r =6, ∴圆的方程为(x -4)2+(y +3)2=16 或(x -4)2+(y +3)2=36.5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________. 答案 1解析 将两圆的方程相减,得相交弦所在的直线方程为y =1a,圆心(0,0)到直线的距离为d =1a=22-32=1,所以a =1.1.知识清单: (1)两圆的位置关系. (2)两圆的公共弦.2.方法归纳:几何法、代数法. 3.常见误区:将两圆内切和外切相混.1.圆C 1:x 2+y 2+4x +8y -5=0与圆C 2:x 2+y 2+4x +4y -1=0的位置关系为( ) A .相交 B .外切 C .内切 D .外离答案 C解析 由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d =|C 1C 2|=2, 所以d =|r 1-r 2|,所以两圆内切.2.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A .(1,0)和(0,1) B .(1,0)和(0,-1) C .(-1,0)和(0,-1) D .(-1,0)和(0,1)答案 C解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.所以两圆的交点坐标为(-1,0)和(0,-1).3.已知圆C 1:x 2+y 2-m =0,圆C 2:x 2+y 2+6x -8y -11=0,若圆C 1与圆C 2有公共点,则实数m 的取值范围是( ) A .m <1 B .m >121 C .1≤m ≤121 D .1<m <121答案 C解析 圆C 1的方程可化为x 2+y 2=m (m >0),则圆心为C 1(0,0),半径r 1=m ; 圆C 2的方程可化为(x +3)2+(y -4)2=36,则圆心为C 2(-3,4),半径r 2=6. ∵圆C 1与圆C 2有公共点,∴|r 1-r 2|≤|C 1C 2|≤r 1+r 2, 即|m -6|≤-3-02+4-02≤m +6,∴⎩⎨⎧|m -6|≤5,m +6≥5,解得1≤m ≤121.4.(多选)设r >0,圆(x -1)2+(y +3)2=r 2与圆x 2+y 2=16的位置关系不可能是( ) A .内切 B .相交 C .外离 D .外切答案 CD解析 两圆的圆心距为d =1-02+-3-02=10,两圆的半径之和为r +4, 因为10<r +4,所以两圆不可能外切或外离,故选CD.5.圆O 1:x 2+y 2-6x +16y -48=0与圆O 2:x 2+y 2+4x -8y -44=0的公切线条数为( ) A .4条 B .3条 C .2条 D .1条答案 C解析 圆O 1为(x -3)2+(y +8)2=121,O 1(3,-8),r =11,圆O 2为(x +2)2+(y -4)2=64,O 2(-2,4),R =8, ∴|O 1O 2|=3+22+-8-42=13,∴r -R <|O 1O 2|<R +r , ∴两圆相交.∴公切线有2条.6.若圆x 2+y 2-2ax +a 2=2和x 2+y 2-2by +b 2=1外离,则a ,b 满足的条件是_____________. 答案 a 2+b 2>3+2 2解析 由题意可得两圆的圆心坐标和半径长分别为(a ,0),2和(0,b ),1. 因为两圆外离,所以a 2+b 2>2+1, 即a 2+b 2>3+2 2.7.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A ,B 两点,则直线AB 的方程是_______. 答案 x +3y =0解析 圆的方程(x -1)2+(y -3)2=20可化为x 2+y 2-2x -6y =10. 又x 2+y 2=10,两式相减得2x +6y =0,即x +3y =0.8.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________________.答案 x 2+y 2-34x -34y -114=0解析 由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34, 故所求圆的方程为x 2+y 2-34x -34y -114=0.9.已知圆O 1:x 2+(y +1)2=4,圆O 2的圆心O 2(2,1).若圆O 2与圆O 1交于A ,B 两点,且|AB |=22,求圆O 2的方程.解 设圆O 2的方程为(x -2)2+(y -1)2=r 22, 因为圆O 1的方程为x 2+(y +1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在的直线方程为4x +4y +r 22-8=0, 作O 1H ⊥AB ,H 为垂足,则AH =12AB =2,所以O 1H =r 21-AH 2=4-2= 2.由圆心O 1(0,-1)到直线4x +4y +r 22-8=0的距离为 |r 22-12|42=2,得r 22=4或r 22=20, 故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.10.已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长. 解 两圆的标准方程分别为(x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m ,解得m =25+1011.(2)当两圆内切时61-m -11=5, 解得m =25-1011.(3)两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0, ∴公共弦长为2112-⎝⎛⎭⎪⎫|4×1+3×3-23|42+322=27.11.已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是( ) A .(x -5)2+(y -7)2=25B .(x -5)2+(y -7)2=17或(x -5)2+(y +7)2=15C.(x-5)2+(y-7)2=9D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9答案 D解析设动圆圆心为(x,y),若动圆与已知圆外切,则x-52+y+72=4+1,∴(x-5)2+(y+7)2=25;若动圆与已知圆内切,则x-52+y+72=4-1,∴(x-5)2+(y+7)2=9.12.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于( ) A.4 B.4 2 C.8 D.8 2答案 C解析∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.设两圆的圆心坐标分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,∴|C1C2|=a-b2+a-b2=32×2=8.13.如果圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,则实数a的取值范围是( )A.(-22,0)∪(0,22) B.(-22,22)C.(-1,0)∪(0,1) D.(-1,1)答案 A解析∵圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,∴圆O:x2+y2=4与圆C:(x-a)2+(y-1)2=1相交.|OC|=a2+1,由2-1<|OC|<2+1,得1<a2+1<3,∴0<|a|<22,∴-22<a<0或0<a<2 2.14.若圆O:x2+y2=5与圆O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长为________.答案 4解析 连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt△OO 1A 中,|OA |=5,|O 1A |=25,∴|OO 1|=5,∴|AC |=5×255=2, ∴|AB |=4.15.过两圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是____________________.答案 x 2+y 2-3x +y -1=0解析 设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0,则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝ ⎛⎭⎪⎫21+λ,λ-11+λ代入l :2x +4y -1=0的方程,可得λ=13, 所以所求圆的方程为x 2+y 2-3x +y -1=0.16.已知动点P 与两个定点O (0,0),A (3,0)的距离的比为12. (1)求动点P 的轨迹C 的方程;(2)已知圆Q 的圆心为Q (t ,t )(t >0),且圆Q 与x 轴相切,若圆Q 与曲线C 有公共点,求实数t 的取值范围.解 (1)设P (x ,y ),则||AP =2||OP ,即||AP |2=4OP |2, 所以(x -3)2+y 2=4(x 2+y 2),整理得(x +1)2+y 2=4.所以动点P 的轨迹C 的方程为(x +1)2+y 2=4.(2)因为点Q 的坐标为(t ,t )(t >0),且圆Q 与x 轴相切,所以圆Q 的半径为t , 所以,圆Q 的方程为(x -t )2+(y -t )2=t 2.因为圆Q 与圆C 有公共点,又圆Q 与圆C 的两圆心距为 ||CQ =()t +12+()t -02=2t 2+2t +1, 所以||2-t ≤||CQ ≤2+t ,即(2-t )2≤2t 2+2t +1≤(2+t )2,解得-3+23≤t≤3.所以,实数t的取值范围是[]-3+23,3.。
人教版数学高一人教A版必修1练习 第二、三章 滚动性检测
第二、三章滚动性检测 时间:120分钟 分值:150分一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.已知集合A ={y |y =log 3x ,x >1},B =⎝⎛⎭⎬⎫y ⎪⎪y =⎝⎛⎭⎫13x ,x >1,则A ∩B =( ) A.⎩⎨⎧⎭⎬⎫y ⎪⎪0<y <13 B .{y |0<y <1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪13<y <1 D .∅ 答案:A解析:由x >1可得y =log 3x >log 31=0,y =⎝⎛⎭⎫13x <⎝⎛⎭⎫131=13,因此A ={y |y >0},B =⎩⎨⎧⎭⎬⎫y ⎪⎪0<y <13,所以A ∩B =⎩⎨⎧⎭⎬⎫y ⎪⎪0<y <13,选A. 2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),3x (x ≤0),)则f ⎣⎡⎦⎤f ⎝⎛⎭⎫14的值是( ) A .9 B.19C .-9D .-19答案:B解析:f ⎣⎡⎦⎤f ⎝⎛⎭⎫14=f ⎝⎛⎭⎫log 214=f (log 22-2)=f (-2)=3-2=19,故选B. 3.函数的定义域是( ) A.⎝⎛⎭⎫34,+∞ B .(-∞,1] C.⎝⎛⎦⎤34,1 D .[1,+∞) 答案:C解析:由对数的真数大于0且根号内非负可知4x -3>0且log 12(4x -3)≥0,即4x -3>0且0<4x -3≤1,解得34<x ≤1,选C.4.若a =20.5,b =log π3,c =log 20.3,则( ) A .b >c >a B .b >a >c C .c >a >b D .a >b >c 答案:D解析:显然a =20.5=2>1,0=log π1<log π3<log ππ=1,即0<b <1,c =log 20.3<log 21=0,因此a >b >c ,选D.5.一种商品连续两次降价10%后,欲通过两次连续提价(每次提价幅度相同)恢复原价,则每次应提价( )A .10%B .20%C .5%D .11.1% 答案:D解析:设原价为a ,则两次降价后价格为0.81a =81100a .设每次提价x ,则81100a (1+x )2=a ,于是1+x =109.即x =19≈11.1%6.某农村在2003年年底共有人口1500人,全年工农业生产总值为3000万元,从2004年起该村的总产值每年增加50万元,人口每年净增25人.设从2004年起的第x 年年底(2004年为第一年,x ∈N *)该村人均产值为y 万元.则到2014年底该村人均产值y 是( )A .1万元B .1.5万元C .2万元D .2.5万元 答案:C解析:由题意得,第x 年总产值为3000+50x 万元,人口数为1500+25x ,则x =f (x )=3000+5x1500+25x,x ∈[1,10],x ∈N *.当x =11时,y =2(万元).7.已知函数f (x )的定义域为R ,f (x )在R 上是减函数,若f (x )的一个零点为1,则不等式f (2x -1)>0的解集为( )A.⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-∞,12 C .(1,+∞) D .(-∞,1) 答案:D解析:由f (x )是定义在R 上的减函数且f (x )的一个零点为1,易知当x <1时f (x )>0,所以f (2x -1)>0等价于2x -1<1,解得x <1,因此选D.8.设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α的值为( )A .-1,1,3B .-1,1C .-1,3D .1,3 答案:D解析:当α=-1时,y =1x,此时x 不能为0,因此不符合;当α=1时,y =x ,显然定义域为R 且为奇函数,因此符合;当α=12时,y =x ,此时x 不能为负数,因此不符合;当α=3时,y =x 3,显然定义域为R 且为奇函数,因此符合,所以所有符合条件的α值包括1,3,选D.9.已知函数f (x )=a x 在(0,2)内的值域是(a 2,1),则函数y =f (x )的图象是( )答案:A解析:由f (x )=a x 在(0,2)内的值域是(a 2,1)可知函数必为减函数,而且是指数函数,因此显然只有A 符合.。
【人教A版】数学必修二:第三章《直线与方程》单元试卷(1)(Word版,含解析)
第三章过关检测(时间90分钟,满分100分)知识点分布表知识点 题号 分值 倾斜角与斜率 7,15 9 平行与垂直 4,5,9,11,12,13,18 22 直线的方程 2,3,4,5,6,8,11,12,15,18 36 交点坐标与距离公式1,10,12,14,16,1733一、选择题(本大题共10小题,每小题4分,共40分)1.动点P 到点A(3,3)的距离等于它到点B(1,-3)的距离,则动点P 的轨迹方程是( ) A.x +3y -2=0B.x +3y +2=0 C.3x +y +2=0D.3x +y -2=02.直线Ax +By +C =0与两坐标轴都相交的条件是( ) A.A 2+B 2≠0 B.C ≠0 C.AB ≠0 D.AB ≠0,C ≠03.直线3x -2y =4的截距式方程是( )A.1243=-y x B.42131=-yxC.1243=-+y x D.1234=-+y x4.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A.x -y +1=0B.x -y =0 C.x +y +1=0D.x +y =05.过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为( )A.2x +y -1=0B.2x +y -5=0C.x +2y -5=0D.x -2y +7=06.已知直线Ax +By +C =0在横轴上的截距大于在纵轴上的截距,则A 、B 、C 应满足的条件是( ) A.A >B B.A <B C.0>+B C A C D.0<-BCA C 7.已知点P (x ,-4)在点A(0,8)和B(-4,0)的连线上,则x 的值为( ) A.-2B.2C.-8D.-68.直线(m +2)x +(m 2-2m -3)y =2m 在x 轴上的截距为3,则实数m 的值为( ) A.56B.-6C.56- D.6 9.P 1(x 1,y 1)是直线l :f (x ,y )=0上一点,P 2(x 2,y 2)是直线l 外一点,则方程f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0所表示的直线与l 的位置关系是( ) A.重合B.平行C.垂直D.相交10.若点P (4,a )到直线4x -3y =1的距离不大于3,则a 的取值范围是( ) A.[0,10] B.(0,10) C.]133,131[D.(-∞,0]∪[10,+∞)二、填空题(本大题共4小题,每小题4分,共16分)11.P (-1,3)在直线l 上的射影为Q (1,-1),则直线l 的方程是_________.12.已知直线l :x -3y +2=0,则平行于l 且与l 的距离为10的直线方程是_________. 13.若三条直线2x -y +4=0,x -y +5=0,2mx -3y +12=0围成直角三角形,则m =__________.14.不论M 为何实数,直线l :(m -1)x + (2m -1) y =m -5恒过一个定点,则此定点坐标为_______.三、解答题(本大题共4小题,共44分)15.(10分)求倾斜角为直线y =-x +1的倾斜角的31,且分别满足下列条件的直线方程: (1)经过点(-4,1); (2)在y 轴上的截距为-10.16.(10分)某供电局计划年底解决本地区最后一个村庄的用电问题,经过测量,若按部门内部设计好的坐标图(即以供电局为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,长度单位千米),得到这个村庄的坐标是(15,20),离它最近的一条线路所在直线的方程为3x -4y -10=0.问要完成任务,至少需要多长的电线?17.(10分)在△ABC 中,A (m ,2),B (-3,-1),C (5,1).若BC 的中点M 到AB 的距离大于M 到AC 的距离,试求实数M 的取值范围.18.(14分)一条光线经过P (2,3)点,射在直线l :x +y +1=0上,反射后穿过点Q (1,1). (1)求入射光线的方程;(2)求这条光线从P 到Q 的长度.参考答案1解析:线段AB 的中点坐标是(2,0),AB 的斜率31333=-+=AB k , 又∵P 点的轨迹为过AB 的中点且与AB 垂直的直线, ∴)2(31--=x y ,即x +3y -2=0. 答案:A2解析:直线与两坐标轴都相交,即直线不平行于坐标轴, 则A≠0,B≠0,即AB ≠0. 答案:C3解析:直线方程的截距式为1=+b y a x .由此可将方程化为1234=-+y x .答案:D4解析:由条件知,l 为PQ 的中垂线. ∵13124-=--=PQ k , ∴k l =1.又PQ 的中点为(2,3),∴由点斜式方程知,l 的方程为y -3=x -2.∴x -y +1=0. 答案:A5解析:设2x +y +c =0,又过点P (-1,3),则-2+3+c =0,c =-1,即2x +y -1=0. 答案:A6解析:由条件,知A·B·C≠0.在方程Ax +By +C =0中,令x =0,得B C y -=;令y =0,得ACx -=. 由B C A C ->-,得0<-BCA C . 答案:D7解析:由条件知A 、B 、P 三点共线,由k AB =k AP 得x8448--=,∴x =-6. 答案:D8解析:由条件知直线在x 轴上截距为3,即直线过点(3,0),代入得3(m +2)=2m . ∴m =-6. 答案:B9解析:f (x 1,y 1)=0,f (x 2,y 2)=常数,f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0的斜率和f (x ,y )=0的斜率相等,而与y 轴的交点不同,故两直线平行. 答案:B10解析:由点到直线的距离公式得3)3(4|136|22≤-+--a ,即15|153|≤-a ,∴|a -5|≤5.∴-5≤a -5≤5,即0≤a ≤10. 答案:A11解析:由已知l ⊥PQ ,21113-=--+=PQ k ,∴211=k . ∴l 的方程为)1(211-=+x y .∴x -2y -3=0. 答案:x -2y -3=012解析:设所求直线为x -3y +C =0,由两平行线间的距离,得1031|2|22=+-C ,解得C =12或C =-8.故所求直线方程为x -3y +12=0或x -3y -8=0. 答案:x -3y +12=0或x -3y -8=013解析:设l 1:2x -y +4=0,l 2:x -y +5=0,l 3:2mx -3y +12=0,l 1不垂直l 2,要使围成的三角形为直角三角形,则l 3⊥l 1或l 3⊥l 2. 答案:43-或23- 14解法一:只要取两条直线求其交点即可,令M =1,则l 化为y =-4;令21=m 得l 方程为2921-=-x ,即x =9. 由⎩⎨⎧-==,4,9y x 得定点(9,-4).解法二:l 方程可化为M (x +2y -1)-x -y +5=0, 由⎩⎨⎧-==⎩⎨⎧=+--=-+.4,9,05,012y x y x y x 得∴定点为(9,-4). 答案:(9,-4)15解:由于直线y =-x +1的斜率为-1,所以其倾斜角为135°,由题意知所求直线的倾斜角为45°,所求直线的斜率k =1.(1)由于直线过点(-4,1),由直线的点斜式方程得y -1=x +4,即x -y +5=0;(2)由于直线在y 轴上的截距为-10,由直线的斜截式方程得y =x -10,即x -y -10=0. 16解:根据题意可知点(15,20)到直线3x -4y -10=0的距离即为所求. ∴9545169|10204315|==+-⨯-⨯=d (千米). ∴至少需9千米长的电线. 17解:BC 的中点M 的坐标为(1,0), 设M 到AB ,AC 的距离分别为d 1,d 2, 当m ≠-3且m ≠5时,直线AB 的方程:32121++=++m x y ,即3x -(m +3)y +6-m =0. 直线AC 的方程:55121--=--m x y , 即x -(m -5)y +m -10=0.所以由点到直线的距离公式得186|9|21++-=m m m d ,2610|9|22+--=m m m d .由题意得d 1>d 2, 即2610|9|186|9|22+-->++-m m m m m m ,解得21<m . 当m =-3时,d 1=4,65122=d 满足d 1>d 2. 当m =5时,7341=d ,d 2=4,不满足d 1>d 2. 综上所述, 21<m 时满足题意. 18解:如下图.(1)设点Q ′(x ′,y ′)为Q 关于直线l 的对称点且QQ ′交l 于M 点. ∵1-=l k ,∴k QQ ′=1.∴QQ ′所在直线方程为y -1=1·(x -1), 即x -y =0. 由⎩⎨⎧=-=++,0,01y x y x解得l 与QQ ′的交点M 的坐标为)21,21(--. 又∵M 为QQ ′的中点,由此得⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧-=+=+.2',2',212'1,212'1y x ,y x 得解之∴Q ′(-2,-2).设入射光线与l 交点为N ,则P 、N 、Q ′共线. 又P (2,3),Q ′(-2,-2),得入射光线的方程为222232++=++x y , 即5x -4y +2=0.(2)∵l 是QQ ′的垂直平分线,从而|NQ |=|NQ ′|,∴|PN |+|NQ |=|PN |+|NQ ′|=|PQ ′|=41)22()23(22=+++,即这条光线从P 到Q 的长度是41.。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(54)
高一数学必修第二册全册复习测试题卷(共22题)一、选择题(共10题)1.已知一家便利店从1月份至5月份的营业收入与成本支出的折线图如下:关于该便利店1月份至5月份的下列描述中,正确的是( )A.各月的利润保持不变B.各月的利润随营业收入的增加而增加C.各月的利润随成本支出的增加而增加D.各月的营业收入与成本支出呈正相关关系2.设i是虚数单位,如果复数(a+1)+(−a+7)i(a∈R)的实部与虚部相等,那么实数a的值为( )A.4B.3C.2D.13.关于频率分布直方图中小长方形的高的说法,正确的是( )A.表示该组上的个体在样本中出现的频率B.表示取某数的频率C.表示该组上的个体数与组距的比值D.表示该组上的个体在样本中出现的频率与组距的比值4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000)内的频率为( )A.0.001B.0.1C.0.2D.0.35. 如果一组数据“x 1,x 2,x 3,x 4,x 5”的平均数是 2,方差是 13,那么另一组数据“3x 1−2,3x 2−2,3x 3−2,3x 4−2,3x 5−2”的平均数和方差分别为 ( ) A . 2,13B . 2,1C . 4,23D . 4,36. 在 △ABC 中,∠BAC =π2,AB =AC =2,P 为 △ABC 所在平面上任意一点,则 PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ) 的最小值为 ( ) A . 1B . −12C . −1D . −27. 已知互相垂直的平面 α,β 交于直线 l ,若直线 m ,n 满足 m ∥α,n ⊥β,则 ( ) A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n8. 复数 i (2−i )= ( ) A . 1+2iB . 1−2iC . −1+2iD . −1−2i9. 若复数 z 满足 z (1+i )=2i ,其中 i 为虚数单位,则 z = ( ) A . 1−iB . 1+iC . −1+iD . −1−i10. 在 △ABC 中,B =30∘,AB =2√3,AC =2,则 △ABC 的面积是 ( )A . √3B . 2√3C . √3 或 2√3D . 2√3 或 4√3二、填空题(共6题) 11. 思考辨析,判断正误.在 △ABC 中,已知两边及夹角时,△ABC 不一定唯一.( )12. 根据党中央关于“精准脱贫”的要求,某市农业经济部门派甲、乙、丙 3 位专家对 A ,B 两个区进行调研,每个区至少派 1 位专家,则甲、乙两位专家均派遣至 A 区的概率为 .13. 已知向量 a =(2,1),b ⃗ =(−1,x ),若 (a +b ⃗ )∥(a −b ⃗ ),则实数 x 的值为 .14. 半径为 3 的球体表面积为 .15. 平面与平面垂直的性质定理:文字语言:两个平面垂直,如果一个平面内有一直线垂直于这两个平面的 ,那么这条直线与另一个平面 .符号语言:α⊥β,α∩β=l,,⇒a⊥β.图形语言:16.若复数z=2+i,其中i为虚数单位,则z在复平面内对应点的坐标为.1−2i三、解答题(共6题)17.已知圆柱的底面直径与高都等于球的直径.求证:(1) 球的表面积等于圆柱的侧面积;.(2) 球的表面积等于圆柱全面积的2318.在静水中划船的速度的大小是每分钟40m,水流速度的大小是每分钟20m,如果一小船从岸边某处出发,沿着垂直于水流的方向到达对岸,则小船的行进方向应指向哪里?19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2+c2−a2=2bcsin(B+C).(1) 求角A的大小;,求△ABC的面积.(2) 若a=2,B=π320.应用面面平行判断定理应具备哪些条件?21.在北京市“危旧房改造”中,小强一家搬进了回龙观小区.这个小区冬季用家庭燃气炉取暖.为了估算冬季取暖第一个月使用天然气的开支情况,从11月15日起,小强连续八天每天晚上记录了天然气表显示的读数,如下表(注:天然气表上先后两次显示的读数之差就是这段时间内使用天然气的数量):日期15日16日17日18日19日20日21日22日小强的天然气表显示读数(单位:m3)220229241249259270279290妈妈11月15日买了一张面值600元的天然气使用卡,已知每立方米天然气1.70元,请你估算这张卡够小强家用一个月(按30天计算)吗?为什么?22.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.(1) 结合平均数和方差分析谁更优秀;(2) 结合平均数和中位数分析谁的成绩好些;(3) 结合平均数和命中9环及以上的次数分析谁的成绩好些;(4) 从折线图上两人射击命中环数的走势分析谁更有潜力.答案一、选择题(共10题) 1. 【答案】D【知识点】频率分布直方图2. 【答案】B【解析】由题意得 a +1=−a +7,则 a =3.故选B . 【知识点】复数的乘除运算3. 【答案】D【解析】频率分布直方图中小长方形的高是 频率组距,面积表示频率.【知识点】频率分布直方图4. 【答案】D【知识点】频率分布直方图5. 【答案】D【知识点】样本数据的数字特征6. 【答案】C【解析】如图,以直线 AB ,AC 分别为 x ,y 轴建立平面直角坐标系, 则 A (0,0),B (2,0),C (0,2),设 P (x,y ),则 PA⃗⃗⃗⃗⃗ =(−x,−y ),PB ⃗⃗⃗⃗⃗ =(2−x,−y ),PC ⃗⃗⃗⃗⃗ =(−x,2−y ),PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =(2−2x,2−2y ), 所以PA⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=−x (2−2x )−y (2−2y )=2x 2−2x +2y 2−2y =2(x −12)2+2(y −12)2−1,当 x =12,y =12 时,PA ⃗⃗⃗⃗⃗ ⋅(PB ⃗⃗⃗⃗⃗ +PC⃗⃗⃗⃗⃗ ) 取得最小值,为 −1. 故选C .【知识点】平面向量数量积的坐标运算7. 【答案】C【解析】由题意知α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.【知识点】直线与直线的位置关系、点、线、面的位置关系8. 【答案】A【解析】i(2−i)=1+2i.【知识点】复数的乘除运算9. 【答案】B【解析】因为复数z满足z(1+i)=2i,所以z=2i1+i=1+i.【知识点】复数的乘除运算10. 【答案】C【解析】由AB=2√3,AC=2,B=30∘及正弦定理ACsinB =ABsinC得sinC=ABsinBAC=2√3×122=√32.由C为三角形的内角可知C=60∘或120∘.因此A=90∘或30∘.在△ABC中,由AB=2√3,AC=2,A=90∘或30∘,得面积S=12AC⋅AB⋅sinA=2√3或√3.【知识点】正弦定理二、填空题(共6题)11. 【答案】×【知识点】余弦定理12. 【答案】16【解析】该试验所有的样本点为(甲,乙丙),(乙,甲丙),(丙,甲乙),(甲乙,丙),(甲丙,乙),(乙丙,甲)(其中每个样本点表示的都是“派往A区调研的专家、派往B区调研的专家”),共6个,其中甲、乙两位专家均被派遣至 A 区的样本点有 1 个,因此,所求事件的概率为 16. 【知识点】古典概型13. 【答案】 −12【解析】因为 a =(2,1),b⃗ =(−1,x ), 所以 a +b ⃗ =(1,x +1),a −b ⃗ =(3,1−x ), 又 (a +b ⃗ )∥(a −b⃗ ), 所以 1−x −3(x +1)=0, 解得 x =−12.【知识点】平面向量数乘的坐标运算14. 【答案】 36π【知识点】球的表面积与体积15. 【答案】交线;垂直; a ⊂α ; a ⊥l【知识点】平面与平面垂直关系的性质16. 【答案】 (0,1)【知识点】复数的几何意义、复数的乘除运算三、解答题(共6题) 17. 【答案】(1) 略. (2) 略.【知识点】圆柱的表面积与体积、球的表面积与体积18. 【答案】如图所示,设向量 OA⃗⃗⃗⃗⃗ 的长度和方向表示水流速度的大小和方向,向量 OB ⃗⃗⃗⃗⃗ 的长度和方向表示船在静水中速度的大小和方向,以 OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 为邻边作平行四边形 OACB ,连接 OC . 依题意得 OC ⃗⃗⃗⃗⃗ ⊥OA ⃗⃗⃗⃗⃗ ,∣∣BC ⃗⃗⃗⃗⃗ ∣∣=∣∣OA ⃗⃗⃗⃗⃗ ∣∣=20,∣∣OB ⃗⃗⃗⃗⃗ ∣∣=40,所以 ∠BOC =30∘.故船应向上游且与河岸夹角为 60∘ 的方向行进. 【知识点】平面向量的实际应用问题19. 【答案】(1) 因为 A +B +C =π, 所以 sin (B +C )=sinA , 所以 b 2+c 2−a 2=2bcsinA ,所以b 2+c 2−a 22bc=sinA ,由余弦定理得 cosA =sinA ,可得 tanA =1, 又因为 A ∈(0,π), 所以 A =π4.(2) 根据正弦定理得 b =a sinA ⋅sinB =√6,又 sinC =sin (A +B )=sin (π4+π3)=√6+√24, 所以S △ABC =12absinC =12⋅2⋅√6⋅√6+√24=3+√32.【知识点】余弦定理、正弦定理20. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定21. 【答案】 300×1.70<600,够用.【知识点】样本数据的数字特征22. 【答案】(1) 根据题意作出统计表:平均数方差中位数命中9环及以上次数甲7 1.271乙75.47.53因为平均数相同,且 s 甲2<s 乙2,所以甲的成绩比乙稳定,甲更优秀.(2) 因为平均数相同,甲的中位数 < 乙的中位数, 所以乙的成绩比甲好.(3) 因为平均数相同,且乙命中 9 环及以上的次数比甲多, 所以乙的成绩比甲好.(4) 因为甲的成绩在平均线附近波动,而乙的成绩整体处于上升趋势,从第 4 次开始射靶的环数没有比甲少的情况发生, 所以乙更有潜力.【知识点】样本数据的数字特征。
人教A版高一数学必修第二册全册复习测试题卷含答案解析(21)
高一数学必修第二册全册复习测试题卷4(共22题)一、选择题(共10题)1. 在 △ABC 中,sin 2A ≤sin 2B +sin 2C −sinBsinC ,则 A 的取值范围是 ( ) A . (0,π6]B . [π6,π)C . (0,π3]D . [π3,π)2. 在 △ABC 中,∠BAC =60∘,∠BAC 的平分线 AD 交 BC 边于点 D ,已知 AD =2√3,且λAB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ (λ∈R ),则 AB ⃗⃗⃗⃗⃗ 在 AD ⃗⃗⃗⃗⃗ 方向上的投影数量为 ( )A . 1B . 32C . 3D .3√323. 已知向量 a ,b ⃗ 满足 ∣a ∣=√3,∣∣b ⃗ ∣∣=2√3,a ⋅b ⃗ =−3,则 a 与 b ⃗ 的夹角是 ( ) A . 150∘ B . 120∘ C . 60∘ D . 30∘4. 甲、乙两个袋子中装有若干个均匀的白球和红球,且甲、乙两个袋子中的球数比为 1:3.已知从甲袋中摸到红球的概率为 13,而将甲、乙两个袋子中的球装在一起后,从中摸到红球的概率为23.则从乙袋中摸到红球的概率为 ( ) A . 79B . 1945C . 1330D . 22455. 下列各组向量组成的集合 {e 1⃗⃗⃗ ,e 2⃗⃗⃗ } 中,能作为表示它们所在平面内所有向量的基底的是 ( ) A . e 1⃗⃗⃗ =(0,0),e 2⃗⃗⃗ =(1,−2)B . e 1⃗⃗⃗ =(−1,2),e 2⃗⃗⃗ =(5,7)C . e 1⃗⃗⃗ =(3,5),e 2⃗⃗⃗ =(6,10)D . e 1⃗⃗⃗ =(2,−3),e 2⃗⃗⃗ =(12,−34)6. 甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是( ) A .甲获胜的概率是16 B .甲不输的概率是12C .乙输了的概率是23D .乙不输的概率是127. 在 △ABC 中,∣AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ∣=∣AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ∣,AB =2,AC =1,E ,F 为 BC 的三等分点,则 AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ = ( ) A . 89B .109C .259D .2698. 设复数 2−i 和 3−i 的辐角的主值分别为 α 和 β,则 α+β 等于 ( ) A . 135∘B . 315∘C . 675∘D . 585∘9. 一组数据从小到大排列依次为 3,5,6,7,8,9,x ,12,13,13,且该组数据 70% 分位数不超过 11,则 x 的取值范围是 ( ) A . [9,12]B . (9,11]C . (9,10)D . [9,10]10. 如图,在四边形 ABCD 中,∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣=4,AB ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =0,∣∣AB ⃗⃗⃗⃗⃗ ∣∣⋅∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣+∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣⋅∣∣DC ⃗⃗⃗⃗⃗ ∣∣=4,则 (AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ 的值为A .2B .2√2C .4D .4√2二、填空题(共6题)11. 已知某次考试有 4 道选择题,每道选择题有 4 个选项.若某人做对每道题的概率都是 14,且完成每道题相互独立,则该人至少做对 1 题的概率是 .12. 设 I 为 △ABC 的内心,三边长 AB =7,BC =6,AC =5,点 P 在边 AB 上,且 AP =2,若直线 IP 交直线 BC 于点 Q ,则线段 QC 的长为 .13. 在 △ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c ,且 A:B:C =1:2:3,a =1,则a−2b+c sinA−2sinB+sinC= .14. 若a1−i =1−bi ,其中a ,b 都是实数,i 是虚数单位,则∣a +bi ∣= .15. 下图是根据部分城市某年6月份的平均气温(单位:∘C )数据得到的样本频率分布直方图,其中平均气温的范围是 [20.5,26.5],样本数据的分组为 [20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5).已知样本中平均气温低于 22.5∘C 的城市个数为 11,则样本中平均气温不低于 25.5∘C 的城市个数为 .16. 已知 e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是夹角为2π3的两个单位向量,a =e 1⃗⃗⃗ −2e 2⃗⃗⃗ ,b ⃗ =ke 1⃗⃗⃗ +e 2⃗⃗⃗ ,若 a⋅b ⃗ =0,则实数 k 的值为 .三、解答题(共6题)17. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 asinA+C 2=bsinA .(1) 求 B ;(2) 若 △ABC 为锐角三角形,且 c =1,求 △ABC 面积的取值范围.18. 有人告诉你,放学后送你回家的概率如下:① 50%;② 2%;③ 90%.试将以上数据分别与下面的文字描述相匹配: (1) 很可能送你回家,但不一定送. (2) 送与不送的可能性一样大. (3) 送你回家的可能性极小.19. 已知定点 F (2,0),直线 l:x =−2,点 P 为坐标平面上的动点,过点 P 作直线 l 的垂线,垂足为点 Q ,且 FQ ⃗⃗⃗⃗⃗ ⊥(PF ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ ).设动点 P 的轨迹为曲线 C . (1) 求曲线 C 的方程;(2) 过点 F 的直线 l 1 与曲线 C 有两个不同的交点 A ,B ,求证:1∣AF∣+1∣BF∣=12;(3) 记 OA ⃗⃗⃗⃗⃗ 与 OB ⃗⃗⃗⃗⃗ 的夹角为 θ(O 为坐标原点,A ,B 为(2)中的两点),求 cosθ 的取值范围.20. 如图,在四棱锥 P −ABCD 中,底面 ABCD 是边长为 2 的菱形,∠DAB =60∘,∠ADP =90∘,平面ADP ⊥平面ABCD ,点 F 为棱 PD 的中点.(1) 在棱 AB 上是否存在一点 E ,使得 AF ∥平面PCE ,并说明理由; (2) 当二面角 D −FC −B 的余弦值为 √24时,求直线 PB 与平面 ABCD 所成的角.21. 设椭圆x 2a2+y 2b 2=1 (a >b >0) 的左、右焦点分别为 F 1 、 F 2,离心率 e =√22,右准线为 l ,M 、 N 是 l 上的两个动点,F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =0.(1) 若 ∣∣F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣=∣∣F 2N ⃗⃗⃗⃗⃗⃗⃗ ∣∣=2√5,求 a 、 b 的值;(2) 证明:当 ∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣ 取最小值时,F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N ⃗⃗⃗⃗⃗⃗⃗ 与 F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ 共线.22. 在 △ABC 中,角 A ,B ,C 的对边分别是 a ,b ,c ,若 bcosC +(2a +c )cosB =0.(1) 求内角 B 的大小;(2) 若 b =2,求 △ABC 面积的最大值.答案一、选择题(共10题) 1. 【答案】C【知识点】余弦定理、正弦定理2. 【答案】D【解析】在 AC 上取点 E ,使 AE⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ , 连接 DE ,过 D 作 DF ∥AC ,交 AB 于 F , 因为 λAB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ (λ∈R ),所以 ED ∥AB ,所以四边形 AFDE 为平行四边形, 又 AD 平分 ∠BAC , 所以四边形 AFDE 为菱形. 因为 AD =2√3,∠BAC =60∘,所以 AE =2,则 AC =6. 设 FB =x , 因为 DF ∥AC , 所以DF AC=FB AB,即 26=x2+x,解得 x =1, 即 FB =1, 所以 AB =3.所以 AB ⃗⃗⃗⃗⃗ 在 AD ⃗⃗⃗⃗⃗ 方向上的投影数量为 ∣∣AB ⃗⃗⃗⃗⃗ ∣∣⋅cos30∘=3√32.【知识点】平面向量的数量积与垂直3. 【答案】B【知识点】平面向量的数量积与垂直4. 【答案】A【解析】设甲袋中的总球数为 x ,则甲袋中有 x 3 个红球,2x3 个白球,乙袋中的总球数为 3x ,因为甲、乙两袋中共有 4x ×23=8x3个红球,所以乙袋中有 7x 3个红球,因此从乙袋中摸到红球的概率为7x 33x=79.【知识点】古典概型5. 【答案】B【解析】由基底的概念可知,作为基底的两个向量不能共线.A 中向量 e 1⃗⃗⃗ 为零向量,零向量与任意向量都共线,故 e 1⃗⃗⃗ ∥e 2⃗⃗⃗ ;B 中 e 1⃗⃗⃗ 与 e 2⃗⃗⃗ 不共线,故可以作为基底;C 中 e 1⃗⃗⃗ =12e 2⃗⃗⃗ ,所以 e 1⃗⃗⃗ ∥e 2⃗⃗⃗ ;D 中 e 1⃗⃗⃗ =4e 2⃗⃗⃗ ,所以 e 1⃗⃗⃗ ∥e 2⃗⃗⃗ . 【知识点】平面向量数乘的坐标运算6. 【答案】A【解析】【分析】由已知条件分别求出甲获胜、甲不输、乙输和乙不输的概率,由此能得到正确选项同.【解析】解:∵甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13, ∴甲获胜的概率是:1−12−13=16,故A 正确; 甲不输的概率是:1−13=23,故B 不正确; 乙输了的概率是:1−13−12=16,故C 不正确; 乙不输的概率是:12+13=56.故D 不正确.故选:A .【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率计算公式的合理运用.7. 【答案】B【解析】解法一:因为 ∣AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ∣=∣AB⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ∣,所以 AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,以点 A 为坐标原点,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 分别为 x ,y 轴正方向建立直角坐标系,设 AB⃗⃗⃗⃗⃗ =(2,0),AC ⃗⃗⃗⃗⃗ =(0,1),所以 BC ⃗⃗⃗⃗⃗ =(−2,1),由 E ,F 为 BC 的三等分点,可假设 BE ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,所以 AE ⃗⃗⃗⃗⃗ =(43,13),AF ⃗⃗⃗⃗⃗ =(23,23),所以 AE⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =(43,13)⋅(23,23)=109,故选B .解法二:若 ∣AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ∣=∣AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ∣,则 AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2−2AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ ,即有 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,由 E ,F 为 BC 的三等分点,可假设 BF ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,则 AE⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =(AC⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ )⋅(AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ )=(AC ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ )⋅(AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ )=(23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )⋅(13AC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ )=29AC ⃗⃗⃗⃗⃗ 2+29AB ⃗⃗⃗⃗⃗ 2+59AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =29×(1+4)+0=109.故选B .【知识点】平面向量的数量积与垂直8. 【答案】C【解析】根据题意有 2−i =√5(cosα+isinα),3−i =√10(cosβ+isinβ),则 √5(cosα+isinα)⋅√10(cosβ+isinβ)=5√2[cos (α+β)+isin (α+β)]. 又 (2−i )(3−i )=5−5i , 所以 cos (α+β)=√22, sin (α+β)=−√22, 而 270∘<α<360∘, 270∘<β<360∘, 所以 α+β=675∘. 【知识点】复数的三角形式9. 【答案】D【解析】因为 10×70%=7, 所以 70% 分位数为 x+122,所以 {x+122≤11,9≤x ≤12,解得 9≤x ≤10. 【知识点】样本数据的数字特征10. 【答案】C【解析】由 {(∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣)+∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣=4,(∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣)⋅∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣=4. 解得 {∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣=2,∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣=2.因为 AB ⃗⃗⃗⃗⃗ 与 DC ⃗⃗⃗⃗⃗ 方向相同,所以 ∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣=∣∣AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ∣∣, 所以(AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =∣∣AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ∣∣∣∣AC ⃗⃗⃗⃗⃗ ∣∣cos∠CAB =∣∣AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ∣∣2=4. 【知识点】平面向量的数量积与垂直二、填空题(共6题) 11. 【答案】 175256【解析】设事件 A i ={做对第i 题}(i =1,2,3,4),则 P (A i )=14,P(A i )=1−P (A i )=34,由于 A 1,A 2,A 3,A 4 相互独立,所以 P(A 1⋅A 2⋅A 3⋅A 4)=P(A 1)P(A 2)P(A 3)P(A 4)=(34)4=81256, 故至少做对一题的概率为 P (A 1∪A 2∪A 3∪A 4)=1−P(A 1A 2A 3A 4)=1−81256=175256.【知识点】事件的关系与运算12. 【答案】138【解析】如图, 由题意易得 AP ⃗⃗⃗⃗⃗ =25PB ⃗⃗⃗⃗⃗ , 所以 IP ⃗⃗⃗⃗ −IA ⃗⃗⃗⃗ =25(IB ⃗⃗⃗⃗ −IP ⃗⃗⃗⃗ ), 所以 IP ⃗⃗⃗⃗ =57IA ⃗⃗⃗⃗ +27IB ⃗⃗⃗⃗ . 设 CQ =x ,BQ =y ,则 x +y =6, 所以 CQ ⃗⃗⃗⃗⃗ =−x yBQ ⃗⃗⃗⃗⃗ , 所以 IQ ⃗⃗⃗⃗ −IC ⃗⃗⃗⃗ =x y (IB ⃗⃗⃗⃗ −IQ⃗⃗⃗⃗ ), 所以 IQ ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6IC ⃗⃗⃗⃗ . 因为 7IC⃗⃗⃗⃗ +5IB ⃗⃗⃗⃗ +6IA ⃗⃗⃗⃗ =0, 点 I 是 △ABC 的内心,根据三角形内心的向量表示得向量等式. 所以 IC ⃗⃗⃗⃗ =−57IB ⃗⃗⃗⃗ −67IA ⃗⃗⃗⃗ ,所以 IQ ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6IC ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6(−57IB ⃗⃗⃗⃗ −67IA ⃗⃗⃗⃗ )=−y 7IA⃗⃗⃗⃗ +(x 6−5y 42)IB ⃗⃗⃗⃗ . 因为 IQ ⃗⃗⃗⃗ ∥IP⃗⃗⃗⃗ , 所以 (−y7):(x6−5y42)=52, 结合 x +y =6,解得 x =138.所以线段 QC 的长为138.【知识点】平面向量数乘的坐标运算13. 【答案】 2【解析】因为 A:B:C =1:2:3,A +B +C =180∘, 所以 A =30∘,B =60∘,C =90∘, 因为a sinA=b sinB=c sinC=1sin30∘=2,所以 a =2sinA ,b =2sinB ,c =2sinC , 所以 a−2b+csinA−2sinB+sinC =2. 【知识点】正弦定理14. 【答案】√5【解析】【分析】首先进行复数的乘法运算,根据多项式乘以单项式的法则进行运算,然后两个复数进行比较,根据两个复数相等的充要条件,得到要求的b 的值. 【解析】解:a1−i =a(1+i)(1−i)(1+i)=a2+a2i =1−bi ∴a =2,b =−1∴∣a +bi ∣=√a 2+b 2=√5故答案为:√5.【点评】本题是一个考查复数概念的题目,在考查概念时,题目要先进行乘法运算,复数的加减乘除运算是比较简单的问题,在高考时有时会出现,若出现则是要我们一定要得分的题目.【知识点】复数的几何意义15. 【答案】9【解析】设样本容量为n,则(0.1+0.12)n=11,解得n=50,故气温不低于25.5∘C的城市个数为50×0.18=9.【知识点】频率分布直方图16. 【答案】54【解析】因为e1⃗⃗⃗ 与e2⃗⃗⃗ 为两个夹角为2π3的单位向量,a=e1⃗⃗⃗ −2e2⃗⃗⃗ ,b⃗=ke1⃗⃗⃗ +e2⃗⃗⃗所以a⋅b⃗=0即为(e1⃗⃗⃗ −2e2⃗⃗⃗ )⋅(ke1⃗⃗⃗ +e2⃗⃗⃗ )=ke1⃗⃗⃗ 2+e2⃗⃗⃗ 2+(1−2k)e1⃗⃗⃗ ⋅e2⃗⃗⃗ =2k−52=0,所以k=54.【知识点】平面向量的数量积与垂直三、解答题(共6题)17. 【答案】(1) 解法一:由题设及正弦定理得sinAsin A+C2=sinBsinA.因为sinA≠0,所以sin A+C2=sinB.由A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2.因为cos B2≠0,所以sin B2=12,所以B=60∘.解法二:由asin A+C2=bsinA得sinAcos B2=sinBsinA,则cos B2=2sin B2cos B2.所以sin B2=12.所以B=π3.(2) 解法一:由题设及(1)知△ABC的面积S△ABC=√34a.由正弦定理得 a =csinA sinC=csin (120∘−C )sinC=√32tanC +12.由于 △ABC 为锐角三角形,故 0∘<A <90∘,0∘<C <90∘. 由(1)知 A +C =120∘,所以 30∘<C <90∘, 故 12<a <2,从而√38<S △ABC <√32. 因此,△ABC 面积的取值范围是 (√38,√32). 解法二: 作出图形,如图.由题意知,点 C 在射线 BD 上,且 △ABC 为锐角三角形. 观察得 ∠A =90∘ 时,S △ABC 最大; ∠ACB =90∘ 时,S △ABC 最小. 故 S △ABC 的取值范围是 (√38,√32). 【知识点】正弦定理18. 【答案】(1) 90%.(2) 50%. (3) 2%.【知识点】频率与概率19. 【答案】(1) 设点 P 的坐标为 (x,y ).由题意,可得 Q (−2,y ),FQ⃗⃗⃗⃗⃗ =(−4,y ),PF ⃗⃗⃗⃗⃗ =(2−x,−y ),PQ ⃗⃗⃗⃗⃗ =(−2−x,0). 由 FQ ⃗⃗⃗⃗⃗ ⊥(PF ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ ),得 FQ ⃗⃗⃗⃗⃗ ⋅(PF ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ )=0, 即 (−4,y )⋅(−2x,−y )=0,所以 y 2=8x (x ≥0). 所以所求曲线 C 的方程为 y 2=8x (x ≥0).(2) 因为过点 F 的直线 l 1 与曲线 C 有两个不同的交点 A ,B , 所以直线 l 1 的斜率不为 0,故设直线 l 1 的方程为 x =my +2. 于是 A ,B 的坐标为 (x 1,y 1),(x 2,y 2) 为方程组 {y 2=8x,x =my +2 的实数解.消去 x 并整理得 y 2−8my −16=0. 于是 y 1+y 2=8m ,y 1y 2=−16, 所以 x 1+x 2=8m 2+4,x 1x 2=4.又因为曲线 y 2=8x (x ≥0) 的准线为 x =−2,所以1∣AF∣+1∣BF∣=1x 1+2+1x 2+2=4+x 1+x 2x 1x 2+2(x 1+x 2)+4=12.(3) 由(2)可知 OA ⃗⃗⃗⃗⃗ =(x 1,y 1),OB ⃗⃗⃗⃗⃗ =(x 2,y 2).所以cosθ=OA⃗⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ ∣∣OA ⃗⃗⃗⃗⃗⃗ ∣∣⋅∣∣OB ⃗⃗⃗⃗⃗⃗ ∣∣=1212√x 1+y 1⋅√x 2+y 2=√x x √(x +8)(x +8)=√64m 2+100当 m =0 时,cosθ 有最小值 −35. 所以 cosθ 的取值范围为 [−35,0).【知识点】抛物线中的动态参数问题、抛物线中的动态性质证明、平面向量数量积的坐标运算20. 【答案】(1) 在棱 AB 上存在点 E ,使得 AF ∥平面PCE ,点 E 为棱 AB 的中点. 理由如下:取 PC 的中点 Q ,连接 EQ ,FQ ,EC , 因为 F ,Q 分别是 PD ,PC 的中点, 所以 FQ ∥DC 且 FQ =12CD ,又因为 AE ∥CD 且 AE =12CD ,所以 AE ∥FQ 且 AE =FQ , 所以四边形 AEQF 为平行四边形,所以 AF ∥EQ ,又 EQ ⊂平面PEC ,AF ⊄平面PEC , 所以 AF ∥平面PEC .(2) 由题意知 △ABD 为正三角形, 所以 ED ⊥AB ,亦即 ED ⊥CD , 又 ∠ADP =90∘,所以 PD ⊥AD ,且 平面ADP ⊥平面ABCD ,平面ADP ∩平面ABCD =AD , 所以 PD ⊥平面ABCD ,故以 D 为坐标原点建立如图所示的空间直角坐标系, 设 FD =a ,则由题意知 D (0,0,0),F (0,0,a ),C (0,2,0),B(√3,1,0),所以 FC⃗⃗⃗⃗⃗ =(0,2,−a ),CB ⃗⃗⃗⃗⃗ =(√3,−1,0), 设平面 FBC 的法向量为 m ⃗⃗ =(x,y,z ), 则由 {m ⃗⃗ ⋅FC ⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0,得 {2y −ax =0,√3x −y =0,令 x =1,则 y =√3,z =2√3a, 所以得 m ⃗⃗ =(1,√3,2√3a), 显然可取平面 DFC 的法向量 n ⃗ =(1,0,0), 由题意:√24=∣cos ⟨m,n ⟩∣=√1+3+12a2,所以 a =√3,由于 PD ⊥平面ABCD ,所以 PB 在平面 ABCD 内的射影为 BD , 所以 ∠PBD 为直线 PB 与平面 ABCD 所成的角,易知在 Rt △PBD 中,tan∠PBD =PDBD =a =√3,从而 ∠PBD =60∘, 所以直线 PB 与平面 ABCD 所成的角为 60∘.【知识点】利用向量的坐标运算解决立体几何问题、直线与平面平行关系的判定、二面角21. 【答案】(1) 由已知,F 1(−c,0),F 2(c,0). 由 e =√22,得a 2=2c 2.结合 a 2=b 2+c 2,解得b 2=c 2,a 2=2b 2.所以右准线方程为x =2c,因此可设 M (2c,y 1),N (2c,y 2).延长 NF 2 交 MF 1 于 P ,记右准线 l 交 x 轴于 Q .因为 F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =0,所以F 1M ⊥F 2N,结合 ∣F 1M ∣=∣F 2N ∣ 及平面几何的知识得Rt △MQF 1≌Rt △F 2QN,从而∣QN∣∣=∣F 1Q∣∣=3c,∣QM∣∣=∣F 2Q∣∣=c,即∣y 1∣=c,∣y 2∣=3c.由 ∣∣F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣=∣∣F 2N ⃗⃗⃗⃗⃗⃗⃗ ∣∣=2√5, 得9c 2+c 2=20,解得c 2=2,故a =2,b =√2.(2) 因为F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =(3c,y 1)⋅(c,y 2)=0,所以y 1y 2=−3c 2<0,从而∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣2=∣y 1−y 2∣2=y 12+y 22−2y 1y 2≥−2y 1y 2−2y 1y 2=−4y 1y 2=12c 2.当且仅当 y 1=−y 2=√3c 或 y 2=−y 1=√3c 时,∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣ 取最小值 2√3c ,此时F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N ⃗⃗⃗⃗⃗⃗⃗ =(3c,±√3c)+(c,∓√3c)=(4c,0)=2F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ .所以 F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N ⃗⃗⃗⃗⃗⃗⃗ 与 F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ 共线.另解:因为 F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =0,所以y 1y 2=−3c 2.设 MF 1 、 NF 2 的斜率分别为 k 、−1k .由 {y =k (x +c ),x =2c, 解得y 1=3kc,由 {y =−1k (x −c ),x =2c, 解得y 2=−c k ,于是∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣=∣y 1−y 2∣=c ⋅∣∣3k +1k ∣∣≥2√3c.当且仅当 3k =1k ,即 k =±√33 时,∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣ 最小.此时F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N⃗⃗⃗⃗⃗⃗⃗ =(3c,3kc )+(c,−ck )=(3c,±√3c)+(c,∓√3c)=(4c,0)=2F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ .因此 F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N ⃗⃗⃗⃗⃗⃗⃗ 与 F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ 共线. 【知识点】平面向量的数量积与垂直、椭圆和双曲线的第二定义、平面向量的坐标运算、椭圆的基本量与方程22. 【答案】(1) bcosC +(2a +c )cosB =0,根据正弦定理 sinBcosC +(2sinA +sinC )cosB =0, 化简得 sin (B +C )=−2sinAcosB , 所以 cosB =−12⇒B =23π.(2) 根据余弦定理 b 2=a 2+c 2−2accosB 得到 4=a 2+c 2+ac ≥2ac +ac =3ac , 所以 ac ≤43, 所以 S =12acsinB ≤√33,当且仅当 a =c =2√33时取到等号.【知识点】三角形的面积公式、余弦定理、正弦定理。
人教版A版高中数学必修1课后习题及答案三章全
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}AB x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形,{|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 60=,所以与A 中元素60相对应的B 中的元素是3; 因为2sin 45=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即22d x y =+22100(0)d x x x=+>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+, 得22222()222200)l x y x y xy d d =+=++=+>,即2220(0)l d d =+>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3xxxf x x xxxx--<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x+,步行的路程为12x-,得222125x xt +-=+,(012)x ≤≤, 即24125x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()55t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭;则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x+=-, 所以222211()11()()111()x x f f x x x x++===---,即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.=2x (x ∈N *)习题 A 组(P59)1.(1)100;(2);(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(m m mm m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案: 0;对于(2),先按底数,再按键,再按12,最后按即可. 答案: 0;对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案: 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案: 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)与的底数都是3,它们可以看成函数y =3x ,当x =和时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而<,所以<.(2)与的底数都是,它们可以看成函数y =,当x =和时的函数值;因为1>,所以函数y =在R 上是减函数.而<,所以与的底数都是,它们可以看成函数y =,当x =和时的函数值; 因为>1,所以函数y =在R 上是增函数.而<,所以与的底数都是,它们可以看成函数y =,当x =和时的函数值;因为<1,所以函数y =在R 上是减函数.而<,所以2m 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2),可以看成函数y =,当x =m 和n 时的函数值;因为<1, 所以函数y =在R 上是减函数.因为<,所以m >n .(3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <,解得t >.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r = 5,x =5代入上式得y =a (1+r )x =1 000×(1+ 5)5=1 000×≈1118.答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++; (3)33311lg()lg lg lg lg 3lg lg 22xy z x y z x y z z=-=+-=+-; (4)22211lglg()lg (lg lg )lg 2lg lg 22x x y z x y z x y z y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====; (3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题 A 组(P74)1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3x y =,0.1xy =.习题 A 组(P79) 1.函数y =21x 是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为<0,所以log 3π>.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×,即所求函数解析式为y =192×. (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2x x e e -+,所以g (2x )=222xx e e -+,[g (x )]2+[f (x )]2=(2x x e e -+)2+(2x x e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈,那么θ=15+. 所以,当θ=42时,t ≈;当θ=32时,t ≈.答:开始冷却和小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯==81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f=<0,所以f(x)=-x3-3x+5在区间(1,上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点. (4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=<0,f(1)=>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x 0.下面用二分法求函数f(x)=x3++在区间(0,1)内的零点.取区间(0,1)的中点x1=,用计算器可算得f=.因为f·f(1)<0,所以x0∈,1).再取区间,1)的中点x2=,用计算器可算得f≈.因为f·f<0,所以x0∈,.同理,可得x0∈,,x0∈, 5),x0∈ 25, 5).由于| 25|= 25<,所以原方程的近似解可取为25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈,f(3)≈.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=,用计算器可算得f≈.因为f·f(3)<0,所以x0∈,3).再取区间,3)的中点x2=,用计算器可算得f≈.因为f·f<0,所以x0∈,.同理,可得x0∈,,x0∈ 5,,x0∈ 5, 75),x0∈ 125, 75),x0∈ 937 5, 375).由于| 937 75|= 812 5<,所以原方程的近似解可取为75.习题3.1 A组(P92),C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=,用计算器可算得f=.因为f(-1)·f<0,所以x0∈(-1,.再取(-1,的中点x2=,用计算器可算得f≈.因为f(-1)·f<0,所以x0∈(-1,.同理,可得x0∈(-1,,x0∈ 5,.由于|- 5)|= 5<,所以原方程的近似解可取为 5.4.原方程即=0,令f(x)=,f(0)没有意义,用计算器算得f≈,f(1)=.于是f·f(1)<0,所以这个方程在区间,1)内有一个解.下面用二分法求方程=lnx在区间(0,1)内的近似解.取区间,1)的中点x1=,用计算器可算得f≈.因为f·f(1)<0,所以x0∈,1).再取,1)的中点x2=,用计算器可算得f≈.。
2022版高中数学第二章一元二次函数方程和不等式专题强化练1利用基本不等式求最值新人教A版必修第一册
专题强化练1 利用基本不等式求最值一、选择题1.(2020山东聊城文苑中学高二月考,)将一根铁丝切割成三段,做一个面积为2m 2,形状为直角三角形的框架,在下列4种长度的铁丝中,选用最合适(够用且浪费最少)的是 ( )A.6.5mB.6.8mC.7mD.7.2m2.()若正数a ,b 满足1a +1a=1,则1a -1+4a -1的最小值为 ( )A.3B.4C.5D.6 3.()设a >b >0,则a 2+1aa +1a (a -a )的最小值是( )A.1B.2C.3D.44.(2020陕西吴起高中高二期末,)设x ,y 都是正数,且xy -(x +y )=1,则 ( )A.x +y ≥2(√2+1)B.xy ≤√2+1C.x +y ≤(√2+1)2D.xy ≥2(√2+1) 5.(2021江苏苏州新草桥中学高二月考,)正数a ,b 满足9a +b =ab ,若不等式a +b ≥-x 2+2x +18-m 对任意实数x恒成立,则实数m 的取值范围是 ( ) A.m ≥3 B.m <3 C.m <6 D.m ≥66.(2021山东新高考联盟高一联考,)已知1<m <43,则2a -1+34-3a 的最小值是( )A.3√2+9B.√3+6C.6√2+9D.12 7.()已知x >0,y >0,2x -1a =8a -y ,则2x +y 的最小值为 ( ) A.√2B.2√2C.3√2D.48.(2019广东茂名化州高三第一次模拟,)若正数x ,y 满足x +3y =5xy ,当3x +4y 取得最小值时,x +2y 的值为( )A.245 B.2C.285 D.59.(多选)(2020山东莒县第一中学高一月考,)已知x +y =1,y >0,x ≠0,则12|a |+|a |a +1的值可能是 ( )A.12 B.14 C.34 D.54 二、填空题10.(2021山东济宁兖州高一上期中,)已知a >b >0,且ab =4,则a 2+a 2a -a 的最小值为.11.(2021湖南长沙长郡中学高二上入学考试,)已知a ,b 为正实数,且a +b +ab =3,则2a +b 的最小值为 .12.(2020浙江浙南名校联盟高一期末,)若实数a >1,b >2,且满足2a +b -6=0,则1a -1+2a -2的最小值为 .三、解答题13.(2021安徽安庆一中高一上期中,)已知实数x >0,y >0,且2xy =x +y +a (x 2+y 2)(a ∈R).(1)当a =0时,求x +4y 的最小值,并指出取最小值时x ,y 的值; (2)当a =12时,求x +y 的最小值,并指出取最小值时x ,y 的值. 14.()(1)设a >b >c ,且1a -a +1a -a ≥aa -a 恒成立,求m 的取值范围;(2)记F =x +y -a (x +2√2aa ),x >0,y >0,若对任意的x >0,y >0,恒有F ≥0,请求出a 的取值范围.答案全解全析一、选择题1.C 设直角三角形的框架的两条直角边长分别为x m,y m(x >0,y >0),则xy =4,设三角形框架的周长为C ,则C =x +y +√a 2+a 2=x +y +√(a +a )2-8,∵x +y ≥2√aa =4,∴C =x +y +√a 2+a 2≥4+2√2≈6.83,当且仅当x =y =2时,等号成立,故用7m 长的铁丝最合适.故选C .2.B ∵a >0,b >0,1a +1a =1,∴a >1,b >1,a +b =ab , ∴1a -1>0,4a -1>0,∴1a -1+4a -1≥2√4(a -1)(a -1)=2√4aa -(a +a )+1=4, 当且仅当1a -1=4a -1,即a =32,b =3时,等号成立.故选B .3. D ∵a >b >0,∴a -b >0,∴a 2+1aa +1a (a -a )=a 2-ab +ab +1aa +1a (a -a )=a (a -b )+1a (a -a )+ab +1aa ≥2√a (a -a )·1a (a -a )+2√aa ·1aa=4,当且仅当a (a -b )=1a (a -a )且ab =1aa,即a =2b =√2时,等号成立.故选D .4.A ∵x >0,y >0,且xy -(x +y )=1,∴xy =1+(x +y )≥1+2√aa (当且仅当x =y =1+√2时,等号成立), 即(√aa )2-2√aa -1≥0, 解得√aa ≥1+√2, 即xy ≥(1+√2)2.xy =1+(x +y )≤(a +a )24(当且仅当x =y =1+√2时,等号成立),即(x +y )2-4(x +y )-4≥0, 解得x +y ≥2(√2+1).故选A .5.A 因为9a +b =ab ,所以1a +9a =1,且a ,b 均为正数,所以a +b =(a +b )(1a +9a )=10+a a +9a a ≥10+2√a a ·9aa=16,当且仅当a a =9aa ,即a =4,b =12时取等号,所以(a +b )min =16, 若不等式a +b ≥-x 2+2x +18-m 对任意实数x 恒成立, 则16≥-x 2+2x +18-m 对任意实数x 恒成立,即m ≥-x 2+2x +2对任意实数x 恒成立,因为-x 2+2x +2=-(x -1)2+3≤3,所以m ≥3,故选A . 6.C ∵1<m <43,∴m -1>0,4-3m >0,∴2a -1+34-3a =(63a -3+34-3a )[(3m -3)+(4-3m )]=9+6(4-3a )3a -3+3(3a -3)4-3a≥9+6√2,当且仅当6(4-3a )3a -3=3(3a -3)4-3a,且1<m <43,即m =5-√23时取等号.故选C .7.C 2x -1a =8a -y ⇒2x +y =1a +8a ,要求2x +y 的最小值可以先求(2x +y )2的最小值.(2x +y )2=(2x +y )(2x +y )=(2x +y )·(1a +8a )=2+16a a+aa+8=10+16a a+aa≥2√16aa·a a +10=18当且仅当16a a=aa ,即y =4x =2√2时等号成立,则2x +y ≥√18=3√2.8.B ∵x +3y =5xy ,x >0,y >0, ∴15a +35a=1,∴3x +4y =(3x +4y )(15a+35a)=135+3a 5a +12a 5a ≥135+2√3a 5a ·12a 5a=5,当且仅当3a 5a =12a 5a,即x =2y =1时等号成立,此时x +2y =2.故选B.9.CD 由x +y =1,y >0,x ≠0,得y =1-x >0,则x <1且x ≠0. 当0<x <1时,12|a |+|a |a +1=12a +a2-a =a +2-a 4a +a 2-a =14+2-a 4a +a 2-a ≥14+2√2-a 4a ·a 2-a =54, 当且仅当2-a4a =a 2-a ,即x =23时取等号. 当x <0时,12|a |+|a |a +1=1-2a +-a 2-a =2-a +a -4a+-a2-a =-14+2-a -4a +-a 2-a ≥-14+2√2-a -4a ·-a 2-a =34,当且仅当2-a -4a =-a2-a ,即x =-2时取等号. 综上,12|a |+|a |a +1≥34.故选CD . 二、填空题 10.答案 4√2解析 ∵a >b >0,∴a -b >0,又ab =4,∴a 2+a 2a -a =(a -a )2+2aa a -a =a -b +2aa a -a =a -b +8a -a ≥2√(a -a )·8a -a =4√2, 即a 2+a 2a -a ≥4√2,当且仅当a -b =8a -a ,即a =√6+√2,b =√6-√2时取等号.故答案为4√2.11.答案 4√2-3解析 由a +b +ab =3可得(a +1)(b +1)=4,则2a +b =2(a +1)+(b +1)-3≥2√2(a +1)(a +1)-3=4√2-3, 当且仅当{(a +1)(a +1)=4,2(a +1)=a +1,即{a =√2-1,a =2√2-1时等号成立.故答案为4√2-3. 12.答案 4解析 ∵a >1,b >2,且满足2a +b -6=0, ∴2(a -1)+b -2=2,a -1>0,b -2>0,则1a -1+2a -2=(1a -1+2a -2)[2(a -1)+b -2]×12=12[4+a -2a -1+4(a -1)a -2]≥12[4+2√a -2a -1·4(a -1)a -2] =12×(4+4)=4, 当且仅当a -2a -1=4(a -1)a -2,且2a +b -6=0,即a =32,b =3时,等号成立,则1a -1+2a -2的最小值为4.故答案为4. 三、解答题13.解析 (1)当a =0时,2xy =x +y ,∴1a +1a =2,∴x +4y =(x +4y )(1a +1a )×12=12×(5+4a a+a a )≥125+2√4a a ·a a =92,当且仅当4a a =aa 且1a +1a =2,即y =34,x =32时取等号, 故x +4y 的最小值为92,此时x =32,y =34.(2)当a =12时,2xy =x +y +12(x 2+y 2)=x +y +12(x +y )2-xy , ∴3xy =x +y +12(x +y )2≤3(a +a 2)2,解得x +y ≥4,当且仅当x =y 且2xy =x +y +12(x 2+y 2),即x =y =2时取等号, 故x +y 的最小值为4,此时x =2,y =2.14.解析 (1)由a >b >c ,知a -b >0,b -c >0,a -c >0, 所以原不等式等价于a -a a -a +a -aa -a ≥m.要使原不等式恒成立,只需a -a a -a +a -aa -a 的最小值不小于m 即可.因为a -a a -a +a -a a -a =(a -a )+(a -a )a -a +(a -a )+(a -a )a -a =2+a -a a -a +a -aa -a≥2+2√a -a a -a ·a -aa -a =4, 当且仅当a -a a -a =a -aa -a ,即2b =a +c 时,等号成立, 所以m ≤4.(2)由F ≥0,得x +y ≥a (x +2√2aa ). 因为x >0,y >0,所以a ≤a +2√2aa恒成立, 所以a 小于或等于a +2√2aa的最小值.又a +2√2aa ≥a +a a +(a +2a )=12,当且仅当x =2y 时,等号成立,所以a ≤12.。
新课标人教A版高中数学二第三章第2节《直线的点斜式方程与斜截式方程》专项练习
新课标人教A 版高中数学二第三章第2节《直线的点斜式方程与斜截式方程》专项练习知识点一:直线的点斜式方程摸索1:直线l 通过点P0(x0,y0),且斜率为k ,设点P(x ,y)是直线l 上不同于点P0的任意一点,那么x ,y 应满足什么关系?答案:由斜率公式得k =y -y0x -x0,则x ,y 应满足y -y0=k(x -x0).摸索2: 通过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案:斜率不存在的直线不能用点斜式表示,过点P0斜率不存在的直线为x =x0.结论梳理: 知识点二 直线的斜截式方程摸索1:已知直线l 的斜率为k ,且与y 轴的交点为(0,b),得到的直线l 的方程是什么? 答案:将k及点(0,b)代入直线方程的点斜式得:y =kx +b.摸索2:方程y =kx +b ,表示的直线在y 轴上的截距b 是距离吗?b 可不能够为负数和零?答案:y 轴上的截距b 不是距离,能够是负数和零. 结论梳理斜截式已知条件斜率k 和直线在y 轴上的截距b图示方程式y =kx +b点斜式 已知条件点P (x 0,y 0)和斜率k图示方程形式 y -y 0=k (x -x 0) 适用条件斜率存在备注:(1)横截距:令0=y ,解出;横截距:令0=x ,解出y ; (2)直线过点)0,(a ,即横截距为a ,直线过点),0(b ,即纵截距为b . 题型一:直线的点斜式方程例1、写出下列直线的点斜式方程.1、过点(4,-2),倾斜角为150°的直线方程:y -(-2)=-33(x -4)2、过点A(2,-1)且斜率为33的直线的点斜式方程是y +1=33(x -2) 3、若过原点的直线l 的斜率为-3,则直线l 的方程是3x +y =0 4、与直线3x -2y =0的斜率相等,且过点(-4,3)的直线方程为y -3=32(x +4)5、通过点(-1,1),斜率是直线y =22x -2斜率的2倍的直线方程是y -1=2(x +1)6、通过点D(1,2),且与x 轴垂直:x =1(没有点斜式方程)7、通过点(-3,1)且平行于y 轴的直线方程是x =-38、一直线l1过点A(-1,-2),其倾斜角等于直线l2:y =33x 的倾斜角的2倍,则l1的点斜式方程为y +2=3(x +1)9、直线l 过点(-1,-1)和(2,5),点(1 007,b)在直线l 上,则b 的值为__2_015__.10、已知直线l 过点P(2,1),且直线l 的斜率为直线x -4y +3=0的斜率的2倍,则直线l 的方程为x -2y =011、通过点A(2,5),且与直线y =2x +7平行: y -5=2(x -2) 12、通过点C(-1,-1),且与x 轴平行:y -(-1)=0.13、直线y =2x +1绕着其上一点P(1,3)逆时针旋转90°后得到直线l ,则直线l 的点斜式方程是y -3=-12(x -1)题型二:直线的斜截式方程1、在x 轴上截距为2,在y 轴上截距为-2的直线方程为x -y =22、直线y =-2x -7在x 轴上的截距为a ,在y 轴上的截距为b ,则a =-72、b =-73、已知直线的倾斜角为60°,在y轴上的截距为-2,则此直线的方程为y=3x-24、倾斜角为60°,与y轴的交点到坐标原点的距离为3的直线的斜截式方程是y=3x+3或y=3x-35、已知直线l1的方程为y=-2x+3,l2的方程为y=4x-2,直线l 与l1平行且与l2在y轴上的截距相同,则直线l的方程是y=-2x-2.6、过点(1,2)且在两坐标轴上的截距相等的直线方程为__2x-y=0或x +y-3=0__.7、已知直线l的方程为y-m=(m-1)(x+1),若l在y轴上的截距为7,则m=48、在y轴上的截距为-6,且与y轴相交成30°角的直线方程是y=3 x-6或y=-3x-69、通过点(1,1)且在两坐标轴上截距相等的直线是x+y=2或y=x10、已知点(1,-4)和(-1,0)是直线y=kx+b上的两点,则k=__-2 __,b=__-2__11、直线l1:y=k1x+b1与l2:y=k2x+b2的位置关系如图所示,则有(A)A.k1<k2且b1<b2B.k1<k2且b1>b2C.k1>k2且b1>b2D.k1>k2且b1<b2题型三:过定点问题1、方程y=k(x-2)表示(C)A.通过点(-2,0)的所有直线B.通过点(2,0)的所有直线C.通过点(2,0)且不垂直于x轴的所有直线D.通过点(2,0)且除去x轴的所有直线2、直线y=k(x-2)+3必过定点,该定点坐标是(2,3)已知直线kx-y+1-3k=0,当k变化时,所有的直线恒过定点(3,1)3、不论m 为何值,直线mx -y +2m +1=0恒过定点(-2,1) 题型四:图像分析1、直线y =kx +b 通过第一、三、四象限,则有( B ) A .k>0,b>0 B .k>0,b<0C .k<0,b>0D .k<0,b<02、直线y =ax -1a 的图象可能是( B )3、直线y =kx +b 通过第二、三、四象限,则有( D ) A .k>0,b<0 B .k>0,b>0 C .k<0,b>0 D .k<0,b<04、直线y =kx +2(k ∈R)只是第三象限,则斜率k 的取值范畴是(-∞,0]5、已知直线y =(3-2k)x -6不通过第一象限,则k 的取值范畴为[32,+∞)题型五:综合题型1、下列四个结论:①方程k =y -2x +1与方程y -2=k(x +1)可表示同一直线;②直线l 过点P(x1,y1),倾斜角为90°,则其方程为x =x1; ③直线l 过点P(x1,y1),斜率为0,则其方程为y =y1; ④所有直线都有点斜式和斜截式方程. 其中正确的为②③2、已知直线y =-33x +5的倾斜角是直线l 的倾斜角的大小的5倍,分别求满足下列条件的直线l 的方程.(1)过点P(3,-4);(2)在x 轴上截距为-2;(3)在y 轴上截距为3.答案:直线y =-33x +5的斜率k =tan α=-33,∴α=150°,故所求直线l 的倾斜角为30°,斜率k ′=33.(1) y =33x -3-4;(2) y =33x +233;(3) y =33x +3.11、过点()2,1,且只通过两个象限的直线的方程是x y 21=、2=x 、1=y 12、ΔABC 的顶点是A(0,5)、B(1,-2)、C(-5,4),则BC 边上的中线所在的直线方程为52+=x y13、若直线(2m2+m -3)x +(m2-m)y =4m -1在x 轴上的截距为1,则实数m 为2或-1214、将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得直线为y =-13x +1315、直线l 通过点(3,-2),且在两坐标轴上的截距相等,求直线l 的方程.答案: y =-x +1或y =-23x.16、已知,直线l 的方程为4x-y+8=0(1)求直线l 的斜率、在y 轴上的截距 (2)求直线l 与坐标轴围成的三角形的面积答案:(1)8,4==y k ;(2)8=S17、已知直线l 的斜率为16,且和两坐标轴围成面积为3的三角形,求l 的斜截式方程.答案:y =16x +1或y =16x -1.18、斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是y =34x ±319、已知斜率为-43的直线l 与两坐标轴围成的三角形的面积为6,求l 的方程.答案:y =-43x ±4.20、(选做题)已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点;(2)当-3<x<3时,直线上的点都在x 轴上方,求实数k 的取值范畴. 解:(1)证明:由y =kx +2k +1,得y -1=k(x +2). 由直线方程的点斜式可知,直线恒过定点(-2,1). (2)设函数f(x)=kx +2k +1,明显其图象是一条直线(如图所示),若使当-3<x<3时,直线上的点都在x 轴上方,需满足⎩⎪⎨⎪⎧f (-3)≥0,f (3)≥0.即⎩⎪⎨⎪⎧-3k +2k +1≥0,3k +2k +1≥0.解得-15≤k ≤1.1因此,实数k的取值范畴是-5≤k≤1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学试题(必修1第二,三章)
第Ⅰ卷(选择题,共60分)
一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选
项中,只有一项是符合题目要求的)
1.下列函数中,定义域和值域都不是(-∞,+∞)的是
A .x y 3=
B . 3x y =
C .2-=x y
D .x y 2log = 2.下列判断正确的是
A 、35.27.17.1>
B 、328.08.0<
C 、2
2ππ< D 、3.03.09.07.1>
3. 函数y =)23(log 3
1-x 的定义域是
A [1,+∞]
B ⎪⎭⎫
⎝⎛+∞,32
C ⎥⎦⎤⎢⎣⎡132,
D ⎥⎦
⎤ ⎝⎛,132
4.设a >0,将
3
2
2a
a a ⋅表示成分数指数幂,其结果是
A.2
1
a B.65a C.6
7a D.2
3a
5.令0.760.76,0.7,log 6a b c ===,则三个数c b a ,,的大小顺序是
A .a c b <<
B .c a b <<
C .b a c <<
D .a b c << 6.若0<log a 2<1(a >0,且a ≠1),则a 的取值范围是
A.(0,
21) B.(2
1
,1) C.(1,2) D.(2,+∞) 7 已知函数3log ,0()2,0
x x x f x x >⎧=⎨≤⎩,则1
(())9f f =
A.4
B.
14 C.-4 D-1
4 8.函数f (x)是函数g (x)=1
()2
x 的反函数 ,则f
的值为
A -12
B 12
C 2
D -2
9. 已知()x f x a =, ()log (01)a g x x a =<≠, 若(3)(3)0f g <, 那么()f x 与()
g x 在同一坐标系内的图像可能是
10. 函数f(x)=2
x
e x
+-的零点所在的一个区间是
A.(-2,-1) B. (-1,0) C. (0,1) D. (1,2)
11.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第三年造
林
A、14400亩
B、16240亩
C、17280亩
D、20736亩
12.设f (x)是定义在 (-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若
)
(log3
1
2
f
a=
,
)
(log2
1
3
f
b=
,)2
(-
=f
c,则a,b,c的大小关系是
A.c
b
a>
> B.a
c
b>
> C.b
a
c>
> D.a
b
c>
>
第Ⅱ卷(非选择题,共90分)
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13. 幂函数f(x)=(m2-m-1)x1-m在(0,+∞)上是减函数,则f(x)的解析式
是f(x)=
14.函数y=x2
1-的值域是__
15.函数
2
1
2
()log(32)
f x x x
=-+
的单调增区间是___________ 16.某工厂8年来某产品年产量y与时间t年的函数关系如下图,则:
①前3年总产量增长速度越来越快;
②前3年中总产量增长速度越来越慢;
③第3年后,这种产品停止生产;
④第3年后,这种产品年产量保持不变.
以上说法中正确的是__
三、解答题(共6小题,70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.计算题(每小题5分,共10分)
(1)21
1343202
12)12(])2[(])7
3
(2[)25.0(--+-⨯⨯---
(2) 02log 3)2(625lg 4lg 27log 6-++++ .
18.(本题满分12分)已知函数[]2()22,5,5f x x ax x =++∈-
(1)当1a =-时,求函数的最大值和最小值;
(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数
19.(本题满分12分)
(1)求()3
f x x =+- (2)求2
12)(x x g -=的值域.
20.(本题满分12分) 已知()log (1)(0,1)a f x x a a =->≠。
(1)求()f x 的定义域;(2)求使()0f x >成立的x 的取值范围。
21. (本小题满分12分)已知函数
2
()
21
x
f x a
=-
+
在R上是奇函数。
(1)求a的值
(2)求此时()
f x的值域.
22.(本小题满分12分)
目前,成都市B档出租车的计价标准是:路程2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9元/km收取,但超过10 km后的路程需加收
50%的返空费(即单价为1.9×(1+50%)=2.85元/km).
(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)(1)将乘客搭乘一次B档出租车的费用f(x)(元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客行程为16 km,他准备先乘一辆B档出租车行驶8 km,然后再换乘另一辆B档出租车完成余下行程,请问:他这样做是否比只乘一辆B档出租车完成全部行程更省钱?
高一数学试题答题纸
(必修1第二,三章)
一.选择题:
二.填空题:
13. 14. 15. 16.
三.解答题:
17.
18.
19.
20.
21.
22.
高一数学试题
(必修1第二,三章)
参考答案
二、填空题:
13、 x -1
14、 [0,1) 15、 (-∞,1) 16、 ①④ 三、解答题: 17、(1)125
2
-
-------5分 (2)原式32
3log 3lg(254)21=+⨯++
23
lg1032=
++ 313
2322
=++= ………………5分
18.解:2
(1)1,()22,a f x x x =-=-+对称轴min max 1,()(1)1,()(5)37====-=x f x f f x f
∴max m ()37,()1in f x f x == ------6分
(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x 在[]5,5-上单调 ∴5a ≥或5a ≤- ------12分
19.解:(1) 303
320224404x x x x x x x x -≠≠⎧⎧≠⎧⎪⎪
-≥⇒≥⇒⎨⎨⎨≤≤⎩
⎪⎪-≥≤⎩⎩
则函数的定义域{243}x x x ≤<≠且 -------6分
(2)
2
222
110
0110222
x x x x -≥-≤-≤<≤=
则函数的值域为(0,2] -------12分
20解:(1)依题意得10x -> 解得1x < …………… 2分
故所求定义域为{}1x x < ……………… 4分
(2)由()f x >0 得log (1)log 1a a x -> -----5分
当1a >时,11x ->即0x < ………………8分 当01a <<时,011x <-<即01x << ………… 11分 综上,当1a >时,x 的取值范围是{}0x x <,
当01a <<时,x 的取值范围是
{}01x x << …………………… 12分
21、解:(1)∵2
()21
x f x a =-
+在R上是奇函数。
∴(0)0f =,即0
2
021
a -=+-------------3分 ∴ 1a = -----------------------------6分
(2)2()121x f x =-
+, 211x
+>,
20221x ∴<<+, 2
20,1()121
x
f x ∴-<-<∴-<<+ 所以()f x 的值域为(1,1).----------------12分
22、 解:(1)由题意得,车费f (x )关于路程x 的函数为:
⎪⎩⎪⎨⎧≤<-+⨯+≤<-+≤<=)6010(),10(85.289.18)102(),2(9.18)20(,
8)(x x x x x x f ⎪⎩
⎪⎨⎧≤<-≤<+≤<=)6010(,3.585.2)102(,9.12.4)20(,8x x x x x
-----6分
(2)只乘一辆车的车费为:f (16)=2.85×16-5.3=40.3(元);
------8分
换乘2辆车的车费为:2f (8)=2×(4.2+1.9×8)=38.8(元)
------10分
∵40.3>38.8,∴该乘客换乘比只乘一辆车更省钱。
------12分。