安徽新华学校2017数学知识竞赛试卷参考答案
2017年全国初中数学联合竞赛(初二年级)试题参考答案及
在 Rt △ EAD 中,有 422 (98 x)2 x2 ,解得 x 58 .
2017 年全国初中数学联合竞赛试题(初二年级)参考答案及评分标准 第 2 页(共 5 页)
二、填空题:(本题满分 28 分,每小题 7 分)
1.使得等式 1 1 a 3 a 成立的实数 a 的值为_______. 【答】 8 . 由所给等式可得 (1 1 a)3 a2 .令 x 1 a ,则 x 0 ,且 a x2 1,于是有 (1 x)3 (x2 1)2 ,
4.已知正整数 a,b, c 满足 a2 6b 3c 9 0 , 6a b2 c 0 ,则 a2 b2 c2 = ( )
A. 424. 【答】C.
B. 430.
C. 441.
D. 460.
由已知等式消去 c 整理得 (a 9)2 3(b 1)2 75 ,所以 3(b 1)2 75 ,又 b 为正整数,解得1 b 6 .
2
2
Байду номын сангаас
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
BE 28, BC 70 , DCE 45 ,则 DE =
()
B
C
A. 56.
B. 58.
C.60.
D. 62.
为 A. 4. 【答】B.
B.3.
C.2.
D.1.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.
2017安徽省中考数学试题及解答
2017年安徽省初中学业水平考试数 学(试 题 卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷"共6页。
3。
请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4。
考试结束后,请将“试题卷”和“答题卷"一并交回。
一、选择题(本大题共10小题,每小题4分,共40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的。
1.12的相反数是( )A .12;B .12-; C .2; D .-22.计算()23a-的结果是( )A .6a ; B .6a -; C .5a -; D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为( )4.截止2016年底,国家开发银行对“一带一路"沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为( ) A .101610⨯; B .101.610⨯; C .111.610⨯; D .120.1610⨯; 5.不等式420x ->的解集在数轴上表示为( )6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为( ) A .60︒; B .50︒; C .40︒; D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( ) A .280; B .240; C .300; D .2608一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足( )A .()161225x +=;B .()251216x -=;C .()216125x +=;D .()225116x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图像可能是( )10.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足13PABABCD S S =矩形,则点P 到A ,B 两点距离之和PA+PB 的最小值为( )A 29;B 34C .52D 41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________。
2017年全国初中数学竞赛试题参考答案(word版)
2017年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC =都是有理数,而AC =·AD AB 不一定是有理数. 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). (A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2017元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC ∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2017年全国初中数学联合竞赛试题(pdf版,含答案)
D.4.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.
若 a =2,由 ab 6 可得 b 2 或 3, b 2 时可得 c 4 , b 3 时可得 c 5 (不是整数); 2
若 a =1,则 bc 2(1 b c) ,于是可得 (b 2)(c 2) 6 ,可求得 (a,b, c) =(1,3,8)或(1,4,
若 b =6,则 (a 9)2 0 ,解得 a 9 ,此时 c 18 .
2017 年全国初中数学联合竞赛试题参考答案及评分标准 第 4 页(共 7 页)
因此, a 9 , b =6, c 18 ,故 a2 b2 c2 =441.
5.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 BAD ACB 180,且 BC 3,AD 4 ,
(2)以 a 2,b 3,c 4 为边长可以构成三角形,但以 a2 4,b2 9,c2 16 为边长的三角形不存在;
(3)因为 a b c ,所以 | a b | 1 a b 1,| b c | 1 b c 1,| c a | 1 a c 1 ,故三条边中 | c a | 1 大于或等于其余两边,而(| a b | 1)(| b c | 1)(a b 1)(b c 1)=a c 11 a c 1 | c a | 1 ,故
2
4
2
设 m 是最接近 n 的整数,则| m n | 1 , m 1. 2
易知:当 m 1时,| m n | 1 (m 1)2 n (m 1)2 m2 m 1 n m2 m 1 .
2017安徽省中学考试数学精彩试题及问题详解
2017年安徽省初中学业水平考试数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟. 2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分) 1.12的相反数是A .21 B .12-C .2D .2-【答案】B【考查目的】考查实数概念——相反数.简单题. 2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a 【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B .【考查目的】考查三视图,简单题. 4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为A .101610⨯B .101.610⨯C .111.610⨯D .120.1610⨯ 【答案】C【考查目的】考查科学记数法,简单题.5.不等式420x ->的解集在数轴上表示为 ( )【答案】C .【考查目的】考查在数轴上表示不等式的解集,简单题. 6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒ 【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.A .B .C .D .A .B .C .D .30°21第6题图7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 A .280 B .240C .300D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -= 【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又y a b c =++得0a c +=,故0ac <,从而选B .【考查目的】考查初等函数性质及图象,中等题.10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( )ABC. D【答案】D ,P 在与AB 平行且到AB 距离为2直线上,即在此线上找一点到A B ,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是____________ .)第7题图A .B .C .D . 第10题图PDCBA第14题图图1 图2BE (A )DCD第13题图【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ . 【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的DE 的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题. 14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-.【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题. 【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。
2017安徽省中考数学试题及答案
2017年安徽省初中学业水平考试数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷"上答题是无效的. 4.考试结束后,请将“试题卷"和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分) 1.12的相反数是A .21 B .12-C .2D .2-【答案】B【考查目的】考查实数概念——相反数.简单题. 2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a 【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B .【考查目的】考查三视图,简单题. 4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为 A .101610⨯ B .101.610⨯ C .111.610⨯ D .120.1610⨯ 【答案】C【考查目的】考查科学记数法,简单题.5.不等式420x ->的解集在数轴上表示为 ( )【答案】C .【考查目的】考查在数轴上表示不等式的解集,简单题. 6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒ 【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.A .B .C .D .A .B .C .D . 30°21第6题图7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 A .280 B .240C .300D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -= 【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D,又y a b c =++得0a c +=,故0ac <,从而选B .【考查目的】考查初等函数性质及图象,中等题.10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( ) ABC. D【答案】D ,P 在与AB 平行且到AB 距离为2直线上,即在此线上找一点到A B ,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是____________ . 【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ .)第7题图A .B .C .D . 第10题图PDCBA第14题图图1 图2BE (A )DCD 第13题图【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的DE 的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-.【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题. 【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。
2017年试题参考答案(数学)
2017年学科素养考核数学试题参考答案一、选择题(本大题共8小题,每小题5分,共40分)15,68DBBAC CDB --二、填空题(本大题共7小题,每小题5分,共35分) 9.1± 10、1211.7 12、1326m <<13、-6 14 15、①②④ 三、共75分) 16.(10分)解:1680,1681680a b a b a b -+≥⎧∴+=⎨--≥⎩Q …………3分0=3520230a b c a b c +--=⎧∴⎨+-=⎩…………7分解得:170c =…………10分 17.(12分)由12x aa =+=+,…………3分1||a a ==-…………8分10,1,0a aa =≥∴≥∴-≥Q…………10分所以,原式=222aa a =…………12分18、解:(1)设学校购买a 条长跳绳,由题意得:20026201528(2003)2300a a a a a a --≤⎧⎨+⨯+-≤⎩.…………3分 解得:2122226913a ≤≤…………5分∵a 为正整数,∴a 的整数值为23,24,25,26。
所以学校共有4种购买方案可供选择. …………6分 (2)设学校购买a 条长跳绳,由题意得:26201528(3)3000n a a a a a n a --≤⎧⎨+⨯+-=⎩…………8分化简得91341500n a a n ≤⎧⎨+=⎩,得134(375)a n =-, (10)分∴a 为4的倍数,设为4k (k 为整数),则37513n k =-, ∴3751336k k -≤, ∴32749k ≥,∴k 的最小值为8,n 的最大值为271。
…………13分19、(1)证明:∵DC 2=CE •CA ,∴=, …………3分△CDE ∽△CAD , ∴∠CDB =∠DBC , ∴BC =CD ;…………6分(2)解:如图,连接OC , ∵BC =CD , ∴∠DAC =∠CAB ,又∵AO =CO , ∴∠CAB =∠ACO , ∴∠DAC =∠ACO , ∴AD ∥OC , ∴=, …………10分 ∵PB =OB ,CD =, ∴= ∴PC =4又∵PC •PD =PB •PA 所以,半径OB =4, …………13分20、解:(1)y=mx 2﹣2mx ﹣3m=m (x ﹣3)(x+1), ∵m ≠0,∵当y=0时,x 1=﹣1,x 2=3, ∵A (﹣1,0),B (3,0);…………2分 (2)设C 1:y=ax 2+bx+c , 将A 、B 、C 三点的坐标代入得:01930233a b c a a b c b c c -+==⎧⎧⎪⎪++=⇒=-⎨⎨⎪⎪=-=-⎩⎩, 故C 1:223y x x =--…………8分 如图:过点P 作PQ ∵y 轴,交BC 于Q , 由B 、C 的坐标可得直线BC 的解析式为:3y x =- …………5分 设2(,23),(,3)P a a a Q a a ---22239||(3)(23)3()24PQ a a a a a a =----=-+=--+所以3||2BCP S PQ ∆=当x=时,S ∵PBC 有最大值为278此时,33(,)22P - …………8分(3)y=mx 2﹣2mx ﹣3m=m (x ﹣1)2﹣4m , 顶点M 坐标(1,﹣4m ), 当x=0时,y=﹣3m , ∵D (0,﹣3m ),B (3,0), ∵DM 2=(0﹣1)2+(﹣3m+4m )2=m 2+1, MB 2=(3﹣1)2+(0+4m )2=16m 2+4,BD 2=(3﹣0)2+(0+3m )2=9m 2+9, …………10分当∵BDM 为Rt ∵时有:DM 2+BD 2=MB 2或DM 2+MB 2=BD 2. ①DM 2+BD 2=MB 2时有:m 2+1+9m 2+9=16m 2+4, 解得m=﹣1(∵m <0,∵m=1舍去);②DM 2+MB 2=BD 2时有:m 2+1+16m 2+4=19m 2+9, 解得m=﹣(m=舍去).综上,m=﹣1或﹣时,∵BDM 为直角三角形. …………13分21、(1)6)…………2分(2)因为'',OB P OBP QC P QCP ∆≅∆∆≅'',OPB OPB QPC QPC ∴∠=∠∠=∠,BOP CPQ ∴∠=∠所以,OB BPOBP PCQ PC CQ ∆≅∆∴=…………5分由11,6PC t CQ m =-=-,得:21116(011)66m t t t =-+<<…………7分(3)过P 作PE OA E ⊥与点易得,''PC E C QA ∆∆:'''PE PC AC C Q ∴='11,6,PC PC t PE OB AQ m ==-===Q ,'6C Q CQ m ==- …………9分'6AC t===2:3612m t -=即…………12分 将2111666m t t =-+代入得:212322360,t t t -+==解得:t 所以,点P 的坐标为:1111(,6)(33-+或…………14分感谢您的阅读,祝您生活愉快。
2017年安徽中考数学试题及答案
2017年安徽中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 0.5答案:B2. 已知三角形ABC的内角A、B、C满足A+B=2C,且A=60°,则角C的度数为?A. 30°B. 45°C. 60°D. 90°答案:A3. 计算下列表达式的值:(2x-3)(2x+3)-(3x-2)^2A. 4x^2 - 13x + 6B. 4x^2 + 13x - 6C. 4x^2 - 13x - 6D. 4x^2 + 13x + 6答案:A4. 若方程x^2 - 6x + 9 = 0有两个相等的实数根,则该方程的根为?A. 3B. -3C. 0D. 9答案:A5. 函数y=kx+b的图象经过点(1,2)和(2,3),则k和b的值分别为?A. k=1, b=1B. k=1, b=0C. k=-1, b=3D. k=-1, b=1答案:A6. 已知等腰三角形的两边长分别为3和6,下列哪个是它的周长?A. 9B. 12C. 15D. 18答案:C7. 一个不透明的袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率为?A. 1/2B. 3/5C. 2/5D. 4/5答案:B8. 已知函数f(x)=x^2-4x+3,下列哪个是它的对称轴?A. x=-1B. x=1C. x=2D. x=4答案:C9. 计算下列三角函数的值:sin(30°+45°)A. √2/2B. √3/2C. 1D. √2答案:D10. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题3分,共15分)11. 已知直角三角形的两直角边长分别为3和4,它的斜边长为______。
答案:512. 计算下列表达式的值:(a+2)(a-2)-(a-1)^2,其中a=3。
安徽省巢湖市新华学校2017年秋人教九年级(上)期中数学试卷含答案解析
巢湖市新华学校2017年秋九年级(上)期中数学试卷一、选择题:本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案填在括号中。
1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.=2 C.x2+2x=x2﹣1 D.3(x+1)2=2(x+1)2.下列函数中,不是二次函数的是()A.y=1﹣x2B.y=2(x﹣1)2+4 C.y=(x﹣1)(x+4)D.y=(x﹣2)2﹣x23.方程(x+1)(x﹣3)=5的解是()A.x1=1,x2=﹣3 B.x1=4,x2=﹣2 C.x1=﹣1,x2=3 D.x1=﹣4,x2=24.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为( )A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣45.若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是( )A.﹣10 B.10 C.﹣16 D.166.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是( )A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=77.如图,△ABC中,∠C=30°,将△ABC绕点A顺时针旋转60°得△ADE,AE与BC交于F,则∠AFB为多少度?( )A.70°B.90°C.60°D.55°8.下列图形中,不是中心对称图形的是( )A.圆B.菱形 C.矩形 D.等边三角形9.抛物线y=2(x﹣3)2+1的顶点坐标是( )A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)10.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点( )A.(2,4)B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)11.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是( )A.y=3(x+1)2+2 B.y=3(x+1)2﹣2 C.y=3(x﹣1)2+2 D.y=3(x﹣1)2﹣2 12.抛物线y=2x2,y=﹣2x2,共有的性质是( )A.开口向下 B.对称轴是y轴C.都有最高点D.y随x的增大而增大13.二次函数y=ax2+1的图象一定经过的点是( )A.(1,0)B.(﹣1,0)C.(0,1)D.(0,﹣1)14.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为( ) A.﹣3 B.﹣1 C.2 D.515.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x的取值范围是( )A.x<﹣1 B.x>3 C.﹣1<x<3 D.x<﹣1或x>316.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有( )A.①②③B.①②④C.①③④D.②③④二、填空题:本大题共4小题,每小题3分,共12分。
2017年全国初中数学联合竞赛试题含答案
2017 年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则3b+c=()a +2bA. 2.B. 1.C. 0.D.-1.【答】B.已知等式可变形为 2( a+ 2b) + 3(3b+c ) = 90 , 3( a+ 2b) + (3b+c ) = 72 ,解得a+2b=18,3b+c=18 ,所以3b+c=1.a +2b2.已知△ABC的三边长分别是a,b,c,有以下三个结论:(1)以a,b,c为边长的三角形一定存在;(2)以 a 2, b 2, c2为边长的三角形一定存在;(3)以 | a-b | +1,| b-c | +1,| c-a | +1 为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设 a ≥ b ≥ c ,则有 b + c > a .(1)因为 b + c > a ,所以 b + c +222b +c > a ,故以a,b,c为bc > a ,即( b + c ) >( a),即边长的三角形一定存在;(2)以 a =2, b =3, c =4为边长可以构成三角形,但以 a 2= 4, b2= 9, c2=16 为边长的三角形不存在;(3)因为 a ≥ b ≥ c ,所以| a - b |+1= a - b +1,| b - c |+1= b - c +1,| c - a |+1= a - c +1,故三条边中| c - a |+1大于或等于其余两边,而(| a-b | +1)+(| b-c | +1)=(a-b+ 1)+(b-c+1)=a-c+ 1 + 1 >a -c+ 1 =| c-a | +1 ,故以 | a-b | +1 , | b-c | +1 , | c-a | +1 为边长的三角形一定存在.3.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么,好数组的个数为()A. 1.B.2.C.3.D.4.【答】C.若( a, b, c) 为好数组,则abc= 2( a+b+c ) ≤ 6c,所以ab≤6.显然,a只能为1或2.若a =2,由ab≤6可得b=2或3,b=2时可得c=4,b=3时可得c=52(不是整数);若a =1,则bc=2(1+b+c),于是可得(b-2)(c-2)=6,可求得(a,b,c)=(1,3,8)或(1,4,5).综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 ∠BAD + ∠ACB = 180︒,且 BC = 3,AD = 4 ,AC = 5 , AB = 6 ,则 DO = ( )OB10 8 64A..B..C..D..D9 7 5 3E【答】A.C过 B 作 BE // AD ,交 AC 的延长线于点 E ,则 ∠ABE = 180︒ - ∠BAD= ∠ACB ,所以△ ABC ∽△ AEB ,所以AC = BC ,所以4O3AB EBAB ⋅ BC6 ⨯318BEB = = = .A6AC 5 5再由 BE // AD ,得 DO = AD = 4 = 10 .BEOB 18 955.设 A 是以 BC 为直径的圆上的一点,AD ⊥ BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足 ∠BAF = ∠CAE .已知 BC =15 , BF = 6 , BD = 3 ,则 AE = ( )AA. 4 3 .B. 2 13 .C. 2 14 .D. 2 15 .【答】B.FBDEC如图,因为 ∠BAF = ∠CAE ,所以 ∠BAF + ∠BAE = ∠CAE + ∠BAE ,即 6 3∠FAE = ∠BAC = 90︒ .又因为 AD ⊥ BC ,故 AD 2 = DE ⋅ DF = DB ⋅ DC .而 DF = BF + BD = 6 + 3 = 9 ,DC = BC - BD = 15 - 3 =12 ,所以 AD 2 = DE ⋅ 9 = 3 ⋅ 12 ,所以 AD = 6 ,DE= 4 . 从而 AE = AD 2 + DE 2 = 62 + 42 = 213 .6.对于正整数 n ,设 a 是最接近的整数,则 1 + 1 + 1 + +1 = ( n)na 1 a 2 a 3a200A. 191 .B. 192 .C. 193 .D. 194 .777 7 【答】A.对于任意自然数 k , ( k +1 )2 = k 2 + k + 1不是整数,所以,对于正整数 n ,- 1 一定不是整数.n24 2的整数,则| m - |< 1 , m ≥1.设 m 是最接近 nn2易知:当 m ≥1时,| m - |< 1 ⇔ ( m - 1 ) 2 < n < ( m + 1 )2⇔ m 2 - m + 1 < n < m 2 + m + 1 .n 2 2 24 4 于是可知:对确定的正整数 m ,当正整数 n 满足 m 2 - m + 1 ≤ n ≤ m 2+ m 时,m 是最接近的整数,n 即 a n = m .所以,使得 a n = m 的正整数 n 的个数为 2m .注意到132 + 13 = 182 < 200 < 14 2 + 14 = 210 ,因此, a , a , ,8 个 4,……,26 个 13,18 个 14.所以1+1+1+ +1= 2 ⨯1+ 4 ⨯1+ 6 ⨯1+ + 26 ⨯1+ 18⨯1=191.a a a a12313147 123200二、填空题:(本题满分 28 分,每小题 7 分)1.使得等式 1 + 1+a=3a 成立的实数 a 的值为_______.【答】 8 .由所给等式可得 (1 + 1 +a )3=a2.令 x =1+a,则 x ≥0,且a=x2-1,于是有(1+ x )3=( x2-1)2,整理后因式分解得x ( x -3)( x +1)2=0,解得 x= 0 ,x= 3 ,x= -1 (舍去),所以a= -1或a=8.123验证可知: a = -1是原方程的增根, a =8是原方程的根.所以, a =8.2.如图,平行四边形ABCD中,∠ABC=72︒,AF⊥BC于点F, AFM交 BD 于点 E ,若 DE =2AB ,则∠AED =_______.【答】 66︒.BE 取 DE 的中点 M ,在Rt△ ADE中,有 AM = EM =1DE = AB .2设∠AED =α,则∠AME =180︒ -2α,∠ABM =α-18︒.又∠ABM = ∠AMB ,所以180︒ -2α=α-18︒,解得α=66︒.3.设m,n是正整数,且m>n.若9m与9n的末两位数字相同,则m-n的最小值为.【答】10.由题意知,9m- 9n= 9n⋅ (9m-n-1) 是100的倍数,所以9m-n-1是100的倍数,所以9m-n的末两位数字是 01,显然,m-n是偶数,设m-n=2t(t是正整数),则9m-n=92t=81t .计算可知: 812的末两位数字是61, 813的末两位数字是41, 814的末两位数字是21, 815的末两位数字是 01.所以 t 的最小值为5,从而可得 m - n 的最小值为10.4.若实数 x, y 满足 x 3+ y 3+3 xy =1,则 x 2+ y2的最小值为.1【答】2 .因为0= x 3+ y 3+3 xy -1=( x + y )3+(-1)3-3 x 2 y -3 xy 2+3xy=( x+y- 1)( x2+y2-xy+x+y+1) =12(x+y-1)[(x-y)2+(x+1)2+(y+1)2],所以 x = y = -1或x+y=1.若x = y = -1,则 x 2+ y2=2.若x + y =1,则x2+y2=12[(x+y)2+(x-y)2]=12[1+(x-y)2]≥12,当且仅当x=y=12时等号成立.所以, x 2+ y2的最小值为12.第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.已知二次函数y=ax2+bx+c(c≠0)的图象与x轴有唯一交点,则二次函数y=a3x2+b3x+c3的图象与 x 轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数 y = ax 2+ bx + c 的图象与 x 轴有唯一交点,所以∆1=b2-4ac=0,所以b2=4ac≠0.故二次函数 y = a 3 x 2+ b3 x + c3的判别式∆2=(b3)2-4a3c3=b6-161(4ac)3=b6-161(b2)3=1615b6>0 ,所以,二次函数y=a3x2+b3x+c3的图象与x轴有两个交点.2.题目和解答与(A)卷第 1 题相同.3.题目和解答与(A)卷第 3 题相同.4.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2=()A. 424.B. 430.C. 441.D. 460.【答】C.由已知等式消去 c 整理得( a -9)2+3(b -1)2=75,所以3(b -1)2≤75,又b为正整数,所以1≤b≤6.若b =1,则( a -9)2=75,无正整数解;若b =2,则( a -9)2=72,无正整数解;若b =3,则( a -9)2=63,无正整数解;若b =4,则( a -9)2=48,无正整数解;若b =5,则( a -9)2=27,无正整数解;若b =6,则( a -9)2=0,解得a=9,此时c=18.因此, a =9,b=6, c =18,故a2+b2+c2==441.5.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+ ∠ACB=180︒,且BC=3,AD=4,AC =5, AB =6,则DO=()OBA.4.B.6.C.8.D.10.3579【答】D.解答过程与(A)卷第 4 题相同.6.题目和解答与(A)卷第 5 题相同.二、填空题:(本题满分 28 分,每小题 7 分)1.题目和解答与(A)卷第 1 题相同.2 .设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠ACB=7∠OED,∠ABC =5∠OED ,则∠OED =_________.A 【答】10︒.如图,设∠OED = x ,则∠A B =C5,x ∠ACB =7x ,∠DOC= ∠BAC =180︒ -12x ,∠AOC =10x ,所以∠AOD =180︒ -2x ,∠ODE =180︒ - x -(180︒ -2 x)= x ,所以OD=OE=1OA =1OC ,所22B 以∠DOC =60︒,从而可得 x =10︒.3.题目和解答与(A)卷第 3 题相同.4.题目和解答与(A)卷第 4 题相同.EODC第二试(A)一、(本题满分20分)已知实数 x, y 满足x+y=3,1+1=1,求 x 5+ y5的值. x+ y 2x 2+ y2解由1+1=1可得 2( x+y+x2+ y 2)= x 3+ y 3+ x 2 y 2+ xy . x + y 2x 2+ y2设xy = t ,则 x 2+ y 2=( x + y )2-2xy =9-2t , x 3+ y 3=( x + y )[( x + y )2-3 xy ]=3(9-3t ),代入上式可得 2(3 + 9 - 2t ) = 3(9 - 3t ) +t2+t,解得t=1或t=3.……………………10分当 t =3时,xy=3,又x+y=3,故x,y是一元二次方程m2-3m+3=0的两实数根,但易知此方程没有实数根,不合题意.……………………15分当 t =1时,xy=1,又x+y=3,故x,y是一元二次方程m2-3m+1=0的两实数根,符合题意.此时x 5+ y 5=( x 2+ y 2)( x 3+ y 3)-( x + y ) x 2 y 2=(9-2t )⋅[3(9-3t )]-3t 2=123.……………………20分二(、本题满分 25 分)如图,△ ABC 中,AB > AC ,∠BAC = 45︒ ,E 是 ∠BAC的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB . 已知 AF =1, BF = 5,求△ ABC 的面积.解 在 FB 上取点 D ,使 FD =AF ,连接 ED 并延长,交△ ABC 的外接圆于点 G.由 EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =180︒ - 2 ∠EAD =∠BAC , ……………………10 分EAFDCGB……………………15 分 所以 AG = BC ,所以 AC = BG ,所以 AC =BG. 又∠BGE =∠BAE =∠ADE =∠BDG ,所以 BG =BD ,所以 AC =BD =5-1=4, ……………………20 分△ ABC 的 AB 边上的高 h = AC sin 45︒ = 2 2 .所以,△ ABC 的面积 S = 1 ⋅ AB ⋅ h = 1 ⨯ 6 ⨯ 2 = 6 .2 2 ……………………25 分22三、(本题满分 25 分)求所有的正整数数对 ( a , b ) ,使得 a 3 = 49 ⨯ 3b +8 . 解 显然, 49 ⨯ 3b +8 为奇数,所以 a 为奇数.又因为 a 3 = 49 ⨯ 3b + 8 ≥ 49 ⨯ 3 + 8 > 53 ,所以 a > 5 .……………………5 分由 a 3 = 49 ⨯ 3b +8 可得 a 3 - 8 = 49 ⨯3b ,即 ( a - 2)( a 2 + 2a + 4) = 7 2 ⨯3b . ……………………10 分设 ( a - 2, a 2 + 2a + 4) = d ,则 d 为奇数.注意到 a 2 + 2a + 4 = ( a - 2)( a + 4) +12 ,所以 d | 12 ,所以 d=1 或 3. ……………………15 分⎧a - 2 = 7 2,⎧a - 2 = 3b,均无正整数解.……………………20 分若 d =1,则有 ⎨a 2 + 2 a + 4 或 ⎨a 2 + 2 a + 4 = 7 2 ⎪ = 3b ,⎪ , ⎩⎩⎧a - 2 = 3 ⨯7 2, ⎧a - 2 = 3b -1,解得 a =11, b = 3 . 若 d =3,则有 ⎨ 2 + 2 a + 4 b -1或 ⎨ 2 + 2 a + 4 = 3 ⨯7 2 ⎪ a = 3 , ⎪ a ,⎩⎩所以,满足条件的正整数对只有一个,为(11,3).……………………25 分第二试 (B )一、(本题满分 20 分)已知实数 a , b , c 满足 a ≤ b ≤ c , a + b + c =16 , a 2 + b 2 + c 2 +14 abc =128 ,求 c 的值.解 设 a + b = x , ab = y ,依题意有 x 2 - 2 y + (16 - x ) 2 +14 y (16 - x ) =128 ,整理得( x - 8) 2 = 1y ( x -8) ,8所以 x = 8 或 y = 8( x -8) .……………………10 分(1)若 x =8,则 a + b =8,此时 c =8.(2)若 y =8( x -8),即 ab =8( a + b -8),则( a -8)(b -8)=0,所以a=8或b=8.当a =8时,结合 a ≤ b ≤ c 可得 a + b + c ≥24,与 a + b + c =16矛盾.当b =8时,结合 a ≤ b ≤ c 及 a + b + c =16可得 a =0, c =8.综合可知: c =8.……………………20分二、(本题满分 25 分)求所有的正整数m,使得22m-1-2m+1是完全平方数.解当 m =1时,22m-1-2m+1=1是完全平方数.……………………5分当 m >1时,设22m-1-2m+1=n2( n 为正整数).注意到 22m-1- 2m+ 1 = 2 ⋅ (2m-1 ) 2- 2 ⋅ 2 m-1+ 1 = (2 m-1- 1) 2+ (2 m-1 )2,故可得(2 m-1- 1) 2+ (2 m-1 )2=n2,……………………10分所以 22m-2=n2- (2m-1- 1) 2= ( n+ 2 m-1- 1)( n- 2 m-1+1) .……………………15分设 x = n -2m-1+1, y = n +2m-1-1,则x<y, xy =22m-2,所以x,y均为2的方幂.……………………20分又 y - x =2m-2被4除余数为2,所以,只可能x=2, y =2m,故2⨯2m=22m-2,解得m=3.综上可知:满足条件的正整数 m 有两个,分别为1和3.……………………25分三、(本题满分 25 分)如图,O为四边形ABCD内一点,∠OAD= ∠OCB,DOA ⊥ OD , OB ⊥ OC .求证:AB2+CD2=AD2+BC2.AOP 证明由题设条件可知∠AOD = ∠BOC =90︒,又∠OAD =∠OCB,所以△ AOD ∽△ COB ,……………………5分OD AO OC AOB所以OB=CO,从而OB=OD .……………………10分C 又∠AOC = ∠AOB + ∠BOC = ∠AOB + ∠AOD = ∠DOB ,所以△ AOC ∽ △ DOB ,所以∠OAC = ∠ODB .……………………15分设AC 和BD交于点P,则∠APD = ∠AOD =90︒,所以 AC ⊥ DB ,……………………20分所以 AB 2+ CD 2=( AP 2+ PB 2)+( PD 2+ PC 2)=( AP 2+ PD 2)+( PB 2+ PC 2)= AD 2+ BC2.……………………25分。
2017安徽省中考数学试题及答案
2017年安徽省初中学业水平考试数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)1.12的相反数是A .21B .12- C .2 D .2-【答案】B【考查目的】考查实数概念——相反数.简单题. 2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a 【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B .【考查目的】考查三视图,简单题. 4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为 A .101610⨯ B .101.610⨯ C .111.610⨯ D .120.1610⨯ 【答案】C【考查目的】考查科学记数法,简单题.5.不等式420x ->的解集在数轴上表示为 ( )【答案】C .【考查目的】考查在数轴上表示不等式的解集,简单题. 6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒ 【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.A .B .C .D .A .B .C .D . 30°21第6题图7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 A .280 B .240C .300D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -= 【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又y a b c =++得0a c +=,故0ac <,从而选B .【考查目的】考查初等函数性质及图象,中等题.10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( ) ABC. D【答案】D ,P 在与AB 平行且到AB 距离为2直线上,即在此线上找一点到A B ,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是____________ . 【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ .)第7题图A .B .C .D . 第10题图PDCBA第14题图图1 图2BE (A )DCD第13题图【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的DE 的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题. 14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-.【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。
2017年安徽省中考数学试卷及答案解析
2017年安徽省初中学业水平考试数学(试题卷)一、选择题(本题共10个小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是( ) A .12- B .12- C .2D .-22.计算22()a -的结果是( ) A .6aB .6a -C .5a -D .5a3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A. B. C. D .4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A.101610⨯ B .101.610⨯ C.111.610⨯ D .120.1610⨯5.不等式320x ->的解集在数轴上表示为( )A .B . C. D . 6.直角三角板和直尺如图放置.若120∠=︒,则2∠的度数为( )A.60︒ B .50︒ C.40︒ D.30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A .280B .240C .300D .2608.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A .16(12)25x += B .25(12)16x -= C.216(1)25x += D .225(1)16x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是( )A. B . C. D .10.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为( )A 2934241二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是 .12.因式分解:244a b ab b -+= .13.如图,已知等边ABC ∆的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为 .14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =.将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着边BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形.则所得平行四边形的周长为 cm.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|cos60()3--⨯︒-.16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少? 请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.如图,游客在点A 处坐缆车出发,沿A B D --的路线可至山顶D 处.假设AB 和BD 都是直线段,且600AB BD m ==,75α=︒,45β=︒,求DE 的长.(参考数据:sin750.97︒≈,cos750.26︒≈2 1.41≈)18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC ∆和DEF ∆(顶点为网格线的交点),以及过格点的直线l .(1)将ABC ∆向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形; (2)画出DEF ∆关于直线l 对称的三角形; (3)填空:C E ∠+∠= ︒.五、(本大题共2小题,每小题10分,满分20分)19.【阅读理解】 我们知道,(1)1232n n n +++++=,那么2222123n ++++结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即21;第2行两个圆圈中数的和为22+,即22;……;第n 行n 个圆圈中数的和为n nn n n +++个,即2n .这样,该三角形数阵中共有(1)2n n +个圆圈,所有圆圈中数的和为2222123n ++++.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第1n -行的第一个圆圈中的数分别为1n -,2,n ),发现每个位置上三个圆圈中数的和均为 .由此可得,这三个三角形数阵所有圆圈中数的总和为:22223(123)n ++++= .因此,2222123n ++++= .【解决问题】根据以上发现,计算222212320171232017++++++++的结果为 .20.如图,在四边形ABCD 中,AD BC =,B D ∠=∠,AD 不平行于BC ,过点C 作//CE AD 交ABC ∆的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分BCE ∠.六、(本题满分12分)21. 甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5. (1)根据以上数据完成下表:平均数 中位数 方差 甲 8 8 乙 8 8 2.2 丙 63(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.七、(本题满分12分)22.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表: 售价x (元/千克) 50 60 70 销售量y (千克)1008060(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.2017年中考数学参考答案一、1-5:BABCD 6-10:CADBD二、11、3 12、22b a13、14、40或803 3三、15、解:原式12322.16、解:设共有x人,根据题意,得8374x x,解得7x,所以物品价格为87353(元).答:共有7人,物品的价格为53元.四、17、解:在Rt BDF△中,由sinDFBD得,2sin600sin4560030024232DF BD°≈(m).在Rt ABC△中,由cos BCAB可得,cos600cos756000.26156BC AB°(m). 所以423156579 DE DF EF DF BC(m).18、(1)如图所示;(2)如图所示;(3)45五、19、21n1212n nn11216n n n134520、(1)证明:∵B D∠∠,B E∠∠,∴D E∠∠,∵CE AD∥,∴180E DAE∠∠°.∴180D DAE∠∠°,∴AE CD∥.∴四边形AECD是平行四边形.(2)证明:过点O作OM EC,ON BC,垂足分别为M、N. ∵四边形AECD是平行四边形,∴AD EC.又AD BC,∴EC BC,∴OM ON,∴CO平分BCE∠. 六、21、解:(1)(2)因为2 2.23,所以222s s s 甲乙丙,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率4263P. 七、22.解:(1)设y kx b ,由题意,得501006080k b k b ,解得2200k b ,∴所求函数表达式为2200yx .(2)240220022808000W x x x x .(3)22228080002701800Wx x x ,其中4080x ,∵20,∴当4070x 时,W 随x 的增大而增大,当7080x 时,W 随x 的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.八、23、(1)①证明:∵四边形ABCD 为正方形,∴AB BC ,90ABC BCF ∠∠°, 又90AGB ∠°,∴90BAE ABG ∠∠°,又90ABG CBF ∠∠°,∴BAE CBF ∠∠, ∴ABE BCF △≌△(ASA),∴BE CF .②证明:∵90AGB ∠°,点M 为AB 中点,∴MG MA MB ,∴GAM AGM ∠∠, 又∵CGE AGM ∠∠,从而CGE CGB ∠∠,又ECG GCB ∠∠,∴CGE CBG △∽△, ∴CE CGCG CB,即2CG BC CE ,由CFG GBM CGF ∠∠∠,得CF CG .由①知,BE CF ,∴BE CG ,∴2BE BC CE . (2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥, ∴N EAB ∠∠,又CEN BEA ∠∠,∴CEN BEA △∽△, 故CE CNBE BA,即BE CN AB CE ,∵AB BC ,2BE BC CE ,∴CN BE ,由AB DN ∥知,CN CG CFAMGM MB, 又AM MB ,∴FC CN BE ,不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),∴512BEBC , 于是51tan 2FC BE CBFBCBC∠,(方法二)不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),即512BE , 作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NG BC , 设MN y ,则2GN y ,5GM y ,∵GN ANBEAB ,即1221512y y ,解得125y,∴12GM,从而GM MA MB ,此时点G 在以AB 为直径的圆上,∴AGB △是直角三角形,且90AGB ∠°, 由(1)知BE CF ,于是51tan 2FC BE CBFBCBC∠.。
2017年全国高中数学联合竞赛一试(A卷)(含参考答案及评分标准)
答案: 13, 20 . 解:由条件可知: a1 , a2 , b1 均为正整数,且 由于 ,故 . .反复运用 {an } 的递推关系知 , 因此 而 21a1 a10 b10 512b1 2b1 (mod 34) , ,故有 . 另一方面,注意到 ,有 . 当 当 时,①,②分别化为 时,①,②分别化为 ,此时 当 . ,得到唯一的正整数 ,无解. ,得到唯一的正整数 ,故 ②
( x1 + 3x2 + 5 x3 )( x1 +
x2 x3 1 5x + ) = ( x1 + 3x2 + 5 x3 )(5 x1 + 2 + x3 ) 3 5 5 3 2 1 1 5x ≤ ⋅ ( x1 + 3x2 + 5 x3 ) + (5 x1 + 2 + x3 ) 5 4 3
1 PP PF 1 1 P 2F 1 2 4 2 PF 1 2 P 2 F2 PP 1 2 4 2 , ………………15 分 (例如, 当 z1 z2 2 2 i 时,F2 恰是 PP 等号成立当且仅当 F2 位于线段 PP 1 2 上 1 2 的中点) . 综上可知, z1 2 z2 2 z1 z2 的最小值为 4 2 . …………20 分
① ② ③
a b a b ab f k m 1 . 2 2 2
由① ② 2 ③知, a b ( a b) 2 4, =f ( a ) f ( b ) 2 f 2 2 故ba 2 2 .
2
1 14 ………………10 分 = 6 x1 + x2 + 6 x3 20 3 1 9 2 ≤ ( 6 x1 + 6 x2 + 6 x3 ) = , 20 5 1 1 9 = x1 = , x2 0, = x3 当 时不等式等号成立,故欲求的最大值为 . ………20 分 2 2 5 11. ( 本 题 满 分 20 分 ) 设 复 数 z1 , z2 满 足 Re( z1 ) 0, Re( z2 ) 0 , 且
2017安徽省中考数学试题及答案
2017年安徽省初中学业水平考试数 学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的. 4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分) 1.12的相反数是A .21 B .12-C .2D .2-【答案】B【考查目的】考查实数概念——相反数.简单题. 2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a 【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B .【考查目的】考查三视图,简单题. 4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为 A .101610⨯ B .101.610⨯ C .111.610⨯ D .120.1610⨯ 【答案】C【考查目的】考查科学记数法,简单题.5.不等式420x ->的解集在数轴上表示为 ( )【答案】C .【考查目的】考查在数轴上表示不等式的解集,简单题. 6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒ 【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.A .B .C .D .A .B .C .D . 30°21第6题图7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是 A .280 B .240C .300D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -= 【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又y a b c =++得0a c +=,故0ac <,从而选B .【考查目的】考查初等函数性质及图象,中等题.10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( ) ABC. D【答案】D ,P 在与AB 平行且到AB 距离为2直线上,即在此线上找一点到A B ,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分) 11.27的立方根是____________ . 【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ .)第7题图A .B .C .D . 第10题图PDCBA第14题图图1 图2BE (A )DCD第13题图【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的»DE 的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题. 14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-.【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题. 【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。
2017年全国高中数学联合竞赛竞赛加试(A卷)答案
解: 由数列的定义可知 假设对某个整数 r ≥ 2 有 ar = r , 我们证明 = = a1 1, a2 2 . 对 t 1, , r − 1 ,有 = ① ar + 2t −1 = 2r + t − 1 > r + 2t − 1, ar + 2t = r − t < r + 2t . 对 t 归纳证明. 当 t = 1 时 , 由 于 ar= r ≥ r , 由 定 义 , ar +1 = ar + r = r + r = 2r > r + 1 , ar + 2 =ar +1 − (r + 1) =2r − (r + 1) =r − 1 < r + 2 ,结论成立. 设对某个 1 ≤ t < r − 1 ,①成立,则由定义 ar + 2t +1 = ar + 2t + (r + 2t ) = r − t + r + 2t = 2r + t > r + 2t + 1 , ar + 2t + 2 =ar + 2t +1 − (r + 2t + 1) =2r + t − (r + 2t + 1) =r − t − 1 < r + 2t + 2 , 即结论对 t + 1 也成立.由数学归纳法知,①对所有 = t 1, 2, , r − 1 成立,特别当 t= r − 1 时,有 a3r − 2 = 1 ,从而 a3r −1 = a3r −2 + (3r − 2) = 3r − 1 . 若将所有满足 ar = r 的正整数 r 从小到大记为 r1 , r2 , ,则由上面的结论可知 …………………20 分 = r1 1, = r2 2 , rk= 3rk − 1 , k = 2, 3, . +1 由此可知, ,从而 . 32017 1 32018 1 32017 r2019 ,在 1, 2,,32017 中满足 ar = r 的数 r 2 2 共有 2018 个,为 r1 , r2 ,, r2018 . …………………30 分 由于 r2018 由①可知,对每个 k 1, 2, , 2017 , ar r .由于 r2018 1 3
2017年安徽数学竞赛初赛答案
当 x y 时,显然有 f (x ,y )
1 f ( x, y ) 1
yx x y yx yx 1 1 1 2 .---(20 分) 1 1 1 xx y y y y y y 1
上述最后一个不等式利用了结论:当 0 t 1 时, 1+t 1 t 2 . 最后由 f (1,1) 1, f (0,0) 2 可知 f ( x, y ) 的取值范围是 [1,2] .------------------(23 分) 12.设递推数列 a n , bn , c n 满足 a n1 bn cn , bn1 cn a n , cn 1 a n bn , n N . 证明:对于任意正整数 a1 , b1 , c1 ,存在正整数 k ,使得 ak 1 ak , bk 1 bk , ck 1 ck . 证明: 对任意正整数 n, 用 An , Bn , C n 表示 an , bn , cn 的升序排列, 即 An , Bn , C n 是 an , bn , cn 的 重排列,且 An B n C n . 下面证明:存在正整数 n, 使得 An , Bn , C n 至少有两个 相等,即 An B n C n 或者 An B n C n --------------------------------------(5 分) 若不然, 则对任意正整数 n 都有 An Bn Cn ,于是
2
BAC HCA .故 B, C , D, H 共圆。
从而 B, C, D, E, H 五点共圆。---------------------------------------------------(20 分) 10.设 0 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽新华学校2016/2017年度第二学期
数学知识竞赛试卷参考答案
考试时间:60分钟试卷满分:100分
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1-4:D C A D 6-8:B C B A
二、填空题(本大题共4小题,每小题5分,共20分.其中第11题第一个空3分,第二
个和第三个空各1分)
9、 2
10、9900
11、16 ; 5 ; 5
12、
111
33 y x
=-+
三、解答题
13、(1
(2)解:由(1)中的表格可知,蹬同样的圈数,选择前轮齿数48、后轮齿数12的组合可使自行车走的最远。
(4分)
(3)解:由题意得,
设车轮的周长为L,则
L=π×d=3.14×0.636≈1.99 m
蹬一圈走的路程为:1.99×3=5.97 ……………………………………3 分
∴小明从家到学校需要蹬的圈数为:
N=2000335.01
5.97
≈(圈)………………………………………………… 4 分故小明从家到学校至少需要蹬的圈数为336圈. …………………………1分
14、(1)1
32
;(6分)
(2)255
32
(6分)
15、见图(10分)。