2018考研数学基础阶段知识点复习:线性代数之行列式和矩阵
矩阵与行列式的基本概念
矩阵与行列式的基本概念矩阵和行列式是线性代数中的重要概念,广泛应用于各个领域。
本文将介绍矩阵和行列式的基本定义和性质。
一、矩阵的基本概念矩阵是由m行n列数按一定顺序排列成的矩形阵列。
一个m行n 列的矩阵可以表示为如下形式:```A = [a11 a12 a13 ... a1n][a21 a22 a23 ... a2n][... ... ... ... ...][am1 am2 am3 ... amn]```其中,a_ij表示矩阵A中第i行第j列的元素。
矩阵可以进行加法和数乘运算。
两个矩阵相加的定义是:若A和B 是同阶矩阵,它们的和记作C,即C = A + B;数乘的定义是:若A是一个矩阵,k是一个实数,那么kA就是将A的每一个元素都乘以k得到的矩阵。
二、矩阵的特殊类型1. 方阵:行数等于列数的矩阵称为方阵。
2. 零矩阵:所有元素都为零的矩阵称为零矩阵,记作O。
3. 对角矩阵:非对角线上的元素都为零的矩阵称为对角矩阵。
例如,3×3的对角矩阵可以表示为:```D = [d11 0 0][ 0 d22 0][ 0 0 d33]```4. 单位矩阵:对角线上的元素都为1,其余元素都为零的矩阵称为单位矩阵,记作I。
三、行列式的基本概念行列式是一个方阵所特有的一个标量值。
一个n阶方阵A的行列式记作det(A)或|A|,其定义如下:```当n = 1时, |A| = a11。
当n >= 2时, |A| = a11*A11 + a12*A12 + ... + a1n*A1n,其中Aij是A中除第i行第j列的元素得到的子矩阵的行列式。
```行列式具有以下性质:1. 如果矩阵A的某一行或某一列的元素都为零,则det(A) = 0。
2. 如果矩阵A的某一行或某一列有相同的元素,则det(A) = 0。
3. 如果矩阵A中有两行或两列完全相同,则det(A) = 0。
4. 如果矩阵A的某一行(或某一列)的元素都乘以k倍,那么行列式的值也将乘以k倍。
考研数学(线性代数)知识点归纳
考研数学(线性代数)知识点归纳2018考研数学(线性代数)知识点归纳炎炎烈日,正值盛暑,也是考生提升考研数学成绩的关键时期,以下是店铺搜索整理的关于2018考研数学(线性代数)知识点归纳,供参考复习,希望对大家有所帮助!想了解更多相关信息请持续关注我们店铺!不同专业考察的内容不一样,从历年的实际考研试题来看,3类数学的线性代数试题基本相同,差别仅仅在于:数学(一)比数学(二)和(三)多了n维向量空间的相关内容,但这部分内容在考题中很少出现。
第一章、行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章、矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章、向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的.秩6、内积与施密特正交化7、n维向量空间(数学一)第四章、线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章、矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章、二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定。
线性代数各章要点整理
第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
矩阵与行列式
矩阵与行列式矩阵与行列式是线性代数中的重要概念,广泛应用于数学、物理、经济等多个领域。
本文将介绍矩阵和行列式的定义、性质以及它们之间的关系。
一、矩阵的定义与性质1.1 矩阵的定义矩阵是一个二维的数组,由 m 行 n 列元素组成。
通常我们用大写字母表示矩阵,如 A = [a_ij]。
其中,a_ij 表示矩阵 A 的第 i 行第 j 列的元素。
1.2 矩阵的运算矩阵可以进行加法、减法和数乘等运算。
设 A 和 B 是同型矩阵,即具有相同的行数和列数,则有以下运算规则:- 矩阵加法:A + B = [a_ij] + [b_ij] = [a_ij + b_ij]- 矩阵减法:A - B = [a_ij] - [b_ij] = [a_ij - b_ij]- 数乘:kA = k[a_ij] = [ka_ij],其中 k 是标量。
1.3 矩阵的乘法矩阵的乘法是矩阵运算中的重要部分。
设 A 是 m × n 的矩阵,B 是n × p 的矩阵,则它们的乘积 C = AB 是一个 m × p 的矩阵,且满足以下定义:- C 的第 i 行第 j 列元素 c_ij 可通过将 A 的第 i 行与 B 的第 j 列对应位置的元素进行乘法运算,并求和得到。
二、行列式的定义与性质2.1 行列式的定义行列式是一个多项式,用于表示一个方阵的性质。
一个 n × n 的方阵 A 的行列式记作 |A| 或 det(A)。
对于 2 × 2 的方阵 A = [[a, b], [c, d]],其行列式为 |A| = ad - bc。
对于n > 2 的方阵,行列式的计算可以使用代数余子式或按行(列)展开法进行。
2.2 行列式的性质- 行列式是一个线性运算:对于任意一个 n × n 的方阵 A,如果将某一行(列)的元素按比例加(减)到另一行(列),则行列式的值也会按相同比例变换。
- 互换行(列)会改变行列式的符号:如果交换方阵 A 的两行(列),行列式的值会变为原值的相反数。
线性代数下的行列式和矩阵
线性代数下的行列式和矩阵线性方程组一般有 m 个常数项,n 个未知数,m * n 个系数。
若常数项全为 0 ,则为齐次线性方程组;若未知数全为0 ,则称为零解。
于是我们考虑的问题是:齐次方程组:1.是否存在非零解,以及存在的条件2.通解的结构与性质3.解法非齐次方程组:1.是否有解,以及有解的条件是什么2.有多少解以及对应解数量的条件是什么3.多解的结构与性质4.解法行列式二,三阶行列式行列式的初始作用是解线性方程组!例如:最简单的二元线性方程组\left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{aligned} \right.\Rightarrow 消元 \Rightarrow \left\{ \begin{aligned}x_1 = \frac{b_1a_{22} - b_2a_{12}}{a_{11}a_{22} -a_{12}a_{21}} \\ x_1 = \frac{b_2a_{21} -b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} \end{aligned} \right.可以得出结论,答案是由方程的四个系数和常数决定的。
所以记住四个系数作为行列式,指定行列式的值是上式的分母:\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}于是有了这么一个行列式之后,我们就可以得到:D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \ D_1 = \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{bmatrix} \ D_2 = \begin{bmatrix}a_{21} & b_1 \\ a_{21} & b_2 \end{bmatrix} \\Rightarrow \\ x_1 = \frac{D_1}D, x_2 = \frac{D_2}D同理可以推广到三元线性方程组,定义三阶行列式。
线性代数讲义1矩阵与行列式
逆矩阵的求法
01
02
03
高斯-约旦消元法
通过行变换将矩阵变为行 阶梯形,然后回代求解。
伴随矩阵法
先求出矩阵的伴随矩阵, 然后利用公式$A^{-1} = frac{1}{|A|} * adj(A)$求出 逆矩阵。
分解法
将矩阵分解为若干个简单 的矩阵的乘积,然后利用 这些简单的矩阵求逆,最 后再求出原矩阵的逆。
CHAPTER
高斯消元法的原理与步骤
高斯消元法的原理是通过一系列行变 换将增广矩阵转换为上三角矩阵,从 而求解线性方程组。
步骤包括:将增广矩阵的系数矩阵进 行初等行变换,将其化为行阶梯形矩 阵,然后继续进行行变换,将其化为 上三角矩阵,最后求解未知数。
高斯消元法的应用场景
解决线性方程组
高斯消元法是解决线性方程组的 一种常用方法,适用于系数矩阵 为方阵且系数矩阵可逆的情况。
数。
01
1. r(A) ≤ min(m, n), 其中m和n分别是矩阵A
的行数和列数。
03
3. r(A) = r(AA^T),即 矩阵的秩等于其与自身 转置相乘后的矩阵的秩。
05
性质:矩阵的秩是唯一 的,且满足以下性质
02
2. r(A) = r(A^T),即矩 阵的秩等于其转置矩阵
的秩。
04
秩的计算方法与性质
高斯消元法的优缺点分析
优点
高斯消元法是一种稳定可靠的方法,能够得到线性方程组的精确解。它具有较高的数值 稳定性,适用于大规模问题。此外,高斯消元法还可以用于求解特征值和特征向量等问
题。
缺点
高斯消元法需要手动操作,对于大规模问题需要消耗大量的计算资源和时间。同时,对 于病态问题或者系数矩阵接近奇异的情况,高斯消元法可能会失去数值稳定性,导致求
2018考研数学线代重点:行列式重点及常考题型
凯程考研辅导班,中国最权威的考研辅导机构
2018考研数学线代重点:行列式重点及
常考题型
目前是考研突破提升的一个重要阶段,距离最终冲刺也没多少时日了,这个过渡期对考生而言很关键,冲刺能否发力,现阶段复习一定要做好铺垫,考研数学中,线性代数数学一、二、三中都有,且占比22%,大家要好好复习,做好总结。
下面是凯程考研为大家整合的线性代数行列式部分的重点内容和常考题型,大家参考。
2018考研数学线代重点:行列式重点及常考题型
一行列式
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。
如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。
所以要熟练掌握行列式常用的计算方法。
1、重点内容:行列式计算
(1)降阶法
这是计算行列式的主要方法,即用展开定理将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。
(2)特殊的行列式
有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2、常见题型
(1)数字型行列式的计算
(2)抽象行列式的计算
(3)含参数的行列式的计算
(4)代数余子式的线性组合
第1页共1 页。
考研数学线性代数必考的知识点
考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
随机变量之于概率正如矩阵之于线性代数。
考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。
所以随机变量的理解至关重要。
讨论完随机变量之后,讨论其描述方式。
分布即为描述随机变量的方式。
分布包括三种:分布函数、分布律和概率密度。
其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。
之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。
介绍完一维随机变量之后,推广一下就得到了多维随机变量。
矩阵与行列式的基本概念与运算
矩阵与行列式的基本概念与运算矩阵和行列式是线性代数中基本的概念和工具。
在数学和工程领域中,它们广泛应用于解方程组、描述线性映射和计算变换等问题。
本文将介绍矩阵和行列式的基本概念,并讨论它们的运算规则和性质。
一、矩阵的基本概念矩阵是由一组排列成矩形的数按照一定规律排列组成的数表。
具体地,一个 m×n 的矩阵由 m 行和 n 列构成,其中每个元素可以是任意实数或复数。
通常用大写字母表示矩阵,如 A、B、C,矩阵元素用小写字母表示,如 aij,表示矩阵 A 的第 i 行第 j 列的元素。
例如,一个 2×3 的矩阵可以表示为:A = [a11 a12 a13][a21 a22 a23]二、矩阵的运算1. 矩阵的加法与减法设有两个 m×n 的矩阵 A 和 B,它们可以相加或相减,其结果仍为一个 m×n 的矩阵。
加法运算的规则是将对应位置的元素相加,减法运算的规则是将对应位置的元素相减。
例如,设有两个 2×2 的矩阵 A 和 B:A = [a11 a12][a21 a22]B = [b11 b12][b21 b22]则矩阵 A 与 B 的和为:A +B = [a11+b11 a12+b12][a21+b21 a22+b22]2. 矩阵的数乘矩阵与数的乘积为将矩阵的每个元素与该数分别相乘。
例如,设有一个 2×2 的矩阵 A 和一个数 k:A = [a11 a12][a21 a22]则矩阵 A 与数 k 的乘积为:kA = [ka11 ka12][ka21 ka22]3. 矩阵的乘法设有两个矩阵 A 和 B,若矩阵 A 的列数等于矩阵 B 的行数,则可以进行矩阵乘法运算。
矩阵乘法的规则是将矩阵 A 的每一行与矩阵 B 的每一列对应位置元素相乘,并将结果相加。
例如,设有两个 2×3 的矩阵 A 和 B:A = [a11 a12 a13][a21 a22 a23]B = [b11 b12 b13][b21 b22 b23][b31 b32 b33]则矩阵 A 与 B 的乘积为一个 2×3 的矩阵 C:C = [a11b11+a12b21+a13b31 a11b12+a12b22+a13b32a11b13+a12b23+a13b33][a21b11+a22b21+a23b31 a21b12+a22b22+a23b32a21b13+a22b23+a23b33]三、行列式的基本概念行列式是一个由矩阵中元素按一定规则组合而成的标量。
考研数学线性代数每年必考的知识点
考研数学线性代数每年必考的知识点考研数学线性代数每年必考的知识点线性代数是考研数学中比较重要的一部分内容,考生要认真复习,尤其注意对重点知识的理解和应用。
店铺为大家精心准备了考研数学线性代数每年必考的难点,欢迎大家前来阅读。
考研数学线性代数每年必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学拿高分的技巧1、认真思考数学问题的习惯思考对于数学的学习是最核心的,对做题更甚。
不坚持去思考,不仔细去联想,类比,总结只相当于背书,是学不到数学的本质的,想考高分是不可能的。
举一个例子:中值定理那块的证明题,一开始不会证,我就忍住不去看答案,自己去思考,有时候一晚上都在思考一个题。
这样思考,我会想到很多知识点并加以整合,会慢慢提炼出思路。
以后解这一类题就会顺畅很多。
考研的题肯定是自己没见过的,平常做题时不会就去看答案,考场上可没有现成的答案看啊。
大学数学易考知识点线性代数中的矩阵与行列式
大学数学易考知识点线性代数中的矩阵与行列式大学数学易考知识点:线性代数中的矩阵与行列式在大学数学中,线性代数是一门重要的基础课程,其中矩阵与行列式是其核心内容之一。
掌握了矩阵与行列式的基本概念和操作方法,对于理解和应用线性代数具有极大的帮助。
本文将介绍线性代数中矩阵与行列式的相关知识点,帮助理清概念、加深理解,并为后续的学习奠定基础。
一、矩阵的基本概念与运算1. 矩阵的定义矩阵是一个由m行n列的数字按一定顺序排成的一个矩形阵列。
其常用表示形式为:A = [aij]m×n = |a11 a12 .. a1n||a21 a22 .. a2n||... ... .. ... ||am1 am2 .. amn|其中,a_ij表示矩阵A中第i行第j列的元素。
2. 矩阵的运算(1)矩阵的加法:若A = [aij]m×n,B = [bij]m×n为两个m×n矩阵,则矩阵A与B的和为C = [cij]m×n,其中cij = aij + bij。
(2)矩阵的数乘:若A = [aij]m×n为一个m×n矩阵,k为任意实数,则kA = [kaij]m×n。
(3)矩阵的乘法:若A = [aij]m×p为一个m×p矩阵,B = [bij]p×n为一个p×n矩阵,则矩阵A与B的乘积为C = [cij]m×n,其中cij =∑(k=1→p) aikbkj。
二、行列式的基本概念与性质1. 行列式的定义行列式是一个与矩阵相关的数。
对于一个n阶方阵A = [aij]n×n,其行列式记为|A|或det(A),定义为:|A| = ∑(s∈Sn) (sgn(s)·a1s(1)·a2s(2)·...·ans(n))其中,Sn为全排列的集合,sgn(s)为排列s的逆序数的(-1)^k次方。
矩阵与行列式的联系与区别
A31
A41
3、 AA* A* A A I
4、 A* A A1 (A 可逆)
5、 A* A n1
6、 A* 1 A1 * 1 A (A 可逆) A
7、 A* T AT *
8、 AB* B* A*
判断矩阵是否可逆:充要条件是 A 0 ,此时 A1 1 A* A
5、若 A 可逆,则 A1 A 1
伴随矩阵:A
为
N
阶方阵,伴随矩阵:
A*
A11 A21
A12 A22
(代数余子式)
特殊矩阵的逆矩阵:(对 1 和
B C
则
D 1
A1 O
A1BC C 1
1
A1
A11
2、准对角矩阵
A
A2
A3
,
则 A1
A4
A2 1
求逆矩阵的方法:
定义法 AA1 I
伴随矩阵法 A1 A* A
初等变换法 A | In In | A1
只能是行变换
k 3、可逆矩阵 A 的转置 AT 也是可逆的,且 ( AT )1 ( A1)T
4、两个可逆矩阵 A 与 B 的乘积 AB 也是可逆的,且 ( AB)1 B1 A1
但是两个可逆矩阵 A 与 B 的和 A+B 不一定可逆,即使可逆,但 ( A B) A1 B1
A 为 N 阶方阵,若|A|=0,则称 A 为奇异矩阵,否则为非奇异矩阵。
线性代数复习总结大全
矩阵与行列式的联系与区别: 都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,
就 相 等 , 矩 阵 是 一 个 数 表 , 对 应 元 素 相 等 才 相 等 ; 矩 阵 (kaij )n k (aij )n , 行 列 式
2018考研数学一线性代数行列式复习内容介绍
2018考研数学一线性代数行列式复习内容介绍
来源:智阅网
线性代数在考研数学一中,也占有很重要的位置。
需要我们认真复习,才能取得不错的成绩。
那么,我们就来了解一下在强化阶段,线性代数中行列式的主要内容有哪些,以方便我们的复习。
行列式这个章节的核心考点主要分为两大块,一是行列式的计算,二是行列式的应用。
行列式计算的主要方法有:第一,利用行列式的相关性质化行列式为上三角或下三角来进行计算;第二,利用行列式的行展开或列展开定理来进行计算;第三,利用特殊行列式来进行计算,如范德蒙行列式,行(列)和相等行列式,广义对角行列式等等,第四,利用特征值来计算行列式。
行列式的应用主要体现在利用克莱姆法则判断方程组解的情况以及如何求解整个方程组,在判断方程组解的情况时只要方程组满足是方形的也就是方程组的个数和未知数的个数相等时往往利用克莱姆法则来判断解的情况来的更快,更简捷。
总之,行列式这个章节整体的落脚点还是在行列式的计算上,在后面章节中求解特征值时都要用到行列式的相关计算。
我们还可以做做汤家凤老师的2018《考研数学15真题解析与方法指导》(数学一),书中对于真题常考题型解析详尽,有助于我们掌握常考题型和方法技巧。
所以,想买考研数学相关书籍的朋友,还可以去天猫商城北京世纪文都图书专营店上看看,最近有很多购书优惠,买得越多,折扣越多。
矩阵和行列式知识要点
矩阵和行列式知识要点一、矩阵的定义与基本运算:1.矩阵的定义:矩阵是一个按照矩阵元素排列形成的矩形阵列。
通常用大写字母表示,如A。
2.矩阵的元素:矩阵中的每个数称为矩阵的元素,用小写字母表示,如a。
3.矩阵的维数:矩阵的行数和列数称为矩阵的维数。
若一个矩阵有m 行n列,称为m×n阶矩阵。
4.矩阵的运算:a.矩阵的加法:如果两个矩阵A和B的维数相同,则它们可以相加,A+B的结果是一个与A和B维数相同的矩阵,即对应元素相加。
b.矩阵的数乘:如果一个矩阵A乘以一个数k,那么结果是一个与A 维数相同的矩阵,即将A的每个元素乘以k。
c.矩阵的乘法:如果两个矩阵A和B可以相乘,那么它们的乘积AB 的结果是一个新的矩阵,其行数等于A的行数,列数等于B的列数。
矩阵乘法不满足交换律。
二、行列式的定义与性质:1.行列式的定义:对于一个n×n的矩阵,将它的元素按照一定的规则排列成一个方阵,方阵元素的排列称为一个排列,用行列式表示。
行列式实际上是对矩阵的一种性质的一种数学描述。
2.行列式的计算:a.二阶行列式:二阶行列式即2×2阶矩阵的行列式。
b. 三阶行列式:三阶行列式即3×3阶矩阵的行列式。
可以利用“Sarrus法则”进行计算。
c. n阶行列式:n阶行列式可以利用定义展开、代数余子式、Laplace定理等方法进行计算。
3.行列式的性质:a.行列式的性质1:行列式与它的转置行列式相等。
b.行列式的性质2:互换行列式的两行(两列),行列式变号。
c.行列式的性质3:若行(列)中有零元素,则行列式的值为0。
d.行列式的性质4:若行(列)的其中一元素可被另一行(列)的元素表示,则行列式的值为0。
e.行列式的性质5:行列式中有两行(两列)完全相同,则行列式的值为0。
三、逆矩阵与可逆矩阵:1.逆矩阵的定义:对于一个n×n的矩阵A,如果存在一个n×n的矩阵B,使得AB=BA=I(单位矩阵),则A称为可逆矩阵,B称为A的逆矩阵,且B=A^(-1)。
考研数学线性代数知识点总结
考研数学线性代数知识点总结线性代数是考研数学中的重要组成部分,对于很多考生来说,它既是重点也是难点。
以下将对线性代数的主要知识点进行详细总结。
一、行列式行列式是线性代数中的一个基本概念,它是一个数值。
行列式的计算方法有很多,比如按行(列)展开、化为上三角(下三角)行列式等。
行列式的性质包括:行列式与它的转置行列式相等;行列式中某行(列)元素乘以同一数后,加到另一行(列)对应元素上,行列式的值不变等。
二、矩阵矩阵是线性代数的核心内容之一。
矩阵的运算包括加法、减法、数乘、乘法等。
矩阵乘法需要注意其运算规则,一般不满足交换律。
矩阵的逆是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵 A⁻¹,使得AA⁻¹=A⁻¹A =E(单位矩阵)。
矩阵的秩也是一个关键概念,它表示矩阵中线性无关的行(列)向量的最大个数。
三、向量向量是线性代数中的重要概念,包括行向量和列向量。
向量组的线性相关性是重点,判断向量组线性相关或线性无关的方法有定义法、秩法等。
向量组的极大线性无关组和向量组的秩也是常考内容。
四、线性方程组线性方程组是线性代数中的核心问题之一。
齐次线性方程组和非齐次线性方程组的解法不同。
对于齐次线性方程组,当系数矩阵的秩等于未知数的个数时,方程组有唯一零解;当系数矩阵的秩小于未知数的个数时,方程组有非零解。
对于非齐次线性方程组,如果系数矩阵的秩等于增广矩阵的秩,则方程组有解;否则无解。
当有解时,如果秩等于未知数的个数,有唯一解;否则有无穷多解。
五、特征值与特征向量矩阵的特征值和特征向量是线性代数中的重要概念。
设 A 是 n 阶矩阵,如果存在数λ和非零向量 x,使得 Ax =λx,则称λ是 A 的特征值,x 是 A 的对应于特征值λ的特征向量。
求特征值和特征向量的方法是通过求解特征方程|λE A| = 0 得到特征值,然后代入(λE A)x = 0 求解特征向量。
六、相似矩阵相似矩阵具有相同的特征值。
线性代数知识点梳理:行列式与矩阵运算
线性代数知识点梳理:行列式与矩阵运算线性代数是数学的一个重要分支,对于理解和解决现实世界中的问题具有重要意义。
在学习线性代数的过程中,行列式与矩阵运算是其中的重要组成部分。
本文将对行列式与矩阵运算的相关知识点进行梳理,帮助读者深入理解这一内容。
行列式的概念与性质行列式是一个数学工具,用于描述线性方程组的解的性质。
在代数学中,一个n阶方阵的行列式是一个确定的值,它是通过方阵中元素的线性组合而得到的。
行列式的计算方法有很多,比如拉普拉斯定理,莱布尼茨展开式等。
行列式的符号通常用竖线“| |”表示,如|A|表示矩阵A的行列式。
行列式具有一些重要的性质,例如:1.互换行(列):如果行(列)互换,行列式取相反数。
2.行(列)成比例:如果矩阵的某一行(列)是另一行(列)的k倍,行列式的值也将乘以k。
3.行(列)相加:如果把矩阵的某一行(列)乘以k后加到另一行(列)上,行列式的值不变。
4.三角矩阵:上(下)三角矩阵行列式等于主对角线元素的乘积。
通过这些性质,我们可以简化行列式的计算,并在求解线性方程组等问题中应用行列式的性质。
矩阵运算与特殊矩阵矩阵是线性代数中另一个重要的概念,它是数字或符号排成若干行和若干列的矩形阵列。
矩阵可以进行加法、数乘、乘法等运算,这些运算有着重要的数学性质。
矩阵的加法和数乘运算是比较简单的,矩阵之间的加法就是对应元素相加,数乘就是矩阵中的每个元素都乘以相同的数。
矩阵的乘法是比较复杂的,矩阵乘法遵循结合律并不满足交换律。
特殊的矩阵包括对称矩阵、反对称矩阵、单位矩阵等。
对称矩阵是转置矩阵等于自身的矩阵,反对称矩阵是转置矩阵的相反数,单位矩阵是对角元素为1,其他元素为0的矩阵。
这些特殊矩阵在数学和物理领域中有着重要的应用。
行列式与矩阵之间的关系行列式与矩阵之间有着密切的联系。
通过矩阵的初等变换,我们可以改变行列式的取值,从而简化行列式的求解。
矩阵的逆也与行列式有关,方阵可逆当且仅当其行列式不等于0。
考研数学有哪些线性代数复习重点
考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。
店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。
考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。
考试要求:1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。
考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、了解分块矩阵及其运算。
新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。
解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。
从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。
这部分内容的增加,加大了对数学二同学矩阵方面的要求。
同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。
还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。
第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。
矩阵与行列式的联系与区别
1 1 A k
( A 1 ) T
1
4、两个可逆矩阵 A 与 B 的乘积 AB 也是可逆的,且 ( AB )
B 1 A 1
1 1
但是两个可逆矩阵 A 与 B 的和 A+B 不一定可逆,即使可逆,但 ( A B ) A B A 为 N 阶方阵,若|A|=0,则称 A 为奇异矩阵,否则为非奇异矩阵。 5、若 A 可逆,则 A
1
A
1
伴随矩阵:A 为 N 阶方阵,伴随矩阵: A A 21
*
A11
A12 A22
(代数余子式)
特殊矩阵的逆矩阵: (对 1 和 2,前提是每个矩阵都可逆) 1、分块矩阵 D
A B O C A2
则D
1
A 1 O
A1 BC 1 C 1 A2
1
A1 2、 准对角矩阵 A
3、 AA A A A I 5、 A A
* n 1 * *
A3
A11 1 , 则 A A4
* 1
A3
1
1 A4
线性代数复习总结大全
矩阵与行列式的联系与区别: 都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等, 就 相 等 , 矩 阵 是 一 个 数 表 , 对 应 元 素 相 等 才 相 等 ; 矩 阵 ( kaij ) n k ( aij ) n , 行 列 式ຫໍສະໝຸດ kaij k n aij
4、 A A A (A 可逆) 6、 A
* 1
A1
*
1 A (A 可逆) A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018考研数学基础阶段知识点复习:线性代数之行列式和矩阵
线性代数是考研数学中必考的一科,不管是在数一中,还是在数二中,甚至是在数三中都占有22%的比例,一共34分。
虽然其比例没有高数大,但是在最后的分数中也占有举足轻重的地位。
线性代数要是学不好的话,你最后的考试分数也不会理想的。
所以对于线性代数的复习2018考研的同学们也要给予足够的重视。
线性代数主要分为三大块,一是线性方程组的求解;二是向量组线性相关和线性无关的问题;三是矩阵对角化的问题。
而行列式和矩阵是线性代数的两个基础工具,贯穿于整个线性代数中,考生对于二者的基本性质、运算及二者之间的关一定要把握准确,确保在后面的学习过程中可以灵活应用。
常考考点常考题型考试要求
行列式的计算 1.数字型行列式的
计算
2.抽象型行列式的
计算1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
行列式的应用克拉默法则的应用 1.会用克拉默法则
矩阵的运算 1.利用矩阵乘法的
结合律计算乘积矩1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、
阵
2.计算矩阵的高次幂
3.求矩阵的逆矩阵
4.证明抽象矩阵可逆,并求逆矩阵的表达式对称矩阵和反对称矩阵以及它们的性质。
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件
伴随矩阵 1.计算与伴随矩阵
有关的矩阵行列式
2.求与伴随矩阵有
关的矩阵的逆矩阵
3.求与伴随矩阵有
关的矩阵的秩
4.求伴随矩阵的表
达式理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
矩阵的秩 1.求数字矩阵的秩
2.求抽象矩阵的秩
3.已知矩阵秩的信
息,求其待定常数
或其满足的表达式
理解矩阵的秩的概念
矩阵方程 1.求解系数矩阵可
逆的矩阵方程
2.求解系数矩阵不
可逆或非方阵的矩
阵方程掌握用初等变换求矩阵的秩和逆矩阵的方法.
初等变换 1.用初等矩阵表示
矩阵的初等变换
2.利用初等矩阵及
其性质表示变换前
或变换后的矩阵或
其运算后的矩阵及
其性质
3.讨论与等价矩阵
有关的问题理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念
线性代数的学习方法不同于高等数学,刚开始学习起来较为抽象,不容易懂,希望大家在学习的过程中努力钻研,取得一个好成绩。
通过上面一题,我们大致可以知道判断间断点的类型的步骤。
首先是找出函数没有定义的点,没有定义的点必然为间断点,以及分段函数的分段点,分段点是可疑的间断点。
然后分别求以上点的左右极限,然后根据间断点的分类来判断其类型。
对于这一类型的题目,属于基础题,掌握相关的知识点,求解左右极限,就可以了。