湘教版数学八年级上册第1章分式2测试题(无答案)
湘教版八年级上册数学第1章 分式含答案
湘教版八年级上册数学第1章分式含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.a 6÷a 2=a 3B. + =3C.(a 2)3=a 6D.(a+b)2=a 2+b 22、()A.-2B.C.2D.3、已知,则M等于()A. B. C. D.4、下列运算正确的是()A. B. C. D.5、下列运算中,正确的是()A.4m-m=3B.-(m-n)=m+nC.(m 2)3=m 6D.m 2÷m 2=m6、下列计算正确的是()A. B. C. D.7、计算的结果是()A.﹣ yB.C.D.8、分式方程= 的解为( )A.x=0B.x=3C.x=5D.x=99、下列计算正确的是( )A. B. C. D.10、计算:﹣的正确结果是()A.-B.1-xC.1D.-111、下列分式中是最简分式的是()A. B. C. D.12、若(1﹣x)1﹣3x=1,则x的取值有()个.A.1个B.2个C.3个D.4个13、已知5x=3,5y=2,则52x﹣3y=()A. B.1 C. D.14、分式方程的解为( )A.x=1B.x=2C.x=4D.x=315、在,,,,,中,分式的个数有()A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、若,则________.17、当k=________时,关于x的方程+2= 会产生增根.18、计算(π-1)0的正确结果是________。
19、若使代数式有意义,则x的取值范围是________.20、李明同学从家到学校的平均速度是每小时a千米,沿原路从学校返回家的速度是每小时b千米,则李明同学来回的平均速度是________千米/小时(用含a、b的式子表示)21、若分式有意义,则x的取值范围是________;当x=________时,分式的值为0.22、化简:的结果是________.23、当x________ 时,分式有意义.24、关于x的分式方程的解为正数,则m的取值范围是________.25、若等式(x3﹣2)0=1成立,则x的取值范围是________.三、解答题(共5题,共计25分)26、(1)约分:;(2)约分:.27、先化简:(2x﹣)÷,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.28、计算:()0+﹣(﹣1)2015﹣tan30°.29、先化简,再求值:(1﹣)÷,其中x=.30、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行.某自行车厂生产的某型号自行车去年销售总额为8万元.今年该型号自行车每辆售价预计比去年降低200元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求该型号自行车去年每辆售价多少元?参考答案一、单选题(共15题,共计45分)2、C3、A4、D5、C6、B7、B8、D9、C10、A11、D12、B13、D14、D15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
八年级数学上册《第一章 分式》练习题-附答案(湘教版)
八年级数学上册《第一章 分式》练习题-附答案(湘教版)一、选择题1. 分式x1−x 可变形为 A. xx−1B. −xx−1C. xx+1D. −xx+12. 下列各式中,不能约分的分式是( ) A. 2a4a 2bB. aa 2−3aC.a+ba 2+b2D.a 2−ab a 2−b23. 如果把分式xx−y 中的x ,y 都扩大5倍,那么分式的值( ) A. 扩大5倍B. 不变C. 缩小15D. 扩大25倍4. 如果把分式xyx+y 中的x 和y 都变为原来的5倍,那么分式的值( ) A. 变为原来的5倍 B. 变为原来的25倍C. 变为原来的15D. 不变5. 若分式x 2−1x+1的值等于0,则x 的值为( )A. ±1B. 0C. −1D. 16. 下列运算中,错误的是( ) A. x−yx+y =y−xy+x B.−a−b a+b =−1C. 0.5a+b0.2a−0.3b =5a+10b2a−3bD. ab =acbc (c ≠0)7. 若分式x2−y 2△是最简分式,则△表示的是( )A. 2x +2yB. (x −y)2C. x 2+2xy +y 2D. x 2+y 28. 把−13a+6、2a 2+2a+1、aa 2+3a+2通分后,各分式的分子之和为 ( ) A. 2a 2+7a +11B. a 2+8a +10C. 2a 2+4a +4D. 4a 2+11a +139. 若将分式3x 2x 2−y 与分式x 2(x−y)通分后,分式x 2(x−y)的分母变为2(x −y)(x +y),则分式3x 2x 2−y 2的分子应变为( )A. 6x 2(x −y)2B. 2(x −y)C. 6x 2D. 6x 2(x +y)10. a 是不为1的有理数,我们把11−a 称为a 的差倒数,如2的差倒数为11−2=−1,−1的差倒数为11−(−1)=12已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数⋯以此类推,a 2021的值是( )A. 5B. −14C. 43D. 45二、填空题11. 式子−23a ,a a+b ,xy 2,a+1π,x−1x中,分式有 个. 12. 若分式x+2x 2−1有意义,则x 应满足的条件是 . 13. 分式1ab 、a3b 2与59a 2b 的最简公分母是 . 14. 将6x2−12x+64x−4约分的结果是 .(填“整式”或“分式”)15. 有分别写有x ,x +1,x −1的三张卡片,若从中任选一个作为分式( )x 2−1的分子,使得分式为最简分式,则应选择写有____的卡片.16. 若将分式3x 2x 2−y 2与分式x 2(x−y)通分后,分式x 2(x−y)的分母变为2(x +y)(x −y),则分式3x 2x 2−y 2的分子应变为 .17. 将分式16xyz ,18x 2y 2通分时,需要将分式16xyz 的分子与分母同时乘 ,将分式18x 2y 2的分子与分母同时乘 .18. 若(2a−3)x (3−2a)(3−x)=xx−3成立,则a 的取值范围是 .19. 一组按规律排列的式子:2a ,−5a 2。
湘教版八年级数学上册 第1章 分式 单元测试(无答案)
湘教版八年级数学上册第一章《分式》单元测试卷测试时间:120分钟班级:______ 姓名:__________ 座号:______________ 得分______________一、选择题(每小题3分,共30)1.下列各式中,是分式的是()A. B. c. D.2.若分式有意义,则a的取值范围是()A.a≠-3B.a≥-3C.a≤-3D.a是任何实数3.下列各式,是最简分式的是()A. B. c. D.4.下列各式计算错误的是()A.=B.=C.=D.=5.若分式中的a和b都同时扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.缩小3倍D.不变6.若x=3是分式方程+=的解,则a的值是()A. B.B.C- D.7.分式方程的解是( )A.x=-B.x=C.x=Dx=8.今年某国人口普查表明该省人口已达到94580000人,该数据用科学计数法表示正确的是()A.9.458B.0.9458C.9.45894.589.分式方程-=0有增根,则n的值是()A. B.2 C -1 D10.甲工程队要修一条120km的公路,先修了20km,但发现按照当前的进度无法按时完成任务,所以甲工程队邀请乙工程队一起加入修路,比原计划提前了10天完成,已知乙工程队的工作效率是甲工程队的2倍,求甲工程队每天修多少千米路,设甲工程队每天修x千米路,则下列方程正确的是()A.-=10B.+10=+C. D.-10=+二、填空题(每小题3分,共30分)11.(1)2-)=______ ; (2)=________.12.若4x-y=1,则-(8x-2y+1)=_________.13.化简:.14.若分式=0,则a=______.15.若关于y的分式=有增根,则n=_______.16.若分式与2是互为相反数,则x=_______.17.若关于x的分式方程=无解,则m=_______.18.关于x的分式方程=1的解是2,则a=________.19.分式方程=的解是_______.20.某工厂加工1200个零件后,进行技术升级,工作效率是原来的3倍,这样加工同样多的零件比原来节省了2小时,则进行技术升级之前,每小时加工____个零件。
初中数学湘教版八年级上册第1章 分式1.3 整数指数幂-章节测试习题(2)
章节测试题1.【答题】已知1纳米=0.000 000 001米,则36纳米用科学记数法表示为()A.B.C.D.【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:36纳米=0.000 000 001×36米=3.6×10﹣8米;选B.方法总结:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答题】人体血液中,红细胞的直径约为0.0000077m.用科学记数法表示0.0000077m是()A. 0.77×10﹣5B. 7.7×10﹣5C. 7.7×10﹣6D. 77×10﹣7【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.选C.3.【答题】下列计算正确的是()A. 30=0B. ﹣|﹣3|=﹣3C. 3-1=﹣3D. =±3【答案】B【分析】根据负整数指数幂的运算法则、零指数幂、绝对值的性质等进行运算即可.【解答】解:A、30=1,故A错误;B、,故B正确;C、故C错误;D、,故D错误.选B.4.【答题】将0.000 102用科学记数法表示为()A. 1.02×104B. 1.02×I05C. 1.02×106D. 102×103【答案】A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 102=1.02×104选A.5.【答题】下列式子一定成立的是()A. ;B. ;C. ;D. .【答案】D【分析】根据负整数指数幂的运算法则和整式的运算等进行运算即可.【解答】A选项中,因为,所以A中计算错误;B选项中,因为,所以B中计算错误;C选项中,因为,所以C中计算错误;D选项中,因为,所以D中计算正确.选D.6.【答题】若,,,则a、b、c的大小关系是()A. a>b>cB. c=b>aC. a>c>bD. c>a>b【答案】D【分析】根据负整数指数幂的运算法则进行运算比较即可.【解答】∵,=-1,=1,∴c>a>b.选D.7.【答题】计算(﹣2)0的结果是()A. 1B. 0C. ﹣1D. ﹣2【答案】A【分析】根据零指数幂进行运算即可.【解答】解:原式=1选A.8.【答题】下列计算正确的是()A. a3﹣a2B. (ab3)2=a2b5C. 3a2•a﹣1=3aD. a6÷a2=a3【答案】C【分析】根据负整数指数幂的运算法则进行运算即可.【解答】A、∵a3与a 2不是同类项,无法计算,故此选项错误;B、∵(ab3)2=a2b6,故此选项错误;C、∵3a2·a﹣1=3a,正确;D、∵a6÷a2=a4,故此选项错误;选C.9.【答题】新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A. 2×10﹣5B. 5×10﹣6C. 5×10﹣5D. 2×10﹣6【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,20万分之一=0.000 005=5×10﹣6,选B.10.【答题】计算|﹣6|﹣(﹣)0的值是()A. 5B. ﹣5C. 5D. 7【答案】A【分析】根据零指数幂和绝对值进行运算即可.【解答】|﹣6|﹣(﹣)0=6﹣1=5选A.11.【答题】有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A. 18×10﹣10B. 1.8×10﹣9C. 1.8×10﹣8D. 0.18×10﹣8【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000000018= 1.8×10﹣9,选B.12.【答题】生物界和医学界对病毒的研究从来没有停过脚步,最近科学家发现了一种病毒的长度约为0.00000456mm,则数据0.00000456用科学记数法表示为()A. 4.56×10﹣5B. 0.456×10﹣7C. 4.56×10﹣6D. 4.56×10﹣8【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000456=4.56×10﹣6,选C.13.【答题】将3﹣1x(x+y)﹣3写成只含有正整数指数幂的形式是()A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】根据负整数指数幂的意义,=(a≠0),所以3﹣1x(x+y)﹣3=,选B.14.【答题】下列计算正确的是()A. (﹣x3)2=x5B. (﹣3x2)2=6x4C. (﹣x)-2=D. x8÷x4=x2【答案】C【分析】根据负整数指数幂的运算法则和整式的乘方进行运算即可.【解答】根据积的乘方,可知(﹣x3)2=x6,故不正确;(﹣3x2)2=9x4,故不正确;根据负整指数幂的性质,可知(﹣x)﹣2==,故正确;根据同底数幂相除,可知x8÷x4=x4,故不正确.选C.15.【答题】下列算式正确的是()A. —30=1B. (—3)—1=C. 3—1= —D. (π—2)0=1【答案】D【分析】根据负整数指数幂的运算法则和零指数幂进行运算即可.【解答】解: A.﹣30=﹣1,故A错误;B.(﹣3)﹣1=﹣,故B错误;C.3﹣1=,故C错误;D.正确.选D.16.【答题】如果a=(-5) 2,b=(-0.1)-2,c=,那么a、b、c三数的大小为()A. a>b>cB. b>a>cC. a>c>bD. c>a>b【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:选B.17.【答题】纳米是一种长度单位:1纳米米,某种植物花粉的直径约为50•纳米,那么用科学记数法表示该种花粉的直径为()A. 米B. 米C. 米D. 米【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:50纳米=50×10-9米= 5×10-8米.选C.18.【答题】生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA 分子直径约为0.000000201cm,这个数量用科学记数法可表示为()A. cmB. cmC. cmD. cm【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000201cm用科学记数法可表示为cm.选D.19.【答题】若,,,,则、、、大小关系正确的是()A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:选B.20.【答题】将,,这三个数按从小到大的顺序排列,正确的结果是()A.B.C.D.【答案】D【分析】根据负整数指数幂的运算法则进行运算比较即可.【解答】解:选D.。
湘教版八年级数学上册第一章 分式 单元测试题
湘教版初中数学八年级上册第一章《分式》单元测试卷考试范围:第一章;考试时间:120分钟;总分120分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项) 1. 分式x+a2x−1中,当x =−a 时,下列结论正确的是.( )A. 分式的值为零B. 分式无意义C. 若a ≠−12时,分式的值为零D. 若a =−12时,分式的值为零2. 下列分式中,是最简分式的是( )A. 9b3aB. a−bb−aC.a 2−4a−2D.a 2+4a+23. 分式12xy 2和14x 2y 的最简公分母是( )A. 2xyB. 2x 2y 2C. 4x 2y 2D. 4x 3y 34. 老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A. 只有乙B. 甲和丁C. 乙和丙D. 乙和丁5. 已知x 2−4x−3÷▲x 2−9,这是一道分式化简题,因为一不小心一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )A. x −3B. x −2C. x +3D. x +26.现有A,B两个圆,A圆的半径为a22b (a>6),B圆的半径为3ab,则A圆的面积是B圆面积的( )A. a6倍 B. a236倍 C. 6a倍 D. 36a2倍7.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是( )A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠38.若a=0.32,b=−3−2,c=(−3)0,那么a、b、c三数的大小为( )A. a>c>bB. c>a>bC. a>b>cD. c>b>a9.已知1m −1n=1,则代数式2m−mn−2nm+2mn−n的值为( )A. 3B. 1C. −1D. −310.已知a>b>0,且a2+b2=3ab,则(1a +1b)2÷(1a2−1b2)的值是( )A. √5B. −√5C. √55D. −√5511.若分式方程m2x−6=3x无解,则m为( )A. 0B. 6C. 0或−6D. 0或612.对于非零的两个数a、b,规定a⊗b=1b −1a.若1⊗(x+1)=1,则x的值为( )A. 32B. 13C. 12D. −12第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.若代数式x2−92x−6的值等于0,则x=______.14.如果a=(−99)0,b=(−0.5)−1,c=(−3)−2,那么a、b、c三数的大小关系是.15.已知Ax−1−B2−x=2x−6(x−1)(x−2),则A−B=______.16. 若关于y 的方程y+m y+1−2y =1无解,则m =______.三、解答题(本大题共9小题,共72分。
八年级数学上册《第一章 分式》练习题-含答案(湘教版)
八年级数学上册《第一章 分式》练习题-含答案(湘教版)一、选择题1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3xD.1+x 2.下列各式:其中分式共有( )A.2个B.3个C.4个D.5个3.如果分式11 x 在实数范围内有意义,则x 的取值范围是( ) A.x ≠﹣1 B.x >﹣1 C.全体实数 D.x=﹣14.若分式x -2x +1无意义,则( ) A.x =2 B.x =-1 C.x =1 D.x ≠-1 5.若分式2x +63x -9 的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-36.已知5a=2b ,则值为( )A.25B.35C.23 D.1.47.已知a ﹣b ≠0,且2a ﹣3b =0,则代数式2a -b a -b的值是( ) A.﹣12 B.0 C.4 D.4或﹣128.已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是( ) A.-72 B.-112 C.92 D.34二、填空题9.某工厂计划a 天生产60件产品,则平均每天生产该产品 件.10.有游客m 人,若每n 个人住一个房间,结果还有一个人无房住,则客房的间数为.11.若分式2x+1的值不存在,则x的值为 .12.把分式a+13b34a-b的分子、分母中各项系数化为整数的结果为________.13.如果x=-1,那么分式x-2x2-4的值为________.14.若4x+1表示一个整数,则所有满足条件的整数x的值为___________.三、解答题15.下列各分式中,当x取何值时有意义?(1)1x-8;(2)3+x22x-3;(3)xx-3.16.当m为何值时,分式的值为0?(1)mm-1; (2)|m|-2m+2; (3)m2-1m+1.17.求下列各分式的值.(1)5x3x2-2,其中x=12;(2)x-12x2+1,其中x=-1;(3)x-yx+y2,其中x=2,y=-1.18.某公司有一种产品共300箱,将其分配给批发部和零售部销售,批发部经理对零售部经理说:“如果把你们分到的产品让我们卖,可卖得3 500元.”零售部经理对批发部经理说:“如果把你们分到的产品让我们卖,可卖得7 500元.”若假设零售部分到的产品是a箱,则:(1)该产品的零售价和批发价分别是每箱多少元?(2)若a=100,则这批产品一共能卖多少元?19.已知x,y满足xy=5,求分式x2-2xy+3y24x2+5xy-6y2的值.20.对于任意非零实数a,b,定义新运算“*”如下:a*b=a-bab,求2*1+3*2+…+10*9的值.参考答案1.C2.A3.A4.B5.C6.D7.C8.D.9.答案为:60a. 10.答案为:m -1n. 11.答案为:-1.12.答案为:12a +4b 9a -12b13.答案为:114.答案为:-2,-3,-5,0,1,3.15.解:(1)x ≠8 (2)x ≠32(3)x ≠3. 16.解:(1)∵⎩⎨⎧m =0,m -1≠0,∴m =0. (2)∵⎩⎨⎧|m|-2=0,m +2≠0,∴m =2. (3)∵⎩⎨⎧m 2-1=0,m +1≠0,∴m =1. 17.解:(1)把x =12 代入5x 3x 2-2,得原式=-2. (2)当x =-1时,x -12x 2+1 =-1-12×(-1)2+1 =-23. (3)当x =2,y =-1时,x -y x +y 2 =2-(-1)2+(-1)2 =33=1.18.解:(1)该产品的零售价是每箱7 500300-a 元,批发价是每箱3 500a元. (2)这批产品一共能卖10 750元.19.解:∵x y =5,∴x =5y ∴x 2-2xy +3y 24x 2+5xy -6y 2=(5y )2-2×5y ·y +3y 24×(5y )2+5×5y ·y -6y 2=18y 2119y 2=18119. 20.解:2*1+3*2+…+10*9=2-12×1+3-23×2+…+10-910×9=1﹣110=910.。
湘教版八年级数学上册第1章分式单元测试(含答案)
初中数学湘教版八年级上册:第1章分式一、选择题(共10小题;共50分)1. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500t,这个数据用科学记数法表示为( )A. 67.5×103tB. 6.75×104tC. 0.675×105tD. 6.75×10−4t2. 下列代数式①1x ,②a+b2,③aπ,④1m−n中,分式有( )A. 1个B. 2个C. 3个D. 4个3. 在方程x+53=7,−2x=2,x−12−x−13=4,3x−9x=1中,分式方程有 A. 1个B. 2个C. 3个D. 4个4. 岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是( )A. 200x =350x−3B. 200x=350x+3C. 200x+3=350xD. 200x−3=350x5. 下列运算正确的是( )A. 5ab−ab=4B. 1a +1b=2a+bC. a6÷a2=a4D. a2b3=a5b36. 下列计算正确的是( )A. 2a+3b=5abB. x+22=x2+4C. ab32=ab6D. −10=17. 根据分式的基本性质填空:5xx−3x =5,括号内应填( )A. x2−3xB. x3−3C. x2−3D. x4−3x8. 方程1x−2=4x−4的解是x等于( )A. 2B. −2C. ±2D. 无解9. 下列运算结果正确的是( )A. x2+x3=x5B. x3⋅x2=x6C. x5÷x=x5D. x3⋅3x2=9x510. 分式方程xx−1−1=mx−1x+2有增根,则m的值为( )A. 0和3B. 1C. 1和−2D. 3二、填空题(共10小题;共50分)11. 计算:2xx+1+2x+1=.12. 若关于x的方程2x−2+x+m2−x=2有增根,则m的值是.13. 科学实验发现有一种新型可入肺颗粒物的直径约为2.5μm1μm=0.000001m,用科学计数法表示这种颗粒物的直径约为m.14. 如果方程2k x−1=3的解是x=5,则k=.15. A、B两地相距60km,甲骑自行车从A地到B地,出发1h后,乙骑摩托车从A地到B地,且乙比甲早到3h,已知甲、乙的速度之比为1:3,则甲的速度是.16. 分式方程3x+2=−1x−2的解为.17. 化简x+22−x−22x=.18. 已知2+x x=1,则x=.19. 已知a m=6,a n=12,则a m−n=.20. (1)若32x−1=1,则x=;(2)若3x=181,则x=.三、解答题(共5小题;共65分)21. 请你用科学记数法把0.0000025表示出来.22. 已知2x−y=10,求代数式x2+y2−x−y2+2y x−y÷4y的值.23. 列分式方程解应用题:常德市的“三改四化”极大地提升了城市品味.国庆期间,工程部对朗州路大润发天桥至市政府段进行封闭施工摊铺沥青.整个路段长约1200米,实际施工时工作人员加班加点,每天实际完成任务是每天计划任务的1.5倍,结果工程比计划提前两天完成,问每天实际施工多少米?24. 解方程:xx−x +2=2xx+1.25. 若分式方程1x−2+3=x−1x−2有增根,求它的增根.答案第一部分1. B2. B3. B4. B5. C6. D7. C8. D9. D 10. D第二部分11. 212. 013. 2.5×10−614. 1615. 10km/h16. x=117. 818. 0或−119. 1220. (1)12;(2)−4第三部分21. 2.5×10−6.22.x2+y2−x−y2+2y x−y÷4y=x2+y2−x2+2xy−y2+2xy−2y2÷4y =x−12y=122x−y.因为2x−y=10,所以原式=5.23. 解:设每天实际施工x米,则计划每天施工23x米.列方程为1200x =120023x−2解得x=300检验x=300时,23x≠0,∴x=300是原方程的解,且符合题意.答:每天实际施工300米.24. 方程两边同乘以x+1x−1,得:x+1+2x+1x−1=2x x−1.解之,得x=1 3 .检验:把x=13代入x+1x−1得:13+113−1≠0∴x=13是原方程的根.25. 移项,得1x−2−x−1x−2=−3,即1−x+1=−3 ∴原方程的增根是x=2.。
湘教版八年级数学上册作业课件 第1章 分式 专题练习二 分式方程的解与解法及实际问题
用 400 元,两超市购买 100 个篮球,所需的最少费用为 3 850 元
8.某开发公司生产的960件新产品需要精加工后才能投放市场.现有 甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比 乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工 厂每天加工数量的,公司需付甲工厂加工费用每天80元,需付乙工厂加 工费用每天120元.
类型二 解特殊形式的分式方程(选做) 2.解下列方程: (1)x(x1+1) +(x+1)1(x+2) +…+(x+19)1(x+20) =21x ;
解:原方程可化为
(1x -x+1 1 )+(x+1 1 -x+1 2 )+…+(x+119 -x+120 )=21x ,整理得
1 x
-x+120
=
1 2x
类型三 利用分式方程解的情况求字母的值
3.是否存在整数 k,使关于 x 的分式方程xk2--11 -xk2-+2x =x-1x2 的解 为 x=-2?若存在,请求出整数 k 的值;若不存在,请说理由.
解:方程两边都乘 x(x+1)(x-1)得, x(k-1)-(x-1)(k-2)=-(x+1), 整理得,2x=-k+1,代入 x=-2 得 k=5
类型五 结合分式方程解决实际问题中的方案问题 7.在“双十二”期间,A,B两个超市开展促销活动,活动方式如下: A超市:购物金额打9折后,若超过2 000元,则再优惠300元; B超市:购物金额打8折. 某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市 的标价相同,根据商场的活动方式: (1)若一次性付款4 200元购买这种篮球,则在B商场购买的数量比在A商 场购买的数量多5个,请求出这种篮球的标价; (2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最 少.(直接写出方案)
八年级数学上册第1章分式单元综合测试2含解析新版湘教版
八年级数学上册第1章分式:《第1章分式》单元测试卷(2)一、选择题1.在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>2.0的相反数是()A.3.14﹣πB.0 C.1 D.﹣13.下列分式中,最简分式有()A.2个B.3个C.4个D.5个4.化简的结果是()A.x+1 B.C.x﹣1 D.5.已知,则的值是()A.B.﹣C.2 D.﹣26.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y的整式方程,那么这个整式方程是()A.y2+y﹣3=0 B.y2﹣3y+1=0 C.3y2﹣y+1=0 D.3y2﹣y﹣1=0 7.分式方程=1的解为()A.1 B.2 C.D.08.关于x的方程=2+无解,则k的值为()A.±3 B.3 C.﹣3 D.无法确定9.若的值为,则的值为()A.1 B.﹣1 C.﹣D.10.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.二、填空题:11.代数式在实数范围内有意义,则x的取值范围是.12.已知分式,当x=2时,分式无意义,则a=.13.当x=2时,分式的值是.14.化简的结果是.15.计算: =.16.若分式方程=a无解,则a的值为.17.解分式方程,其根为.18.计算:﹣=.三、解答题19.化简:.20.先化简,再求值:,其中x=﹣2.21.解分式方程:(1)=(2)+1=.22.已知abc≠0,且a+b+c=0,求a(+)+b(+)+c(+)的值.23.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.四、应用题24.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.湘教新版八年级数学上册《第1章分式》单元测试卷(2)参考答案与试题解析一、选择题1.在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>【考点】函数自变量的取值范围;分式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意得:3x﹣1≠0,解得:x≠.故选C.【点评】当函数表达式是分式时,要注意考虑分式的分母不能为0.2.(π﹣3.14)0的相反数是()A.3.14﹣πB.0 C.1 D.﹣1【考点】零指数幂;相反数.【分析】首先利用零指数幂的性质得出(π﹣3.14)0的值,再利用相反数的定义进行解答,即只有符号不同的两个数交互为相反数.【解答】解:(π﹣3.14)0的相反数是:﹣1.故选:D.【点评】本题考查的是相反数的定义以及零指数幂的定义,正确把握相关定义是解题关键.3.下列分式中,最简分式有()A.2个B.3个C.4个D.5个【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:,,,这四个是最简分式.而==.最简分式有4个,故选C.【点评】判断一个分式是最简分式,主要看分式的分子和分母是不是有公因式.4.化简的结果是()A.x+1 B.C.x﹣1 D.【考点】分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5.已知,则的值是()A.B.﹣C.2 D.﹣2 【考点】分式的化简求值.【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.6.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y的整式方程,那么这个整式方程是()A.y2+y﹣3=0 B.y2﹣3y+1=0 C.3y2﹣y+1=0 D.3y2﹣y﹣1=0【考点】换元法解分式方程.【分析】换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是,设=y,换元后整理即可求得.【解答】解:把=y代入方程+1=0,得:y﹣+1=0.方程两边同乘以y得:y2+y﹣3=0.故选:A.【点评】用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.7.分式方程=1的解为()A.1 B.2 C.D.0【考点】解分式方程.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣3x=x﹣2,解得:x=1,经检验x=1是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.关于x的方程=2+无解,则k的值为()A.±3 B.3 C.﹣3 D.无法确定【考点】分式方程的解.【分析】先将分式方程去分母转化为整式方程,由分式方程无解,得到x﹣3=0,即x=3,代入整式方程计算即可求出k的值.【解答】解:去分母得:x=2x﹣6+k,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:3=2×3﹣6+k,k=3,故选B.【点评】本题考查了分式方程的解,注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,利用这一结论可知:分式方程无解,则有增根,求出增根,增根就是使分式方程分母为0的值.9.若的值为,则的值为()A.1 B.﹣1 C.﹣D.【考点】分式的值.【分析】可设3x2+4x=y,根据的值为,可求y的值,再整体代入可求的值.【解答】解:设3x2+4x=y,∵的值为,∴=,解得y=1,∴==1.故选:A.【点评】考查了分式的值,关键是整体思想的运用.10.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据题意B类玩具的进价为(m﹣3)元/个,根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.【解答】解:设A类玩具的进价为m元/个,则B类玩具的进价为(m﹣3)元/个,由题意得, =,故选:C.【点评】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.二、填空题:11.代数式在实数范围内有意义,则x的取值范围是x≠3.【考点】分式有意义的条件.【分析】根据分母不等于0进行解答即可.【解答】解:要使代数式在实数范围内有意义,可得:x﹣3≠0,解得:x≠3,故答案为:x≠3【点评】此题考查分式有意义,关键是分母不等于0.12.已知分式,当x=2时,分式无意义,则a=6.【考点】分式有意义的条件.【分析】根据分式无意义,分母等于0,把x=2代入分母,解关于a的方程即可.【解答】解:∵当x=2时,分式无意义,∴x2﹣5x+a=22﹣5×2+a=0,解得a=6.故答案为:6.【点评】本题考查的知识点为:分式无意义,分母为0.13.当x=2时,分式的值是1.【考点】分式的值.【分析】将x=2代入分式,即可求得分式的值.【解答】解:当x=2时,原式==1.故答案为:1.【点评】本题是一个基础题,考查了分式的值,要熟练掌握.14.化简的结果是.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,只把分子相加减计算,然后约分即可得解.【解答】解:﹣,=,=.故答案为:.【点评】本题主要考查了同分母分式的加减运算,是基础题,比较简单,注意要约分.15.计算: =1.【考点】分式的加减法.【分析】直接根据同分母的分数相加减进行计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减.16.若分式方程=a无解,则a的值为1或﹣1.【考点】分式方程的解.【分析】由分式方程无解,得到最简公分母为0求出x的值,分式方程去分母转化为整式方程,把x的值代入计算即可求出a的值.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故答案为:1或﹣1【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.17.解分式方程,其根为x=﹣5.【考点】解分式方程.【分析】本题考查解分式方程能力,观察可得方程最简公分母为x(x﹣2),所以方程两边同乘以x(x﹣2)化为整式方程求解.【解答】解:方程两边去分母得:5(x﹣2)=7x,整理解得x=﹣5.检验得x=﹣5是原方程的解.故本题答案为:x=﹣5.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.计算:﹣=.【考点】分式的加减法.【分析】根据同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减,求解即可.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减法,解答本题的关键是掌握同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.三、解答题19.化简:.【考点】分式的混合运算.【分析】根据分式混合运算的法则先计算括号里面的,再把除法变为乘法进行计算即可.【解答】解:原式=====.【点评】本题考查的是分式的混合运算,即分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.20.先化简,再求值:,其中x=﹣2.【考点】分式的化简求值.【分析】先通分,然后进行四则运算,最后将x=﹣2代入计算即可.【解答】解:原式=,当x=﹣2时,原式==﹣1.【点评】解答此题的关键是把分式化到最简,然后代值计算.21.解分式方程:(1)=(2)+1=.【考点】解分式方程.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)=去分母,得3(x+1)=2×2x即3x+3=4x解得x=3检验:当x=3时,2x(x+1)=24≠0,∴x=3是原分式方程的解;(2)+1=去分母,得2y2+y(y﹣1)=(3y﹣1)(y﹣1)即2y2+y2﹣y=3y2﹣4y+1解得y=检验:当y=时,y(y﹣1)=﹣≠0∴y=是原分式方程的解.【点评】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.22.已知abc≠0,且a+b+c=0,求a(+)+b(+)+c(+)的值.【考点】分式的化简求值.【分析】由题意可知:a+b=﹣c,b+c=﹣a,a+c=﹣b,将原式的括号去掉,然后将同分母的相加,再利用条件式即可得出答案.【解答】解:由a+b+c=0得:a+b=﹣c,b+c=﹣a,a+c=﹣b,∴===﹣3;【点评】本题考查分式的化简求值问题,需要将所求的式子进行拆分重组,需要较高的观察能力.23.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【考点】解分式方程.【分析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.【解答】解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x=﹣1﹣2,合并同类项得:﹣2x=﹣3,解得:x=,经检验x=是分式方程的解,则方程的解为x=.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.四、应用题24.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【考点】分式方程的应用;一元一次不等式组的应用.【分析】(1)关键语是“用80元购进甲种零件的数量与用100元购进乙种零件的数量相同”可根据此列出方程.(2)本题中“根据进两种零件的总数量不超过95个”可得出关于数量的不等式方程,根据“使销售两种零件的总利润(利润=售价﹣进价)超过371元”看俄得出关于利润的不等式方程,组成方程组后得出未知数的取值范围,然后根据取值的不同情况,列出不同的方案.【解答】解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x﹣2)元.由题意得:.解得:x=10.检验:当x=10时,x(x﹣2)≠0∴x=10是原分式方程的解.每个甲种零件进价为:x﹣2=10﹣2=8答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y个,则购进甲种零件(3y﹣5)个.由题意得:解得:23<y≤25∵y为整数∴y=24或25.∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.【点评】本题考查了分式方程的应用、一元一次不等式组的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.本题要注意(2)中未知数的不同取值可视为不同的方案.。
新湘教版八年级上册第一章分式测试题
城步二中八年级上册第一章分式测试题时刻:90分钟 满分:120分班级 姓名 得分 一、选择题。
(每小题3分,共30分) 一、下列各式:π8,1-1,5,21,7,32xx y x b a a ++中,分式有( )A 、1个B 、2个C 、3个D 、4个 二、若分式112+-x x 的值为0,则x 的取值为( )A 、1=xB 、1-=xC 、1±=xD 、无法肯定3、若是把分式y x x+2中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、缩小3倍C 、缩小6倍D 、不变4、下列各式中是最简分式的是( )A 、122+x xB 、x 24C 、112-+x x D 、112--x x 五、化简b a a -2-b a b -2的结果是( )A 、a 2-b 2B 、a+bC 、a-bD 、1 六、把分式方程12121=----x xx ,的两边同时乘以x-2,约去分母,得()A 、 1-(1-x)=1B 、 1+(1-x)=1C 、 1-(1-x)=x-2D 、1+(1-x)=x-27、分式方程23-x =1的解是( )A 、x=5B 、x=1C 、x=-1D 、x=2 八、若方程144x mx x -=--有增根,则m 的值是( ).A 、2B 、3C 、-3D 、1 九、若分式方程22-x +42-x kx =23+x 无解,那么k 的值为( )A 、4或-6B 、-4或-6C 、-4或6或1D 、4或610、某农场开挖一条480米的渠道,动工后,天天比原计划多挖20米,结果提前4天完成任务,若设原计划天天挖x 米,那么求x 时所列方程正确的是( )A 、448020480=--x x B 、204480480=+-x x C 、420480480=+-x x D 、204804480=--x x二、填空题(每小题3分,共24分)1一、0.00000072用科学计数法表示为1二、计算:=⎪⎭⎫ ⎝⎛+----1031)2(213、7m =3, 7n =5, 则7m+2n =14、已知x x 1+=3则2x +21x = 15、计算:=---44212a a 16、当x= 时,分式112--x x 的值为0. 17、.要使2415--x x 与的值相等,则x =____ ______. 18、观察给定的分式: ,16,8,4,2,15432x x x x x --,猜想并探索规律, 第10个分式是三、解答题1九、(10分)计算:(1) 111122----÷-a a a a a a (2) 2442222++-•-+a a a a a a20、(10分)解方程(1) 21-x =x2 (2)1412112-=-++x x x .2一、(10分)化简求值(a 1+b1)÷b a b ab a +++222其中a=-3,b=22二、(12分)某工人原计划在规按时刻内恰好加工1500个零件,改良了工具和操作方式后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?23、(12分)有一道题“先化简,再求值: 2221()244x x x x x -+÷+-- 其4中,x=-3”小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?24、(12分)甲、乙两地相距19千米,某人从甲地动身出乙地,先步行7千米,然后改骑自行车,共用2小时抵达乙地。
湘教版八年级上数学第一章分式单元测试题(无答案)
分式测试题第 页(共5页) 分式测试题第 页(共5页) 八年级上数学第一章分式测试题(时限:60分钟 总分:120分)班级 姓名 总分一、选择题(每小题3分,共24分)1.计算3)21(-的结果是( )A.-8B.8C. 61-D. 812.我国的国土面积是九万六千平方公里,这一数字用科学记数法表示为( ) A. 4106.9⨯ B. 5106.9⨯ C. 6106.9⨯ D. 7106.9⨯ 3. 若关于x 的方程2155mx x =---有增根,则m 的值等于( ) A .-3 B .-2 C .-1 D .3 4.下列各式从左到右的变形,正确的是( ) A.y x xy y x xy +-=+- B. y x xyy x xy --=---C.11---=-+-py y p py y p D. 111122+--=++-a xya xy 5. 如果把2y2x-3y 中的x 、y 都扩大5倍,那么分式的值( )A .扩大5倍B .不变C .缩小5倍D .扩大4倍6.化简2293mmm --的结果是( ) A. 3+-m m B. 3+m m C.3-m m D.mm-3 7.43222)()()(xy x y y x -÷-⋅-的结果是( ) A.38xy B.38x y - C.5x D.5x -8.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A. 12- B. 0 C. 8 D. 128或二、填空题(每小题3分,共24分)9. 已知分式25,45x x x ---当x ≠______时,分式有意 义;当x=______时,分式的值为0.10.当分式2545|x |x x ---的值为0时, x 的值为__ _. 11.用科学记数法表示0.00021=_______;用小数表示=⨯-61057.3___ __.12. 若关于x 的方程2233x m x x -=--无解,则m 的值为________. 13.计算:abba b ab -÷-)(2= . 14.若22113,____.x x x x+=+=则 15.已知311=-y x ,则分式yxy x y xy x ---+2232的值为 ___ . 16.新兴化肥厂原计划每天生产化肥x 吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨所用的时间相等,那么适合x 的方程是( )120180120180..33120180120180. .33A B x x x xC D x x x x ==+-==+-三、解答题(本题共6小题,共72分)17.(30分)化简:(1)43239227b ab a b a b ⋅÷-; (2)2214122x x x x x x++⎛⎫+-÷ ⎪--⎝⎭;(3)3121421)()()(----⋅-⋅x y xy xy ; (4)xy x y x xy x y x x-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232;分式测试题第 页(共5页) 分式测试题第 页(共5页) (5)⎪⎭⎫⎝⎛--++-y x x y x y x x 2121. (6)4214121111x x x x ++++++-18. (10分) 解分式方程: (1)87176=-+--xx x ; (2)2127111x x x +=+--.19.(6分)已知、求A 、B20. (8分)已知实数a 满足a 2+2a -8=0,求34121311222+++-⨯-+-+a a a a a a a 的值.21. (8分)就要毕业了,几位要好的同学准备中考后结伴到某地游玩,预计共需费用1200元,后来又有2名同学参加进来,但总费用不变,于是每人可少分摊30元,试求原计划结伴游玩的人数.22.(10)小红到离家2100米的学校参加艺术节联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍。
湘教版八年级上册 第1章 分式 选择题训练(包含答案)
第1章分式选择题训练1.方程=1的解是()A.无解B.x=﹣1C.x=0D.x=12.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5B.﹣=5C.﹣=5D.﹣=53.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为()A.=B.=C.=D.=4.若分式的值等于0,则x的值为()A.±1B.0C.﹣1D.15.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④6.如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.8.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)9.化简:﹣=()A.a﹣1B.a+1C.D.10.如果分式在实数范围内有意义,则x的取值范围是()A.x≠﹣1B.x>﹣1C.全体实数D.x=﹣1 11.计算+,正确的结果是()A.1B.C.a D.12.计算+的结果是()A.2B.2a+2C.1D.13.下面的计算过程中,从哪一步开始出现错误()A.①B.②C.③D.④14.若分式有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣2 15.下列计算中,正确的是()A.3a+a=4a B.a2•a5=a10C.(﹣)3=﹣D.()﹣1=﹣16.如果m﹣n=,m≠0,那么代数式的值为()A.B.C.D.17.关于分式的约分或通分,下列哪个说法正确()A.约分的结果是B.分式与的最简公分母是x﹣1C.约分的结果是1D.化简﹣的结果是118.若2m﹣2n=mn(其中mn≠0),则代数式的值为()A.2B.C.D.﹣219.某城市轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x千米/时,则下列方程正确的是()A.B.C.D.20.方程=x+5的实数根的个数是()A.3个B.2个C.1个D.0个21.下面是嘉淇在学习分式运算时,解答的四道题,其中正确的是()A.①B.②C.③D.④22.在下列这四个数中,最大的数是()A.B.C.﹣20D.﹣3﹣223.若关于x的方程的解为整数解,则满足条件的所有整数a的和是()A.6B.0C.1D.924.关于分式方程=﹣1的解,关于下列说法正确的是()A.无解B.解是x=﹣C.解是x=D.解是x=25.如果m+n=2,那么代数式的值是()A.2B.1C.D.﹣126.下列各组数中数值不相等的是()A.﹣23和(﹣2)3B.2﹣1和C.20和1D.|2|和﹣(﹣2)27.下列变形不正确的是()A.=B.÷(﹣)=﹣C.=﹣D.=﹣28.已知:﹣M=,则M=()A.x2B.C.D.29.在下列等式中,不满足a≠0这个条件的是()A.a0=1B.C.D.30.下列式子中,可以表示为2﹣3的是()A.22÷25B.25÷22C.22×25D.(﹣2)×(﹣2)×(﹣2)31.如果分式有意义,则x与y必须满足()A.x=﹣y B.x≠﹣y C.x=y D.x≠y32.解分式方程,去分母后得到的方程正确的是()A.﹣2x=1﹣(2﹣x)B.﹣2x=(2﹣x)+1C.2x=(x﹣2)﹣1D.2x=(x﹣2)+133.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程﹣=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成34.无论x取什么数,总有意义的分式是()A.B.C.D.35.某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球的2倍,购买足球用了4000元,购买篮球用了2800元,篮球单价比足球贵16元.若可列方程表示题中的等量关系,则方程中x表示的是()A.足球的单价B.篮球的单价C.足球的数量D.篮球的数量参考答案1-10CCBDBDBDAA 11-20AABBADDCDC21-30DADABBBBDA 31-35DDCCD。
八年级数学上册第1章分式测试题新版湘教版
第1章测试题一、选择题(每小题3分,共36分)1.(3分)下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个2.(3分)已知x≠y,下列各式与相等的是()A.B.C.D.3.(3分)要使分式有意义,则x的取值范围是()A.x= B.x>C.x<D.x≠4.(3分)下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①② C.②③④D.①②③④5.(3分)若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.06.(3分)若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍 B.不变 C.缩小3倍 D.缩小6倍7.(3分)如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个8.(3分)有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.9.(3分)若x满足=1,则x应为()A.正数 B.非正数C.负数 D.非负数10.(3分)已知=3,则的值为()A.B.C.D.﹣11.(3分)工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.412.(3分)如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.8113.(3分)x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.二、填空题:(每小题3分,共33分)14.(3分)分式、、的最简公分母是.15.(3分)已知,用x的代数式表示y=.16.(3分)若5x﹣3y﹣2=0,则105x÷103y=.17.(3分)若ab=2,a+b=﹣1,则的值为.18.(3分)计算6x﹣2•(2x﹣2y﹣1)﹣3=.19.(3分)瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.20.(3分)使分式方程产生增根,m的值为.21.(3分)已知:=+,则A=,B=.22.(3分)当x=时,代数式和的值相等.23.(3分)用科学记数法表示:0.000000052=.24.(3分)计算•=.三、解答题25.(20分)计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.26.(8分)解分式方程:(1)(2).27.(6分)有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?28.(6分)点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x的值.29.(8分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?30.若,,求的值.参考答案:一、选择题(每小题3分,共36分)1.(3分)下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在,的分母中含有字母,属于分式.在x+y,﹣4xy,的分母中不含有字母,属于整式.故选:B.【点评】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.(3分)已知x≠y,下列各式与相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质可以得到答案.【解答】解:∵x≠y,∴x﹣y≠0,∴在分式中,分子和分母同时乘以x﹣y得到:,∴分式和分式是相等的,∴C选项是正确的,故选:C.【点评】本题主要考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质,此题基础题,比较简单.3.(3分)要使分式有意义,则x的取值范围是()A.x= B.x>C.x<D.x≠【考点】分式有意义的条件.【专题】计算题.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.(3分)下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①② C.②③④D.①②③④【考点】负整数指数幂;零指数幂.【分析】①、④根据同底数幂作答;②由幂的乘方计算法则解答;③由零指数幂的定义作答.【解答】解:①a m.a n=a m+n,同底数幂的乘法:底数不变,指数相加;正确;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn,根据幂的乘方计算法则,正确;③若a≠b且ab≠0,当a=﹣b即a+b=0时,(a+b)0=1不成立,任何非零有理数的零次幂都等于1,错误;④∵a是自然数,∴当a=0时,a﹣3.a2=a﹣1不成立,错误.故选B.【点评】本题主要考查的是同底数幂的乘法、幂的乘方、零指数幂等知识.5.(3分)若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.0【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.6.(3分)若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍 B.不变 C.缩小3倍 D.缩小6倍【考点】分式的基本性质.【专题】几何图形问题.【分析】把原式中的x、y分别换成3x、3y进行计算,再与原分式比较即可.【解答】解:把原式中的x、y分别换成3x、3y,那么=×,故选C.【点评】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.7.(3分)如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个【考点】分式的值.【分析】由于x是整数,所以1+x也是整数,要使为正整数,那么1+x只能取6的正整数约数1,2,3,6,这样就可以求得相应x的值.【解答】解:由题意可知1+x为6的正整数约数,故1+x=1,2,3,6由1+x=1,得x=0;由1+x=2,得x=1;由1+x=3,得x=2;由1+x=6,得x=5.∴x为0,1,2,5,共4个,故选C.【点评】认真审题,抓住关键的字眼,是正确解题的出路.如本题“整数x”中的“整数”,“的值为正整数”中的“正整数”.8.(3分)有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【专题】应用题.【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.(3分)若x满足=1,则x应为()A.正数 B.非正数C.负数 D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.10.(3分)已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【专题】计算题.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法中考题中常用,是热点.11.(3分)工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.4【考点】由实际问题抽象出分式方程.【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72﹣x=,故①②④正确,故正确的有3个,故选C.【点评】解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.12.(3分)如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【考点】分式的混合运算.【专题】计算题.【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.13.(3分)x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.【考点】列代数式(分式).【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水m千克,则其中含盐为m×=千克.故选:D.【点评】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.二、填空题:(每小题3分,共33分)14.(3分)分式、、的最简公分母是 6abc .【考点】最简公分母.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是6,a的最高次幂是1,b的最高次幂是1,c的最高次幂是1,所以三分式的最简公分母是6abc.故答案为:6abc.【点评】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15.(3分)已知,用x的代数式表示y=.【考点】等式的性质.【分析】根据等式的基本性质可知:先在等式两边同乘(y﹣1),整理后再把x的系数化为1,即可得答案.【解答】解:根据等式性质2,等式两边同乘(y﹣1),得y+1=x(y﹣1)∴y+1=xy﹣x,∴y(x﹣1)=1+x∴y=.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.(3分)若5x﹣3y﹣2=0,则105x÷103y= 100 .【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.17.(3分)若ab=2,a+b=﹣1,则的值为.【考点】分式的加减法.【专题】计算题.【分析】先将分式通分,再将ab=2,a+b=﹣1代入其中即可得出结论.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了分式的加减运算.解决本题首先应通分,然后整体代值.18.(3分)计算6x﹣2•(2x﹣2y﹣1)﹣3=x4y3.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】结合单项式乘单项式的运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.进行求解即可.【解答】解:原式=6x﹣2•x6y3=x4y3.故答案为:x4y3.【点评】本题考查了单项式乘单项式的知识,解答本题的关键在于熟练掌握该知识点的概念和运算性质.19.(3分)瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.【考点】规律型:数字的变化类.【专题】规律型.【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【解答】解:由数据,,,可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.故答案为:.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.(3分)使分式方程产生增根,m的值为±.【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.(3分)已知:=+,则A= 1 ,B= 2 .【考点】分式的加减法.【专题】计算题.【分析】已知等式右边两项通分并利用同分母分式的加法法则计算,利用多项式相等的条件即可求出A与B的值.【解答】解:∵==,∴A+B=3,﹣2A﹣B=﹣4,解得:A=1,B=2,故答案为:1;2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.(3分)当x= 9 时,代数式和的值相等.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x+3=3x﹣6,解得:x=9,经检验x=9是分式方程的解,故答案为:9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(3分)用科学记数法表示:0.000000052= 5.2×10﹣8.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000052=5.2×10﹣8,故答案为:5.2×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.24.(3分)计算•= ﹣.【考点】分式的乘除法.【分析】根据分式的乘法法则计算即可.【解答】解:原式=﹣,故答案为:﹣.【点评】本题考查的是分式的乘法,分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.三、解答题25.(20分)计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.【考点】分式的混合运算;实数的运算;零指数幂;负整数指数幂.【专题】计算题;分式.【分析】(1)原式变形后,利用同分母分式的减法法则计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算即可得到结果;(3)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(4)原式第二项利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可得到结果;(5)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式===2x+3;(2)原式===﹣;(3)原式=1+16﹣5=12;(4)原式=1﹣•=1﹣==﹣;(5)原式==.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.26.(8分)解分式方程:(1)(2).【考点】解分式方程.【专题】计算题.【分析】(1)方程两边同乘以x(x+1)得到方程2(x+1)=3x,解得x=2,然后把x=2代入x (x=1)进行检验即可确定原方程的解;(2)先去分母,方程两边同乘以(x﹣2)得到方程1﹣2x=2(x﹣2)﹣3,解得x=2,检验,把x=2代入x﹣2得x﹣2=0,则x=2是原方程的增解,于是原方程的无解.【解答】解:(1)方程两边同乘以x(x+1)得,2(x+1)=3x,解得x=2,经检验x=2是原方程的解,所以原方程的解为x=2;(2)方程两边同乘以(x﹣2)得,1﹣2x=2(x﹣2)﹣3解得x=2,经检验x=2是原方程的增解,所以原方程无解.【点评】本题考查了解分式方程:解分式方程的基本步骤为①找出最简公分母,去分母,把分式方程转化为一元一次方程;②解一元一次方程;③检验;④确定分式方程的解.27.(6分)有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?【考点】分式的化简求值.【专题】常规题型.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,即可做出判断.【解答】解:原式=•(x+2)(x﹣2)=x2+4,若小玲做题时把“x=﹣3”错抄成了“x=3”,得到x2=9不变,故计算结果正确.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.28.(6分)点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x的值.【考点】解分式方程;数轴.【专题】计算题;分式方程及应用.【分析】根据题意列出分式方程,求出分式方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x﹣2=x﹣3,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,以及数轴,熟练掌握运算法则是解本题的关键.29.(8分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【考点】分式方程的应用.【专题】销售问题;压轴题.【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)盈利=总售价﹣总进价.【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.30.若,,求的值.【考点】分式的化简求值.【专题】计算题.【分析】此题可通过,得到a、b与c的关系,然后再代入进行求值.【解答】解:∵,∴=;∵,∴;∴=a+=+=1.【点评】本题考查了分式的化简求值,重点是通过等式找出a、b之间的关系再代入分式求值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式(A 卷)
1、 在分式①x x 21+②22b a b a --③22b a b a ++④9
322-+m m m 中,最简分式有__________(填序号) 2、 已知分式在代数式①x x 1+②32+x ③24x y ④y x +21⑤ π
4-x 分式有__________(填序号) 3、 4
21-+x x ,当x =_____时,分式的值不存在,当x =_____时,分式有意义,当x _____时,分式的值为0.
4、 若分式12-x x 无意义,则x _______ , 若分式1
1+-x x 的值为0,则______=x 5、 如果把中
y x x +5的y x ,均扩大5倍,那么这个分式的值( ) A 不变 B 扩大5倍 C 扩大25倍 D 缩小为原来的
51 6、 如果把n
m mn +中的n m ,均扩大5倍,那么这个分式的值( ) A 不变 B 扩大5倍 C 扩大25倍 D 缩小为原来的5
1 7、 下列约分正确的是() A 236x x x = B b a c b c a =++ C b a b a ++- D x
y y x -- 8、 无论x 取何值时,始终有意义的分式是( ) A 31+x B 32+x x C 432-+x x D x
y 9、①2
253103x y x y ÷=__________ ②________444)2(22=+--∙-a a a a ③______1=⨯÷b b a ④2)3(a b -=______ ⑤_______)2(32=-x y ⑥_______)()()(2422
=-∙-÷-x y x y y x 10、约分①4234321525c b a c b a - ②99622-++x x x ③m m m m -+-22363 ④
2222444y
xy x y x +--
11、先化简221222-÷-x x x ,然后从2,1,-1中选取一个你认为合适的数作为x 的值代入求值。