二次函数的应用-面积最大
二次函数的实际的应用之利润最大值、面积最值问题
30k b 400
k 20
, 解之得 :
,
40k b 200
b 1000
即一次函数表达式为 y 20x 1000 (30 x 50) .
⑵ P (x 20) y ( x 20)( 20 x 1000)
20 x 2 1 4 0 x0 2 0 0 0 0
∵ a 20 0 ∴ P 有最大值.
当x
1400
35 时, Pmax 4500 (元)
[ 练习 ] :1.某商品现在的售价为每件 60 元,每星期可卖出 300 件,市场调查反映:每涨价 1 元,每星期 少卖出 10 件;每降价 1 元,每星期可多卖出 20 件,已知商品的进价为每件 40 元,如何定价才能使利润
最大? 解:设涨价(或降价)为每件
x 元,利润为 y 元,
y1 为涨价时的利润, y 2 为降价时的利润 则: y1 (60 40 x)( 300 10x)
商品定价一类利润计算公式: 经常出现的数据: 商品进价;商品售价;商品销售量;涨价或降价;销售量变化;其他
成本。 总利润 =总售价 -总进价 - 其他成本 =单位商品利润 ×总销售量-其他成本 单位商品利润 =商品定价-商品进价 总售价 =商品定价 ×总销售量;总进价 =商品进价×总销售量
[ 例 1]:某电子厂商投产一种新型电子厂品, 每件制造成本为 18 元,试销过程中发现, 每月销售量 y (万
所以,销售单价定为 25 元或 43 元,
将
z =-2x
2
+136x-1800
2
配方,得 z=-2 ( x-34 ) +512 ,
因此, 当销售单价为 34 元时, 每月能获得最大利润, 最大利润是 512 万元;
二次函数中三角形面积最大值问题的处理方法
二次函数中三角形面积最大值问题的处理方法二次函数是高中数学中一个经常出现的重要知识点,它在数学中有着广泛的应用,其中一个重要的应用就是处理三角形面积最大值问题。
在本文中,我们将介绍二次函数在处理三角形面积最大值问题中的基本方法和应用技巧。
1. 三角形面积最大值问题的基本原理三角形面积最大值问题指的是给定三边长度为a、b、c,求出以这三条边为边长的三角形的面积最大值。
根据海伦公式,三角形面积公式为:S = √[p(p-a)(p-b)(p-c)]其中p=(a+b+c)/2,是三角形半周长。
我们可以通过求解出上式的最大值来得到三角形的最大面积。
2. 二次函数相关知识介绍二次函数是形如y=ax^2+bx+c的函数,其中a、b、c 是常数,而x是自变量。
二次函数在数学中有着广泛的应用,其标准形式为:y=ax^2+bx+c(a≠0)其中a表示二次函数的开口方向和大小,常被称为二次函数的开口因子;b表示二次函数的对称轴的位置,常被称为二次函数的对称轴;c表示二次函数在y轴上的截距,即当x=0时,二次函数的函数值。
3. 二次函数求解三角形面积最大值的应用在二次函数求解三角形面积最大值的应用中,我们可以将三角形面积公式中的p表示为:p=(a+b+c)/2 = (x+y+z)/2然后使用二次函数y=f(x)表示√[p(p-a)(p-b)(p-c)],其中x、y、z分别表示三角形的三边长度a、b、c。
由于p=(x+y+z)/2是一个常数,因此我们可以将其视为一个固定值,从而将y=f(x)表示为:y=√[(x+y+z)/2(x+y+z)/2-x(x+y+z)/2-y(x+y+z)/2+z(x+y+z)/2]化简得:y=√[xyz(x+y+z)]这就是一个二次函数的标准形式。
通过求解这个二次函数的最大值,我们就可以得到三角形的最大面积。
4. 二次函数求解三角形面积最大值的具体方法为了求解上述的二次函数的最大值,我们需要使用二次函数y=f(x)的顶点公式:x=-b/2a,y=f(-b/2a)其中x=-b/2a即为二次函数的对称轴坐标,f(-b/2a)即为二次函数的顶点坐标。
3.11二次函数的应用 最大面积1
二次函数的应用(最大面积1)学习目标:能够运用二次函数的知识解决最大面积问题,进一步感受数学模型思想和数学的应用价值。
交流预习:如图在Rt △ABC 中,AC=4, BC=3, DE ∥AB,分别与AC 、BC 相交于D 、E, CH ⊥AB 于点H,交DE 于点F 、G 为AB 上任意一点,设CF=x ,△DEG 的面积为y ,限定DE 在△ABC 的内部平行移动.⑴求x 的取值范围.⑵求函数y 与自变量x 的函数关系式.⑶当DE 取何值时,△DEG 的面积最大?求出最大值.典型例题 如图,在Rt △ABC 的内部做一个内接矩形DEFG ,AC=30m ,AB=40m ,设矩形DEFG 的面积为y ㎡,当EF 取何值时,y 的值最大?最大值为多少?巩固练习:1. 如图:在△ABC 中,BC=4,AB=3 2,∠B=45°,M 、N 分别为AB ,AC 边上的点,且MN ∥ BC ,设MN 为x ,△MNC 的面积为y 。
(1)试求y 与x 之间的函数关系式,并写出x 的取值范;(2)试问MN 处在什么位置时,△MNC 的面积最大?并求出最大值;(3)当△MNC 的面积为98时,试问MN 的值。
2、要在底边BC=160, 高AD=120的△ABC铁皮余料上截取一个矩形EFGH, 使点H 在AB上,点G在AC上,点E、F在BC上,设矩形EFGH的长HG=x,宽HE=y,(1)试确定y与x之间的函数表达式.(2)当x为何值时,矩形EFGH的面积S最大?拓展延伸、如图在矩形ABCD中,AB=12cm,BC=6cm,点P沿BA从点B开始向点A以2cm/秒的速度移动;点Q沿CB边从点C开始向点B以1cm/秒的速度移动,如果P、Q同时出发,用t秒表示移动时间(0≤t≤6)那么(1)当t=2秒时,请你猜想下△QPB是个什么特殊三角形,并证明你的结论;(2)求:四边形PBQD的面积s与时间t的关系式。
《二次函数的应用——面积最大问题》说课稿—获奖说课稿.docx
《实际问题与二次函数》说课稿各位评委:你们好!很高兴有机会参加这次比赛,并能得到各位专家的指导,我说课的课题是:实际问题与二次函数——最大值问题。
所用教材是人民教育出版社九年级上第22章第三节实际问题与二次函数,本节共需四课吋,面积最大是第一节,利润最大是第二节。
下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。
一、教学内容的分析1、地位与作用:实际问题与二次函数也可以称作二次函数的应用,本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题乂是生活中利用二次函数知识解决最常见、最有实际应用价值的问题Z-,它生活背景丰富,学生比较感兴趣,对于面积问题、利润问题学生易于理解和接受,故而在这儿作专题讲解。
目的在于让学生通过掌握求最大值这一类题,学会用建模的思想去解决其它和函数有关的应用问题。
此部分内容是学习一次函数及其应用后的巩固与延伸,又为高小乃至以后学习更多函数打下坚实的理论和思想方法基础。
2、课时安排:教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最人、利润最大、运动小的二次函数、综合应用四课时。
3 •学情及学法分析对九年级学生來说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最値,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,口的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标屮知识与技能呈螺旋式上升的规律。
二、教学目标、重点、难点的确定结合木节课的教学内容和学生现有的学习水平,我确定木节课的教学目标如下:1•知识与技能:通过本节学习,巩固二次函数y=3x? + bx + c QHO)的图象与性质,理解顶点与最值的关系,会求解最值问题。
二次函数在实际生活中的应用及建模应用
二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.一、利用二次函数解决几何面积最大问题1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。
(1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;(2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是:利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18)(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9)1(2182=-⨯-=-=a b x 时, 81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。
点评:在回答问题实际时,一定注意不要遗漏了单位。
2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。
问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x-)(米),根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值,即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。
二次函数的实际应用——面积最大(小)值问题
二次函数的实际应用——面积最大(小)值问题[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.[例3]如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.。
中考数学狙击重难点系列专题----二次函数的实际应用之面积最大值问题(含答案)
面积最大值问题1. 如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B (4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.2. 如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x 轴的垂线,垂足为C.(1)求抛物线的解析式;(2)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.3. 如图,二次函数y=ax 2+2x+c 的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求该二次函数的表达式;(2)过点A 的直线AD ∥BC 且交抛物线于另一点D ,求直线AD 的函数表达式;(3)在(2)的条件下,请解答问题: 动点M 以每秒1个单位的速度沿线段AD 从点A 向点D 运动,同时,动点N 以每秒个单位的速度沿线段DB 从点D 向点B 运动,问:在运动过程中,当运动时间t 为何值时,△DMN 的面积最大,并求出这个最大值.4. 如图,在平面直角坐标系中,二次函数y=﹣x 2+bx+c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0).(1)求该二次函数的表达式及点C 的坐标; (2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .求S 的最大值;5. 如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.7.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求△PCE面积最大时P点的坐标;8.如图,在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式;(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;①求S与t的函数关系式;②当t是多少时,△PBF的面积最大,最大面积是多少?9.如图,曲线y1抛物线的一部分,且表达式为:y 1=(x2﹣2x﹣3)(x≤3)曲线y2与曲线y1关于直线x=3对称.(1)求A、B、C三点的坐标和曲线y2的表达式;(2)过点D作CD∥x轴交曲线y1于点D,连接AD,在曲线y2上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标;(3)设直线CM与x轴交于点N,试问在线段MN下方的曲线y2上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.、(备用图)(1)求点A,点B和点D的坐标;(2)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,∆MNB的面积最大,试求出最大面积.11.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y 轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,求t的值;12.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B 两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;13.已知在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx的图象经过点A(﹣1,4),交x轴于点B(a,0).(1)求a与b的值;(2)如图1,点M为抛物线上的一个动点,且在直线AB下方,试求出△ABM 面积的最大值及此时点M的坐标;14.如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC 于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?15.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M 从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;16.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;。
二次函数应用几何图形的最大面积问题教学课件
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所
二次函数应用--几何图形的最大面积问题
F6
=-2x2 + 16x =-2(x-4)2 + 32
B
(0<x<6)
10 所以当x=4时 花园的最大面积为32
注: 1。自变量X的取值范围为一切实数,顶点处取 最 值。
2。有取值范围的在端点或顶点处取最值。
引例 从地面竖直向上抛出一小球,小球的高度 h(单
位:m)与小球的运动时间 t(单位:s)之间的关系 式是h= 30t - 5t 2 (0≤t≤6).小球的运动时间是多少时
,小球最高?小球运动中的最大高度是多少?
∵a<0, ∴抛物线开口向下 C
Q 1cm/秒B
∴ 当P、Q同时运动2秒后Δ PBQ的面积y最大 最大面积是 4 cm2
在矩形荒地ABCD中,AB=10,BC=6, 今在四边上分别选取E、F、G、H四点,且 AE=AH=CF=CG=x,建一个花园,如何设 计,可使花园面积最大?
H
D AE
解:设花园的面积为y G C 则 y=60-x2 -(10-x)(6-x)
2a
值 y 4ac b2 . 4a
h= 30t - 5t 2 (0≤t≤6)
t
b 2a
2
30 (
5)
3,
h
4ac b2 4a
4 (3025) 45.
小球运动的时间是 3s 时,小球最 h/
高.小球运动中的最大高度是 45
m4 0
h= 30t - 5t
2
m.
2 0
问题 如何求自变量的取值范围? 0 < x ≤18.
问题 如何求最值?
由于30 >18,因此只能利用函数的增减性求其最值. 当x=18时,S有最大值是378.
二次函数的应用《图形面积的最大值》
h= 30t - 5t 2
20
O 1 2 34 5 6
t/s
小球运动的时间是 3s 时,小球最高.小球运动中的 最大高度是 45 m.
典例精析 例1 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变 化而变化.当l是多少时,场地的面积S最大?
问题1 矩形面积公式是什么? 问题2 如何用l表示另一边?
设垂直于墙的边长为x m,
60-2x
问题3 面积S的函数关系式是什么?
S=x(60-2x)=-2x2+60x.
问题4 如何求自变量x的取值范围?墙长32m对此题有什么作用?
0<60-2x≤32,即14≤x<30.
问题5 如何求最值最?值在顶点处,即当x=15m时,S=450m2.
变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个 矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
知识要点
二次函数解决几何面积最值问题的方法 1.求出函数解析式和自变量的取值范围; 2.配方变形,或利用公式求它的最大值或最小值, 3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取 值范围内.
典例精析
例2 用某建筑物的窗户如图所示,它的上半部分是半圆,下半部分是矩形, 制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户 通过的光线最多?(结果精确到0.01m)此时,窗户的面积是多少?(结果精 确到0.01m2)
当 x b 时,
2a
二次函数 y = ax 2 + bx + c 有最小(大)
值
y
4ac b2 .
4a
讲授新课
求二次函数的最大(或最小)值
典例精析 例1 写出下列抛物线的最值. (1)y=x2-4x-5;
二次函数的应用——面积最大问题》说课稿—获奖说课稿
二次函数的应用——面积最大问题》说课稿—获奖说课稿22.过程与方法:培养学生利用所学知识构建数学模型,解决实际问题的能力,掌握建模思想,熟练掌握最值问题的解法。
23.情感态度与价值观:通过实际问题的应用,让学生感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱。
本节课的重点是最值问题的解法和建模思想的培养,难点是对实际问题的分析和建模思想的掌握。
三、教学方法的选择本节课采用“引导发现、归纳总结、启发式教学”等多种教学方法,其中引导发现法是本节课的核心教学方法,通过引导学生发现实际问题中的规律和模式,培养学生独立思考和解决问题的能力;归纳总结法是巩固知识的有效方法,通过对学生已有的知识进行梳理和总结,加深对知识的理解和记忆;启发式教学法则是在教学中采用启发式问题,激发学生的思考和求知欲,提高学生的研究兴趣和积极性。
四、教学过程的设计本节课的教学过程分为四个环节:导入、讲授、练、归纳总结。
导入环节通过引入实际问题,激发学生的兴趣和求知欲,让学生认识到最值问题的实际应用价值;讲授环节通过具体例子和图像分析,讲解最值问题的解法和建模思想;练环节则通过多种形式的练,巩固学生的知识和技能;归纳总结环节则对本节课的知识点进行总结和梳理,加深对知识的理解和记忆。
五、教学效果预测通过本节课的教学,学生将能够掌握最值问题的解法和建模思想,能够熟练应用所学知识解决实际问题,同时也能够感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱,为学生今后的研究打下坚实的理论和思想方法基础。
2、___要在一块长为20米、宽为15米的空地上建一个长方形花园,他想让花园的面积最大,你能帮他算一下最大面积是多少吗?3、某公司生产一种产品,销售价格为每个10元,生产成本为每个5元,每天能生产1000个,你能帮助他们算一下每天的最大利润是多少吗?设计思路]通过这三个问题,引导学生发现实际问题中的最值问题,从而引出二次函数的最值问题。
2.4.1北师大版九年级数学下册课件第二章第四节二次函数的应用第一课时最大面积
+300
(或用公式:当 x=
-
b 2a=25
时,y
最大值=300)
∵- 2152<0 ∴ 当 x = 25m 时,y 的值最大,最大面积为 300m2
如果设AB=xm,BC如何表示,最大面积是多少? (随堂练习)
第11页,共26页。
变式练习4: 如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC上截出一矩形零件DEFG,使得EF在BC上,点D、 G分别在边AB、AC上.问矩形DEFG的最大面积是多少?
((12))求当Sx取与何x的值函时数所关围系成式的及花自圃变面量积的最取大值,范最围大;值是多S少=-?4x2+24x (3)若墙的最大可用长度为8米,求围成花圃的最大面积 .
24-4x≤8 (3)由题知24-4x>0 解得 4≤x<6
A
D
x>0
∵-4<0 且对称轴是直线 x=3
B
C
∴当 4≤x<6 时,y 随 x 增大而减少
(2)设五边形APQCD的面积为Scm2 ,写出S与t的函数关系式,t为何 值时S最小?求出S的最小值。
(2)由题意得
S=12×6 -
1 2
×2t(6-t)
=t2-6t+72=(t-3)2+63
∵1>0 ∴当 t=3 时 S 最小值=63
即 t=3cm 时 S 有最小值 63cm2
D
C
Q
2t cm
A t cm
解:(1)S=x(80-2x)= -2x2+80x
A
D
80-2x≤50
xm
xm
由题知80-2x≥40 解得 15≤x<40
二次函数的实际应用(面积最值问题)
二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A 出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动.(1)运动第t秒时,△PBQ的面积y(cm²)是多少?(2)此时五边形APQCD的面积是S(cm²),写出S与t的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-=4289)417(42+--=x ∵104340≤-<x ∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内,而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x ≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP ∴PHBH BFAF =,即3412--=y x ,∴521+-=x y ,x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x ≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S .【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH是正方形.图(2)可以看作是由四块图(1)所示地砖绕C点按顺(逆)时针方向旋转90°后得到的,故CE=CF =CG.∴△CEF是等腰直角三角形因此四边形EFGH是正方形.(2)设CE=x, 则BE=0.4-x,每块地砖的费用为y元那么:y=x×30+×0.4×(0.4-x)×20+[0.16-x-×0.4×(0.4-x)×10](102+24.02.0)x-=x102+(3.2)1.0=x)4.0-<x0(<当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度 最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN ∴MBMA BNAD =,即5512xb -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,则:02082=--x x0)10)(2(=-+x xxyOABM O(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=37.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m ²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围; (2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米.)50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米.则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)。
初中数学 二次函数的应用——面积最大问题
二次函数的应用——面积最大问题一、教学内容的分析地位与作用:二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,为求解最大利润等问题奠定基础。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。
此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
二、教学目标、重点、难点的确定结合本节课的教学内容和学生现有的学习水平,我确定本节课的教学目标如下:1.知识与技能:通过实际问题与二次函数关系的探究,让学生掌握利用利用二次函数求图形面积的最大值;通过探讨明确自变量的取值范围对函数最值的影响2. 过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。
3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。
教学重点:利用二次函数y=2ax bx c ++(a ≠0)的图象与性质求面积最值问题教学难点:1、正确构建数学模型2、对函数图象顶点、端点与最值关系的理解与应用三、教学流程:《二次函数的应用——面积最大问题》哈尔滨市阿城区第五中学刘晓慧。
二次函数应用几何图形的最大面积问题课件
对未来学习的思考和展望
深入学习二次函数和几何图形的基础知识,掌握更多解 决实际问题的技巧和方法。
拓展学习领域,了解更多与数学相关的学科知识,如线 性代数、微积分等,为解决更复杂的问题提供支持。
关注数学在实际生活中的应用,了解数学与其他学科的 交叉点,培养跨学科解决问题的能力。
THANKS
的最大面积。
03
几何图形面积的最大值问 题
几何图形面积最大值的求解方法
03
代数法
几何法
参数法
通过代数运算和不等式性质,求出几何图 形面积的最大值。
利用几何图形的性质和特点,通过作图和 观察,求出面积最大值。
引入参数表示几何图形,通过参数的变化 和约束条件,求出面积的最大值。
面积最大值在二次函数中的应用
二次函数应用几何图形的最 大面积问题课件
目录
• 二次函数与几何图形的关系 • 二次函数的最值问题 • 几何图形面积的最大值问题 • 实际应用案例分析 • 总结与思考
01
二次函数与几何图形的关 系
二次函数图像的几何意义
01
二次函数图像是抛物线,其 顶点是函数的极值点。
02
二次函数图像的对称轴是x=h ,顶点的纵坐标是k。
二次函数与几何图形面积最大值问题 紧密相关,通过合理设定函数参数, 可以找到几何图形面积的最大值。
在解决实际问题时,需要综合考虑多 种因素,如几何图形的形状、大小和 位置等,以及二次函数的参数和约束 条件。
二次函数开口方向和顶点位置对几何 图形面积的影响是关键,需要根据实 际情况调整函数表达式,以获得最佳 效果。
01
总结词
02
详细描述
矩形面积最大化
在给定长和宽的条件下,利用二次函数求矩形的最大面积。通过设定 长和宽为二次函数的形式,并利用求导数的方法找到面积的最大值。
二次函数的应用——如何围得最大面积
淮北梅苑中学:王 景
二次函数的应用
例1
王伯家的墙边有一块空地,为了美化环境,王 伯准备用40m长的围网修建一个矩形花圃 (如图所示):
问: (1)花园面积S与花园宽度x之间的关系?(写出x的取值范围)
(2)你能讲出函数S关于x的性质吗? (3)那么当花园宽度x应是多少m时,面积S达到最大并为 多少?
120 110 100
90 80 70 60 50 40 30 2
y = (x 10)2 + 100
20
40
60
80
100
120
王伯到了集市只买到了30m长的围网,所 以决定一边靠着墙(墙长足够长)围成一个矩形 花圃(如图所示):
设这个园圃垂直于墙的一边长为Xm
问:
(1)求花圃面积S与X的关系式? (2)若王伯墙长为22m,且要求平行于墙的一边不小于16m, 写出X的取值范围? 并求出此时苗圃面积最大值?
(3)在第(2)问的条件下,花圃的面积能为72m2
1.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙 长50m),中间用两道墙隔开(如图),已知计划中的建筑材
料地可面建积墙S与的垂总直长墙度的为一48边mX,的则关这系三式间__长S__方_形__-种_14_牛_x_饲_2_养_室_1_的_2_总x 占
最大面积为___1_4_4_____m2
小结
我们今天用了什么样的知识解决实际生活中 的哪些问题?
布置作业
习题p36第3题 基础训练22.4基础平台一
谢谢指导!
[详细讲解]利用二次函数求几何图形面积的最值问题
利用二次函数求几何图形面积的最值问题构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明.方法:1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。
2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。
3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。
例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.简析 设矩形PNDM 的边DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y .且有NP BC CN-=BFAF(作辅助线构造相似三角形),即34y x --=12,所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4),此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12.说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.例2(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?简析 因为矩形MFGN ∽矩形ABCD ,所以MNAD=MF AB,因为AB =2AD ,MN =x ,所以MF =2x ,所以EM =EF -MF =10-2x ,所以S =x (10-2x )=-2x 2+10x =-2(x -52)2+252,所以当x =52时,S 有最大值为252.说明 本题是利用相似多边形的性质,求出矩形的边之间的关系,再运用矩形的面积构造出二次函数的表达式,使问题求解.例3(2006年泉州市中考试题)一条隧道的截面如图3所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S (米)关于半径r (米)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)简析(1)当AD =4米时,S半圆=12π×22AD ⎛⎫ ⎪⎝⎭=12π×22=2π(米2).(2)①因为AD =2r ,AD +CD =8,所以CD =8-AD =8-2r ,所以S =12πr 2+AD ·CD =12πr 2+2r (8-2r )=(12π-4)r 2+16r ;②由①知CD =8-2r ,又因为2米≤CD ≤3米,所以2≤8-2r ≤3,图 2 图1所以 2.5≤r ≤3,由①知S =(12π-4)r 2+16r =(12×3.14-4)r 2+16r =-2.43r 2+16r =-2.43(r -82.43)2+642.43,因为-2.43<0,所以函数图象为开口向下的抛物线,因为函数图象对称轴r =82.43≈3.3.又2.5≤r ≤3<3.3,由函数图象的性质可知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).即隧道截面面积S 的最大值约为26.1米2.说明 本题是一道典型的代数与几何的综合题,集图形的面积、不等式与二次函数的知识有机的结合在一起,有助于培养同学们的综合应用能力.例4(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.(1)求FC 的长;(2)利用如图5求出矩形顶点B 所对的顶点到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?图3(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.简析(1)由题意,得△DEF ∽△CGF ,FC DF =CGDE,即603060=-FC FC , 所以FC =40(cm).(2)如图5,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x =60,y 的最大值为60×30=1800(cm 2);②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M .根据题意,得△GFC ∽△GPN ,所以CGFG NG DF =,所以NG =23x ,所以BN =120-23x ,所以y =x (120-23x )=-23(x -40)2+2400,所以当x =40时,y 的最大值为2400(cm 2);③当顶点P 在FC 上时,y 的最大值为60×40=2400(cm 2).综合①②③,得x =40cm 时,矩形的面积最大,最大面积为2400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm)满足的函数表达式为: y =-23x 2+120x .当y =x 2时,正方形的面积最大,所以x 2=-23x 2+120x .解之,得 x 1=0(舍去),x 2=48(cm).图4图5所以面积最大得正方形得边长为48 cm.说明本题是一道典型的二次函数与几何综合应用的问题,在解第(2)小题时,一定不要忽视分类讨论来求出每一种情况的最大值后,再进行比较得出结论,第(3)小题只需根据题意列出方程就能解决.。
铅垂线法二次函数面积最大值问题
铅垂线法二次函数面积最大值问题铅垂线法二次函数面积最大值问题1. 引言在数学中,二次函数是一种非常重要的函数形式。
它以抛物线的形式呈现,具有丰富的几何和代数特性。
铅垂线法是一种常见的解决问题的方法,可以应用于许多数学和物理问题中。
本文将介绍铅垂线法在二次函数面积最大值问题中的应用,探讨如何通过该方法求解最优解。
2. 二次函数的基本形式二次函数可以写为 y = ax^2 + bx + c 的形式,其中 a、b 和 c 是常数,a ≠ 0。
它的图像是一个抛物线,开口的方向取决于 a 的正负。
二次函数的图像关于一个对称轴对称,这个对称轴可以用铅垂线表示。
铅垂线是通过顶点并与抛物线垂直的线段,它对应的 x 坐标就是对称轴的 x 坐标。
3. 铅垂线法的基本原理铅垂线法是一种基于几何和代数思想的问题解决方法。
对于一个给定的二次函数,我们希望找到一个特定的线段,使得这个线段和 x 轴以及抛物线所围成的面积达到最大值。
根据几何原理,这个线段应该与铅垂线重合。
4. 铅垂线法步骤以下是使用铅垂线法求解铅垂线方程和最大面积的一般步骤:1)确定二次函数的标准形式,并找出对称轴的 x 坐标;2)以对称轴上的一点作为铅垂线的起点,并确定该线段的长度;3)利用铅垂线的起点和终点,计算所围成的面积;4)随着铅垂线的移动,不断重复步骤 2 和步骤 3;5)比较每一次计算的面积值,找到最大值对应的铅垂线长度,得到最大面积。
5. 铅垂线法在二次函数面积最大值问题中的应用对于给定的二次函数 y = ax^2 + bx + c,我们可以通过铅垂线法求解铅垂线方程。
假设对称轴的 x 坐标为 p,则铅垂线的方程可以表示为 x = p。
利用二次函数的顶点公式,我们可以得到顶点的坐标 (-b/2a, f(-b/2a))。
铅垂线的起点坐标可以表示为 (p, f(p))。
为了计算所围成的面积,我们可以使用定积分。
根据定积分的定义,对于一个 x 坐标在 p 和 q 之间的函数 f(x),所围成的面积可以表示为∫[p,q] f(x)dx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大面积是多少? 解:设窗框的一边长为x米,
则另一边的长为(8-2x)米, y= x(8-2x) 即:y=-2x2+8x
x
又令该窗框的透光面积为y米,那么:
8-2x
…………
(2010年安徽省芜湖市) 用长度为20m的金属材料制成如图所示的金属 框,下部为矩形,上部为等腰直角三角形,其 斜边长为2x m.当该金属框围成的图形面积最 大时,图形中矩形的相邻两边长各为多少?请 求出金属框围成的图形的最大面积. M
A B D C
在边长为2米的正方形铁板内,沿着一条边 恰好截取两块相邻的正方形板料,要使截取 的板料面积最小,应该怎样截取?
D C
A
x 2m
MHale Waihona Puke B收获:学了今天的内容,我们意识到 所学的数学是有用的,巧妙地 应用数学知识可以解决生活中 碰到的很多问题!
实际问题
抽象 转化
运用 数学问题 解决数学问题 数学知识 返回解释 检验
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少?
何时面积最大?
用两直角边分别为 30cm和40cm的纸片裁 一个面积最大的矩形, 该如何裁?
M
30cm
D ┐
C
A
40cm
B
N
小结:应用二次函数的性质解决日常生活中的 最值问题,一般的步骤为:
①把实际问题转化为数学问题(二次函数问题); ②找出变量,并设出变量 ③列出函数解析式(包括自变量的取值范围); ④在自变量的取值范围内求出最值(数形结合找最值); ⑤答。
y
2
x 2
7 15 225 x . 2 14 56
2
b 15 4ac b 2 225 或用公式 : 当x 1.07时, y最大值 4.02. 2a 14 4a 56
收获:
学了今天的内容,我们意识到 所学的数学是有用的,巧妙地 应用数学知识可以解决生活中 碰到的很多问题!
实际问题
抽象 转化
运用 数学问题 问题的解 数学知识 返回解释 检验
1、给你长6m的铝合金条,设问: ①你能用它制成一矩形窗框吗? ②怎样设计,窗框的透光面积最大?
解:设宽为x米,根据题意得,则长为(3-x)米
y x3 x (0<x<3) 2 x 3x
3 2 9 ( x ) 2 4
3-x
当x 1.5在0 x 3的范围内,此时 y有最大值, 9 y最大值 4
x
2、用长为6m的铝合金条制成如图形 状的矩形窗框,问窗框的宽和高各是 多少米时,窗户的透光面积最大?最 大面积是多少?
6 3x 2
3、用长为8米的铝合金制成如图窗框,一边靠2m的墙,
问窗框的宽和高各为多少米时,窗户的透光面积最大?
x
x
y
何时窗户通过的光线最多
15 7 x x . 解 : 1. 由4 y 7 x x 15. 得, y 4
15 7 x x x 2.窗户面积S 2 xy 2 x 2 4 2 7 2 15 x x 2 2
x x