2015届广东省深圳市高三第一次五校联考理科数学试卷
广东省深圳市2015届高三上学期第一次五校联考理科综合试卷
2015届高三年级第一次五校联考理科综合试卷本试卷共10页,36小题,满分300分.考试用时150分钟注意事项:1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。
用2B铅笔将考生号填涂在答题卡相应的位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一、单项选择题:本大题包括16 小题,每小题4 分,共64 分。
在每小题给出的四个选中,只有一个选项符合题目要求,选对的得4 分,选错或不答的得0 分。
1.19世纪德国M.J.Schleiden和T.Schwann等科学家提出了细胞学说,下列对“细胞学说”理解合理的是①一切生物都是由细胞和细胞产物构成的②细胞是一个相对独立的有机体③提出了细胞膜结构的流动镶嵌模型④揭示细胞的统一性和生物体结构的统一性⑤认识到细胞的多样性⑥标志着生物学研究进入细胞水平A.①②⑤⑥B.①②③④C.③⑤D.②④⑥2.如图甲是有活性的细胞中元素含量的柱形图,图乙是细胞中化合物含量的扇形图,下列说法正确的是A.若图甲表示组成人体细胞的元素含量,则a、b、c依次是O、H、CB.若图乙表示细胞干重,则A化合物是蛋白质C.若图乙表示细胞鲜重,则A化合物在细胞内主要存在于细胞液中D.地壳与活细胞中含量最多的元素都是a,因此说明生物界与非生物界具有统一性3.如图表示细胞某些结构的组成成分,图中字母是元素符号,甲、乙、丙表示物质。
下列有关叙述错误的是A.图示细胞是真核细胞,图中的化学元素都属于组成细胞的大量元素B.鉴定甲、乙、丙三种物质所用的试剂分别是苏丹Ⅲ染液、双缩脲试剂和二苯胺试剂C.乙和丙是生物大分子,细胞内合成乙的场所是核糖体,合成丙的原料是脱氧核苷酸D.Ⅰ功能的复杂性主要取决于乙的种类,Ⅱ是丙的主要载体,在有丝分裂过程中其形态会发生周期性变化4.下列有关物质跨膜运输的叙述正确的是A.葡萄糖进入红细胞不消耗能量B.协助扩散和自由扩散都不需要膜上载体蛋白的协助C.相对分子质量小的物质或离子都可以通过自由扩散进入细胞D.温度不会影响物质跨膜运输的速率5.下列关于实验的叙述中正确的是A.用人口腔上皮细胞做“观察DNA和RNA在细胞中的分布”实验时,需先对细胞进行盐酸水解,然后用甲基绿、吡罗红染色剂分别给涂片进行染色B.选用洋葱根尖伸长区细胞较易观察到细胞有丝分裂图像C.显微镜下观察正在发生质壁分离的紫色洋葱表皮细胞,可见液泡的颜色逐渐加深D.在“探究细胞大小与物质运输的关系”实验中,计算紫红色区域的体积与整个琼脂块的体积之比,能反应NaOH进入琼脂快的速率。
广东省五校协作体2015届高三第一次联考试卷(精校WORD版)
广东省五校协作体2015届高三第一次联考试卷广东省五校协作体2015届高三第一次联考试卷太子头上的广东省五校协作体2015届高三第一次联考试卷语文命题学校:深圳市第二高级中学命题:李剑林审题:王文雄、杨红菊2014.12本试卷共8页,24小题,满分150分。
考试用时150分钟。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每对读音都不相同的一组是A.蝉联/婵娟龟裂/隽秀虎视眈眈/肆无忌惮B.煎熬/鏖战反诘/拮据画卷/胜券在握C.针砭/匾额觊觎/给予前仆后继/风尘仆仆D.蓓蕾/胳臂仓廪/租赁戕害/呼天抢地2.下面语段中画线的词语,使用不恰当的一项是1990年国家教委首次完整地提出了素质教育的概念,1993年是素质教育思想形成过程中标新立异的年份,这年2月,国家颁布的《中国教育改革和发展纲要》吸纳了应试教育和素质教育讨论的理论成果。
然而,素质一词在《辞海》中解释为:人的先天的解剖生理特点。
心理学界普遍把它理解为秉性、天资、天赋。
由此可见,素质一词原本强调人先天的生理特性。
素质教育这一概念,从词义上看是自相矛盾的,因为人的天赋不可教育。
但是,长达20多年的素质教育宣传已经使这一词语具有了独立的意思,今天它已很少受到质疑。
A.完整B.标新立异C.自相矛盾D.质疑3.下列句子中,没有语病的一项是A.共建面向未来的亚太伙伴关系这一APEC北京会议鲜明的主题,体现出中国对亚太持久发展繁荣所作的深入思考和安排。
B.随着双11、双12、圣诞节、元旦等各个网购高峰的到来,预计今年我国快递业务量将超过美国至少达140亿件左右。
C.大量案例表明,一些干部蜕化变质,多是从小爱好、小情趣开始的,然后逐渐沉溺于安逸享乐奢靡之中,最终堕落成为腐败。
D.为缓解消费者对新能源汽车的里程焦虑,各地政府在出台新能源汽车补贴政策的同时,也加快了新能源充电站的建设步伐。
4.在文中横线处填入下列语句,衔接最恰当的一项是寄托,一般来说只是一种艺术手法,,归根到底仍决定于的思想倾向和他对待现实的态度。
深圳市2015届高三上学期第一次五校联考
深圳市2015届高三上学期第一次五校联考第一节:完形填空(共15小题;每小题2分,满分30分)When asked to point out one or two things that are most important to themselves,many put friends ahead of homes,jobs,clothes and cars.A true 1 carries a long history of experience that determines who we are and keeps us connected. It is a 2 we should prove it. 3 ,the better friends you are,the more probably you‟ll have disagreements. And the 4 can be what you don‟t want an end to finish the relationship.The good news is that most troubled friendships can be 5 .First,don‟t let your pride get in your way. Most of us can forgive each other when 6 are brought out in the open. Second,__7__when you‟re wrong-even if you‟ve been 8 . Over the course of friendship,9 the best people make mistakes. Sometimes,it may be best if the wronged person 10 the lead and apologizes. When you apologize,give your friend a 11 to admit that he has been wrong. Third,see things from your 12 point of view. And 13 accept that friendships change as our needs and lifestyles change. Making friends can sometimes seem 14 . The hard part is __15__the connections strong during the nature ups and downs that have an effect on all relationships. My suggestion:Consider friendship an honor and a gift,and worth the effort to treasure and nurture(培养).1.A.friendship B.love C.relationship D.care2.A.wealth B.gold C.jewellery D.treasure3.A.Personally B.Naturally C.Unfortunately D.Luckily4.A.result B.pace C.future D.minute5.A.finished B.mended C.changed D.prevented6.A.discussions B.questions C.differences D.interests7.A.admit B.punish C.flee D.apologize8.A.blamed B.wronged C.punished D.praised9.A.still B.even C.yet D.ever10.A.takes B.gives C.gets D.makes11.A.reason B.cause C.chance D.time12.A.brother‟s B.father‟s C.enemy‟s D.friend‟s13.A.properly B.finally C.really D.merely14.A.difficult B.hard C.easy D.likely15.A.keeping B.letting C.proving D.remaining第二节语法填空(共10小题;每小题1.5分,满分15分)A farmer once organized a competition between his dog and his rabbit. He dug a hole in one of his biggest fields, and hid a carrot and a bone in it. He wanted to see 16 animal wouldfind them first.The 17 (cheer) and optimistic rabbit threw himself into looking for the carrot, 18 (dig) here and there, totally convinced that he would find it. But the dog, after sniffing around for a bit, 19 (lie) down and began to complain about how difficult it was to find one bone in such a big field.The rabbit dug 20 hours, and with every new hole the dog complained even more about how difficult this was, even for the rabbit. 21 the rabbit thought that each hole dug was one hole less that needed to be dug. When there was no place in the whole field 22 (leave) to dig, the rabbit dug a tunnel right to 23 the dog had been lying all the time. There he found the carrot and the bone.This is how the dog lost the game. He had come to 24 right place at the very beginning but failed to find the bone 25 he only complained and didn't try at all.II. 阅读理解(共两节,满分50分)AA primary school in UK has banned Valentine‟s Day cards because of concerns that young pupils spend too much time talking about boyfriends and girlfriends.Ashcombe Primary School in Weston Super Mare,Somerset,has told parents that cards declaring love can be“confusing” for children under the age of 11,who are still emotionally and socially developing. In this month‟s newsletter(通讯),Peter Turner,the head teacher,warned that any cards found in school would be confiscated(没收).He wrote:“We do not wish to see any Valentine‟s Day cards in school this year. Some children and parents encourage a lot of talk about boyfriends and girlfriends. We believe that such ideas should wait until children are mature enough emotionally and socially to understand the commitment involved in having or being a boyfriend or girlfriend.”Mr.Turner said any families wanting to support the Valentine‟s Day idea should send cards in the post or deliver them to home addresses by hand.His views were endorsed by Ruth Rice,46,who has twins Harriet and Olivia at the school. She said,“Children at that age shouldn‟t really be thinking about Valentine‟s Day,they should be concentrating on their schoolwork.”They are at an age when they are impressionable(易受影响的)and most parents incl uding myself are with Mr.Turner. “She added that the cards cause” too much competition. If someone gets a card and another doesn‟t,then someone will be disappointed.However,Rajeev Takyar,40,who has two children Jai,11,and Aryan,five,at the school,said he was “outraged”.He said,“There are schools that have banned conkers(栗子游戏)and snowballs,and now V alentine‟s Cards.”I think banning the cards stops children from having social skills. How are they going to learn about relationships otherwise?It‟s ridiculous. Alec Suttenwood,father of three children,said of the ban:“It‟s totally ridiculous. Young children just send the cards to each other as friends and to their parents. It‟s just a bit of harmless fun. There is no difference between this and Mother‟s or Father‟s Day.”26.Which of the following is the best title?A.Ban on Valentine‟s Day cards at school is well received.B.Ban on Valentine‟s Day cards at school causes argument.C.British children spend too much time talking about love.D.A British high school ba ns Valentine‟s Day cards.27.The underlined word “endorsed” means________.A.criticized B.quotedC.disapproved D.approved28.What do you know about Harriet and Olivia?A.They will send Valentine‟s Day cards this year.B.They are strongly against the sc hool‟s decision.C.They are of the same age.D.They are the children of Rajeev Takyar.29.According to Rajeev Takyar,________.A.sending Valentine‟s Day cards helps develop children‟s social skillsB.banning Valentine‟s Day cards will benefit childrenC.the cards cause too much competition among childrenD.children are too young to talk about love30.The newsletter by Peter Turner probably appeared on________.A.February 22 B.February 6C.March 18 D.August 1BA black hole is a place in space where gravity pulls so much that even light cannot get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying.Because no light can get out, people can‟t see black holes. Space telescopes with spec ial tools can help find black holes. The special tools can see how stars that are very close to black holes act differently from other ones.Black holes can be big or small. Scientists think the smallest black holes are as small as just one atom. These black holes are very tiny but have the mass of a large mountain. Mass is the amount of matter, or “staff”, in an object.Another kind of black hole is called “stellar”(星球黑洞). Its mass can be up to 20 times more than the mass of the sun. There may be many stellar mass black holes in Earth‟s galaxy. Earth‟s galaxy is called the Milky Way.The largest black holes are called “supermassive”(超大质量黑洞). These black holes have masses that are more than one million suns together. Scientists have found proof that every large galaxy contains a supermassive black hole at its center. The supermassive black hole at the centerof the Milky Way galaxy has a mass equal to about four million suns and would fit inside a very large ball that could hold a few million Earths.Scientists think the smallest black holes formed when the universe began. Stellar black holes are made when the center of a very big star falls in upon itself, or falls apart. When this happens, it exploded part of the star into space. Scientists think supermassive black holes were made at the same time as the galaxy they are in.A black hole can not be seen because strong gravity pulls all of the light into the middle of the black hole. But scientists can see how the strong gravity affects the stars and gas around the black hole. Scientists can study stars to find out if they are flying around, or orbiting a black hole.When a black hole and a star are close together, high-energy light is made. This kind of light cannot be seen with human eyes. Scientists use satellites and telescopes in space to see the high-energy light.31. The gravity of a black hole may become so strong that light cannot get out when ____________.A. the star is going to dieB. special tools are used on itC. other stars come close to itD. it is seen from the space telescopes32. According to the passage, which of the following is NOT true?A. A black hole can be very tiny but extremely heavy.B. The gravity of a black hole holds all light in its center.C. Scientists observe high-energy light through their own eyes.D. Some small black holes came into being as early as the universe.33. Which can be inferred from the passage?A. Every galaxy must have a black hole.B. A galaxy is the center of the universe.C. A galaxy consists of a large group of stars and planets.D. Earth‟s galaxy is called the Milky Way.34. What does the last sentence in Paragraph 5 suggest?A. Neither the sun nor the earth is as heavy as a black hole.B. There is only one supermassive black hole at the center of the Milky Way.C. The supermassive black hole had existed before the Milky Way was formed.D. There is a reason why the large black holes are called “supermassive”.35. The last two paragraph mainly focus on the question of _________.A. what a black hole isB. how black holes formC. how big black holes areD. how scientists know about black holesCThe computer keyboard helped kill shorthand—a system of rapid handwriting, and now it‟s threatening to finish off handwriting as a whole. When handwritten essays were introduced on the SAT exams for the class of 2012, just 15% of the most1.5 million students wrote their answers in cursive(草写字母). The rest? Block letters.And those college hopefuls are just the first edge of a wave of US students who no longer get much handwriting instructions in the primary grades, frequently 10 minutes a day or less. As a result, more and more students struggle to read and write cursive.At Keene Mill Elementary School in Springfield, all their poems and stories are typed. Children in Fairfax County schools are taught keyboarding beginning in kindergarten. Older students who never mastered handwriting say it doesn‟t affect their grades.There are those who say the culture is at a crossing, turning from the written word to the typed one. If handwriting becomes a lost form of communication, does it matter?It was at University Virginia that researchers recently discovered a previously unknown poem by Robert, written in his unique script. Handwritten documents are more valuable to researchers, historians say, because their authenticity(真实性) can be confirmed. Students also find them more fascinating.The loss of handwriting also may be a cognitive(认知的) opportunity missed. Several academic studies have found that good handwriting skills at a young age can help children express their thoughts better—a lifelong benefit.It doesn‟t take much to teach better handwriting skills. At some schools in Prince George‟s County, elementary school students use a program called Handwriting Without Tears for 15 minutes a day. They learn the correct formation of manuscript letters through second grade, and cursive letters in third grade.There are always going to be some kids who struggle with handwriting because of their particular neurological(神经系统的) writing, learning issues or poor motor skills. Educators often point to this factor in support of keyboarding.36. What is the author concerned about after 2012 Sat exams?A. Keyboarding.B. Shorthand.C. Handwriting.D. Block letters.37. A poem by Robert mentioned in the passage is used to ____________.A. prove how valuable handwriting isB. explain what a famous poet he isC. show how unique his poem isD. stress how fascinating the documents are38. The example of Handwriting Without Tears helps to argue that _____________.A. the schools are responsible for the loss of handwritingB. the loss of handwriting is a cognitive opportunity missedC. it doesn‟t take much to teach better handwriting skillsD. the culture is turning from the written word to the typed one39. According to the author, when is a perfect time to learn handwriting?A. Kindergarten.B. Primary school.C. High school.D. College.40. What is the author‟s attitude towards this debate?A. Devotion.B. Encouragement.C. Critical.D. Objective.DMost young people enjoy some forms of physical activity. It may be walking, cycling, swimming, or in winter, skating or skiing. It may be a game of some forms—football, basketball, hockey, golf or tennis. It may be mountaineering.Those who have a passion for climbing high and difficult mountains are often looked upon with astonishment. Why are men and women willing to suffer cold and hardship, and to take risks in high mountains? This astonishment is caused, probably, by the difference between mountaineering and other forms of activity to which men give their leisure.Mountaineering is a sport and not a game. There are no man-made rules, as others, as there are for such games as golf and football. There are, of course, rules of different kinds which would be dangerous to ignore, but it is this freedom from man-made rules that makes mountaineering attractive to many people. Those who climb mountains are free to use their own methods.If we compare mountaineering with other more familiar sports, we might think that one big difference is that m ountaineering is not a “team game”. We should be mistaken in this. There are, it is true, no “matches” between “teams” of climbers, but when climbers are on a rock face linked by a rope on which their lives may depend, there is obviously teamwork.The mountain climber knows that he may have to fight forces that are stronger and more powerful than man. He has to fight the forces of nature. His sport requires high mental and physical qualities.A mountain climber continues to improve in skills year by year. A skier is probably past his best by the age of thirty. But it is not unusual for men of fifty or sixty to climb the highest mountains in the Alps. They may take more time than younger men, but they perhaps climb with more skills and less waste of effort, and they certainly experience equal enjoyment.41. What sports are popular among people in winter in the passage?A. Soccer and golf.B. Skiing and skating.C. Cycling and hockey.D. Mountaineering.42. The underli ned word “passion” in Paragraph 2 could best be replaced by ______.A. strong emotionB. good wayC. better feelingD. enough affection43. Mountaineering is a sport, not a game because_______.A. it has man-made rulesB. it is too dangerous for climbersC. it can‟t bring people joy or leisureD. it is free for climbers to use their own methods44. We know from the passage that _______.A. mountaineering has no appeal for peopleB. physical quality is more important than mental one for climbersC. a mountain climber passes his best by the age of thirtyD. it is possible for an old man of fifty or sixty to climb the Alps45. What is the best title for the passage?A. Sports in winterB. Team work in climbingC. MountaineeringD. The quality for mountaineeringIII.写作(共两节,满分40分)第一节:基础写作(共1小题,满分15分)假设你是某中学高三(5)班的班长。
【2015广东五校联考】广东省五校协作体2015届高三第一次联考理综化学试题 Word版含答案
广东省五校协作体2015届高三第一次联考试卷2015广东五校联考理综化学(2014年12月)可能用到的相对原子质量:C—12 Fe—56 Zn—65第Ⅰ卷(选择题共118分)一、单项选择题:(本大题共16小题,每小题4分,共64分)7.化学与工农业生产和人类生活密切相关,下列说法中正确的是A.明矾与漂白粉常用于自来水的净化与消毒,这两者的作用原理是一样的B.为了防止中秋月饼的富脂食物因被氧化而变质,常在包装袋里放生石灰C.海轮外壳上镶入锌块,可减缓船体的腐蚀,该方法叫牺牲阳极的阴极保护法D.酸雨就是pH <7的雨水,主要是由大气中的SO2、NO2等造成的8.下列有关物质的性质与应用相对应的是A.Cl2具有漂白性,可用作自来水的消毒B.SiO2具有高沸点,可用作制备光导纤维C.NH3具有还原性,可用作制冷剂D.Na2O2能与CO2反应,可用作潜水艇内的供氧剂9.下列各组离子在溶液中能够大量共存的是A.NH4+、Cl-、Na+、SO42-B.Na+、Ba2+、OH-、SO42-C.Ca2+、H+、S2-、ClO-D.H+、Cl-、Fe2+、NO3-10.n A为阿伏加德罗常数,下列叙述正确的是A.22.4L NH3中含氮原子数为n AB.1 mol Na2O2与水完全反应时转移的电子数为n AC.1 L 0.1mol·L-1碳酸钠溶液的阴离子总数小于0.1n AD.1 mol O2和2 mol SO2在密闭容器中充分反应后的分子数等于2n A11.X、Y、Z、W四种元素在元素周期表中的相对位置如下图所示,其中X、W的质子数之和为21,由此可知B.Y的氢化物(H2Y)不稳定,100℃以上即可分解C.W的非金属性比Y的非金属性弱D.Z的最高价氧化物的水化物是一种强碱12.下列叙述正确的是①装置甲可防止铁钉生锈②装置乙可除去乙烯中混有的乙炔③装置丙可验证HCl气体在水中的溶解性④装置丁可用于实验室制取乙酸乙酯⑤装置戊可用于收集H2、CO2、Cl2、HCl、NO2等气体A.①⑤B.②④C.③④D.③⑤二、双项选择题:(本大题共9小题,每小题6分,共54分。
2015年深圳一模理科数学试题答案及评分标准-(纯word版)
2015年深圳市高三年级第一次调研考试数学(理科)试题一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合}5,1,0,2{=U ,集合}2,0{=A ,则A C U =( ) A.φ B 。
}2,0{ C 。
}5,1{ D 。
}5,1,0,2{ 2、已知复数z 满足1)1(=+i z (其中i 为虚数单位),则=z ( ) A.21i +- B 。
21i -- C 。
21i + D 。
21i- 3、若函数b a y x+=的部分图象如图1所示,则A.01,10<<-<<b a B 。
10,10<<<<b a C.01,1<<->b a D 。
10,1<<>b a4、已知实数y x ,满足不等式组300≤⎪⎩⎪⎨⎧≥≥+y x y x ,则y x +2的最大值为( )A.3 B 。
4 C 。
6 D 。
95、已知直线b a ,,平面βα,,且α⊥a ,β⊂b ,则“b a ⊥”是“βα//”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6、执行如图2所示的程序框图,则输出S 的值为( ) A. 16 B 。
25 C 。
36 D 。
497、在ABC ∆中,c b a ,,分别为C B A ∠∠∠,,所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则B ∠的范围是( ) A.)3,0(π B 。
]3,0(π C 。
],3[ππ D 。
),3(ππ8、如果自然数a 的各位数字之和等于8,我们称a 为“吉祥数”。
将所有“吉祥数”从小到大排成一列321,,a a a …,若2015=n a ,则=n ( )A. 83 B 。
82 C 。
39 D 。
37二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
广东省深圳市2015届高三上学期第一次五校联考数学试题(理)
2015届高三年级第一次五校联考理科数学试卷本试卷共4页,21小题,满分150分.考试用时120分钟.命题人:二高董正林注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效.5、考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1、已知a b R ∈,,是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A 、54i -B 、54i +C 、34i -D 、34i +2、设集合{}12A x R x =∈-<,{}2,x B y R y x R =∈=∈,则AB =( )A 、∅B 、[)0 3,C 、()0 3,D 、()1 3-,3、函数()2ln =-f x x x的零点所在的区间为( ) A 、()0 1,B 、()1 2,C 、()2 3,D 、()3 4,4、已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( )A 、充要条件B 、充分而不必要条件C 、必要而不充分条件D 、既不充分也不必要条件5、一个多面体的三视图如右图所示,则该多面体的体积为( )A 、233 B 、223C 、6D 、 7 6、在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。
广东省深圳市2015届高三第一次调研考试数学理试题 Word版含解析
2015年深圳市高三年级第一次调研考试【试卷综析】本试卷是高三理科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、复数、向量、椭圆、导数、数列、三角函数的性质,立体几何等;考查学生解决实际问题的能力。
一选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
【题文】1、已知集合}5,1,0,2{=U ,集合}2,0{=A ,则A C U =( ) A.φ B 。
}2,0{ C 。
}5,1{ D 。
}5,1,0,2{ 【知识点】集合及其运算A1 【答案】C【解析】由}5,1,0,2{=U ,}2,0{=A 则A C U =}5,1{ 【思路点拨】根据集合的运算得到。
【题文】2、已知复数z 满足1)1(=+i z (其中i 为虚数单位),则=z ( ) A.21i +- B 。
21i -- C 。
21i + D 。
21i- 【知识点】复数的基本概念与运算L4 【答案】D 【解析】z=11i += 1(1)(1)i i i -+-=21i - 【思路点拨】根据复数运算性质得到。
【题文】3、若函数b a y x+=的部分图象如图1所示,则 A.01,10<<-<<b a B 。
10,10<<<<b a C.01,1<<->b a D 。
10,1<<>b a a>1, 0<b<1【知识点】指数与指数函数B6O xy图11-1【答案】A【解析】由图象可以看出,函数为减函数,故0<a <1, 因为函数y=a x 的图象过定点(0,1),函数y=a x +b 的图象过定点(0,b ),∴-1<b <0 【思路点拨】根据指数函数的图象和性质即可判断【题文】4、已知实数y x ,满足不等式组300≤⎪⎩⎪⎨⎧≥≥+y x y x ,则y x +2的最大值为( )A.3 B 。
2015年广东省普通高中一模考试答案(理数)
又 a1 1 适合上式, ∴ an 2 n 1 .
/w
解法 2:由 an1 2 Sn 1 ,得 an 1 1 4Sn , 当 n 2 时, an 1 4Sn 1 ,
2
tp :/
ht
∴ an 1 1 an 1 4 Sn Sn 1 4an . ∴ an1 an 2an1 2an 0 .
∴Rt△ POA ~Rt△ HGA .
PO PA ∴ . HG HA
∴ HG
PO HA 32 3 30 . PA 5 30
3
教 gu an 研 gz tr .e du .c n/
P
3 . ……5 分 G
A
D
E
州
H
O
B
F
…………………………12 分
在 Rt△ BHG 中, tan BGH
Sn 1 .
2
∵ an 0 ,∴ S n 0 . ∴ Sn1 ∴数列
n
Sn 1 .
∴ Sn 1 n 1 n .
州
S 是首项为
2
S1 1 ,公差为 1 的等差数列.
广
∴ Sn n .
ww .
2 2
2
当 n 2 时, an Sn Sn 1 n n 1 2n 1 ,
广
∴ PO BO . …………………………6 分 ∵ PO EF , EF BO O , EF 平面 BFED , BO 平面 BFED ,
AO 2 PO 2 30 ,
在 Rt△ POA 和 Rt△ HGA 中, POA HGA 90 , PAO HAG , …………………………11 分
2015年深圳市高三年级第一次调研考试.docx
2015年深圳市高三年级第一次调研考试数学理科)答案及评分标准说明: 一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的 主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容 和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后 续部分的解答有较严重的错误,就不再给分.三、 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、 只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分40分.123 45678cD A C BCDA二、填空题:本大题每小题分,满分分.三、解答题16.(本小题满分12分)JT函数/(x ) = 2sin (^x + -) (Q >0)的最小正周期是兀・二。
=±2 ,TT由0>0,得0 = 2,即/(x) = 2sin(2x + -).八/5兀、小• 7ye r • /兀 、 r •兀 ?••• f (—) = 2 sin — = 2 sin(— + 兀)=一2 sin — = — 1 • 12 6 6 6(2)由sinx 010. 18;14. 211. 9; 15. 4.12. 4亦;解: (1)(2) (1)求/(詈)的值;若 sin X 。
二半,且砖(0冷),求心)的值.2兀v/(X )的周期T = n,即厂=兀,—得cos2x 0 = l-2sin 2 x 0Tl又 X ()G (0,—),・•・ 2x 0 G (0, 71),•・• 2 sin(2x 0 + —) = 2 sin 2x 0 cos y+ 2 cos 2x 0 sin —r 2V2 1 1 V3 2V2+V3= 2x —x- + 2x-x —= --------------------.3 2 3 2 3・• JOo) = 2 sin(2x 0 +y)= ?忑;卡【说明】木小题主要考查了三角函数/(兀)二Asin (饭+ 0)的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力.17.(本小题满分12分)空气质量指数(简称AQ1)是泄量描述空气质量状况的指数,其数值越人说明空气污染 越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站•下表是某网站公布 的广东省内21个城市在2014年12月份某时刻实时监测到的数据:城市 AQI 数值 城市 AQI 数值 城市 AQI数值 城市 AQI数值 城市 AQI数值 城市 AQI数值 城市AQI 数值 广州 118 东莞 137 中山 95 江门 78 云浮 76 茂名 107 揭阳 80 深圳94珠海95湛江75 潮州 94 河源 124 肇庆 48 清远 47 佛山 160 惠州 113 汕头88汕尾74阳江112韶关68梅州84(1)请根据上表屮的数据,完成下列表格:空气质量 优质 良好 轻度污染 中度污染AQT 值范|韦|[0, 50)[50, 100)[100, 150)[150, 200)城市个数(2)统计部门从空气质量“良好”和“轻度污染”的两类城市屮采用分层抽样的方式抽取6个城市,省环保部门再从屮随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为§”,求纟的分布列和数学期望. 解:(1)根据数据,完成表格如下:空气质量优质良好轻度污染屮度污染AQI 值范围[0, 50) [50, 100) [100, 150)[150, 200)城市频数2 12 6 1(2)按分层抽样的方法,12分12从“良好”类城市屮抽取卩二 ---- x6 = 4个,............................. 3分12 + 6从“轻度污染”类城市屮抽取仏x6 = 2个,................................ 4分-12 + 6所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题的所有可能取值为:1, 2, 3 .C l C2 1 C2C' 3 c3C° 1•・・p(§=i)=恃p(§=2)=许二斗P(§=3)=符二* .............. ...... 8 分123P131555咖心叫+ “答:§的数学期望为2个. ..................................... 12分【说明】木题主要考察读图表、分层抽样、概率、随机变星分布列以及数学期望等基础知识, 考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18・(本小题满分14分)在三棱锥P —ABC中,己知平面PBC丄平\hi ABC , AB是底Lfn"A ABC最长的边.三梭锥P-ABC的三视图如图5所示,其屮侧视图和俯视图均为育角三角形.(1)请在图6屮,用斜二测画法,把三棱锥P — ABC的直观图补充完桀(其屮点P 在xOz平面内),并指出三棱锥P-ABC的哪些面是直角三角形;(2)求二血角B-PA-C的正切值;(3)求点C到面PAB的距离.侧视图— 2 —► |<—2 —->| 俯视图解:(1)三棱锥P-ABCK 观图如图1所示; 由三视图知\ABC 和△PCA 是直角三角形. (2)(法一):如图2,过P 作PH 丄BC 交BC 于点H, 由三视图知NPBC 为等腰三角形,vBC = 4, PH = 2*,:.PB = PC = BC = 4,取PC 的屮点E,过E 作EF 丄Q4且交PA 于点F,连接BE, BF,因为BE 丄PC,由三视图知AC 丄面PBC ,且B Eu 面PBC ,所以AC 丄BE , 又由ACP\PC = C ,所以BE 丄面PAC , 由 PA C W J PAC ,所以 BE 丄 PA, BEHEF^E ,所以 PA 丄面 BEF, 由BF u 面BEF ,所以P4丄BF , 所以ZBFE 是二面角B-PA-C的平面角.•••△PEF 〜MAC,・••竺=竺PA AC•・・PE = 2,AC = 4,PA = 47L ・・・EF=JLBE /-•••在直角ACFE 中,有tan ZBFE = ——=冷6 •EF所以,二血角B-PA-C 的正切值为舲.(法二):如图3,过P 作PH 丄BC 交BC 于点H,由三视图知APBC 为等腰三角形,BC = 4, PH = 2屈,由图3所示的坐标系,及三视图屮的数据得:8(0,0,0), C(4,0,0), P(2,0,2^3), A(4,4,0),则 BA = (4,4,0), 丽= (2,0,2馆),C4 = (0,4,0),CP = (-2,0,2A /3),设平面PAB 、平面PAC 的法向量分别为加、n.(图3 —, __ 4%)+4y } = 0设加=(兀),zj,由/w ・BA = 0, m • BP = 0 ,得彳,图2........................ 8分P图1令Z]=l,得X严-观,即m = (-V3,V3,1).【说明】本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角, 三梭锥的体积,空间坐标系等基础知识,考查空间想彖能力、运算能力和推理论证能力,考 查用向量方法解决数学问题的能力.19.(本小题满分14分)已知首项大于0的等差数列{%}的公差〃 =1,且丄 + —1— = Z . a }a 2 a 2a }3(1) 求数列{色}的通项公式;(2) 若数列{化}满足:勺=一1,人=久,bn+]=——其屮n >2・① 求数列{化}的通项仇;② 是否存在实数2,使得数列{仇}为等比数列?若存在,求出久的值;若不存在,请 说明理由.解:(1)(法一):・.・数列{%}的首项q>0,公差d=l,设=由w-G4 = 0, n PA = O f 得『儿一° ・ -2 兀2+2V^=0令乞2=1,得x 2 = V3 , y 2 = 0 ,即ii = (V3,0,l).-2 V7~~ —_ 2A /7 ~ 7tan <m,n >=_品• 而二面角B-PA-C 的大小为锐角,所以二面角B — PA — C 的正切值为亦.・・・9分(3)(法一):记C 到面的距离为力,由(1)、(2) ^PA = AB = 4^2, PB = 4,S 、PAB= 4^7 ' y c-PAB =|SgB • h =h ,三棱锥P-ABC 的体积V P _^C=L S~ 3 MBCA / C [由匕—ABC = V —AB ,可得:h = -y12分13分14分(法二):由(2)矢口,平面PAB 的法向量m=(-V3,V3,l ), C4 = (0,4,0) 记C 到\hi PAB 的距离为力,4V21 714分4巧W整理得^+2^-3 = 0解得坷=1或角=—3 (舍去). .................... 4分因此,数列{%}的通项色=〃・ ............................ 5分(法二):由题意得丄+ 丄=幺也 =2,.............................................. 1分a }a^ a x a^a y 3・・・数列{色}是等差数列,・・・勺+偽=2偽,.................... 2分又 T a 】 >0,6/ = 1 ,.・.舛(务+2) = 3 ,解得°[=1或a x = -3 (舍去). ........................ 4分 因此,数列{%}的通项a” = n ...................................................... 5分nb u (Z2-1) b ,••• ―= ----- -------- +1 • ..................................................................................... 6 : (-1 严(-1)"令C“ =W二:半,则有 C 2=A, C Z ,+1 = c… +1 (/z > 2).(T)・••当 n> 2 时,c tl = c 0 + (77 - 2) = zz - 2 + A , b n =—~. .......... 8 分n-1i,n = 1,因此,数列{$}的通项仇=s_2 + Q)(-1)” ( f ・ (9)-------- : ---- ,(〃 n 2).n-1••• a n =a { + (n -1),1 1 ------ 1 -----a^ci=(丄—丄)+(丄—丄) | dr 61° Cl 31 1 _ 1 1 _2 -- — -- ----- — ----- ---% a. a x d]+2 3② T b] = —1, b2 = A , b.10分・•・若数列{仇}为等比数列,则有bf = b\S ,即A 2=(-l )( ), 解得2 = 1或A=-~............................................................................... 11分2当A = --时,b” =(2"7)_(T )]s2 2), 乩不是常数,数列{仇}不是等比数列, 2 2C/7-1) b n 当2 = 1时,6l=-l, 6n =(-l )w (n>2),数列{仇}为等比数列.所以,存在实数久=1使得数列{亿}为等比数列. ......................... 14分 【说明】考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、 等比数列的定义,考杳了学生的运算能力,以及化归与转化的思想.20.(木小题满分14分)22斤己知椭圆E:罕+ \ = 1 (a>b>0)的离心率为―,过左焦点倾斜角为45。
2015年高考数学广东卷(理科)试卷及答案(word完整版)
绝密★启用前 试卷类型:A2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.若集合{}}{|(4)(1)0,|(4)(1)0M x x x N x x x =++==--=,则M N ⋂=}{A.1,4}{B.1,4--}{C.D.∅2.若复数(32)z i i =-(i 是虚数单位),则z =A.23i -B.23i +C.32i +D.32i -3. 下列函数中,既不是奇函数,也不是偶函数的是2A.1y x =+1B.y x x=+1C.22x xy =+D.x y x e =+4. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球,从袋中任取2个球,所取的2个球中恰好有1个白球,1个红球的概率为5A.2110B.2111C.21D.15. 平行于直线2++1=0x y 且与圆225x y +=相切的直线的方程是A.250250x y x y ++=+-=或B.250250x y x y ++=+-=或C.250250x y x y -+=--=或D.250250x y x y -+=--=或6. 若变量,x y 满足约束条件4581302x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩,则32z x y =+的最小值为A.423B.5C.6 31D.57. 已知双曲线2222:1x y C a b-=的离心率54e =,且其右焦点为2(5,0)F ,则双曲线C 的方程为22A.143x y -= 22B.1916x y -= 22C.1169x y -= 22D.134x y -= 8. 若空间中n 个不同的点两两距离都相等,则正整数n 的取值A.3至多等于B.4至多等于C.5等于D.5大于二、填空题:本大题 共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9. 在4x (-1)的展开式中,x 的系数为 .10. 在等差数列{}n a 中,若3456725a a a a a ++++=,则28a a += . 11. 设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,1sin 2B =,6C π=,则b= . 12. 某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言。
广东省深圳市高三第一次调研考试数学理试题
2015年深圳市高三年级第一次调研考试数学(理科)试题一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合,集合,则=( ) A. B 。
C 。
D 。
2、已知复数满足(其中为虚数单位),则( )A. B 。
C 。
D 。
3、若函数的部分图象如图1所示,则 A. B 。
C. D 。
4、已知实数满足不等式组300≤⎪⎩⎪⎨⎧≥≥+y x y x ,则的最大值为( )A.3 B 。
4 C 。
6 D 。
9 5、已知直线,平面,且,,则“”是“”的( )A. 充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6、执行如图2所示的程序框图,则输出S 的值为( ) A. 16 B 。
25 C 。
36 D 。
49 7、在中,分别为所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则的范围是( )A. B 。
C 。
D 。
8、如果自然数的各位数字之和等于8,我们称为“吉祥数”。
将所有“吉祥数”从小到大排成一列…,若,则( )A. 83 B 。
82 C 。
39 D 。
37二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
本大题分为必做题和选做题两部分(一)必做题:第9、10、11、12、13题为必做题,每道试题考生必须做答。
9、的展开式中常数项为 .(用数字表示) 10、 11、已知向量,,若,则的最小值为 12、已知圆C :05822=-+++ay x y x 经过抛物线E :的焦点,则抛物线E 的准线与圆C 相交所得弦长为13、设P 是函数图象上的动点,则点P 到直线的距离的最小值为(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算第一题的得分。
14、(坐标系与参数方程选做题)在极坐标系中,曲线:与曲线相交于A ,B 两点,则|AB |= 15、(几何证明选讲选做题)如图3,在中,,,D 是AB 边上的一点,以BD 为直径的⊙与AC 相切于点E 。
广东省2015年高考一模数学(理)试题分类汇编:导数及其应用(含答案)
广东省各市2015年高考一模数学理试题分类汇编导数及其应用一、选择题1、(2015届深圳市)在ABC ∆中,c b a ,,分别为C B A ∠∠∠,,所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则B ∠的范围是( ) A.)3,0(πB 。
]3,0(πC 。
],3[ππD 。
),3(ππ选择题参考答案1、D 二、填空题1、(2015届揭阳市)已知函数3()f x x =对应的曲线在点(,())()k k a f a k N *∈处的切线与x 轴的交点为1(,0)k a +,若11a =31010(1()3f a ++=-2、(2015届深圳市)设P 是函数x y ln =图象上的动点,则点P 到直线x y =的距离的最小值为填空题参考答案1、由2'()3f x x =得曲线的切线的斜率23k k a =,故切线方程为323()k k k y a a x a -=-,令0y =得123k k a a +=123k ka a +⇒=,故数列{}n a 是首项11a =,公比23q =的等比数列,又 310(f f f a +++101011210(1)3(1)1a q a a a q q-=+++==--,所以31010(31()3f a ++=-.2、2三、解答题1、(2015届广州市)已知函数()()2ln 12a f x x x x =++-()0a ≥. (1)若()0f x >对()0,x ∈+∞都成立,求a 的取值范围; (2)已知e 为自然对数的底数,证明:∀n ∈N *22212111n n n n ⎛⎫⎛⎫⎛⎫<++⋅⋅⋅+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.2、(2015届江门市)设函数)(ln )(a x e x f x -=,e 是自然对数的底数,718.2≈e ,R a ∈为常数.⑴若)(x f y =在1=x 处的切线 l 的斜率为e 2,求a 的值;⑵在⑴的条件下,证明切线 l 与曲线)(x f y =在区间)21 , 0(至少有1个公共点; ⑶若]3ln , 2[ln 是)(x f y =的一个单调区间,求a 的取值范围.3、(2015届揭阳市)已知函数()f x ax =,()ln g x x =,其中a R ∈,(e ≈2.718). (1)若函数()()()F x f x g x =-有极值1,求a 的值;(2)若函数()(sin(1))()G x f x g x =--在区间(0,1)上为减函数,求a 的取值范围;(3)证明:211sinln 2(1)nk k =<+∑.4、(2015届茂名市)设函数2()ln ||f x x x ax =-+。
广东省五校高三数学联考试卷 理(含解析)
广东省2015届高三五校联考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A={x|x2﹣4x﹣5=0},B={x|x2=1},则A∩B=()A.{1} B.{1,﹣1,5} C.{﹣1} D.{1,﹣1,﹣5}2.(5分)设条件p:a≥0;条件q:a2+a≥0,那么p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)已知双曲线的离心率为,则双曲线的渐近线方程为()A.y=±2x B.C.D.4.(5分)下列命题不正确的是()A.如果一个平面内的一条直线垂直于另一个平面内的任意直线,则两平面垂直B.如果一个平面内的任一条直线都平行于另一个平面,则两平面平行C.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行D.如果两条不同的直线在一平面内的射影互相垂直,则这两条直线垂直5.(5分)已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)的值域为[﹣1+∞)C.f(x)是周期函数D.f(x)是增函数6.(5分)在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.7.(5分)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A.B.C.D.8.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β所成的(锐)二面角为45°B.平面α与平面β垂直C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°二、填空题:本大共5小题,考生作答6小题,每小题5分,满分25分)(一)必做题(9~13题)9.(5分)复数的值是.10.(5分)若数列{a n}满足:a1=1,a n+1=),其前n项和为S n,则=.11.(5分)执行如图的程序框图,那么输出S的值是.12.(5分)已知不等式组所表示的平面区域的面积为4,则k的值为.13.(5分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答)选做题(14~15题,考生只能从中选做一题,两题都做记第一题的得分)(坐标系与参数方程)14.(5分)(坐标系与参数方程)在平面直角坐标系下,曲线(t为参数),曲线(a为参数).若曲线C l、C2有公共点,则实数a的取值范围.(几何证明选讲)15.如图,点A,B,C是圆O上的点,且,则∠AOB对应的劣弧长为.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)在平面直角坐标系下,已知A(2,0),B(0,2),C(cos2x,sin2x),.(1)求f(x)的表达式和最小正周期;(2)当时,求f(x)的值域.17.(12分)某校参加2014-2015学年高一年级期2015届中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.18.(14分)如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,已知AE与平面ABC所成的角为θ,且.(1)证明:平面ACD⊥平面ADE;(2)记AC=x,V(x)表示三棱锥A﹣CBE的体积,求V(x)的表达式;(3)当V(x)取得最大值时,求二面角D﹣AB﹣C的大小.19.(14分)已知数列{a n}中,a1=3,a2=5,其前n项和S n满足S n+S n﹣2=2S n﹣1+2n﹣1(n≥3).令b n=.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若f(x)=2x﹣1,求证:Tn=b1f(1)+b2f(2)+…+b n f(n)<(n≥1).20.(14分)已知椭圆C1的中心在坐标原点,两个焦点分别为F1(﹣2,0),F2(2,0),点A (2,3)在椭圆C1上,过点A的直线L与抛物线交于B、C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.(1)求椭圆C1的方程;(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.21.(14分)已知函数f(x)=e x,x∈R.(Ⅰ)求f(x)的反函数的图象上的点(1,0)处的切线方程;(Ⅱ)证明:曲线y=f(x)与曲线y=有唯一公共点.(Ⅲ)设a<b,比较f()与的大小,并说明理由.广东省2015届高三五校联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A={x|x2﹣4x﹣5=0},B={x|x2=1},则A∩B=()A.{1} B.{1,﹣1,5} C.{﹣1} D.{1,﹣1,﹣5}考点:交集及其运算.专题:集合.分析:求出集合A,B,然后求解交集即可.解答:解:A={x|x2﹣4x﹣5=0}={﹣1,5},B={x|x2=1}={﹣1,1},则A∩B={﹣1}.故选:C.点评:本题考查集合的交集的运算,是对基本知识的考查.2.(5分)设条件p:a≥0;条件q:a2+a≥0,那么p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义进行判断即可.解答:解:若a≥0,则a2+a≥0,是充分条件,若a2+a≥0,解得:a≥0或a≤﹣1,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了解不等式问题,本题属于基础题.3.(5分)已知双曲线的离心率为,则双曲线的渐近线方程为()A.y=±2x B.C.D.考点:双曲线的简单性质.专题:计算题.分析:由离心率的值,可设,则得,可得的值,进而得到渐近线方程.解答:解:∵,故可设,则得,∴渐近线方程为,故选C.点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求出的值是解题的关键.4.(5分)下列命题不正确的是()A.如果一个平面内的一条直线垂直于另一个平面内的任意直线,则两平面垂直B.如果一个平面内的任一条直线都平行于另一个平面,则两平面平行C.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行D.如果两条不同的直线在一平面内的射影互相垂直,则这两条直线垂直考点:平面与平面之间的位置关系;空间中直线与直线之间的位置关系.专题:阅读型.分析:本题考查的知识点是平面与平面之间的位置关系,及直线与平面间的位置关系,我们根据空间线与面、面与面的判定及性质定理对四个答案逐一进行分析,即可得到答案.解答:解:如果一个平面内的一条直线垂直于另一个平面内的任意直线,由线面垂直的定义,可得该直线与另一个平面垂直,由面面垂直的判定定理我们可得两平面垂直,故A正确;如果一个平面内的任一条直线都平行于另一个平面,则存在两条相交直线与另一个平面平行,由面面平等的判定定理得两平面平行,故B正确;如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,由线面平行的性质定理,那么这条直线和交线平行,故C正确;如果两条不同的直线在一平面内的射影互相垂直,则这两条直线可能垂直,也可能不垂直,故D错误故选D点评:判断空间线线关系、线面关系、面面关系时,掌握掌握空间线面垂直和平等的判定定理和性质定理,是解决问题的关键.5.(5分)已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)的值域为[﹣1+∞)C.f(x)是周期函数D.f(x)是增函数考点:分段函数的应用.专题:函数的性质及应用.分析:由题意,分x>0与x≤0讨论函数在各个部分的取值,从而求函数的值域.解答:解:当x>0时,f(x)=x2+1>1,当x≤0时,f(x)=cosx,故﹣1≤cosx≤1,综上所述,f(x)≥﹣1,故f(x)的值域为[﹣1,+∞).故选B.点评:本题考查了分段函数的应用及函数的值域的求法,属于基础题.6.(5分)在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.考点:解三角形;向量在几何中的应用.专题:计算题;压轴题.分析:设∠B=θ,由•=1,利用平面向量的数量积运算法则列出关系式,表示出cosθ,再利用余弦定理表示出cosθ,两者相等列出关于BC的方程,求出方程的解即可得到BC的长.解答:解:根据题意画出相应的图形,如图所示:∵•=1,设∠B=θ,AB=2,∴2•BC•cos(π﹣θ)=1,即cosθ=﹣,又根据余弦定理得:cosθ==,∴﹣=,即BC2=3,则BC=.故选A点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算,余弦定理,以及诱导公式的运用,熟练掌握定理及法则是解本题的关键.7.(5分)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A.B.C.D.考点:几何概型.专题:压轴题;概率与统计.分析:设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,要满足条件须|x﹣y|≤2,作出其对应的平面区域,由几何概型可得答案.解答:解:设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,它们第一次闪亮的时候相差不超过2秒,则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:=故选C点评:本题考查几何概型,涉及用一元二次方程组表示平面区域,属基础题.8.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β所成的(锐)二面角为45°B.平面α与平面β垂直C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°考点:平面与平面之间的位置关系.专题:空间位置关系与距离.分析:设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l ﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.解答:解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:B点评:本题给出新定义,要求我们判定平面α与平面β所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题.二、填空题:本大共5小题,考生作答6小题,每小题5分,满分25分)(一)必做题(9~13题)9.(5分)复数的值是.考点:复数代数形式的乘除运算.分析:复数的分子、分母同乘分母的共轭复数,然后化为a+bi(a、b∈R)的形式即可.解答:解:复数=故答案为:.点评:本题考查复数代数形式的乘除运算,是基础题.10.(5分)若数列{a n}满足:a1=1,a n+1=),其前n项和为S n,则=15.考点:数列递推式.专题:计算题.分析:由递推关系式可知数列{a n}是以1为首项,为公比的等比数列,从而可解.解答:解:由题意,数列{a n}是以1为首项,为公比的等比数列,所以,∴,故答案为15.点评:本题主要考查数列递推式,考查等比数列的通项及前n项和公式,属于基础题.11.(5分)执行如图的程序框图,那么输出S的值是.考点:程序框图.专题:计算题;图表型.分析:框图首先给变量S,k赋值S=2,k=1,然后判断k<2013是否成立,成立则执行,否则跳出循环,输出S,然后依次判断执行,由执行结果看出,S的值呈周期出现,根据最后当k=2013时算法结束可求得S的值.解答:解:框图首先给变量S,k赋值S=2,k=1.判断1<2013,执行S=,k=1+1=2;判断2<2013,执行S=,k=2+1=3;判断3<2013,执行S=,k=3+1=4;判断4<2013,执行S=,k=4+1=5;…程序依次执行,由上看出,程序每循环3次S的值重复出现1次.而由框图看出,当k=2012时还满足判断框中的条件,执行循环,当k=2013时,跳出循环.又2013=671×3.所以当计算出k=2013时,算出的S的值为.此时2013不满足2013<2013,跳出循环,输出S的值为故答案为.点评:本题考查了程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期.是基础题.12.(5分)已知不等式组所表示的平面区域的面积为4,则k的值为1.考点:二元一次不等式(组)与平面区域.专题:计算题.分析:先作出不等式组表示的平面区域,根据已知条件可表示出平面区域的面积,然后结合已知可求k解答:解:作出不等式组表示的平面区域,如图所示由题意可得A(2,2k+2),B(0,2),C(2,0)∴(d为B到AC的距离)==2k+2=4∴k=1故答案为:1点评:本题主要考查了二元一次不等式组表示平面区域,属于基础试题13.(5分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种(用数字作答)考点:排列、组合及简单计数问题.专题:排列组合.分析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.解答:解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时,A和B有C右边的4个位置可以选,有A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.点评:本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法.选做题(14~15题,考生只能从中选做一题,两题都做记第一题的得分)(坐标系与参数方程)14.(5分)(坐标系与参数方程)在平面直角坐标系下,曲线(t为参数),曲线(a为参数).若曲线C l、C2有公共点,则实数a的取值范围.考点:圆的参数方程;直线与圆相交的性质.专题:计算题.分析:把参数方程化为普通方程,由直线和圆有交点可得圆心到直线的距离小于或等于半径,解不等式求得实数a的取值范围.解答:解:曲线(t为参数)即 x+2y﹣2a=0,表示一条直线.曲线(a为参数)即 x2+(y﹣2)2=4,表示圆心为(0,2),半径等于2的圆.由曲线C l、C2 有公共点,可得圆心到直线的距离小于或等于半径,∴≤2,∴2﹣≤a≤2+,故答案为:.点评:本题考查把参数方程化为普通方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,绝对值不等式的解法.(几何证明选讲)15.如图,点A,B,C是圆O上的点,且,则∠AOB对应的劣弧长为.考点:弧长公式.专题:计算题;压轴题.分析:利用正弦定理求出∠ACB的大小,然后再求∠AOB,最后求出∠AOB对应的劣弧长.解答:解:由正弦定理可知:,得sin∠ACB=,∴∠AOB=,OB=,∠AOB对应的劣弧长:故答案为:点评:本题考查弧长公式,考查计算能力,是基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(12分)在平面直角坐标系下,已知A(2,0),B(0,2),C(cos2x,sin2x),.(1)求f(x)的表达式和最小正周期;(2)当时,求f(x)的值域.考点:平面向量数量积的运算;两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的定义域和值域.专题:计算题.分析:(1)先计算两个向量的坐标,再利用向量数量积运算性质计算f(x),将所得f(x)解析式化为y=Asin(ωx+φ)的形式,最后利用周期公式计算f(x)的最小正周期即可(2)先求内层函数y=2x﹣的值域,再利用正弦函数的图象和性质求y=sin(2x﹣)的值域,最后由y=2t+4的单调性即可得f(x)的值域解答:解:(1)∵A(2,0),B(0,2),C(cos2x,sin2x),∴,∴=(﹣2,2)•(cos2x﹣2,sin2x)=4﹣2cos2x+2sin2x=,∴f(x)═,∴f(x)的最小正周期为,(2)∵∴∴.∴.所以函数f(x)的值域是.点评:本题考察了向量数量积运算的性质和三角变换、三角函数的图象和性质,解题时要能熟练的将函数化为y=Asin(ωx+φ)形式,为利用三角函数的图象和性质求周期和最值创造条件17.(12分)某校参加2014-2015学年高一年级期2015届中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.考点:离散型随机变量及其分布列;频率分布直方图;离散型随机变量的期望与方差.专题:计算题;图表型.分析:(1)根据概率之和为1,即频率分布直方图的面积之和为1.(2)根据题意同一组数据常用该组区间的中点值作为代表,所以用每一组数据的中点值代表这一组数的平均数,即可求得.(3)从60名学生中随抽取2人,根据题意总记分可能为0、1、2、3、4.求出相应的概率,即可求得分布列和期望.解答:解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(3)学生成绩在[40,60)的有0.25×60=15人,在[60,80)的有0.45×60=27人,在[80,100)的有0.3×60=18人,ξ的可能取值是0,1,2,3,4则,,,,所以ξ的分布列为:∴点评:此题把统计和概率结合在一起,比较新颖,也是2015届高考的方向,应引起重视.18.(14分)如图,△AB C内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,已知AE与平面ABC所成的角为θ,且.(1)证明:平面ACD⊥平面ADE;(2)记AC=x,V(x)表示三棱锥A﹣CBE的体积,求V(x)的表达式;(3)当V(x)取得最大值时,求二面角D﹣AB﹣C的大小.考点:与二面角有关的立体几何综合题;棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:计算题;综合题;转化思想.分析:(1)欲证平面ACD⊥平面ADE,根据面面垂直的判定定理可知在平面ADE内一直线与平面ACD垂直,DE⊥平面ADC,DE⊂平面ADE,满足定理所需条件;(2)根据线面所成角的定义可知∠EAB为AE与平面ABC所成的角,在Rt△ABE中,求出BE,在Rt△ABC中求出AC,最后根据三棱锥的体积公式求出体积即可;(3)利用基本不等式可知当V(x)取得最大值时,这时△ACB为等腰直角三角形,连接CO,DO,根据二面角的平面角的定义可知∠DOC为二面角D﹣AB﹣C的平面角在Rt△DCO中求出此角即可.解答:解:(1)证明:∵四边形DCBE为平行四边形∴CD∥BE,BC∥D E(1分)∵DC⊥平面ABC,BC⊂平面ABC∴DC⊥BC.(2分)∵AB是圆O的直径∴BC⊥AC且DC∩AC=C∴BC⊥平面ADC.∵DE∥BC∴DE⊥平面ADC(3分)又∵DE⊂平面ADE∴平面ACD⊥平面ADE(4分)(2)∵DC⊥平面ABC∴BE⊥平面ABC∴∠EAB为AE与平面ABC所成的角,即∠EAB=θ(5分)在Rt△ABE中,由,AB=2得(6分)在Rt△ABC中∵(0<x<2)∴(7分)∴=(0<x<2)(8分)(3)由(2)知0<x<2要V(x)取得最大值,当且仅当取得最大值,∵(9分)当且仅当x2=4﹣x2,即时,“=”成立,∴当V(x)取得最大值时,这时△ACB为等腰直角三角形(10分)连接CO,DO∵AC=BC,DC=DC∴Rt△DCA≌Rt△DCB∴AD=DB又∵O为AB的中点∴CO⊥AB,DO⊥AB∴∠DOC为二面角D﹣AB﹣C的平面角(12分)在Rt△DCO中∵,∴,∴∠DOC=60°即当V(x)取得最大值时,二面角D﹣AB﹣C为60°.(14分)点评:本题主要考查了平面与平面垂直的判定,以及体积和二面角的定理等有关知识,求二面角,关键是构造出二面角的平面角,常用的方法有利用三垂线定理和通过求法向量的夹角,然后再将其转化为二面角的平面角.19.(14分)已知数列{a n}中,a1=3,a2=5,其前n项和S n满足S n+S n﹣2=2S n﹣1+2n﹣1(n≥3).令b n=.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若f(x)=2x﹣1,求证:Tn=b1f(1)+b2f(2)+…+b n f(n)<(n≥1).考点:数列递推式;数列的函数特性;不等式的证明.专题:计算题;证明题;压轴题.分析:(Ⅰ)由题意知a n=a n﹣1+2n﹣1(n≥3)(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+a2=2n+1.(Ⅱ)由于=.故T n=b1f (1)+b2f(2)+…+b n f(n)=,由此可证明Tn=b1f(1)+b2f(2)+…+b n f(n)<(n≥1).解答:解:(Ⅰ)由题意知S n﹣S n﹣1=S n﹣1﹣S n﹣2+2n﹣1(n≥3)即a n=a n﹣1+2n﹣1(n≥3)∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a3﹣a2)+a2=2n﹣1+2n﹣2+…+22+5=2n+1(n≥3)检验知n=1、2时,结论也成立,故a n=2n+1.(Ⅱ)由于b n=,f(x)=2x﹣1,∴=.故T n=b1f(1)+b2f(2)+…+b n f(n)==.点评:本题考查数列的性质和综合应用,解题时要认真审题.仔细解答.20.(14分)已知椭圆C1的中心在坐标原点,两个焦点分别为F1(﹣2,0),F2(2,0),点A (2,3)在椭圆C1上,过点A的直线L与抛物线交于B、C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.(1)求椭圆C1的方程;(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)利用椭圆的标准方程及其性质即可得出;(2)设出点B,C的坐标,利用A,B,C三点共线即可得出坐标之间的关系,利用导数的几何意义可得切线的斜率,在得出切线的方程,即可得出交点P的坐标代入上面得到的关系式即可得到交点P的轨迹方程.由|PF1|+|PF2|=|AF1|+|AF2|,则点P在椭圆C1上,而点P又在直线y=x ﹣3上,直线经过椭圆C1的内部一点(3,0),即可判断出其交点个数.解答:解:(1)设椭圆的标准方程为,由题意可得解得.∴椭圆C1的方程为;(2)设点B,C,则,,∵A,B,C三点共线,∴.∴,化为2(x1+x2)﹣x1x2=12.①由x2=4y,得.∴抛物线C2在点B处的切线方程为,化为.②同理抛物线C2在点C处的切线方程为.③设点P(x,y),由②③得,而x1≠x2,∴.代入②得,于是2x=x1+x2,4y=x1x2代入①得4x﹣4y=12,即点P的轨迹方程为y=x﹣3.若|PF1|+|PF2|=|AF1|+|AF2|,则点P在椭圆C1上,而点P又在直线y=x﹣3上,直线经过椭圆C1的内部一点(3,0),∴直线y=x﹣3与椭圆C1有两个交点,∴满足|PF1|+|PF2|=|AF1|+|AF2|的点P有两个(不同于点A).点评:本题主要考查椭圆、抛物线曲线的切线等基础知识,考查数形结合、函数与方程、化归于转化的数学数学方法,以及推理论证能力、计算能力、创新意识.21.(14分)已知函数f(x)=e x,x∈R.(Ⅰ)求f(x)的反函数的图象上的点(1,0)处的切线方程;(Ⅱ)证明:曲线y=f(x)与曲线y=有唯一公共点.(Ⅲ)设a<b,比较f()与的大小,并说明理由.考点:利用导数研究曲线上某点切线方程;函数的零点与方程根的关系;函数的单调性与导数的关系.专题:压轴题;导数的概念及应用.分析:(I)先求出其反函数,利用导数得出切线的斜率即可;(II)令h(x)=f(x)﹣=,利用导数研究函数h(x)的单调性即可得出;(III)设b﹣a=t>0,通过作差﹣f()=,构造函数g(t)=(t>0),可得g′(t)==(t>0).令h(x)=e x﹣x﹣1(x>0),利用导数研究其单调性即可.解答:(I)解:函数f(x)=e x的反函数为g(x)=lnx,∵,∴g′(1)=1,∴f(x)的反函数的图象上的点(1,0)处的切线方程为y﹣0=1×(x﹣1),即y=x﹣1;(Ⅱ)证明:令h(x)=f(x)﹣=,则h′(x)=e x﹣x﹣1,h′′(x)=e x﹣1,当x>0时,h′′(x)>0,h′(x)单调递增;当x<0时,h′′(x)<0,h′(x)单调递减,故h′(x)在x=0取得极小值,即最小值,∴h′(x)≥h′(0)=0,∴函数y=h(x)在R上单调递增,最多有一个零点,而x=0时,满足h(0)=0,是h(x)的一个零点.所以曲线y=f(x)与曲线y=有唯一公共点(0,1).(Ⅲ)设b﹣a=t>0,则﹣f()===e a=,令g(t)=(t>0),则g′(t)==(t>0).令h(x)=e x﹣x﹣1(x>0),则h′(x)=e x﹣1>0,∴函数h(x)在(0,+∞)单调递增,∴h(x)>h(0)=0,因此g′(t)>0,∴函数g(t)在t>0时单调递增,∴g(t)>g(0)=0.∴>f().点评:本题综合考查了利用导数研究切线、单调性、方程得根的个数、比较两个实数的大小等基础知识,考查了分类讨论的思想方法、转化与化归思想方法,考查了推理能力和计算能力.。
深圳市2015年高三年级第一次调研考试数学理科试卷(扫描版,有答案)
2015年深圳市高三年级第一次调研考试数学(理科)答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数.二、填空题:本大题每小题5分,满分30分.9.23; 10. 18; 11.9; 12.13.2; 14.2; 15. 4. 三、解答题 16.(本小题满分12分)函数π()2sin()3f x x ω=+(0ω>)的最小正周期是π. (1)求5π()12f 的值;(2)若0sin 3x =,且0π(0,)2x ∈,求0()f x 的值. 解:(1)()f x Q 的周期πT =,即2ππω=, …………………………………………1分2ω∴=±,由0ω>,得2ω=,即π()2sin(2)3f x x =+. ……………………………………3分5π7πππ()2sin 2sin(π)2sin 112666f ∴==+=-=-. ………………………………5分(2)由0sin x =得2001cos 212sin 3x x =-=, ………………………………7分又0π(0,)2x ∈,∴02(0,π)x ∈, ……………………………………………8分 ∴0sin 23x ==, …………………………………………9分 000πππ2sin(2)2sin 2cos 2cos 2sin 333x x x +=+Q1122323=⨯⨯+⨯=.00π()2sin(2)3f x x ∴=+= …………………………………………12分【说明】 本小题主要考查了三角函数)sin()(ϕω+=x A x f 的图象与性质,同角三角函数的关系式,诱导公式,两角和与差和二倍角的三角函数公式,考查了简单的数学运算能力.17.(本小题满分12分)空气质量指数(简称AQI )是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了实时监测站.下表是某网站公布的广东省内21个城市在2014年12月份某时刻实时监测到的数据:(1)请根据上表中的数据,完成下列表格: (2)统计部门从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式抽取6个城市,省环保部门再从中随机选取3个城市组织专家进行调研,记省环保部门“选到空气质量“良好”的城市个数为ξ”,求ξ的分布列和数学期望. 解:(1)根据数据,完成表格如下:…………………………………2分 (2)按分层抽样的方法,从“良好”类城市中抽取11264126n =⨯=+个, ………………………………… 3分 从“轻度污染”类城市中抽取2662126n =⨯=+个, ……………………………4分所以抽出的“良好”类城市为4个,抽出的“轻度污染”类城市为2个.根据题意ξ的所有可能取值为:1,2,3.1242361(1)5C C P C ξ===Q , 2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===.………8分ξ∴的分布列为:所以1232555E ξ=⨯+⨯+⨯=. ………………………………………………11分 答:ξ的数学期望为2个. …………………………………………………12分 【说明】本题主要考察读图表、分层抽样、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力.18.(本小题满分14分)在三棱锥P ABC -中,已知平面PBC ⊥平面ABC ,AB 是底面△ABC 最长的边.三棱锥P ABC -的三视图如图5所示,其中侧视图和俯视图均为直角三角形.(1)请在图6中,用斜二测画法,把三棱锥P ABC-的直观图补充完整(其中点P 在 xOz 平面内),并指出三棱锥P ABC -的哪些面是直角三角形; (2)求二面角B PA C --的正切值;(3)求点C 到面PAB 的距离.正视图解:(1)三棱锥P ABC -直观图如图1所示;由三视图知ABC ∆和PCA ∆是直角三角形. (2)(法一):如图2,过P 作PH BC ⊥交BC 于点H 由三视图知PBC ∆为等腰三角形,4BC =Q ,PH =4PB PC BC ∴===,取PC 的中点E ,过E 作EF PA ⊥且交PA 于点F ,连接BE ,BF ,因为BE PC ⊥,由三视图知AC ⊥面PBC , 且BE ⊂面PBC ,所以AC BE ⊥,又由AC PC C =I ,所以BE ⊥面PAC , 由PA ⊂面PAC ,所以BE PA ⊥, BE EF E =I ,所以PA ⊥面BEF ,由BF ⊂面BEF ,所以PA BF ⊥,所以BFE ∠是二面角B PA C --的平面角.………~PEF PAC ∆∆Q ,PE EFPA AC∴=, 2,4,PE AC PA ===Q EF ∴=, ∴在直角CFE ∆中,有tan BEBFE EF∠== 所以,二面角B PA C --. ………………………………………9分 (法二):如图3,过P 作PH BC ⊥交BC 于点H ,由三视图知PBC ∆为等腰三角形,4BC =,PH =由图3所示的坐标系,及三视图中的数据得:(0,0,0)B ,(4,0,0)C ,(2,0,P ,(4,4,0)A , 则(4,4,0)BA =u u u r ,(2,0,BP =u u u r ,(0,4,0)CA =u u u r, (2,0,CP =-u u u r,设平面PAB 、平面PAC 的法向量分别为m 、n .设111(,,)x y z =m ,由0BA ⋅=u u u r m ,0BP ⋅=u u u r m ,得11420x ⎧⎪⎨+=⎪⎩,令11z =, 得1x =1y =(=m . …………………6分设222(,,)x y z =n ,由0CA ⋅=u u u r n ,0PA ⋅=u u u r n,得2224020y x =⎧⎪⎨-+=⎪⎩,令21=z ,得2x =,20y =,即=n . ………………………7分cos ,7⋅∴<>===-m n m n m n,tan ,m n <>=8分 而二面角B PA C --的大小为锐角,所以二面角B PA C --.…9分 (3)(法一):记C 到面PAB 的距离为h ,由(1)、(2)知4PA AB PB ===,PAB S ∆∴=,13C PAB PAB V S h -∆=⋅=, ………………………………12分 三棱锥-P ABC的体积13-∆=⋅=P ABC ABC V S PH , ……………………13分 由P ABC C PAB V V --=,可得:7=h . ………………………………………14分 (法二):由(2)知,平面PAB的法向量(=m ,(0,4,0)CA =u u u r记C 到面PAB 的距离为h ,CA h ⋅∴=u u u rmm== ………………………………………………14分 【说明】本题主要考察空间点、线、面位置关系,三视图及几何体的直观图,二面角,三棱锥的体积,空间坐标系等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力.19. (本小题满分14分)已知首项大于0的等差数列{}n a 的公差1d =,且12231123a a a a +=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:11b =-,2b λ=,111(1)n n n nn b b n a -+--=+,其中2n ≥. ①求数列{}n b 的通项n b ;②是否存在实数λ,使得数列}{n b 为等比数列?若存在,求出λ的值;若不存在,请说明理由.解:(1)(法一):Q 数列{}n a 的首项10a >,公差1d =,∴1(1)n a a n =+-,11111n n n n a a a a ++=-, ………………………………………2分 12231223111111()()a a a a a a a a ∴+=-+-131********a a a a =-=-=+, ……………3分 整理得211230a a +-=解得11a =或13a =-(舍去). ……………………………4分 因此,数列{}n a 的通项n a n =. ………………………………………5分 (法二):由题意得1312231231123a a a a a a a a a ++==, …………………………………1分 Q 数列{}n a 是等差数列,∴1322a a a +=, ……………………………2分∴2123223a a a a =,即133a a =. ………………………………………………………3分又10,1a d >=Q ,∴11(2)3a a +=,解得11a =或13a =-(舍去). …………………………………4分因此,数列{}n a 的通项n a n =. ………………………………………5分(2)①111(1)n n n n b b n n-+--=+Q , 11(11(1)(1)n nn nnb n b ++-∴=+--). ……………………………………………………6分 令(1(1)nn nn b c -=-),则有2c λ=,11n n c c +=+(2)n ≥.∴当2n ≥时,2(2)2n c c n n λ=+-=-+,(21nn n b n λ-+=-)(-1). ………8分因此,数列{}n b 的通项1, 1,(2,(2).1n n n b n n n λ-=⎧⎪=⎨-+≥⎪-⎩)(-1). (9)分②11b =-Q ,2b λ=,312b λ+=-, ………………………………………10分∴若数列{}n b 为等比数列,则有2213b b b =,即21(1)()2λλ+=--, 解得1λ=或12λ=-. …………………………………………………………11分 当12λ=-时,(252)21n n n b n n -=≥-)(-1)((),+1n n b b 不是常数,数列{}n b 不是等比数列,当1λ=时,11b =-,(1)(2)n n b n =-≥,数列{}n b 为等比数列.所以,存在实数1λ=使得数列{}n b 为等比数列. ………………………………14分 【说明】考查了等差数列的基本量的计算、递推数列的通项公式、数列裂项求和公式、等比数列的定义,考查了学生的运算能力,以及化归与转化的思想. 20.(本小题满分14分)已知椭圆:E 22221(0)+=>>x y a b a b,过左焦点倾斜角为45︒的直线被椭圆截得的弦长为3. (1)求椭圆E 的方程;(2)若动直线l 与椭圆E 有且只有一个公共点,过点()1,0M 作l 的垂线垂足为Q ,求点Q 的轨迹方程.解:(1)因为椭圆E2=,解得222a b =, 故椭圆E 的方程可设为222212x y b b+=,则椭圆E 的右焦点坐标为(),0b , 过右焦点倾斜角为45︒的直线方程为:l y x b '=-. ………………………………………2分设直线l '与椭圆E 的交点记为,A B ,由22221,2,x y b b y x b ⎧+=⎪⎨⎪=-⎩消去y ,得2340x bx -=,解得1240,3b x x ==,因为1233AB x =-==,解得1b =. 故椭圆E 的方程为2212+=x y . ……………………………………………………4分 (2)(法一)(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,联立直线l 和椭圆E 的方程,得2212y kx m x y =+⎧⎪⎨+=⎪⎩, ……………………………………5分消去y 并整理,得()222214220k x kmx m +++-=, …………………………6分 因为直线l 和椭圆E 有且仅有一个交点,()()222216421220k m k m ∴∆=-+-=, ………………………………………7分化简并整理,得2221m k =+. …………………………………………8分 因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x ky kx m ⎧=--⎪⎨⎪=+⎩ 解得221,1,1km x k k m y k -⎧=⎪⎪+⎨+⎪=⎪+⎩ ………………………9分 222222222222222222(1)()1(1)(1)1(1)(1)(1)1km k m k m k m k m m x y k k k k -++++++++∴+====++++,把2221m k =+代入上式得222x y +=. ① …………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合①式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合①式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法二):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为y kx m =+,同解法一,得22210k m -+=, ① …………………………………………8分 因为直线MQ 与l 垂直,所以直线MQ 的方程为:()11y x k=--, 联立()11,,y x k y kx m ⎧=--⎪⎨⎪=+⎩解得002200001,,x k y x x y m y -⎧=⎪⎪⎨-+⎪=⎪⎩② …………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分即()()2222000002210+-+-+=y x yx x ,由点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③ ……………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合③式. ………13分 综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 (法三):设点Q 的坐标为00(,)Q x y ,(i )当切线l 的斜率存在且不为0时,设l 的方程为00()-=-y y k x x ,整理,得l 的方程为00=-+y kx kx y , ……………………………………………………………5分联立直线l 和椭圆E 的方程,得002212=-+⎧⎪⎨+=⎪⎩y kx kx y x y , 消去y 并整理,得()()()2220000214220++-+--=k x k y kx x y kx , ……………………6分因为直线l 和椭圆E 有且仅有一个交点,()()()222200001682110⎡⎤∴∆=--+--=⎣⎦k y kx k y kx , ………………………7分化简并整理,得22200002210--+++=y x kx y k , ① ………………………8分因为MQ 与直线l 垂直,有01-=x k y , ②……………………………………9分 ②代入①并整理,有()()()4222200000002212120+--+-+-=y x x y x x x ,…10分 即()()2222000002210+-+-+=y x yx x ,Q 点Q 与点M 不重合, ()2222000002110y x x y x ∴+-+=+-≠,220020x y ∴+-=, ③………………………………………………………………11分(ii )当切线l 的斜率为0时,此时(1,1)Q ,符合③式. …………………………12分 (iii )当切线l的斜率不存在时,此时Q或(0),符合③式. ………13分综上所述,点Q 的轨迹方程为222x y +=. ………………………………………14分 【说明】本题主要考查轨迹方程和椭圆的定义、直线方程、直线与椭圆相切的位置关系,弦长问题,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.21.(本小题满分14分)已知定义在]2,2[-上的奇函数)(x f 满足:当]2,0(∈x 时,)2()(-=x x x f . (1)求)(x f 的解析式和值域;(2)设a ax x x g 2)2ln()(--+=,其中常数0>a . ①试指出函数))(()(x f g x F =的零点个数;②若当11k+是函数))(()(x f g x F =的一个零点时,相应的常数a 记为k a ,其中 1,2,,k n =L .证明:1276n a a a +++<L (*N ∈n ). 解:(1)()f x Q 为奇函数,(0)0f ∴=.当[)2,0x ∈-时,(]0,2x -∈,则()()()(2)(2)f x f x x x x x =--=----=-+,∴[][)(2)0,2,()(2)2,0,x x x f x x x x ⎧-∈⎪=⎨-+∈-⎪⎩ ………………………………………2分[0,2]x ∈Q 时,[]()1,0f x ∈-,[)2,0x ∈-,[]()0,1f x ∈,()f x ∴的值域为[]1,1-. …………………………………………………3分(2)①函数()f x 的图象如图a 所示,当0t =时,方程()f x t = 有三个实根;当1t =或1t =-时,方程()f x t =只有一个实 根;当(0,1)t ∈或(1,0)t ∈-时,方程()f x t =有两个实根.(法一):由()0g x =,解得ln(2)2x a x +=+,()f x Q 的值域为[]1,1-,∴只需研究函数ln(2)2x y x +=+在[]1,1-上的图象特征.设ln(2)()([1,1])2x h x x x +=∈-+,(1)0h -=,21ln(2)()(2)x h x x -+'=+, 令()0h x '=,得e 2(0,1)x =-∈,1(e 2)eh -=. Q 当1e 2x -<<-时,()0h x '>,当e 21x -<<时,()0h x '<,又32ln 2ln 3<Q ,即ln 2ln 323<,由ln 2(0)2h =,ln 3(1)3h =,得(0)(1)h h <, ()h x ∴的大致图象如图b 所示.根据图象b 可知,当ln 2ln 2ln 310223a a a e<<<<=、、直线y a =与函数()y h x =的图像仅有一个交点,则函数()g x 在[1,1]-上仅有一个零点,记零点为t ,则t 分别在区间(1,0)-(0,1)、(0,1)上,根据图像a ,方程()f x t =有两个交点,因此函数()(())F x g f x =有两个零点. …………………………………………5分类似地,当ln 22a =时,函数()g x 在[1,1]-上仅有零点0,因此函数()F x 有1-、0、1这三个零点. ………………………………………………………………6分当ln 33a =时,函数()g x 在[1,1]-上有两个零点,一个零点是1,另一个零点在(0,1)内,因此函数()F x 有三个零点. …………………………………………………………7分当ln 313ea <<时,函数()g x 在[1,1]-上有两个零点,且这两个零点均在(0,1)内,因此函数()F x 有四个零点. ……………………………………………………………8分当1ea >时,函数()g x 在[]1,1-上没有零点,因此函数()F x 没有零点. ………9分 (法二):1()2g x a x '=-+ ,令0()0g x '=,得012x a=-,0a >Q ,()02,x ∴∈-+∞.当1(1,2)x a ∈--时,()0g x '>,当1(2,)x a∈-+∞时,()0g x '<, ∴当0x x =时,()g x 取得极大值01()ln 1g x a=-.(Ⅰ)当()g x 的极大值1ln10a -<,即1e a >时,函数()g x 在区间1,1-上无零点,因此函数()(())F x g f x =无零点.(Ⅱ)当()g x 的极大值1ln10a -=,即1ea =时, 02(0,1)x e =-∈,函数()g x 的图像如图c 所示,函数g由图a 可知方程()e 2f x =-有两不等的实根,因此函数()(())F x g f x =有两个零点.(Ⅲ)当()g x 的极大值1ln 10a ->且0121x a=->,即103a <≤时,()g x 在[1,1]-上单调递增,因为()10g a -=-<,222(0)ln 22ln 2ln ln1033e 3g a =->-=>=,函数()g x 的图像如图d 所示,函数()g x 在[]1,1-存在唯一零点1t ,其中1(1,0)t ∈-.由图a 可知方程1()f x t =有两不等的实根,因此函数()(())F x g f x =有两个零点. (Ⅳ)当()g x 的极大值1ln10a ->且0121x a =-<,即113ea <<时: 由(0)ln 220g a =-=,得ln 22a =,由(1)ln 330g a =-=,得ln 33a =, 根据法一中的证明有1ln 2ln 31323e<<<.(ⅰ)当1ln 232a <<时,(0)ln 220g a =->,(1)ln 330g a =->,函数()g x 的图像如图e 所示,函数()g x 在区间[1,1]-有唯一零点2t ,其中2(1,0)t ∈-.由图a 可知方程2()f x t =有两不等的实根,因此 函数()(())F x g f x =有两个零点. (ⅱ)当ln 22a =时,(0)ln 220g a =-=, (1)ln 330g a =->,函数()g x 的图像如图f 所示,函数()g x 在区间[1,1]-有唯一零点0.由图a 可知方程()0f x =有三个不等的实根,因此函数()(())F x g f x =有三个零点. (ⅲ)当ln 2ln 323a <<时,(0)ln 220g a =-<,(1)ln 330g a =->,函数()g x 的 图像如图g 所示,函数()g x 在区间[1,1]-有唯一零点3t ,其中3(0,1)t ∈.由图a 可知方程3()f x t =()(())F x g f x =有两个零点.(ⅳ)当ln 33a =时,(0)0g <,(1)ln 330g a =-=,函数()g x 的图像如图h 所示,函数()g x 在区间[1,1]-有 两个零点,分别是1和4t ,其中4(0,1)t ∈.由图a 可知方程()1f x =有一个实根1-,方程4()f x t =有两个非1-的不等实根,因此函数()(())F x g f x =(ⅴ)当ln 313ea <<时,(0)0g <,(1)ln 33g a =-<函数()g x 的图像如图i 所示,函数()g x 在区间[1,1]-有两个零点5t 、6t ,其中56,(0,1)t t ∈.由图a 可知方程5()f x t =、6()f x t =且这四个根互不相等,因此函数()(())F x g f x =综上可得:当ln 2ln 2ln 310223a a a e <<<<=、、时,函数()F x 有两个零点;………………5分 当ln 22a =、ln 33a =时,函数()F x 有三个零点; ………………………………7分当ln 313e a <<时,函数()F x 有四个零点; ……………………………………8分当1e a >时,函数()F x 无零点. ………………………………………………9分②因为k11+是函数))(()(x f g x F =的一个零点,所以有1((1))0g f k +=,(]110,2k +∈Q ,211(1)1f k k∴+=-,2221111((1))(1)ln(1)(1)0k g f g a k k k k ∴+=-=+-+=,221ln(1)11k k a k+∴=+,1,2,,k n =L . …………………………………………10分记()ln(1)m x x x =+-,1()111xm x x x -'=-=++, Q 当(]0,1x ∈时,()0m x '<,∴当(]0,1x ∈时,()(0)0m x m <=,即ln(1)x x +<.故有2211ln(1)k k+<,则2222211ln(1)111111k k k a k k k +=<=+++()1,2,,k n =⋅⋅⋅. …11分当1n =时,11726a <<; 当2n ≥时, (法一):2211221121214k k k k <=-+-+-Q, ………………………………13分 123a a a ∴+++…++++++<+131121111222n a …112++n 1222222()()()235572121n n <+-+-+⋅⋅⋅+--+ 12272723216216n n =+-=-<++. 综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分(法二):当2n =时,12117725106a a +<+=<;当3n ≥时,2211111()11211k k k k <=-+--+Q , ………………………13分123a a a ∴+++…++++++<+131121111222n a …112++n 111111111[()()()]252243511n n <++-+-+⋅⋅⋅+--+ 111111167111677[]()2522316021606n n n n =+++--=-+<<++.综上,有++21a a (6)7<+n a ,*N ∈n . ………………………………………14分 【说明】本题主要考查函数的性质、分段函数、导数应用、一元二次方程的求解、连续函数的零点存在性定理,放缩法证明数列不等式,考查学生数形结合、分类讨论的数学思想,以及计算推理能力及分析问题、解决问题的能力及创新意识.。
2015广东高考理科数学试卷(word文档)
2015年全国普通高等学校招生统一考试(广东卷)理科数学一、选择题1.若集合()(){}()(){}|410,|410M x x x N x x x =++==--=,则M N ⋂= A.∅ B.{}1,4-- C.{}0 D.{}1,42.若复数()32z i i =-(i 是虚数单位),则z =A.32i -B.32i +C.23i +D.23i - 3.下列函数中,既不是奇函数,也不是偶函数的是A.x y x e =+B.1y x x =+C.122x x y =+D.y =4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球,从袋中任取2个球,所取的2个球中恰有一个1白球,1个红球的概率为A.1B.1121C.1021D.5215.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A.20x y -+=或20x y -=B. 20x y ++=或20x y += C.250x y -+=或250x y --= D. 250x y ++=或250x y +-=6.若变量,x y 满足约束条件45813,02x y x y +≥⎧⎪≤≤⎨⎪≤≤⎩则32z x y =+的最小值为A.315 B.6 C.235D.4 7、已知双曲线C :2222-1(00)x y a b a b =>>,的离心率为5e 4=,且其右焦点为F 2(5,0),则双曲线的方程为A 、22-143x y =B 、22-1169x y =C 、22-1916x y =D 、22-134x y = 8、若空间中n 个不同的点,两两距离都相等,则正整数n 的取值A 、大于5B 、等于5C 、至多等于4D 、至多等于3 二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(9~13题)9、在41)的展开式中,x 的系数为 .10、在等差数列{n a }中,若34567a a a a a ++++=25,则28a a +=___11、设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1,26a B C π===,则b =___12、某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了____条毕业留言(用数字作答)13、已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =___ (二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)已知直线l 的极坐标方程为2sin()4πρθ-=A 的极坐标为A (74π),则点A 到直线l 的距离为 .15、(几何证明选讲选做题)如图1,已知AB 是圆O 的直径,4,=AB EC 是圆O 的切线,切点为C ,1=BC ,过圆心O 作BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD =_______.三、解答题)2,0(),cos ,(sin 22-22x oy 1216π∈==x x x n m ),,(中,已知向量分)在平面直角坐标系、((1)若m ⊥n ,求tanx 的值;(2)若m 与n 的夹角为3π,求x 的值;17、(本小题满分12分) 某工厂36名工人的年龄数据如下表:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的均值x 的方差s 2;(3)36名工人中年龄在x -s 与x +s 之间有多少人?所占的百分比是多少?(精确到0.01%)18、(本小题满分14分)如图2,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.点E 是CD 边的中点,点F<G 分别在线段AB ,BC 上,且AF=2F ,CG=2GB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015届广东省深圳市高三第一次五校联考理科数学试卷本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2. 选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1. 已知a b R ∈,,是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A .54i -B .54i +C .34i -D .34i + 2. 设集合{} 12A x R x =∈-<,{}2,x B y R y x R =∈=∈,则AB =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 3. 函数()2ln =-f x x x的零点所在的区间为( ) A .()0 1,B .()1 2,C .()2 3,D .()3 4, 4. 已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件5. 一个多面体的三视图如右图所示,则该多面体的体积为( )A .233 B .223C .6D . 76. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。
则不同的搜寻方案有( )(第5题图)A .40种B .70种C .80种D .100种 7. 已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12nn n a a +-≤,232nn n a a +-≥⨯成立,则2014a =( )A .201421-B .20142+1C .201521-D .201521+ 8. 已知函数()3sin f x x x x =--+,当02πθ⎛⎫∈ ⎪⎝⎭,时,恒有()()2cos 2sin 220f m f m θθ++-->成立,则实数m 的取值范围( )A .1,2⎛⎫-∞ ⎪⎝⎭ B .1,2⎛⎤-∞ ⎥⎝⎦ C .1,2⎛⎫-+∞ ⎪⎝⎭ D .1,2⎡⎫-+∞⎪⎢⎣⎭二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分)9. 右图是一个算法的程序框图,若输出的结果是31,则判断框中的正整数...M 的值是___________.10.若二项式()*1(n n N x+∈的展开式中的第5项是常数项,则n =___________.11. 若实数x y 、满足约束条件⎪⎩⎪⎨⎧≥++≥+-≤022022y x y x x ,则目标函数y x z +=2的最大值为___________.12. 已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题,其中所有正确命题的序号是___________.①若m ∥β,n ∥β,m 、n ⊂α,则α∥β . ②若α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,则m ⊥n . ③若m ⊥α,α⊥β,m ∥n ,则n ∥β . ④若n ∥α,n ∥β,α∩β=m ,那么m ∥n .13. 若不等式21x x a <-+的解集是区间()33-,的子集,则实数a 的范围为__________. 14.(参数方程与极坐标)已知在直角坐标系中曲线1C 的参数方程为2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩(为参数且0t ≠),在以原点O 为极点,以x 轴正半轴为极轴建立的极(第9题图)坐标系中曲线2C 的极坐标方程为()4R πθρ=∈,则曲线1C 与2C 交点的直角坐标为__________.15.(几何证明选讲)如图,PT 切圆O 于点T ,PA 交圆O 于A B 、两点,且与直径CT 交于点D ,若236CD AD BD ===,,,则PB =___________. (第15题图)三、解答题(本大题共6小题,满分80分,解答过程须写出必要的文字说明、证明过程或演算步骤) 16. (本小题满分12分)已知()()()23sin cos 02f x x x x ππωωωω⎛⎫=+--> ⎪⎝⎭的最小正周期为T π=.(1)求23f π⎛⎫⎪⎝⎭的值; (2)在ABC ∆中,角A B C 、、所对应的边分别为a b c 、、,若有()2cos cos a c B b C -=,则求角B 的大小以及()f A 的取值范围.17. (本小题满分12分)已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球. (1)若每次取球后都放回..袋中,求事件“连续取球四次,至少取得两次白球”的概率; (2)若每次取球后都不.放回..袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望18. (本小题满分14分)如图,三棱柱111C B A ABC -侧棱与底面垂直,且所有棱长都为4,D 为CC 1中点. (1)求证:BD A AB11平面⊥; (2)求二面角B D A A --1的余弦值.(第18题图) 19. (本小题满分14分)已知数列{}n a 满足13=2a ,()11=22n n a n a --≥,n S 是数列{}n b 的前n 项和,且有1=12n n S n b n-+.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列{}n b 的通项公式; (3)设nn na cb =,记数列{}n c 的前n 项和n T ,求证:1n T <.20. (本小题满分14分)已知双曲线()2222:10,0x y C a b a b-=>>, 12F F ,分别是它的左、右焦点,A ()1,0-是其左顶点,且双曲线的离心率为2e =. 设过右焦点2F 的直线与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内. (1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12=x 交于M N 、两点,求证:22MF NF ⊥; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由.(第20题图)21. (本小题满分14分)已知函数()()2ln 0f x x a x x a =--≠.(1)求函数()f x 的单调区间;(2)若0a >,设()11A x y ,,()22B x y ,是函数()f x 图像上的任意两点(12x x <),记直线AB 的斜率为k ,求证:'1223x x f k +⎛⎫>⎪⎝⎭.2015届高三年级第一次五校联考理科数学试卷参考答案9、 4 10、 6 11、 8 12、 ②④13、 (]5-∞,14、 (2,2) 15、 15 三、解答题:16. (本小题满分12分)已知()()()23sin cos 02f x x x x ππωωωω⎛⎫=+--> ⎪⎝⎭的最小正周期为T π=.(1)求23f π⎛⎫⎪⎝⎭的值; (2)在ABC ∆中,角A B C 、、所对应的边分别为a b c 、、,若有()2cos cos a c B b C -=,则求角B 的大小以及()f A 的取值范围.解:(1)()2cos cos f x x x x ωωω=- ……1分112cos 222x x ωω=-- ……2分 1sin 262x πω⎛⎫=-- ⎪⎝⎭ ……3分()y f x =的最小正周期为T π= ,即:212ππωω=⇒= ……4分 ()1sin 262f x x π⎛⎫∴=-- ⎪⎝⎭ ……5分22171sin 2sin 1336262f ππππ⎛⎫⎛⎫∴=⨯--=-=-⎪ ⎪⎝⎭⎝⎭ ……6分 (2)()2cos cos a c B b C -=∴由正弦定理可得:()2sin sin cos sin cos A C B B C -= ……7分()()2sin cos sin cos cos sin sin sin sin A B B C B C B C A A π⇒=+=+=-= ……8分 1sin 0 cos 2A B >∴=()0 3B B ππ∈∴=, ……9分 22 033A C B A πππ⎛⎫+=-=∴∈ ⎪⎝⎭, ……10分72666A πππ⎛⎫∴-∈- ⎪⎝⎭, 1sin 2,162A π⎛⎫⎛⎤∴-∈- ⎪ ⎥⎝⎭⎝⎦ ……11分 ()11sin 21,622f A A π⎛⎫⎛⎤∴=--∈- ⎪ ⎥⎝⎭⎝⎦ ……12分17. (本小题满分12分)已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球. (1)若每次取球后都放回..袋中,求事件“连续取球四次,至少取得两次白球”的概率; (2)若每次取球后都不.放回..袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.解:(1)记事件i A 表示“第i 次取到白球”(*i N ∈),事件B 表示“连续取球四次,至少取得两次白球”,则:12341234123412341234=++++B A A A A A A A A A A A A A A A A A A A A . ……2分()()()()()()12341234123412341234P B P A A A A P A A A A P A A A A P A A A A P A A A A =++++4342416466627⎛⎫⎛⎫=+⨯⨯=⎪ ⎪⎝⎭⎝⎭……4分 ()()11127P B P B ∴=-=……5分 或者:记随机变量ξ表示连续取球四次,取得白球的次数. 易知1~4,3B ξ⎛⎫ ⎪⎝⎭……2分则()()()0413014412121121011333327P P P C C ξξξ⎛⎫⎛⎫⎛⎫⎛⎫≥=-=-==--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……5分(2)易知:随机变量X 的取值分别为2,3,4,5 ……6分()22261215C P X C ∴===, ()112426123415C C P X C ==⨯=()12243611435C C P X C ==⨯=, ()121351151555P X ==---= ……10分∴随机变量X 的期望为:12121023451515553EX =⨯+⨯+⨯+⨯=……12分 18. (本小题满分14分)如图,三棱柱111C B A ABC -侧棱与底面垂直,且所有棱长都为4,D 为CC 1中点. (1)证明:BD A AB 11平面⊥; (2)求二面角B D A A --1的余弦值.解法一:(向量法)(1)取BC 中点O ,连结AO .取11C B 中点1O ,AO BC AB AC =∴⊥ 11 OO AO OO ABC ⊥∴⊥面111 AO OO BC O BCC B =∴⊥面 故:以O 为原点,以1,,OB OO OA 分别为,,x y z 轴,建立如图所示的空间直角坐标系xyz O -. ……2分则:()()()()()0,4,2,32,0,0,32,4,0,0,2,2,0,0,211B A A D B - ……3分()()()32,4,2,0,2,4,32,4,211-=-=-=∴BA BD AB ……4分 0,0111=⋅=⋅BA AB AB ,111,BA AB AB ⊥⊥∴. ……6分 1BDBA B = ⊥∴1AB 平面1A BD . ……7分(2)设平面AD A 1的法向量为()z y x ,,=.()()12,2,230,4,0AD AA =--=,. ,,1AA ⊥⊥⎩⎨⎧==-+-∴0403222y z y x令1=z 得()1,0,3-=为平面AD A 1的一个法向量. ……10分由(1)可知:()32,4,21-=AB 为平面1A BD 的法向量. ……11分1116cos ,=n AB n AB n AB ⋅∴<>=-⋅. ……13分 二面角B D A A --1是锐角 ∴二面角B D A A --1……14分 解法二:(传统几何法)(1)取BC 中点O ,连结AO 和O B 1,AO BC AB AC =∴⊥ 11 CC AO CC ABC ⊥∴⊥面111 AO CC BC C BCC B =∴⊥面 ……2分AO BD ∴⊥ ……3分在正方形11BCC B 中,O D ,分别为1BC CC ,的中点, 由正方形性质知:BD O B ⊥1, ……4分111 BD AOB AOB O O AB BD =∴⊥∴⊥面………5分又在正方形11ABB A 中,11AB A B ⊥, ………6分1A BBD B =⊥∴1AB 平面1A BD . ……7分(2)设AB 1与A 1B 交于点G ,在平面A 1BD 中,作D A GF 1⊥于F ,连结AF , 由(1)得BD A AB 11平面⊥. 11AB A D ∴⊥11 AB GF G A D AGF ⊥=∴⊥面 D A AF 1⊥∴AFG ∠∴为二面角B D A A --1的平面角. ………10分在1AA D △中,由等面积法可求得558=AF , ………12分又22211==AB AG ,GF ∴== ………13分cos GF AFG AF ∴∠==. 所以二面角B D A A --1……14分19. (本小题满分14分) 已知数列{}n a 满足13=2a ,()11=22n n a n a --≥,n S 是数列{}n b 的前n 项和,且有()21=2n n n S b n-+.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列; (2)求数列{}n b 的通项公式; (3)设nn na cb =,记数列{}n c 的前n 项和n T ,求证:1n T <. (1)证明:()1121=2n n n a a n a ---≥ 111121111n n nn n a a a a a ------∴-=-= ……1分 ()()111111111121111n n n n n n a a n a a a a ------+∴===+≥---- 即: ()1111211n n n a a -∴-=≥-- ……3分 ∴数列11n a ⎧⎫⎨⎬-⎩⎭是以1121a =-为首项,1为公差的等差数列. ……4分 (2)解:当2n ≥时,112224221n n n n n n n b S S b b n n ----⎛⎫⎛⎫=-=+-+ ⎪ ⎪-⎝⎭⎝⎭……5分 112224211n n n n n b n n b b b b n n n n ----=-⇒=--, 即:()1221n n b nn b n -=≥- ……6分 1324123112223242......21231n n n n b b b b b n n b b b b n b --⨯⨯⨯⨯∴⨯⨯⨯⨯=⨯⨯⨯⨯⇒=⋅- ……8分 当1n =时,112b S == ∴2n n b n =⋅ ……9分(3)由(1)知:()121111n n n a =+-⨯=+-1+21 11n n n a a n n ∴-=∴=++ ……10分 ()()121112212n n n n nn a n c b n n n n -+∴===-+⋅⋅+ ……12分 ()()112111111111...1122223221212nn i n n n i T c n n n -=⎛⎫⎛⎫⎛⎫∴==-+-++-=-< ⎪ ⎪ ⎪ ⎪⨯⨯⨯⋅+⋅+⋅⎝⎭⎝⎭⎝⎭∑...14分20. (本小题满分14分)已知双曲线()2222100:,x y C a b a b-=>>, 12F F ,分别是它的左、右焦点,A ()1,0-是其左顶点,且双曲线的离心率为2e =. 过右焦点2F 的直线与双曲线C 的右支交于、P Q 两点,设点P 位于第一象限内. (1)求双曲线的方程;(2)若直线、AP AQ 分别与直线12=x 交于、M N 两点,求证:22⊥MF NF ; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由.解:(1)由题可知:1a = ……1分2 2ce c a==∴=……2分 222a b c b +=∴= ∴双曲线C 的方程为:2213y x -= ……3分 (2)设直线的方程为:2=+x ty ,另设:()()1122,,、P x y Q x y()2222131129032⎧-=⎪⇒-++=⎨⎪=+⎩y x t y ty x ty ……4分 1212221293131-∴+==--,t y y y y t t ……5分 又直线AP 的方程为()1111=++y y x x ,代入12=x ()1131221⎛⎫⇒ ⎪ ⎪+⎝⎭,y M x ……6分同理,直线AQ 的方程为()2211=++y y x x ,代入12=x ()2231221⎛⎫⇒ ⎪ ⎪+⎝⎭,y N x ……7分 ()()1222123333 221221⎛⎫⎛⎫∴== ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,-,,-y y MF NF x x ()()()()()12121222212121212999999441144334439∴⋅=+=+=+++++⎡⎤+++⎣⎦y y y y y y MF NF x x ty ty t y y t y y2222999993109124444393131⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭t t t t t t22∴⊥MF NF ……9分(3)当直线的方程为2=x 时,解得()23,P . 易知此时2∆AF P 为等腰直角三角形,其中2224ππ∠=∠=,AF P PAF ,即222∠=∠AF P PAF ,也即:=2λ. ……10分 下证:222∠=∠AF P PAF 对直线存在斜率的情形也成立.()()1112122222221111221221211111⨯+∠+∠====-∠-+-⎛⎫- ⎪+⎝⎭tan tan tan PAPAy y x PAF k x PAF PAF k x yy x ……11分()222211111 313-=⇒=-y x y x()()()()()()1111122211111212122122131++∴∠===--+--+--tan y x y x y PAF x x x x x ……12分 2122122∴∠=-=-=∠-tan tan PF y AF P k PAF x ……13分 ∴结合正切函数在022πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,上的图像可知,222∠=∠AF P PAF ……14分21. 已知函数()()2ln 0f x x a x x a =--≠.(1)求函数()f x 的单调区间;(2)若0a >,设()11A x y ,,()22B x y ,是函数()f x 图像上的任意两点(12x x <),记直线AB 的斜率为k ,求证:'1223x x f k +⎛⎫>⎪⎝⎭. (1)解:()()2'2210a x x af x x x x x--=--=> ……1分(i )当18a ≤-时,220x x a --≥ 恒成立,即()'0f x ≥恒成立,故函数()f x 的单增区间为()0+∞,,无单减区间. ……2分 (ii )当108a -<<时,()'2020f x x x a >⇒-->,解得:x x ><∵0x >,∴函数()f x 的单增区间为0⎛ ⎝,+⎫∞⎪⎪⎭,单减区间为. ……4分(iii )当0a >时,由()'0fx >解得:x x ><.∵0x >0≤,∴函数()f x 的单增区间为+⎫∞⎪⎪⎭,单减区间为0⎛ ⎝. ……6分 综上所述:(i )当18a ≤-时,()f x 的单增区间为()0+∞,,无单减区间.(ii )当108a -<<时,()f x 的单增区间为0⎛ ⎝,+⎫∞⎪⎪⎭,单减区间为.(iii )当0a >时,()f x的单增区间为+⎫∞⎪⎪⎭,单减区间为0⎛ ⎝. ……7分(2)证明:()'21a f x x x =-- ()12'12122+2+23133+2x x x x a f x x ⎛⎫∴=-- ⎪⎝⎭ 由题,()()()()12212121212212121212lnln ln 1x a x x a x x x x y y x k x x x x x x x x ------===+-----则:()()112'122121212ln2+2+23+33+2x a x x x x x a f k x x x x x x ⎛⎫-=--+ ⎪-⎝⎭12121212ln33+2x a x x x ax x x x -=-+- ……9分 注意到2103x x ->,故欲证'1223x x f k +⎛⎫> ⎪⎝⎭,只须证明:121212ln3+2x a x a x x x x >-. ……10分 因为0a >,故即证:()11122211112122122231ln33ln ln +2+2+2x x x x x x x x x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>⇔<⇔<- ……11分 令()120,1x t x =∈,()()31ln +2t g t t t -=-……12分 则:()()()()()'2214190+2+2t t g t tt t t --=-=> 故()g t 在()0,1上单调递增.所以:()()10g t g <= ……13分即:()31ln +2t t t -<,即:12112231ln +2x x x x x x ⎛⎫- ⎪⎝⎭<所以:'12+23x x f k ⎛⎫> ⎪⎝⎭. ……14分。