北师大版七年级数学下册《全等三角形》(边角边判定)的基本练习
1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]
北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习全等三角形的概念和性质(基础)【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【答案】A【解析】B,C,D选项中形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式】(2014秋•岱岳区期末)下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形【答案】D;解析:A、两个等腰三角形的45°不一定同是底角或顶角,还缺少对应边相等,所以,两个三角形不一定全等,故本选项错误;B、两个等边三角形的边长不一定相等,所以,两个三角形不一定全等,故本选项错误;C、40°角不一定是两个三角形的顶角,所以,两个三角形不一定全等,故本选项错误;D、腰和顶角对应相等的两个等腰三角形可以利用“边角边”证明全等,故本选项正确.类型二、全等三角形的对应边,对应角2、(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB【思路点拨】由全等三角形的性质:对应角相等即可得到问题的选项【答案与解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角. 举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.【答案】AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠ADB和∠AEC是对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD≌△EBC,∠ADB与∠ECB是对应角,通过计算得出结论.【答案】55;ABD,EBC;ECB,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.4、(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【思路点拨】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE ,都减去∠ACE 即可.【答案与解析】解:AB 的对应边为DE ,∵△ABC ≌△DEC ,∴∠ACB=∠DCE ,∴∠ACB —∠ACE=∠DCE —∠ACE ,即∠BCE=∠DCA=40°.【总结升华】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.举一反三:【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.【答案】70°;提示:BAC ∠=∠B A C ''=90°-20°=70°.。
北师大版初中数学七年级下册《4.5 利用三角形全等测距离》同步练习卷(3)
北师大新版七年级下学期《4.5 利用三角形全等测距离》同步练习卷一.选择题(共7小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.43.如图所示,A、B在一水池两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB=()m.A.8B.10C.12D.无法确定4.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°5.下列选项中,不是依据三角形全等知识解决问题的是()A.利用尺规作图,作一个角等于已知角B.工人师傅用角尺平分任意角C.利用卡钳测量内槽的宽D.用放大镜观察蚂蚁的触角6.如图,大树AB与大树CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两颗大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED,已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A.13B.8C.6D.57.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A.1种B.2种C.3种D.4种二.填空题(共7小题)8.有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE =CB,连接DE,量出DE的长为50m,则锥形小山两端A、B的距离为m.9.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是s.10.如图,小强利用全等三角形的知识测量池塘两段M、N的距离.如果△PQO≌△NMO,则只需测出其长度的线段是.11.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为厘米.12.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=a,CE=b.则两条凳子的高度之和为.13.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是.14.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD 垂足为D.已知AB=20米.根据上述信息,标语CD的长度为m.三.解答题(共2小题)15.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.16.如图,在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过7分钟后,它们分别爬行到D、E处,设DC与BE的交点为点F.(1)求证:△ACD≌△CBE;(2)蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请证明你的结论.北师大新版七年级下学期《4.5 利用三角形全等测距离》2019年同步练习卷参考答案与试题解析一.选择题(共7小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:A.【点评】本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质是解题关键.2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.4【分析】显然第2中有完整的三个条件,用ASA易证现要的三角形与原三角形全等.【解答】解:因为第2块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第2块.故选:B.【点评】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题转化为数学问题解答是关键.3.如图所示,A、B在一水池两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB=()m.A.8B.10C.12D.无法确定【分析】利用“角边角”证明△ABE和△CDE全等,根据全等三角形对应边相等可得AB =CD.【解答】解:在△ABE和△CDE中,,∴△ABE≌△CDE(ASA),∴AB=CD=10m.故选:B.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°【分析】先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.【解答】解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL),∴∠1=∠4,∵∠3+∠4=90°,∴∠ACB+∠DEF=90°.故选:C.【点评】本题考查的是直角三角形全等的判定及性质,直角三角形的性质,属基础题目.5.下列选项中,不是依据三角形全等知识解决问题的是()A.利用尺规作图,作一个角等于已知角B.工人师傅用角尺平分任意角C.利用卡钳测量内槽的宽D.用放大镜观察蚂蚁的触角【分析】分别利用作一个角等于已知角以及工人师傅用角尺平分任意角和卡钳测量内槽的宽都是利用全等三角形的知识解决问题,进而分析得出答案.【解答】解:A、利用尺规作图,作一个角等于已知角,是利用SSS得出,依据三角形全等知识解决问题,故此选项不合题意;B、工人师傅用角尺平分任意角,是利用SSS得出,依据三角形全等知识解决问题,故此选项不合题意;C、利用卡钳测量内槽的宽,是利用SAS得出,依据三角形全等知识解决问题,故此选项不合题意;D、用放大镜观察蚂蚁的触角,是利用相似,不是依据三角形全等知识解决问题,故此选项正确.故选:D.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.6.如图,大树AB与大树CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两颗大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED,已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A.13B.8C.6D.5【分析】首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=5m,再求出BE的长,然后利用路程除以速度可得时间.【解答】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC,在△ABE和△DCE中,,∴△ABE≌△ECD(AAS),∴EC=AB=5m,∵BC=13m,∴BE=8m,∴小华走的时间是8÷1=8(s),故选:B.【点评】本题考查全等三角形的判定和性质,路程,速度时间的关系等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A.1种B.2种C.3种D.4种【分析】根据翻身后饼也能正好落在“锅”中,考虑把三角形分成两个等腰三角形即可.【解答】解:如图,第一个沿直角三角形作斜边上的中线切,第二个三角形在钝角处沿20°角的另一边切,第三个三角形在60°角处沿20°角的另一边切,第四个三角形无法分成两个等腰三角形,所以,她的选择最多有3种.故选:C.【点评】本题考查了全等三角形的应用,判断出翻折后正好能够重合是三角形是等腰三角形是解题的关键.二.填空题(共7小题)8.有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE =CB,连接DE,量出DE的长为50m,则锥形小山两端A、B的距离为50m.【分析】利用“SAS”证明△ABC≌△EDC,然后根据全等三角形的性质得AB=DE=50m.【解答】解:在△ABC和△EDC中,∴△ABC≌△EDC(SAS),∴AB=DE=50.答:锥形小山两端A、B的距离为50m.故答案是:50.【点评】本题考查了全等三角形的应用:一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.9.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是3s.【分析】根据题意证明∠C=∠DMB,利用AAS证明△ACM≌△BMD,根据全等三角形的性质得到AC=BM=3m,再利用时间=路程÷速度加上即可.【解答】解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠C=90°,∴∠C=∠DMB.在Rt△ACM和Rt△BMD中,,∴Rt△ACM≌Rt△BMD(AAS),∴AC=BM=3m,∵该人的运动速度为1m/s,∴他到达点M时,运动时间为3÷1=3(s).故答案为3.【点评】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt△ACM≌Rt△BMD.10.如图,小强利用全等三角形的知识测量池塘两段M、N的距离.如果△PQO≌△NMO,则只需测出其长度的线段是PQ.【分析】根据全等三角形对应边相等可得PQ=MN.【解答】解:∵△PQO≌△NMO,∴PQ=MN,故答案为:PQ.【点评】此题主要考查了全等三角形的性质的应用,关键是掌握全等三角形的性质.11.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为8厘米.【分析】连接AB,CD,根据O为AD和CB的中点,且∠COD=∠AOB即可判定△COD ≌△OAB,即可求得CD的长度.【解答】解:连接AB,CD,O为AD和CB的中点,∴OC=OB,OA=OD,∵∠COD=∠AOB∴△OCD≌△OAB,即CD=AB,故CD=AB=8cm,故答案为8.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OCD≌△OAB是解题的关键.12.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=a,CE=b.则两条凳子的高度之和为a+b.【分析】利用等腰三角形的性质结合全等三角形的判定方法得出即可.【解答】解:由题意可得:∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,则∠DAC=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),故DC=BE=a,AD=CE=b,则两条凳子的高度之和为:a+b.故答案为:a+b.【点评】此题主要考查了全等三角形的判定与性质,得出△ACD≌△CBE是解题关键.13.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是SSS.【分析】由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.14.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD 垂足为D.已知AB=20米.根据上述信息,标语CD的长度为20m.【分析】根据两平行线间的距离相等得到OB=OD,再由一对直角相等,一对内错角相等,利用ASA得到三角形AOB与三角形COD全等,利用全等三角形对应边相等即可求出CD的长.【解答】解:∵AB∥OH∥CD,相邻两平行线间的距离相等,∴OB=OD,∵OB⊥AB,OD⊥DC,∴∠ABO=∠CDO=90°,在△ABO和△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20m,故答案为:20【点评】此题考查了全等三角形的应用,垂直定义,以及平行线间的距离,熟练掌握全等三角形的判定与性质是解本题的关键.三.解答题(共2小题)15.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【解答】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC,∴AB=DE,又∵小刚共走了100步,其中AD走了40步,∴走完DE用了60步,步大约50厘米,即DE=60×0.5米=30米.答:小刚在点A处时他与电线塔的距离为30米.【点评】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.16.如图,在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过7分钟后,它们分别爬行到D、E处,设DC与BE的交点为点F.(1)求证:△ACD≌△CBE;(2)蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请证明你的结论.【分析】(1)根据SAS即可判断出△ACD≌△CBE;(2)根据△ACD≌△CBE,可知∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD.【解答】(1)证明:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD;∠A=∠BCE=60°,在△ACD与△CBE中,,∴△ACD≌△CBE(SAS);(2)解:DC和BE所成的∠BFC的大小不变.理由如下:∵△ACD≌△CBE,∴∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD=120°.【点评】本题考查全等三角形的应用及等边三角形的性质,难度适中,求解第二问时找出∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD是关键.。
北师大版七年级数学下册 用“边角边”判定三角形全等课件
夯实基础逐点练
2.【2018·安顺】如图,点 D,E 分别在线段 AB,AC 上,CD 与
BE 相交于 O 点,已知 AB=AC,现添加以下的哪个条件仍
不能判定△ABE≌△ACD( D )
A.∠B=∠C B.AD=AE
C.BD=CE
D.BE=CD
夯实基础逐点练
3.【2018·黔东南】下列各图中 a,b,c 为三角形的边长,则甲、 乙、丙三个三角形和左侧△ABC 全等的是( B )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
夯实基础逐点练
4.【2018·成都】如图,已知∠ABC=∠DCB,添加以下条件, 不能判定△ABC≌△DCB 的是( C ) A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC
夯实基础逐点练
5.如图,已知 AB=AC,AD=AE,若要得到“△ABD≌△ACE”, 必须添加一个条件,则下列所添条件不成立的是( B ) A.BD=CE B.∠ABD=∠ACE C.∠BAD=∠CAE D.∠BAC=∠DAE
夯实基础逐点练
解:因为 AB∥DE,所以∠A=∠D. 因为 AF=DC,所以 AC=DF. 在△ABC 和△DEF 中,A∠BA==D∠E, D,
AC=DF, 所以△ABC≌△DEF(SAS). 所以∠ACB=∠DFE. 所以 BC∥EF.
夯实基础逐点练
9.如图,在△ABC 中,AB=AC,D,E 分别是 AB,AC 的中 点,且 CD=BE,△ADC 与△AEB 全等吗?请说明理由.
(1)试说明:△DAF≌△ABE; 解:在正方形 ABCD 中,AD=AB,∠DAB=∠ABE=90°.
AD=BA, 在△DAF 和△ABE 中,∠DAF=∠ABE,
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》检测卷(包含答案解析)(3)
一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 2.下面四个图形中,线段AD 是ABC ∆的高的是( )A .B .C .D .3.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .5 4.下列长度的三条线段,能组成三角形的是( ) A .3、1、4B .3、5、9C .5、6、7D .3、6、10 5.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF = 6.如图,90ACB ∠=︒,AC BC =,AE CE ⊥于点E ,BD CE ⊥于点D ,5AE cm =,2BD cm =,则DE 的长是( )A .8cmB .5cmC .3cmD .2cm 7.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .508.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .①②③C .①②④D .①②③④ 9.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45° 10.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( ) A .4、5、6 B .3、4、5 C .2、3、4 D .1、2、3 11.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去 12.下列条件不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个锐角对应相等二、填空题13.如图,在四边形ABCD 中,AC BC ⊥于点C ,且AC 平分BAD ∠,若ADC 的面积为210cm ,则ABD △的面积为________2cm .14.如图,在△ABC 中,∠BAC =100°,AD ⊥BC 于D 点,AE 平分∠BAC 交BC 于点E .若∠C =26°,则∠DAE 的度数为_____.15.如图,在△ABC 中E 是BC 上的一点,BC =3BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF ﹣S △BEF =____.16.如图,在△ABC 中,∠ACB =90°,AC =11cm ,BC =5cm ,CD 为AB 边上的高,点E 从点B 出发,在直线BC 上以4cm/s 的速度移动,过点E 作BC 的垂线交直线CD 于点F ,当点E 运动_____s 时,CF =AB .17.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____18.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)19.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 20.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.三、解答题21.如图,AC 与BD 相交于点O ,且OA OC =,OB OD =.(1)求证://AB CD ;(2)直线EF 过点O ,分别交AB ,CD 于点E ,F ,试判断OE 与OF 是否相等,并说明理由.22.如图,已知ABC 和AEF 中,B E ∠=∠,AB AE =,BC EF =,25EAB ∠=︒,57F ∠=︒,线段BC 分别交AF ,EF 于点M ,N .(1)请说明EAB FAC ∠=∠的理由;(2)ABC 可以经过图形的变换得到AEF ,请你描述这个变换;(3)求AMB ∠的度数.23.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C .(1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.24.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 25.如图,已知点D ,E 分别在ABC 的边AB ,AC 上,//DE BC .(1若80ABC ∠=︒,40AED ∠=︒,求A ∠的度数:(2)若180BFD CEF ∠+∠=︒,求证:EDF C ∠=∠.26.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D .(1)如图1,猜想∠AOC 与∠ODC 的关系,并说明你的理由;(2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F .①求证:BF ∥OD ;②若∠F =35°,求∠BAC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.2.D解析:D【分析】根据三角形高的定义进行判断.【详解】解:线段AD 是△ABC 的高,则过点A 作对边BC 的垂线,则垂线段AD 为△ABC 的高. 选项A 、B 、C 错误,故选:D .【点睛】本题考查了三角形的高:三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.3.B解析:B【分析】分当△CPA ≌△PQB 时和当△CPA ≌△PQB 时,两种情况进行讨论,求得BQ 和BP 的长,分别求得P 和Q 运动的时间,若时间相同即可,满足全等,若不等,则不能成立.【详解】解:当△CPA ≌△PQB 时,BP=AC=4(米),则BQ=AP=AB-BP=12-4=8(米),A 的运动时间是:4÷1=4(分钟),Q 的运动时间是:8÷2=4(分钟),则当t=4分钟时,两个三角形全等;当△CPA ≌△QPB 时,BQ=AC=4(米), AP=BP=12AB =6(米),则P运动的时间是:6÷1=6(分钟),Q运动的时间是:4÷2=2(分钟),故不能成立.总之,运动4分钟后,△CPA与△PQB全等,故选B.【点睛】本题考查了全等三角形的判定,注意分△CPA≌△PQB和△CPA≌△QPB两种情况讨论是关键.4.C解析:C【分析】根据三角形的三边关系进行分析判断.【详解】A、1+3=4,不能组成三角形;B、3+5=8<9,不能组成三角形;C、5+6=11>7,能够组成三角形;D、3+6=9<10,不能组成三角形.故选:C.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.5.C解析:C【分析】直接根据三角形证明全等的条件进行判断即可;【详解】A、∵AB∥DE,∴∠ABC=∠DEC,∴根据ASA即可判定三角形全等,故此选项不符合题意;B、∵AC∥DF,∴∠DFE=∠ACB,∴根据AAS即可判定三角形全等,故此选项不符合题意;C、AC⊥DE,不符合三角形全等的证明条件,故此选项符合题意;D、∵AC=DF,∴根据SAS即可判定三角形全等,故此选项不符合题意;故选:C.【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;6.C解析:C【分析】利用垂直定义及同角的余角相等可得∠AEC=∠D=∠ACB=90°,∠A=∠BCD,根据AAS证明△ACE≌△CBD,可得AE=CD=5cm,CE=BD=2cm,由此即可求出DE的长.解:∵AE ⊥CE ,BD ⊥CE ,∠ACB =90°,∴∠AEC =∠D =∠ACB =90°,∴∠A +∠ACE =90°,∠ACE +∠BCD =90°,∴∠A =∠BCD ,∵AC =BC ,∴△ACE ≌△CBD (AAS ),∴AE =CD ,CE =BD ,∵AE =5cm ,BD =2cm ,∴DE =CD−CE =5−2=3cm .故选:C .【点睛】本题考查了全等三角形的判定和性质,正确寻找全等三角形解决问题是解题的关键. 7.A解析:A【分析】首先证明∠A=∠DEC ,然后可利用AAS 判定△ABE ≌△ECD ,进而可得EC=AB=60m ,再求出BE 的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .8.C解析:C直接利用当A,B,C在一条直线上,以及当A,B,C不在一条直线上,分别分析得出答案.【详解】解:∵线段AB=8cm,AC=6cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=8−6=2(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=8+6=14(cm),故②正确;如图3,当A,B,C不在一条直线上,8−6<BC<8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.【点睛】此题主要考查了三角形三边关系,正确分类讨论是解题关键.9.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.10.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.11.C解析:C【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.12.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A、可以利用边角边判定两三角形全等,故本选项不合题意;B、可以利用角角边判定两三角形全等,故本选项不合题意;C、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D.【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.二、填空题13.20【分析】延长BC 和AD 相交于点M 根据已知得出△ABC ≌△AMC 得出BC=CM 从而得出再根据等高的三角形的面积得出继而得出答案【详解】解:延长BC 和AD 相交于点M ∵AC ⊥BC ∴∠ACB=∠ACM=解析:20【分析】延长BC 和AD 相交于点M ,根据已知得出△ABC ≌△AMC ,得出BC=CM ,从而得出2=BDM CDM S S ,再根据等高的三角形的面积得出==ACD ABD BDM CDM S S AD S S DM,继而得出答案.【详解】解:延长BC 和AD 相交于点M ,∵AC ⊥BC ,∴∠ACB=∠ACM=90°,∵AC 平分∠BAD ,∴∠BAC=∠MAC ,∵AC=AC ,∴△ABC ≌△AMC ,∴BC=CM ,∴2=BDM CDM SS , ∵ADC 与DCM △同高, ∴=ACD CDM S AD S DM∵ABD △与AMC 同高, ∴=ABD BDM S AD SDM ∴=ACD ABD BDM CDM S S S S ∵ADC 的面积为210cm , ∴102=ABD CDM CDMS S S ; ∴220cm =ABD S故答案为:20.【点睛】本题考查了全等三角形的性质和判定的应用,以及三角形的面积,得出2 BDM CDM SS 是解题的关键. 14.14°【分析】利用垂直的定义得到∠ADC =90°再根据三角形内角和计算出∠CAD =64°接着利用角平分线的定义得到∠CAE =50°然后计算∠CAD ﹣∠CAE 即可【详解】解:∵AD ⊥BC ∴∠ADC =9解析:14°【分析】利用垂直的定义得到∠ADC =90°,再根据三角形内角和计算出∠CAD =64°,接着利用角平分线的定义得到∠CAE =50°,然后计算∠CAD ﹣∠CAE 即可.【详解】解:∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°﹣∠C =64°,∵AE 平分∠BAC ,∴∠CAE =12∠BAC =12×100°=50°, ∴∠DAE =∠CAD ﹣∠CAE =64°﹣50°=14°.故答案为14°.【点睛】本题考查了三角形内角和定理、角平分线的定义、垂线的定义,解题关键是熟练运用相关性质求角.15.2【分析】S △ADF-S △BEF=S △ABD-S △ABE 所以求出三角形ABD 的面积和三角形ABE 的面积即可因为BC=3BE 点D 是AC 的中点且S △ABC=12就可以求出三角形ABD 的面积和三角形ABE解析:2【分析】S△ADF-S△BEF=S△ABD-S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为BC=3BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.【详解】解:∵点D是AC的中点,∴AD=12AC,∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵BC=3BE,∴S△ABE=13S△ABC=13×12=4,∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2,故答案为:2.【点睛】本题考查三角形的面积,解题的关键是要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化.16.4或15【分析】①点E在射线BC上移动时若E移动4s则BE=4×4=16(cm)根据全等三角形的判定和性质即可得到结论②点E在射线CB上移动时若E移动15s则BE′=15×4=6(cm)根据全等三角解析:4或1.5【分析】①点E在射线BC上移动时,若E移动4s,则BE=4×4=16(cm),根据全等三角形的判定和性质即可得到结论.②点E在射线CB上移动时,若E移动1.5s,则BE′=1.5×4=6(cm),根据全等三角形的判定和性质即可得到结论.【详解】解:①如图,当点E在射线BC上移动时,若E移动4s,则BE=4×4=16(cm),∴CE=BE−BC=16−5=11cm.∴CE=AC,∵∠ACB=90°,CD为AB边上的高,∴∠BCD+∠ACD=∠ACD+∠A,∴∠BCD=∠A,∵∠ECF=∠BCD,∴∠ECF=∠A,在△CFE与△ABC中,=90ECF A CE ACCEF ACB ∠∠⎧⎪⎨⎪∠∠︒⎩===, ∴△CEF ≌△ABC (ASA ),∴CF =AB ,②当点E 在射线CB 上移动时,若E 移动1.5s ,则BE′=1.5×4=6(cm ),∴CE′=BE′+BC =6+5=11(cm ),∴CE′=AC ,在△CF′E′与△ABC 中,90E CF A CE ACCE F ACB ∠''∠⎧⎪'⎨⎪∠''∠︒⎩====, ∴△CF′E′≌△ABC (ASA ),∴CF′=AB ,综上所述,当点E 在直线CB 上移动8s 或3s 时,CF′=AB ;故答案为:1.5或4.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.17.1<AC <17【分析】作出图形延长AD 至E 使DE =AD 然后利用边角边证明△ABD 和△ECD 全等根据全等三角形对应边相等可得AB =CE 再利用三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边解析:1<AC <17【分析】作出图形,延长AD 至E ,使DE =AD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =CE ,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出AC 的取值范围.【详解】如图,延长AD 至E ,使DE =AD ,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ECD (SAS ),∴AB =CE ,∵AD =4,∴AE =4+4=8,∵AC +CE >AC >CE -AE ,∴9-8<AC <8+9,∴1<AC <17,故答案为:1<AC <17.【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.18.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.19.26或22【分析】因为等腰三角形的底边和腰不确定6cm可以为底边也可以为腰长故分两种情况:当6cm为腰时底边为10cm先判断三边能否构成三角形若能求出此时的周长;当6cm为底边时10cm为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.20.3【分析】易证△ABE≌△DCF从而可得出△ABF≌△DCE进而可得出△BEF≌△CFE【详解】∵AB∥DC∴∠A=∠D∵AB=CDAE=DF∴△ABE≌△DCF(SAS)∴AE=DFBE=CF∴A解析:3【分析】易证△ABE≌△DCF,从而可得出△ABF≌△DCE,进而可得出△BEF≌△CFE.【详解】∵AB∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE≌△DCF(SAS)∴AE=DF,BE=CF∴AF=ED∴△ABF≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA 是不能证明全等的.三、解答题21.(1)证明见解析;(2)OE=OF ,证明见解析.【分析】(1)利用SAS 证明△AOB ≌△COD ,根据全等三角形对应角相等可得∠B=∠D ,再根据平行线的判定定理可证得结论;(2)利用ASA 证明AOE COF ∆∆≌,根据全等三角形对应边相等可证得结论.【详解】解:(1)由题可知,在△AOB 与△COD 中,AO OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∆∆≌,B D ∴∠=∠,//AB CD ∴;(2)OE=OF ,理由如下:由(1)可知:AOB COD ∆≅∆,∴∠A=∠C ,在△AOE 于△COF 中,A C AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COF ASA ∴∆∆≌,OE OF ∴=.【点睛】本题考查全等三角形的性质和判定.掌握全等三角形的判定定理,并能灵活运用是解题关键.22.(1)见解析;(2)通过观察可知ABC 绕点A 顺时针旋转25︒,可以得到AEF ;(3)82AMB ∠=︒【分析】(1)先利用已知条件∠B=∠E ,AB=AE ,BC=EF ,利用SAS 可证△ABC ≌△AEF ,那么就有∠C=∠F ,∠BAC=∠EAF ,那么∠BAC-∠PAF=∠EAF-∠PAF ,即有∠BAE=∠CAF=25°; (2)通过观察可知△ABC 绕点A 顺时针旋转25°,可以得到△AEF ;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB 是△ACM 的外角,根据三角形外角的性质可求∠AMB .【详解】解:(1)∵B E ∠=∠,AB AE =,BC EF =,∴ABC AEF ≅,∴C F ∠=∠,BAC EAF ∠=∠,∴BAC PAF EAF PAF ∠-∠=∠-∠,∴25BAE CAF ∠=∠=︒;(2)通过观察可知ABC 绕点A 顺时针旋转25︒,可以得到AEF ;(3)由(1)知57C F ∠=∠=︒,25BAE CAF ∠=∠=︒,∴572582AMB C CAF ∠=∠+∠=︒+︒=︒.【点睛】 本题利用了全等三角形的判定、性质,三角形外角的性质,等式的性质等.23.(1)45°;(2)不变,45°【分析】(1)由题意,先求出135ABN ∠=︒,由角平分线的定义,求出67.5ABE ∠=︒,22.5∠︒=BAC ,由三角形外角的性质,即可求出答案;(2)由三角形的外角性质,得ACB ABE BAC ∠=∠-∠,再根据角平分线的定义即可求出答案.【详解】解:(1)∵90MON ∠=︒,即90AOB ∠=︒,45BAO ∠=︒,∴135ABN AOB BAO ∠=∠+∠=︒,∵BE 平分ABN ∠,AC 平分BAO ∠, ∴167.52ABE ABN ∠=∠=︒,122.52BAC BAO ∠=∠=︒, ∴67.522.545ACB ABE BAC ∠=∠-∠=︒-︒=︒.(2)ACB ∠的大小不会发生变化,理由如下: ∵BE 平分ABN ∠,AC 平分BAO ∠, ∴12ABE ABN ∠=∠,12BAC BAO ∠=∠, ∴ACB ABE BAC ∠=∠-∠1122ABN BAO =∠-∠ ()12ABN BAO =∠-∠12AOB =∠190452=⨯︒=︒. 【点睛】 本题考查了角平分线的定义,三角形的外角性质,解题的关键是熟练掌握所学的知识,正确的得到角的关系.24.周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.25.(1)60A ∠=︒;(2)证明见解析.【分析】(1)根据平行线的性质可得80ADE ABC ∠=∠=︒,再根据三角形内角和定理即可求得A ∠的度数;(2)根据三角形外角的性质可得BFD EDF DEF ∠=∠+∠,再结合180BFD CEF ∠+∠=︒可得180EDF DEC ∠+∠=︒,根据两直线平行同旁内角互补即可证明结论.【详解】解:(1)∵//DE BC ,80ABC ∠=︒,∴80ADE ABC ∠=∠=︒,∵40AED ∠=︒,∴18060AE A ADE D ∠=︒-∠=∠-︒;(2)∵BFD EDF DEF ∠=∠+∠,180BFD CEF ∠+∠=︒,∴180EDF DEF CEF ∠+∠+∠=︒,即180EDF DEC ∠+∠=︒,∵//DE BC ,∴180C DEC ∠+∠=︒,∴EDF C ∠=∠.【点睛】本题考查三角形外角的性质,平行线的性质,三角形内角和定理.能正确理解定理,根据图形得出角度之间的关系是解题关键.26.(1)∠AOC =∠ODC ,理由见解析;(2)①见解析;②70°【分析】(1)根据角平分线的定义得到∠OAC +∠OCA =12(180°−∠ABC ),∠OBC =12∠ABC ,由三角形的内角和得到∠AOC =90°+∠OBC ,∠ODC =90°+∠OBD ,于是得到结论; (2)①由角平分线的性质得到∠EBF =90°−∠DBO ,由三角形的内角和得到∠ODB =90°−∠OBD ,于是得到结论;②由角平分线的性质得到∠FBE =12(∠BAC +∠ACB ),∠FCB=12ACB,根据三角形的外角的性质即可得到结论.【详解】(1)∠AOC=∠ODC,理由:∵三个内角的平分线交于点O,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°﹣∠ABC),∵∠OBC=12∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=90°+12∠ABC=90°+∠OBC,∵OD⊥OB,∴∠BOD=90°,∴∠ODC=90°+∠OBD,∴∠AOC=∠ODC;(2)①∵BF平分∠ABE,∴∠EBF=12∠ABE=12(180°﹣∠ABC)=90°﹣∠DBO,∵∠ODB=90°﹣∠OBD,∴∠FBE=∠ODB,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE﹣∠BCF=12(∠BAC+∠ACB)﹣12∠ACB=12∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.。
北师大版初中数学七年级下册《4.5 利用三角形全等测距离》同步练习卷(10)
北师大新版七年级下学期《4.5 利用三角形全等测距离》同步练习卷一.选择题(共9小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA2.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS3.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS4.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块6.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.a B.b C.b﹣a D.(b﹣a)7.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A.300m B.400m C.500m D.700m8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.①②B.①③C.②③D.①②③9.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD;④四边形ABCD的面积=AC×BD其中正确的结论有()A.1个B.2个C.3个D.4个二.解答题(共6小题)10.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.11.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?12.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.13.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.14.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.15.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.北师大新版七年级下学期《4.5 利用三角形全等测距离》2019年同步练习卷参考答案与试题解析一.选择题(共9小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:A.【点评】本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质是解题关键.2.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.3.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【点评】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS【分析】根据垂直的定义、全等三角形的判定定理解答即可.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.【点评】本题考查的是全等三角形的应用,掌握全等三角形的判定定理是解题的关键.5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.6.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.a B.b C.b﹣a D.(b﹣a)【分析】连接AB,只要证明△AOB≌△DOC,可得AB=CD,即可解决问题.【解答】解:连接AB.在△AOB和△DOC中,,∴△AOB≌△DOC,∴AB=CD=a,∵EF=b,∴圆形容器的壁厚是(b﹣a),故选:D.【点评】本题考查全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.属于中考常考题型.7.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A.300m B.400m C.500m D.700m【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA =ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【解答】解:如图所示,设老街与平安路的交点为C.∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,在△ABC和△DEA中,∴△ABC≌△DEA(AAS),∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选:C.【点评】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.①②B.①③C.②③D.①②③【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=,故③正确;故选:D.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.9.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD;④四边形ABCD的面积=AC×BD其中正确的结论有()A.1个B.2个C.3个D.4个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;四边形ABCD的面积=S△ADB+S△BDC=DB×OA+DB×OC=AC•BD,故④正确;故选:D.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.二.解答题(共6小题)10.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.11.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?【分析】首先证明△ABC≌△DEF(SAS)可得AC=DF,然后再根据△ABC的周长为24cm,CF=3cm可得制成整个金属框架所需这种材料的长度.【解答】解:∵BF=EC,∴BF+FC=CE+FC,即BC=EF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AC=DF,∵△ABC的周长为24cm,CF=3cm,∴制成整个金属框架所需这种材料的长度为24×2﹣3=45cm.【点评】此题主要考查了全等三角形的应用,关键是掌握证明三角形全等的方法,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.12.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.【分析】(1)根据题意画出图形即可;(2)根据题意得出各线段长度,再证△ABC≌△DEC得AB=DE=60m.【解答】解:(1)根据题意画出图形,如图所示.(2)由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m,∵点E、C、B在一条直线上,∴∠DCE=∠ACB.∵∠BAC=∠EDC=90°,AC=DC,∠DCE=∠ACB,∴△ABC≌△DEC,∴AB=DE.∵DE=60m,∴AB=60m,答:A、B两根电线杆之间的距离大约为60m.【点评】本题主要考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定与性质.13.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.14.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC =∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB 即可,利用全等三角形的性质进行解答.【解答】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.15.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.【分析】(1)根据全等三角形对应角相等可得AB=DE;(2)利用“角边角”证明Rt△ABC和Rt△EDC全等,再根据全等三角形对应边相等解答.【解答】(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.。
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》检测题(含答案解析)
一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( ) ①13∠=∠;②180BAE CAD ∠+∠=︒; ③若//BC AD ,则230∠=︒; ④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个2.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠ B .AB BD =C .AC AD = D .CAB DAB ∠=∠3.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .104.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 5.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,96.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF =7.直角ABC 、DEF 如图放置,其中90ACB DFE ∠=∠=︒,AB DE =且AB DE ⊥.若DF a =,BC b =,CF c =.则AE 的长为( )A .a c +B .b c +C .a b c +-D .a b c -+8.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .3 9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、310.下列条件不能判定两个直角三角形全等的是( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两个锐角对应相等11.如图,ABC ADE ≅,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则∠DGB 的度数为( )A .66°B .56°C .50°D .45°12.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS二、填空题13.如图,已知AC DB =,添加一个条件________,可以得到ABC DCB △≌△.14.如图,在ABC 和DEF 中,点B F C E ,,,在同一直线上,,//BF CE AB DE =,请添加一个条件,使ABC DEF ≅,这个添加的条件可以是________.15.己知三角形的三边长分别为2,x ﹣1,3,则三角形周长y 的取值范围是__. 16.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.17.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 18.如图,在△ABC 中,点D 在边BC 上,已知点E ,F 分别是AD ,CE 边上的中点,且△BEF 的面积为6,则△ABC 的面积等于_____.19.已知三角形ABC 的三边长分别是,,a b c ,化简a b c b a c +----的结果是_________________;20.如图,在AOB ∠的两边上,分别取OM=ON ,在分别过点M 、N 作OA 、OB 的垂线,交点P ,画射线OP ,则OP 平分AOB ∠的依据是____________三、解答题21.如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明; (2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.22.如图1,在ABC 中,过点B 作BD AB ⊥,且BD AB =,连接CD .(问题原型)(1)若90ACB ∠=︒,且8AC BC ==,过点D 作的BCD △的BC 边上的高DE ,易证ABC BDE △≌△,从而得到BCD △的面积为______.(变式探究)(2)如图2,若90ACB ∠=︒,BC a =,用含a 的代数式表示BCD △的面积,并说明理由.(拓展应用)(3)如图3,若AB AC =,8BC =,则BCD △的面积为______.23.已知△ABC 和△ADE 均为等腰三角形,且∠BAC =∠DAE ,AB =AC ,AD =AE . (1)如图1,点E 在BC 上,求证:BC =BD+BE ;(2)如图2,点E 在CB 的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.(3)如图3,点E 在BC 的延长线上,直接写出线段BC 、CD 、CE 三者之间的关系.24.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由; (2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数.25.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明. (1)____________; (2)____________.26.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌; (2)若1GF =,求线段HC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒, 再利用三角形的外角的性质求解4∠, 从而可判断④. 【详解】 解:90BAC DAE ∠=∠=︒, 122390∴∠+∠=∠+∠=︒, 13∴∠=∠,故①符合题意,19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒, 故②符合题意;//,BC AD180C CAD ∴∠+∠=︒, 45C ∠=︒, 135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒, 故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,, 30BAE ∴∠=︒, 如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒ 4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④. 故选:.C 【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.B解析:B 【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断. 【详解】解:∵AB CD ⊥, ∴∠ABC=∠ABD=90°, ∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意; 若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意; 若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B . 【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.3.B解析:B 【分析】根据已知条件可以得出∠E=∠ADC=90︒,进而得出∆CEB ≅∆ADC ,就可以得出BE=DC ,进而求出DE 的值. 【详解】∵BE ⊥CE ,AD ⊥CE , ∴∠E=∠ADC=90︒, ∴∠EBC+∠BCE=90︒, ∵∠BCE+∠ACD=90︒, ∴∠EBC=∠DCA ,在∆CEB 和∆ADC 中,∠E=∠ADC ,∠EBC=∠DCA ,BC=AC , ∴∆CEB ≅∆ADC(AAS), ∴BE=DC=1,CE=AD=3, ∴DE=EC-CD=3-1=2, 故选:B . 【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.4.A解析:A 【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥, ∴90PMO PNO ∠=∠=. ∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠, 故选:A . 【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.5.D解析:D 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可. 【详解】A 、∵4+4=8,∴构不成三角形;B 、29−17=12>8,∴构不成三角形;C 、∵12−3=9>8,∴构不成三角形;D 、9−2=7<8,9+2=11>8,∴能够构成三角形, 故选:D . 【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.6.C解析:C 【分析】直接根据三角形证明全等的条件进行判断即可; 【详解】A 、∵AB ∥DE ,∴∠ABC=∠DEC ,∴根据ASA 即可判定三角形全等,故此选项不符合题意;B 、∵AC ∥DF ,∴∠DFE=∠ACB ,∴根据AAS 即可判定三角形全等,故此选项不符合题意; C 、AC ⊥DE ,不符合三角形全等的证明条件,故此选项符合题意;D 、∵AC=DF ,∴根据SAS 即可判定三角形全等,故此选项不符合题意; 故选:C . 【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;7.C解析:C 【分析】先利用AAS 证明ABC DEF ≅,再根据全等三角形的性质进行线段和差计算即可. 【详解】 解:90ACB ∠=︒,DE AB ⊥,90A B ∴∠+∠=︒,90A E ∠+∠=︒,B E ∴∠=∠,在ABC 与DEF 中90B E ACB DFE AB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABC DEF AAS ∴≅△△;AC DF =∴,BC EF =,∵DF a =,BC b =,CF c =,AE AC EF CF =+-, ∴AE a b c =+- 故选C . 【点睛】本题主要考查了全等三角形的判定与全等三角形的性质,确定用AAS 定理进行证明是关键.8.B解析:B 【分析】根据全等三角形的对应边相等得到BE=CF ,计算即可. 【详解】解:∵△DEF ≌△ABC , ∴BC=EF , ∴BE+EC=CF+EC , ∴BE=CF ,又∵BF=BE+EC+CF=9,EC=5 ∵CF=12(BF-EC)=12(9-5)=2. 故选:B . 【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.9.D解析:D 【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可. 【详解】D 、4+5>6,能组成三角形,故此选项错误; B 、3+4>5,能组成三角形,故此选项错误; A 、2+3>4,能组成三角形,故此选项错误; D 、1+2=3,不能组成三角形,故此选项正确; 故选:D . 【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A 、可以利用边角边判定两三角形全等,故本选项不合题意;B 、可以利用角角边判定两三角形全等,故本选项不合题意;C 、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D 、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D .【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.11.A解析:A【分析】先根据全等三角形的性质可得105ACB E ∠=∠=︒,再根据三角形的外角性质可得AFC ∠的度数,然后根据对顶角相等可得DFG ∠的度数,最后根据三角形的内角和定理即可得.【详解】ABC ADE ≅,105E ∠=︒,105ACB E ∴∠=∠=︒,ACB DAC AFC ∠=∠+∠,16DAC ∠=︒,10516AFC ︒=︒+∴∠,解得89AFC ∠=︒,89DFG AFC ∴∠=∠=︒,在DFG 中,180GB F D D D G ∠∠=+∠+︒,25D ∠=︒,2518089DGB ∴∠+︒+=︒︒,解得66DGB ∠=︒,故选:A .【点睛】本题考查了全等三角形的性质、三角形的外角性质、三角形的内角和定理、对顶角相等,熟练掌握全等三角形的性质是解题关键.12.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.二、填空题13.(答案不唯一)【分析】要使△ABC≌△DCB由于BC是公共边若补充一组边相等则可用SSS判定其全等;【详解】解:添加AB=DC∵AC=BDBC=BCAB=DC∴△ABC≌△DCB(SSS)∴加一个适=(答案不唯一)解析:AB DC【分析】要使△ABC≌△DCB,由于BC是公共边,若补充一组边相等,则可用SSS判定其全等;【详解】解:添加AB=DC,∵ AC=BD,BC=BC,AB=DC,∴△ABC≌△DCB(SSS),∴加一个适当的条件是AB=DC,故答案为:AB=DC.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,根据已知图形以及判定方法选择添加的条件是正确解答本题的关键.14.(答案不唯一)【分析】根据等式的性质可得BC=EF根据平行线的性质可得再添加AB=DE可利用SAS判定【详解】添加AB=DE∵BF=CE∴BF+FC=CE+FC即BC=EF∵AB//DE∴∠B=∠E=(答案不唯一)解析:AB DE【分析】∠=∠,再添加AB=DE可利用SAS 根据等式的性质可得BC=EF,根据平行线的性质可得B E≅.判定ABC DEF【详解】添加AB=DE,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB//DE,∴∠B =∠E ,在△ABC 和△DEF 中AB ED B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DEF ≅ (SAS ),故答案为AB DE =(答案不唯一)【点睛】 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL15.6<y <10【详解】根据三角形的三边关系得3-2<x-1<2+3解得:1<x-1<5所以三角形周长y 的取值范围:1+2+3<y <2+3+5即6<y <10故答案为6<y <10【点睛】本题考查三角形三边解析:6<y <10【详解】根据三角形的三边关系,得3-2<x-1<2+3,解得:1<x-1<5,所以三角形周长y 的取值范围:1+2+3<y <2+3+5,即6<y <10,故答案为6<y <10.【点睛】本题考查三角形三边的关系,解决此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.16.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.17.26或22【分析】因为等腰三角形的底边和腰不确定6cm可以为底边也可以为腰长故分两种情况:当6cm为腰时底边为10cm先判断三边能否构成三角形若能求出此时的周长;当6cm为底边时10cm为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.24【分析】由EF分别为ADCE的中点可得BECEBF分别为△ABD△ACD△BEC的中线根据中线的性质可知将相应三角形分成面积相等的两部分据此即可解答【详解】解:∵由于EF分别为ADCE的中点∴S解析:24【分析】由E、F分别为AD、CE的中点可得BE、CE、BF分别为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【详解】解:∵由于E、F分别为AD、CE的中点,∴S△ABE=S△DBE,S△DCE=S△AEC,S△BEF=S△BCF,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为:24.【点睛】本题考查了三角形中线的性质,属于常考题型,熟知三角形的中线将相应的三角形分成面积相等的两部分是解题的关键.19.【分析】先根据三角形的三边关系定理可得再根据绝对值运算整式的加减即可得【详解】由三角形的三边关系定理得:则故答案为:【点睛】本题考查了三角形的三边关系定理绝对值运算整式的加减熟练掌握三角形的三边关系 解析:22b c -【分析】先根据三角形的三边关系定理可得,a b c a c b +>+>,再根据绝对值运算、整式的加减即可得.【详解】由三角形的三边关系定理得:,a b c a c b +>+>,0,0a b c b a c ∴+->--<, 则()a b c b a c a b c a c b +----=+--+-,a b c a c b =+---+,22b c =-,故答案为:22b c -.【点睛】本题考查了三角形的三边关系定理、绝对值运算、整式的加减,熟练掌握三角形的三边关系定理是解题关键.20.全等三角形判定(斜边和直角边对应相等)【分析】利用判定方法HL 证明Rt △OMP 和Rt △ONP 全等进而得出答案【详解】解:在Rt △OMP 和Rt △ONP 中∴Rt △OMP ≌Rt △ONP (HL )∴∠MOP =解析:全等三角形判定(斜边和直角边对应相等HL )【分析】利用判定方法“HL”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.【详解】解:在Rt △OMP 和Rt △ONP 中,OM ON OP OP⎧⎨⎩==, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 是∠AOB 的平分线.故答案为HL【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定三、解答题21.(1)AC=BD ,AC ⊥BD ,证明见解析;(2)存在,AC=BD ,AC ⊥BD ,证明见解析;(3)AC=BD ,AC ⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠ADE=∠BDO,可证∠AED=∠BOD=90º即可;(2)延长BD交AC于点F,交AO于点G.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AGF=∠BGO,可得∠AFG=∠BOG=90º即可;(3)BD交AC于点H,AO于M,可证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AMH=∠BMO,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.22.(1)32;(2)212BCD S a =△,理由见解析;(3)16. 【分析】(1)如图1中,由AAS 定理可证△ABC ≌△BDE ,就有DE=BC=8.进而由三角形的面积公式得出结论;(2)如图2中,过点D 作BC 的垂线,与BC 的延长线交于点E ,由AAS 定理可证得△ABC ≌△BDE ,就有DE=BC=a .进而由三角形的面积公式得出结论.(3)如图3中,过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,由等腰三角形的性质可以得出BF=12BC ,由条件可以得出△AFB ≌△BED 就可以得出BF=DE ,由三角形的面积公式就可以得出结论.【详解】解:(1)∵在ABC 中,90ACB ∠=︒,过点B 作BD AB ⊥且过点D 作的BCD △的BC 边上的高DE ,∴90DEB ACB ABD ∠=∠=∠=︒∴90ABC DBE ∠+∠=︒∵90DBE BDE ∠+∠=︒∴ABC BDE ∠=∠.在Rt ABC △与Rt BDE △中,ACB DEB ABC BDE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt ABC BDE AAS ≌△△,8DE CB == ∴18823212BCD S CB DE ⋅⨯=⨯==△ 故答案为:32(2)212BCD S a =△ 理由:过点D 作DE CB ⊥延长线于点E∴90DEB ACB ∠=∠=︒∵BD AB ⊥,1290∠+∠=︒∵290A ∠+∠=︒∴1A ∠=∠. 在Rt ABC △与Rt BDE △中,1ACB DEB A AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt ABC BDE AAS ≌△△,DE CB a ==∴21122BCD S CB DE a =⋅=△ (3)如图3中,∵AB AC = ∴BF=12BC=12×8=4. 过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,∴∠AFB=∠E=90°,∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.在△AFB和△BED中,AFB EFAB EBD AB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFB≌△BED(AAS),∴BF=DE=4.∵S△BCD=12BC•DE,∴S△BCD=184162⨯⨯=∴△BCD的面积为16.故答案为:16【点睛】本题考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,解答时证明三角形全等是关键.23.(1)见解析;(2)(1)的结论不成立,成立的结论是BC=BD﹣BE,证明见解析;(3)BC=CD-CE【分析】(1)证得∠DAB=∠EAC,证明△DAB≌△EAC(SAS),由全等三角形的性质得出BD=CE,则可得出结论;(2)证明△DAB≌△EAC(SAS),得出BD=CE,则成立的结论是BC=BD-BE;(3)证明△DAC≌△EAB(SAS),得出BE=CD,则成立的结论是BC=BD-BE.【详解】解:(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE证明:∵∠BAC =∠DAE ,∴∠BAC+∠EAB =∠DAE+∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE(3)∵∠BAC =∠DAE ,∴∠BAC+∠EAC =∠DAE+∠EAC ,即∠BAE =∠DAC ,又∵AB =AC ,AD =AE ,∴△BAE ≌△CAD (SAS ),∴BE =CD ,∴BC =CD ﹣CE【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键. 24.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌,∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.25.(1)∠ADE=∠ADF ;证明见解析;(2)AE=AF ;证明见解析.【分析】(1)∠ADE=∠ADF ,根据DE ⊥AB ,DF ⊥AC 及AD 为∠BAC 的角平分线,即可证得∠ADE=∠ADF;(2)AE=AF,根据(1)可知证明△AED≌△AFD,即可证得AE=AF.【详解】(1)结论1:∠ADE=∠ADF,证明如下:∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90︒,∵AD为∠BAC的角平分线,∴∠EAD=∠FAD,∴∠ADE=∠ADF;(2)结论2:AE=AF,证明如下:由(1)可知:△AED≌△AFD,∴AE=AF.【点睛】本题考查全等三角形的性质和判定,解题的关键是灵活运用全等三角形的判定和性质解决问题.26.(1)见详解;(2)1【分析】(1)先证明AC=DF,再根据HL证明Rt ABC Rt DEF≌;(2)先证明∠AFG=∠DCH,从而证明∆AFG≅∆DCH,进而即可求解.【详解】(1)∵AF CD=,∴AF+CF=CD+CF,即AC=DF,在Rt ABC与Rt DEF△中,∵AC DF AB DE=⎧⎨=⎩,∴Rt ABC≅Rt DEF△(HL);(2)∵Rt ABC≅Rt DEF△,∴∠A=∠D,∠EFD=∠BCA,∵∠AFG=180°-∠EFD,∠DCH=180°-∠BCA,∴∠AFG=∠DCH,又∵AF CD=,∴∆AFG≅∆DCH,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL和ASA证明三角形全等,是解题的关键.。
北师大版七年级数学下册探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等
AB=AB(已证),
所以△ABD≌△A'B'D'.所以AD=A'D'.
课堂小结
内容
角边角 角角边
应用
有两角及夹边对应相等的两个三角 形全等(简写成“ASA”); 两角分别相等且其中一组等角的对 边相等的两个三角形全等(简写成 “AAS”)
为证明线段和角相等提供了新的证法
注意
注意“角角边”“角边角” 中两角与边的区分
第四章 三角形
3 探索三角形全等的条件
第2课时 利用“角边角”“角角边”判定三角形全等
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法 “ASA”和“AAS”;
2.会用三角形全等的判定方法“ASA”和“AAS” 证明两个三角形全等.(重点)
情境导入
如图所示,某同学把一块三角形的玻璃不谨慎打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的 办法是带哪块去? 学生活动:学生先自主探究出答案,然后再与同学进行交流. 教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的, 而仅仅带③则可以,为什么呢? 本节课我们继续研究三角形全等的判定方法.
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'=90°.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》教案
北师大版七年级数学下册《4.3 第2课时利用“角边角”“角角边”判定三角形全等》教案一. 教材分析《北师大版七年级数学下册》第4.3节主要讲述了利用“角边角”(AAA)和“角角边”(AAS)判定三角形全等的方法。
学生在学习本节课之前已经掌握了三角形的基本概念、性质以及全等三角形的判定方法“边角边”(SAS)。
本节课的内容是全等三角形判定方法的重要组成部分,是进一步研究三角形相似、解三角形等知识的基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,能够理解和掌握三角形的全等概念。
但是,对于“角边角”(AAA)和“角角边”(AAS)判定三角形全等的方法,他们可能还比较难以理解,需要通过大量的练习来巩固。
此外,学生可能对全等三角形的判定方法之间的联系和区别还不够清晰,需要教师进行引导和讲解。
三. 教学目标1.让学生掌握“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法。
2.使学生能够运用这两种方法解决实际问题。
3.培养学生空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:掌握“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法。
2.教学难点:理解“角边角”(AAA)和“角角边”(AAS)判定三角形全等的原理,能够灵活运用这两种方法解决实际问题。
五. 教学方法采用讲授法、演示法、练习法、讨论法等教学方法。
通过教师的讲解和演示,学生的练习和讨论,使学生理解和掌握全等三角形的判定方法。
六. 教学准备1.教师准备PPT,内容包括全等三角形的判定方法、实例讲解等。
2.准备一些三角形模型或图片,用于展示和练习。
七. 教学过程1.导入(5分钟)通过一个实例引出全等三角形的判定方法,激发学生的兴趣。
例如,展示一个三角形模型,让学生观察并判断它是否与另一个三角形全等。
2.呈现(10分钟)教师通过PPT呈现“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法,并进行讲解。
北师大版七年级数学下册4.3.3用“边角边”判定三角形全等(教案)
3.创设有趣的情境:在课堂教学中,我要尽量创设有趣、贴近生活的情境,激发学生的学习兴趣。通过让学生动手操作、小组讨论等形式,提高他们的参与度,使课堂氛围更加活跃。
3.通过实际操作、观.能够运用“边角边”全等条件,结合已知信息,证明两个三角形全等。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的逻辑推理能力,通过“边角边”全等条件的探索与应用,使学生能够运用严谨的逻辑推理方法解决问题。
4.加强课堂互动:在讲授过程中,我要注重与学生的互动,鼓励他们提问和发表见解。对于学生的疑问,我要耐心解答,并及时给予反馈,帮助他们巩固所学知识。
5.注重学生思维能力的培养:在讲解全等条件时,我要引导学生从多个角度去思考问题,培养他们的空间想象力和逻辑推理能力。同时,鼓励学生尝试用不同的方法解决问题,提高他们的解题技巧。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解“边角边”(SAS)全等的基本概念。SAS全等是指两个三角形中有两边和它们之间的夹角对应相等时,这两个三角形全等。它是解决几何问题中判断三角形全等的重要依据。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何运用SAS全等条件解决实际问题,如求三角形的未知边长。
难点解析:学生在解决问题时,容易忽略题目中给出的全等条件,或者在复杂的图形中找不到对应的全等关系。
(3)运用“边角边”全等条件证明两个三角形全等时,注意证明过程的逻辑性和严密性。
难点解析:学生需要熟练掌握全等证明的基本步骤,并在实际操作中避免逻辑错误,如错用全等条件、漏掉关键步骤等。
北师版七年级数学下册同步练习题-利用“边角边”判定三角形全等1
1.如图,a,b,c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是( )2.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能说明△ABC≌△DEF,这个条件是( )A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF3.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是( )A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE4.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是( )A.BC=EDB.∠BAD=∠EACC.∠B=∠ED.∠BAC=∠EAD5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( )A.0个B.1个C.2个D.3个6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠CB.AD=AEC.BD=CED.BE=CD7.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为( )A.8 cmB.9 cmC.10 cmD.11 cm8.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD9.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.试说明:AC=BD.10.如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,且CD=BE,△ADC 与△AEB全等吗?请说明理由.提升训练11.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,点B,C,D在同一条直线上.试说明:BD=CE.12.如图,点A,B,C,D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC. 试说明:∠ACE=∠DBF.13.如图,已知AB=CD,BC=DA,E,F是AC上的两点,且AE=CF.试说明:BF=DE.14.如图,点O是线段AB和线段CD的中点.试说明:(1)△AOD≌△BOC;(2)AD∥BC.15.求证:等腰三角形的两底角相等.已知:如图,在△ABC中,AB=AC.试说明:∠B=∠C.16.如图,△ABC,△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB上,试说明:△CDA≌△CEB.17.如图,四边形ABCD,四边形BEFG均为正方形,连接AG,CE.试说明:(1)AG=CE;(2)AG⊥CE.18.如图,已知A,D,E三点共线,C,B,F三点共线,AB=CD,AD=CB,DE=BF,那么BE与DF之间有什么数量关系?请说明理由.19.如图,AD是△ABC中BC边上的中线.试说明:AD<(AB+AC).参考答案1.【答案】B解:认真观察图形,只有B符合判定定理SAS.2.【答案】D解:因为∠B=∠DEF,AB=DE,所以添加∠A=∠D,利用ASA可得△ABC≌△DEF;所以添加BC=EF,利用SAS可得△ABC≌△DEF;所以添加∠ACB=∠F,利用AAS可得△ABC≌△DEF.故选D.3.【答案】B4.【答案】C5.【答案】D6.【答案】D解:因为AB=AC,∠A为公共角,A.如添加∠B=∠C,利用ASA即可说明△ABE≌△ACD;B.如添AD=AE,利用SAS即可说明△ABE≌△ACD;C.如添BD=CE,由等式的性质可得AD=AE,利用SAS即可说明△ABE≌△ACD;D.如添BE=CD,不能说明△ABE≌△ACD.故选D.7.【答案】B8.【答案】A9.解:在△ABC和△BAD中,所以△ABC≌△BAD(SAS).所以AC=BD.10.解:△ADC≌△AEB.理由如下:因为AB=AC,D,E分别是AB,AC的中点,所以AD=AE.在△ADC和△AEB中,所以△ADC≌△AEB(SAS).分析:在说明两个三角形全等时,经常会出现把“SSA”作为两个三角形全等的识别方法的情况.实际上,“SSA”不能作为两个三角形全等的识别条件.因为两边及一边的对角分别相等的两个三角形不一定全等.如本题中易出现根据条件BE=CD,AB=AC,∠A=∠A,利用“SSA”说明两个三角形全等的错误情况.11.解:因为△ABC和△ADE都是等腰三角形,所以AD=AE,AB=AC.又因为∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,所以∠DAB=∠EAC.在△ADB和△AEC中,所以△ADB≌△AEC(SAS).所以BD=CE.12.解:因为AB=DC,所以AB+BC=DC+CB.所以AC=DB.因为EA⊥AD,FD⊥AD,所以∠A=∠D=90°.在△EAC和△FDB中,所以△EAC≌△FDB(SAS).所以∠ACE=∠DBF.分析:在说明线段或角相等的有关问题时,常常需要说明线段或角所在的两个三角形全等.13.解:在△ABC和△CDA中,所以△ABC≌△CDA(SSS).所以∠1=∠2(全等三角形的对应角相等).在△BCF和△DAE中,所以△BCF≌△DAE(SAS).所以BF=DE(全等三角形的对应边相等).分析:本题综合考查了全等三角形的判定和性质,解答时要认真分析所给条件,选择合理、简单的方法进行解答.14.解:(1)因为点O是线段AB和线段CD的中点,所以AO=BO,CO=DO.在△AOD和△BOC中,因为所以△AOD≌△BOC(SAS).(2)因为△AOD≌△BOC,所以∠A=∠B.所以AD∥BC.15.解:假设存在另一等腰三角形A'B'C'(A'B'=A'C')与△ABC完全重合. 因为AB=AC,所以A'B'=A'C'=AB=AC.即AB=A'C',AC=A'B'.又因为BC=C'B',所以△ABC≌△A'C'B'(SSS).所以∠B=∠C'.由两个三角形完全重合可知∠C=∠C'.所以∠B=∠C.16.解:因为△ABC,△CDE均为等腰直角三角形,∠ACB=∠DCE=90°, 所以CE=CD,BC=AC,∠ACB-∠ACE=∠DCE-∠ACE,即∠ECB=∠DCA,在△CDA与△CEB中,所以△CDA≌△CEB.17.解:(1)因为四边形ABCD,四边形BEFG均为正方形,所以AB=CB,∠ABC=∠GBE=90°,BG=BE.所以∠ABG=∠CBE.在△ABG和△CBE中,所以△ABG≌△CBE(SAS).所以AG=CE.(2)如图,设AG与CE相交于点N.由(1)知△ABG≌△CBE,所以∠BAG=∠BCE.因为∠ABC=90°,所以∠BAG+∠AMB=90°.因为∠AMB=∠CMN,所以∠BCE+∠CMN=90°.所以∠CNM=90°.所以AG⊥CE.18.解:BE=DF.理由如下:如图,连接BD.在△ABD和△CDB中,所以△ABD≌△CDB(SSS).所以∠A=∠C.因为AD=CB,DE=BF,所以AD+DE=CB+BF.所以AE=CF.在△ABE和△CDF中,所以△ABE≌△CDF(SAS).所以BE=DF.分析:本题运用了构造法,通过连接BD,构造△ABD,△CDB,然后说明△ABD≌△CDB,从而得到∠A=∠C,为用“SAS”说明△ABE≌△CDF创造了条件.19.解:如图,延长AD至点E,使DE=AD,连接BE.因为AD是△ABC中BC边上的中线,所以CD=BD.在△ACD与△EBD中,所以△ACD≌△EBD(SAS).所以AC=EB.在△ABE中,AE<AB+BE,即2AD<AB+AC,所以AD<(AB+AC).分析:本题通过运用倍长中线法构造全等三角形,利用全等三角形的性质,将三条线段转化到一个三角形中,然后利用三角形的三边关系来解决.。
精品解析2021-2022学年北师大版七年级数学下册第四章三角形章节练习练习题(无超纲)
北师大版七年级数学下册第四章三角形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:如图,D 、E 分别在AB 、AC 上,若AB =AC ,AD =AE ,∠A =60°,∠B =25°,则∠BDC 的度数是( )A .95°B .90°C .85°D .80°2、如图,AB =AC ,点D 、E 分别在AB 、AC 上,补充一个条件后,仍不能判定△ABE ≌△ACD 的是( )A .∠B =∠C B .AD =AE C .BE =CD D .∠AEB =∠ADC3、尺规作图:作A O B '''∠角等于已知角AOB ∠.示意图如图所示,则说明A O B AOB '''∠=∠的依据是( )A .SSSB .SASC .ASAD .AAS4、如果一个三角形的两边长分别为5cm 和8cm ,则第三边长可能是( )A .2cmB .3cmC .12cmD .13cm5、如图,在△ABC 和△BAD 中,AC =BD ,要使△ABC ≌△BAD ,则需要添加的条件是( )A .∠BAD =∠ABCB .∠BAC =∠ABD C .∠DAC =∠CBD D .∠C =∠D6、下列长度的各组线段中,能组成三角形的是( )A .1,2,3B .2,3,5C .3,4,8D .3,4,57、如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒,连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A .1个B .2个C .3个D .4个8、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°9、如图,ABC ≌DEF ,点B 、E 、C 、F 在同一直线上,若BC =7,EC =4,则CF 的长是( )A .2B .3C .4D .710、已知线段AB =9cm ,AC =5cm ,下面有四个说法:①线段BC 长可能为4cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为3cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C .①②④D .①②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一树C,继续前行20米到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米;则河的宽度为 _____米.2、在ABC中,39,,则BC的取值范围是_______.==AB AC3、如图,∠C=∠D=90°,AC=AD,请写出一个正确的结论________.4、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).5、如图,某同学把一块三角形的玻璃打碎成了三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带____(填序号)去配,这样做的科学依据是_______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,AD ,BE 相交于点O ,AB ⊥BE ,DE ⊥AD ,垂足分别为B ,D ,OA =OE .求证:△ABO ≌△EDO .2、在ABC 中,AC BC =,90ACB ∠=︒,点D 是直线AC 上一动点,连接BD 并延长至点E ,使ED BD =.过点E 作EF AC ⊥于点F .(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:2AD AF EF=+.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.3、如图,AB∥CF,E为DF的中点,AB=20,CF=15,求BD的长度.4、某中学八年级学生进行课外实践活动,要测池塘两端A,B的距离,因无法直接测量,经小组讨论决定,先在地上取一个可以直接到达A,B两点的点O,连接AO并延长到点C,使AO=CO;连接BO并延长到点D,使BO=DO,连接CD并测出它的长度.(1)根据题中描述,画出图形;(2)CD的长度就是A,B两点之间的距离,请说明理由.5、如图,已知在△ABC 中,AB =AC =10cm ,∠B =∠C ,BC =8cm ,D 为AB 的中点.点P 在线段BC 上以3 cm /s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A 运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等?请说明理由.(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?-参考答案-一、单选题1、C【分析】根据SAS 证△ABE ≌△ACD ,推出∠C =∠B ,求出∠C 的度数,根据三角形的外角性质得出∠BDC =∠A +∠C ,代入求出即可.【详解】解:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (SAS ),∴∠C =∠B ,∵∠B =25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故选C.【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2、C【分析】根据全等三角形的判定定理进行判断即可.【详解】解:根据题意可知:AB=AC,A A∠=∠,ASA可以证明△ABE≌△ACD,故A不符合题意;若B C∠=∠,则根据()若AD=AE,则根据(SAS)可以证明△ABE≌△ACD,故B不符合题意;SSA不可以证明△ABE≌△ACD,故C符合题意;若BE=CD,则根据()AAS可以证明△ABE≌△ACD,故D不符合题意;若∠AEB=∠ADC,则根据()故选:C.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.3、A【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故选:A.【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.4、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c,c,由题可知8-5<<8+5c,即3<<13所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点5、B【分析】利用全等三角形的判定方法对各选项进行判断.解:∵AC=BD,而AB为公共边,A、当∠BAD=∠ABC时,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;B、当∠BAC=∠ABD时,根据“SAS”可判断△ABC≌△BAD,该选项符合题意;C、当∠DAC=∠CBD时,由三角形内角和定理可推出∠D=∠C,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;D、同理,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、D【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.【详解】∵1+2=3,∴A不能构成三角形;∵3+2=5,∴B不能构成三角形;∵3+4<8,∴C不能构成三角形;∵∵3+4>5,∴D 能构成三角形;故选D .【点睛】本题考查了三角形的三边关系定理,熟练掌握性质定理是解题的关键.7、C【分析】由全等三角形的判定及性质对每个结论推理论证即可.【详解】∵50DAB CAE ∠=∠=︒∴DAB BAC CAE BAC ∠+∠=∠+∠∴DAC BAE ∠=∠又∵AB AD =,AC AE =∴()DAC BAE SAS ≅△△∴BE CD =故①正确∵DAC BAE ≅∴AEB ACD ∠=∠由三角形外角的性质有ACD CFE AEB CAE ∠+∠=∠+∠则50EFC CAE ∠=∠=︒故②正确作AH DC ⊥于H ,AG BE ⊥于G ,如图所示:则90AGE AHC =∠∠=°,在AHC 和AGE 中,AHC AGE DAC BEA AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AG AHC E AAS ≅∆,∴AH AG =,在AHF △和AGF 中,AH AG AHF AGF AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AGF L A H HF ≅∆,∴AFH AFG ∠=∠∴FA 平分DFE ∠故④正确假设AF 平分DAE △则DAF EAF ∠=∠∵DAB CAE ∠=∠∴DAF DAB FAE CAE ∠-∠=∠-∠即BAF CAF ∠=∠由④知AFD AFE ∠=∠又∵BFD CFE ∠∠、为对顶角∴BFD CFE ∠=∠∴BFD AFD CFE AFE ∠+∠=∠+∠∴AFB AFE ∠=∠∴在ABF 和ACF 中,BAF CAF AF AF BFA CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CF BFA A ASA ≅∆即AB =AC又∵AB AC >故假设不符,故AF 不平分DAE △故③错误.综上所述①②④正确,共有3个正确.故选:C .【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.8、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD =60°,∠B =20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.9、B【分析】根据全等三角形的性质可得BC EF=,根据CF EF EC=-即可求得答案.【详解】解:ABC≌DEF,∴BC EF=点B、E、C、F在同一直线上,BC=7,EC=4,∴CF EF EC-=-=BC EC=-743故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.10、D【分析】分三种情况:C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:∵线段AB=9cm,AC=5cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=9−5=4(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=9+5=14(cm),故②正确;如图3,当A,B,C不在一条直线上,9−5=4cm<BC<9+5=14cm,故线段BC可能为9cm,不可能为3cm,故③,④正确.故选D.【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键.二、填空题1、5【分析】将题目中的实际问题转化为数学问题,利用全等三角形的判定方法证得两个三角形全等即可得出答案.【详解】解:由题意知,在Rt ABC和Rt EDC中,90ABC EDC BC DC ACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, Rt ABC Rt EDC ≅,∴5AB ED ==,即河的宽度是5米,故答案为:5.【点睛】题目主要考查全等三角形的应用,熟练应用全等三角形的判定定理和性质是解题关键.2、612BC <<【分析】由构成三角形的条件计算即可.【详解】∵ABC 中39AB AC ==,∴AC AB BC AC AB -<<+∴612BC <<.故答案为:612BC <<.【点睛】本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.3、BC =BD【分析】根据HL 证明△ACB 和△ADB 全等解答即可.【详解】解:在Rt△ACB和Rt△ADB中,AC ADAB AB=⎧⎨=⎩,∴△ACB≌△ADB(HL),∴BC=BD,故答案为:BC=BD(答案不唯一).【点睛】此题考查全等三角形的判定和性质,关键是根据HL证明△ACB和△ADB全等解答.4、不合格【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.5、③ ASA【分析】由题意已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法进行分析即可.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;ASA.【点睛】本题主要考查全等三角形的判定方法的实际应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题1、见解析【分析】利用AAS即可证明△ABO≌△EDO.【详解】证明:∵AB ⊥BE ,DE ⊥AD ,∴∠B =∠D =90°.在△ABO 和△EDO 中,,B D AOB EOD OA OE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABO ≌△EDO .【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.2、(1)DF DC =(2)见解析(3)2AF EF AD -=【分析】(1)利用边相等和角相等,直接证明EDF BDC ∆∆≌,即可得到结论.(2)利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.(3)要证明2AF EF AD -=,先利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.【详解】(1)解:DF DC =90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=.(2)解:当点D 在线段AC 的延长线上时,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,=2AF EF AD DF AC AD CD AD ∴+=++=+.(3)解:2AF EF AD -=,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,()2AF EF AF AC AF DF AD AF DF AD AD ∴-=-=--=-+=.【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.3、5【分析】由平行线的性质可得A ECF ∠=∠,ADE F ∠=∠,再由E 为DF 的中点,得到DE FE =,即可证明ADE CFE ≌,得到15==AD CF ,由此求解即可.【详解】解:∵∥AB CF∴A ECF ∠=∠,ADE F ∠=∠,又∵E 为DF 的中点,∴DE FE =,∴()≌ADE CFE AAS ,∴15==AD CF ,∴20155=-=-=BD AB AD .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.4、(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可;(2)利用全等三角形的性质解决问题即可.【详解】解:(1)图形如图所示:(2)连接AB .在△AOB 和△COD 中,AO CO AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩, ∴△AOB ≌△COD (SAS ),∴AB =CD ,∴CD 的长度就是A ,B 两点之间的距离.【点睛】本题考查作图﹣应用与设计作图,全等三角形的判定和性质等知识,解题的关键是学会利用全等三角形的性质解决问题.5、(1)△BPD 与△CQP 全等,理由见解析;(2)当点Q 的运动速度为154cm /s 时,能够使△BPD 与△CQP 全等.【分析】(1)经过1秒后,PB =3cm ,PC =5cm ,CQ =3cm ,由已知可得BD =PC ,BP =CQ ,∠ABC =∠ACB ,即据SAS 可证得△BPD ≌△CQP ;(2)可设点Q 的运动速度为x (x ≠3)cm /s ,经过ts △BPD 与△CQP 全等,则可知PB =3tcm ,PC =8-3tcm ,CQ =xtcm ,据(1)同理可得当BD =PC ,BP =CQ 或BD =CQ ,BP =PC 时两三角形全等,求x的解即可.【详解】解:(1)经过1秒后,PB =3cm ,PC =5cm ,CQ =3cm ,∵△ABC 是等边三角形,D 为AB 的中点.∴∠ABC =∠ACB =60°,BD=PC =5cm ,在△BPD 和△CQP 中,BD PC ABC ACB BP CQ =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS );(2)设点Q 的运动速度为x (x ≠3)cm /s ,经过ts △BPD 与△CQP 全等;则可知PB =3tcm ,PC =(8-3t )cm ,CQ =xtcm ,∵AB =AC ,∴∠B =∠C ,根据全等三角形的判定定理SAS 可知,有两种情况:①当BD =PC 且BP =CQ 时,△BPD ≌△CQP (SAS ),则8-3t =5且3t =xt ,解得x =3,∵x ≠3,∴舍去此情况;②BD=CQ,BP=PC时,△BPD≌△CPQ(SAS),则5=xt且3t=8-3t,解得:x=154;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为154cm/s时,能够使△BPD与△CQP全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
(常考题)北师大版初中数学七年级数学下册第四单元《三角形》检测题(答案解析)
D、∵AC=DF,∴根据SAS即可判定三角形全等,故此选项不符合题意;
故选:C.
【点睛】
本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;
4.B
解析:B
【分析】
根据全等三角形的对应边相等得到BE=CF,计算即可.
【详解】
【详解】
①三角形有三条中线,故①错误;
②钝角三角形三条高,有两条在三角形外部,故②错误;
③三角形的任意两边之差小于第三边,故③错误;
④三角形按边分类可分为等腰三角形、不等边三角形,故④正确;
综上,选项①②③错误,
故选:C.
【点睛】
本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别.
A. B.
C. D.
8.在下列长度的四根木棒中,能与 、 长的两根木棒钉成一个三角形的是()
A. B. C. D.
9.已知三角形的三边长分别是3,8,x,则x的值可以是()
A.6B.5C.4D.3
10.下列条件不能判定两个直角三角形全等的是()
A.两条直角边对应相等B.斜边和一锐角对应相等
C.斜边和一直角边对应相等D.两个锐角对应相等
∴BC=CM,
∴ ,
∵ 与 同高,
∴
∵ 与 同高,
∴
∴
∵ 的面积为 ,
∴ ;
∴
故答案为:20.
【点睛】
本题考查了全等三角形的性质和判定的应用,以及三角形的面积,得出 是解题的关键.
14.【分析】先求出∠BAC的度数再根据角平分线和高求出∠BAE和∠BAD即可【详解】解:∵∴∠BAC=180°-40°-60°=80°∵AD平分∠BAC∴∠BAD=∠BAC=40°∵AE⊥BC∴∠AEB
北师大版七年级 数学下4.5利用全等三角形测距离培优专题(包含答案)
北师大七下利用全等三角形测距离培优专题一、单选题1.如图,童威书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,他的依据是()A.SAS B.ASA C.AAS D.SSS2.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC△△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC△△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角3.如图,大树AB与大树CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A.13s B.8s C.6s D.5s4.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO△△NMO,则只需测出其长度的线段是()A .POB .PQC .MOD .MQ5.如图,是工人师傅用同一种材料制成的金属框架,已知B E ∠=∠,AB DE =,BF EC =,其中ABC V 的周长为24cm ,3CF cm =,则制成整个金属框架所需这种材料的总长度为( )A .45cmB .48cmC .51cmD .54cm6.如图所示,将两根钢条,AA BB ''的中点O 连在一起,使,AA BB ''可以绕着点O 自由转动,就做成了一个测量工具,则''A B 的长等于内槽宽AB ,那么判定OAB OA B ≅''V V 的理由是:( )A .SASB .ASAC .AASD .SSS7.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与△PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是△PRQ 的平分线。
北师大版七年级下册数学:“角边角”“角角边”判定
2.图中的两个三角形全等吗?请说明理由。
学习目标之二 (探究·推理)
小组合作学习,解决下列问题:
(1)如果“两角及一边”条件中的边是其 中一角的对边,情况会怎样? (2)已知:∠A=∠D, ∠B=∠E, BC=EF. 试说明: △ABC ≌ △DEF.
评价任务 :能用AAS证明两个三角形全等
1.(限时3分钟)完成教材102页第3题 变式训练:如图,已 知∠C=∠F, ∠B=∠E, 要根据“AAS”说明 △CDB ≌ △FDE,还 要添加一个条件是: BD=ED或CD=FD
学习目标之一 (体验·归纳) 通过自主学习、合作学习,完
成下列学习任务: 1.展示预习成果。 2.同伴合作,说一说改变角度和边 长,你能得到同样的结论吗?
评价任务 :能用ASA证明两个三角形全等
1.在△ABC和△DEF中,AB=DE,∠A=∠D,
∠B=∠E,则△ABC≌△DEF的依据是(c )
A、SSS B、SAS C、ASA D、AAS
全论
等
的
条
件
三条边 两角一边 两边一角
SSS ASA 转 化 AAS
评价反馈:
1.课后作业(练习册第47页第8题) 2.拓展性作业 (选做练习册第48页第2题) 3.前置性作业 (预习边角边判定三角形全 等的方法)
作业要求: 1.认真审题,明确题意。 2.书写规范,字迹清晰。
4.如图,点B,F,C,E在一条直线上,已知
义务教育教科书人教版数学七年级下册
4.3.2 探究三角形全等的条件
学习目标:
1.通过动手操作,经历探索“三角形全等 的条件——角边角”的过程,会用数学语 言归纳角边角这一基本事实,在不同的情 境中能用角边角证明两个三角形全等。 2.通过小组合作交流,会用角边角证明定 理角角边,在不同的情境中能用角角边证 明两个三角形全等。
2022年北师七下《利用“边角边”判定三角形全等》同步练习(附答案)
1.如图,a,b,c分别表示△ABC的三边长,那么下面与△ABC一定全等的三角形是( )2.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加以下一个条件后,仍然不能说明△ABC≌△DEF,这个条件是( )A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF3.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是( )A.∠A=∠CB.∠D=∠B∥BC ∥BE4.如图,AB=AE,AC=AD,以下条件中不能判定△ABC≌△AED的是( )A.BC=EDB.∠BAD=∠EACC.∠B=∠ED.∠BAC=∠EAD5.两组邻边分别相等的四边形叫做“筝形〞,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( )个个个个6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )A.∠B=∠CB.AD=AEC.BD=CED.BE=CD7.如图,AA',BB'表示两根长度相同的木条,假设O是AA',BB'的中点,经测量AB=9 cm,那么容器的内径A'B'为( )cm8.如图,∠ABC=∠BAD,添加以下条件还不能判定△ABC≌△BAD的是( )A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD9.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA.试说明:AC=BD.10.如图,在△ABC中,AB=AC,D,E分别是AB,AC的中点,且CD=BE,△ADC 与△AEB全等吗请说明理由.提升训练11.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,点B,C,D在同一条直线上.试说明:BD=CE.12.如图,点A,B,C,D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC. 试说明:∠ACE=∠DBF.13.如图,AB=CD,BC=DA,E,F是AC上的两点,且AE=CF.试说明:BF=DE.14.如图,点O是线段AB和线段CD的中点.试说明:(1)△AOD≌△BOC;(2)AD∥BC.15.求证:等腰三角形的两底角相等.:如图,在△ABC中,AB=AC.试说明:∠B=∠C.16.如图,△ABC,△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB上,试说明:△CDA≌△CEB.17.如图,四边形ABCD,四边形BEFG均为正方形,连接AG,CE.试说明:(1)AG=CE;(2)AG⊥CE.18.如图,A,D,E三点共线,C,B,F三点共线,AB=CD,AD=CB,DE=BF,那么BE与DF之间有什么数量关系请说明理由.19.如图,AD是△ABC中BC边上的中线.试说明:AD<(AB+AC).参考答案1.【答案】B解:认真观察图形,只有B符合判定定理SAS.2.【答案】D解:因为∠B=∠DEF,AB=DE,所以添加∠A=∠D,利用ASA可得△ABC≌△DEF;所以添加BC=EF,利用SAS可得△ABC≌△DEF;所以添加∠ACB=∠F,利用AAS可得△ABC≌△DEF.应选D.3.【答案】B4.【答案】C5.【答案】D6.【答案】D解:因为AB=AC,∠∠B=∠C,利用ASA即可说明△ABE≌△ACD;B.如添AD=AE,利用SAS即可说明△ABE≌△ACD;C.如添BD=CE,由等式的性质可得AD=AE,利用SAS即可说明△ABE≌△ACD;D.如添BE=CD,不能说明△ABE≌△ACD.应选D.7.【答案】B8.【答案】A9.解:在△ABC和△BAD中,所以△ABC≌△BAD(SAS).所以AC=BD.10.解:△ADC≌△AEB.理由如下:因为AB=AC,D,E分别是AB,AC的中点,所以AD=AE.在△ADC和△AEB中,所以△ADC≌△AEB(SAS).分析:在说明两个三角形全等时,经常会出现把“SSA〞作为两个三角形全等的识别方法的情况.实际上,“SSA〞不能作为两个三角形全等的识别条件.因为两边及一边的对角分别相等的两个三角形不一定全等.如此题中易出现根据条件BE=CD,AB=AC,∠A=∠A,利用“SSA〞说明两个三角形全等的错误情况.11.解:因为△ABC和△ADE都是等腰三角形,所以AD=AE,AB=AC.又因为∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,所以∠DAB=∠EAC.在△ADB和△AEC中,所以△ADB≌△AEC(SAS).所以BD=CE.12.解:因为AB=DC,所以AB+BC=DC+CB.所以AC=DB.因为EA⊥AD,FD⊥AD,所以∠A=∠D=90°.在△EAC和△FDB中,所以△EAC≌△FDB(SAS).所以∠ACE=∠DBF.分析:在说明线段或角相等的有关问题时,常常需要说明线段或角所在的两个三角形全等.13.解:在△ABC和△CDA中,所以△ABC≌△CDA(SSS).所以∠1=∠2(全等三角形的对应角相等).在△BCF和△DAE中,所以△BCF≌△DAE(SAS).所以BF=DE(全等三角形的对应边相等).分析:此题综合考查了全等三角形的判定和性质,解答时要认真分析所给条件,选择合理、简单的方法进行解答.14.解:(1)因为点O是线段AB和线段CD的中点,所以AO=BO,CO=DO.在△AOD和△BOC中,因为所以△AOD≌△BOC(SAS).(2)因为△AOD≌△BOC,所以∠A=∠B.所以AD∥BC.15.解:假设存在另一等腰三角形A'B'C'(A'B'=A'C')与△ABC完全重合.因为AB=AC,所以A'B'=A'C'=AB=AC.即AB=A'C',AC=A'B'.又因为BC=C'B',所以△ABC≌△A'C'B'(SSS).所以∠B=∠C'.由两个三角形完全重合可知∠C=∠C'.所以∠B=∠C.16.解:因为△ABC,△CDE均为等腰直角三角形,∠ACB=∠DCE=90°, 所以CE=CD,BC=AC,∠ACB-∠ACE=∠DCE-∠ACE,即∠ECB=∠DCA,在△CDA与△CEB中,所以△CDA≌△CEB.17.解:(1)因为四边形ABCD,四边形BEFG均为正方形,所以AB=CB,∠ABC=∠GBE=90°,BG=BE.所以∠ABG=∠CBE.在△ABG和△CBE中,所以△ABG≌△CBE(SAS).所以AG=CE.(2)如图,设AG与CE相交于点N.由(1)知△ABG≌△CBE, 所以∠BAG=∠BCE.因为∠ABC=90°,所以∠BAG+∠AMB=90°.因为∠AMB=∠CMN,所以∠BCE+∠CMN=90°.所以∠CNM=90°.所以AG⊥CE.18.解:BE=DF.理由如下:如图,连接BD.在△ABD和△CDB中,所以△ABD≌△CDB(SSS).所以∠A=∠C.因为AD=CB,DE=BF,所以AD+DE=CB+BF.所以AE=CF.在△ABE和△CDF中,所以△ABE≌△CDF(SAS).所以BE=DF.分析:此题运用了构造法,通过连接BD,构造△ABD,△CDB,然后说明△ABD≌△CDB,从而得到∠A=∠C,为用“SAS〞说明△ABE≌△CDF 创造了条件.19.解:如图,延长AD至点E,使DE=AD,连接BE.因为AD是△ABC中BC边上的中线,所以CD=BD.在△ACD与△EBD中,所以△ACD≌△EBD(SAS).所以AC=EB.在△ABE中,AE<AB+BE,即2AD<AB+AC,所以AD<(AB+AC).分析:此题通过运用倍长中线法构造全等三角形,利用全等三角形的性质,将三条线段转化到一个三角形中,然后利用三角形的三边关系来解决.第四章三角形一、选择题1.以下长度的三条线段能组成三角形的是〔〕A. 5cm 2cm 3cmB. 5cm 2cm 2cmC. 5cm 2cm 4cmD. 5cm 12cm 6cm2.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是〔〕A. 带①去B. 带②去C. 带③去D. ①②③都带去3.不能判定两个三角形全等的条件是〔〕A. 三条边对应相等B. 两角及一边对应相等C. 两边及夹角对应相等D. 两边及一边的对角相等4.一个角的平分线的尺规作图的理论依据是〔〕A. SASB. SSSC. ASAD. A AS5.三角形两条边分别为3和7,那么第三边可以为〔〕A. 2B. 3C. 9D. 1 06.以下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形边角边判定的基本练习
1、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO 和△CDO是否能完全重合呢?
猜想:
如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形。
2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:
(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,
AC=2.8cm。
③连结BC,得△ABC。
④按上述画法再画一个△A'B'C'。
(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?
3、边角边公理.
(简称“边角边”或“SAS”)
一、例题与练习
1、填空:
(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?)。
(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD ≌ACE,需要满足的三个条件中,已具有两个条件:一是___________,二是____________还需要一个条件________________(这个条件可以证得吗?)。
2、例1 、已知:AD∥BC,AD=CB(图3)。
求证:△ADC≌△CBA.
问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌△CEB,除了AD∥BC、AD=CB的条件外,还需要一个什
么条件(AF=CE或AE =CF)?怎样证明呢?
例2 、已知:AB=AC、AD=AE、∠1=∠2(图4)。
求证:△ABD≌△ACE。
练习:
1、已知:如图,AB=AC,F、E分别是AB、AC的中点。
求证:△ABE≌△ACF。
2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.
求证:△ABE≌△CDF.
A
B
C D
E 3、已知:如图AB=AC,AD=AE,∠BAC=∠DAE ,求证: △ABD ≌△ACE
4、如图,△ABC 中,AB =AC ,AD 平分∠BAC ,试说明△ABD ≌△ACD 。
A
B D C
5、已知:如图,AD ∥BC ,CB AD =。
求证:CBA ADC ∆≅∆。
6、已知:如图,AD ∥BC ,CB AD =,CF AE =。
求证:CEB AFD ∆≅∆。
7、已知:如图,点A 、B 、C 、D 在同一条直线上,DB AC =,DF AE =,AD EA ⊥,AD FD ⊥,垂足分别是A 、D 。
求证:FDC EAB ∆≅∆
8、已知:如图,AC AB =,AE AD =,21∠=∠。
求证:ACE ABD ∆≅∆。
9、如图,在ABC ∆中,D 是AB 上一点,DF 交AC 于点E ,FE DE =,CE AE =,AB 与CF 有什么位置关系?说明你判断的理由。
10、已知:如图,DBA CAB ∠=∠,BD AC =。
求证∠C=∠D
11、已知:如图,AC 和BD 相交于点O ,OC OA =,OD OB =。
求证:DC ∥AB 。
12、已知:如图,AC 和BD 相交于点O ,DC AB =,DB AC =。
求证:C B ∠=∠。
13、已知:如图,D 、E 分别是△ABC 的边AB,AC 的中点,点F 在DE 的延长线上,且EF=DE .
求证:(1)BD=FC (2)AB ∥CF
14、已知: 如图 , AB=AC , EB=EC , AE 的延长线交BC 于D .求证:BD=CD .
15、已知:如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE
16、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD
17、如图,已知,AB ∥DE ,AB=DE ,AF=DC 。
请问图中有那几对全等三角形?请任选一对给予证明。
D C A
B
E。