第3章 钢的热处理 32钢在加热和冷却时组织转变
《金属材料与热处理》钢在加热及冷却时的组织转变课程教案
课题
钢在加热及冷却时的组织转变
教学目标
知识目标
1、了解钢加热时相转变;
2、掌握等温冷却及其产物;
3、学会C曲线分析。
课型
理论型
课时
2
教学重点
1、了解钢加热时相转变;
2、掌握等温冷却及其产物。
教学难点
学会C曲线分析。
教学方法
讲授法、展示法
教学过程
备注
第一课时
组织教学
复习并引入
分析总结
本次课介绍了钢在加热时的转变(奥氏体化)和冷却时的转变(多种产物),而冷却时所得产物的性能以及连续冷却(低温转变)的内容在下次课时进行介绍。
课件演示
重难点
重难点
作业处理
1、热处理目的?
2、热处理概念?
3、热处理使钢性能发生变化的原因?
板书设计
钢在加热及冷却时的组织转变
一、钢在加热时的组织转变
冷却方法
Rel/MPa
Rm/MPa
A/%
Z/%
HRC
随炉冷却
530
280
32.5
49.3
15~18
空气中冷却
670~720
340
15~18
45~50
18~24油中冷却900Fra bibliotek620
18~20
48
40~50
水中冷却
1100
720
7~8
12~14
52~60
2、冷却方式的分类
等温冷却
冷却方式
连续冷却
1等温(处理)冷却
1、热处理目的?
2、热处理概念?
3、热处理使钢性能发生变化的原因?
第三章1)钢的热处理——加热和冷却的组织变化
15
奥氏体晶粒大小对钢的力学性能的影响
1. 奥 氏 体 晶 粒 均 匀 细 小 , 热 处理后钢的力学性能提高。
2.粗大的奥氏体晶粒在淬火时
容易引起工件产生较大的变形
甚至开裂。
16
3.1.3、钢在加热时常见的缺陷及防止措施
1.常见缺陷
氧化;脱碳;过热;过烧
2.防止措施
在真空中加热; 可控气氛加热; 盐浴加热;
V1 :炉冷(退火) P V2 :空冷,S,T V3:空冷,S,T V4:油冷,T+M+A' V5 :M+A'
(4)选择钢材的依据。钢号不同,C曲线不同。
(5)C曲线对选择淬火介质与淬火方法有指导。
48
共析钢的等温 转变和连续转 变曲线的比较 及转变组织
49
作业:
术语:珠光体,奥氏体,铁素体,渗碳体,莱氏体,晶粒度
46
2.连续冷却转变曲线和等 温转变曲线的比较
(1)CCT位于TTT曲线右 下方 ,A→P转变温度低 一些,t长一些 (2)CCT无A→B转变
CCT测定困难,常用 TTT曲线定性分析
47
3.C曲线的应用
(1)根据工件的组织与性能要求,确定热处理工艺。
(2)为了获得M,确定工件淬火时的临界冷速。
(3)可以指导连续冷却操作。
简答题:
1、碳在Fe-C合金中有哪些存在方式? 2、液态Fe-C合金中析出石墨的过程分为哪几个阶段? 3、简述钢的奥氏体化过程,以及影响奥氏体化的因素。 4、影响奥氏体的晶粒度的因素有哪些?如何控制奥氏体的晶粒度。 5、简述过冷奥氏体等温转变产物及特征,与性能关系怎样? 6、简述马氏体转变的特征。 7、简述影响C曲线的因素。 8、简述C曲线和CCT曲线的区别。
钢在加热和冷却时的组织转变
A-P转变 终了线
图2.4 共析碳钢连续冷却转变曲线
马氏体临界 冷却速度
钢的热处理
1.2 钢在冷却时的组织转变
2. 过冷奥氏体的连续冷却转变
过共析碳钢的连续冷却转变C曲线与共析碳钢相比,除了多出一 条先共析渗碳体的析出线以外,其他基本相似
亚共析碳钢的连续冷却转变C曲线与共析碳钢却大不相同,它除 了多出一条先共析铁素体析出线以外,还出现了贝氏体转变区
机械制造基础
机械制造基础
钢的热处理
❖ 钢在加热和冷却时的组织转变
1.1 钢在加热时的组织转变 1.2 钢在冷却时的组织转变
钢的热处理
图2.1 钢加热和冷却时各临界点的实际位置
钢的热处理
1.1 钢在加热时的组织转变
钢加热到Accm点以上时会发生珠光体向奥氏体转变 热处理的主要目标就是为了得到奥氏体 严格控制奥氏体的晶粒度是热处理生产中一个重要的问题
钢的热处理
1.1 钢在加热时的组织转变
控制奥氏体晶粒大小的方法:
加热温度 保温时间 加热速度
钢的热处理
1.2 钢在冷却时的组织转变
冷却过程是热处理的关键工序,其冷却转变温度决定了冷却后 的组织和性能
实际生产中采用的冷却方法有:
连续冷却(如炉冷、空冷、水冷等)图b 等温冷却(如等温淬火)图a
图2.2 两种冷却方式示意图
钢的热处理 1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变
图2.3 共析碳钢过冷奥氏体等温转变曲线C曲线
钢的热处理
1.2 钢在冷却时的组织转变
1. 过冷奥氏体的等温冷却转变珠体转变 贝氏体转变 马氏体转变
钢的热处理
1.2 钢在冷却时的组织转变
钢的热处理及组织转变
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
一、钢的热处理
钢的退火:
⑴ 退火的定义 将钢加热到一定温度,保温一定时间,然后缓慢冷却下 来,获得接近平衡状态的组织的热处理工艺,称为退火。 ⑵ 退火的目的
① 降低硬度,提高塑性和韧性;
② 消除残余内应力,减轻变形和防止开裂; ③ 均匀成分,细化晶粒,为最终热处理作准备; ④ 改善或消除铸造、轧制、焊接等加工中的组织缺陷。
降低钢的硬度和耐磨性。
温度过低,在淬火组织中出现铁素体,使淬火组织出现软 点,降低钢的强度和硬度。
一、钢的热处理
钢的淬火:
理想的淬火冷却曲线 应该是:在650~550 0 C范围要快冷,其它 温度区间不需快冷, 尤其在Ms点以下更不 需快冷,以免引起工 作变形或开裂。
一、钢的热处理
钢的淬火:
保持适当时间,缓慢冷却,重新形成均匀的晶粒,以消除
形变强化效应和残余应力的退火工艺。
目的:
温度 再结晶温度
消除加工硬化
提高塑性
改善切削加工性能
时间
一、钢的热处理
钢的正火:
⑴ 定义:将钢加热到 AC3 或 Accm 以上 30~50℃,保温一定
时间,出炉后在空气中冷却的热处理工艺,称为钢的正火。
上贝氏体 (羽毛状)
500
下贝氏体 (针叶状)
二、钢在加热及冷却时的组织转变
② 贝氏体型转变 :
性能上看上贝氏体的脆性较大,无实用价值;而下贝 氏体则是韧性较好的组织,是热处理时(如采用等温淬火) 常要求获得的组织。
原因:上贝氏体中的碳 化物呈较粗的片状,分
布在铁素体板条间,且
不均匀,使板条容易发 生脆废;
获得的球化效果较好,在大件和大批量生产中难以实现,
3-1钢的组织转变
上贝氏体 贝氏体组织的透射电镜形貌 下贝氏体
2,贝氏体转变过程 , 贝氏体转变也是形核和 长大的过程. 长大的过程. 发生贝氏体转变时,首 发生贝氏体转变时 首 先在奥氏体中的贫碳区 形成铁素体晶核, 形成铁素体晶核,其含 碳量介于奥氏体与平衡 铁素体之间, 铁素体之间,为过饱和 铁素体. 铁素体.
当转变温度较高( 当转变温度较高(550-350℃) 时,条片状铁素体从奥氏体 ℃ 晶界向晶内平行生长,随铁素体条伸长和变宽, 晶界向晶内平行生长,随铁素体条伸长和变宽,其碳原子向 条间奥氏体富集,最后在铁素体条间析出 短棒, 条间奥氏体富集,最后在铁素体条间析出Fe3C短棒,奥氏体 短棒 消失,形成 消失,形成B上 .
钢在加热时的转变
加热是热处理的第一道工序.加热分两种: 加热是热处理的第一道工序.加热分两种:一种是在 A1以下加热,不发生相变;另一种是在临界点以上加 以下加热,不发生相变;另一种是在临界点以上加 热,目的是获得均匀的奥氏体组织,称奥氏体化. 目的是获得均匀的奥氏体组织, 奥氏体化. 一,奥氏体的形成过程 奥氏体化也是形核和长大 的过程,分为四步. 的过程,分为四步.以共 析钢为例说明: 析钢为例说明:
珠光体(S): ⑴ 珠光体 : 形成温度为A 倍光镜下可辨. 形成温度为 1-650℃,片层较厚,500倍光镜下可辨 ℃ 片层较厚, 倍光镜下可辨
光镜下形貌
电镜下形貌
索氏体(S) ⑵ 索氏体
电镜形貌 形成温度为650-600℃,片 ℃片 形成温度为 层较薄, 层较薄,800-1000倍光镜 倍光镜 下可辨 光镜形貌
奥氏体晶粒长大及其影响因素 1,奥氏体晶粒长大 奥氏体化刚结束时的 晶粒度称起始晶粒度 晶粒度称起始晶粒度, 起始晶粒度 此时晶粒细小均匀. 此时晶粒细小均匀. 随加热温度升高或保 温时间延长, 温时间延长,奥氏体 晶粒将进一步长大,这也是一个自发的过程. 晶粒将进一步长大,这也是一个自发的过程.奥氏体 晶粒长大过程与再结晶晶粒长大过程相同. 晶粒长大过程与再结晶晶粒长大过程相同.
钢的热处理要点
1.3钢的热处理钢的热处理是指将钢在固态下进行加热、保温和冷却,以改变其内部组织,从而获得所需要性能的一种工艺方法。
热处理的目的是提高工件的使用性能和寿命。
还可以作为消除毛坯〔如铸件、锻件等〕中缺陷,改善其工艺性能,为后续工序作组织准备。
钢的热处理种类很多,根据加热和冷却方法不同,大致分类如下:钢在加热时的组织转变在Fe-Fe3C相图中,共析钢加热超过PSK线〔A1〕时,其组织完全转变为奥氏体。
亚共析钢和过共析钢必须加热到GS线〔A3〕和ES线〔Acm〕以上才能全部转变为奥氏体。
相图中的平衡临界点A1、A3、Acm是碳钢在极缓慢地加热或冷却情况下测定的。
但在实际生产中,加热和冷却并不是极其缓慢的。
加热转变在平衡临界点以上进行,冷却转变在平衡临界点以下进行。
加热和冷却速度越大,其偏离平衡临界点也越大。
为了区别于平衡临界点,通常将实际加热时各临界点标为Ac1、Ac3、Accm;实际冷却时各临界点标为Ar1、Ar3、Arcm,任何成分的碳钢加热到相变点Ac1以上都会发生珠光体向奥氏体转变,通常把这种转变过程称为奥氏体化。
1.奥氏体的形成共析钢加热到Ac1以上由珠光体全部转变为奥氏体第一阶段是奥氏体的形核与长大,第二阶段是剩余渗碳体的溶解,第三阶段是奥氏体成分均匀化。
亚共析钢和过共析钢的奥氏体形成过程与共析钢根本相同,不同处在于亚共析钢、过共析钢在Ac1稍上温度时,还分别有铁素体、二次渗碳体未变化。
所以,它们的完全奥氏体化温度应分别为Ac3、Accm以上。
2.奥氏体晶粒的长大及影响因素钢在加热时,奥氏体的晶粒大小直接影响到热处理后钢的性能。
加热时奥氏体晶粒细小,冷却后组织也细小;反之,组织那么粗大。
钢材晶粒细化,既能有效地提高强度,又能明显提高塑性和韧性,这是其它强化方法所不及的。
〔1〕奥氏体晶粒度晶粒度是表示晶粒大小的一种量度。
(2〕、影响奥氏体晶粒度的因素1〕加热温度和保温时间:加热温度高、保温时间长,A晶粒粗大。
钢的热处理钢在加热和冷却时组织转变课件
钢在冷却时的组织转变
珠光体的形成
总结词
珠光体是钢在冷却过程中形成的一种组织,由铁素体和渗碳体的层片状交替排 列构成。
详细描述
当钢在冷却时,奥氏体中的碳原子开始扩散并偏聚在铁素体和渗碳体的界面处, 形成富碳的铁素体和贫碳的渗碳体。随着温度的降低,这些富碳的铁素体和贫 碳的渗碳体会逐渐形成层片状结构,最终形成珠光体。
马氏体的转变
总结词
马氏体是钢在冷却过程中形成的一种组织,其特点是具有较 高的硬度和强度。
详细描述
当钢在冷却时,如果冷却速度足够快,奥氏体中的碳原子来 不及扩散,就会形成一种过饱和的固溶体,即马氏体。马氏 体的硬度高、强度大,因此在制造高强度、耐磨性好的刀具、 模具等产品时具有重要的应用。
贝氏体的转变
奥氏体的形成是一个扩 散过程,需要一定的时 间和温度。
04
奥氏体的形成与钢的成 分、加热速度和温度等 因素有关。
奥氏体晶粒的长大
01
02
03
04
随着温度的升高,奥氏体晶粒 逐渐长大。
晶粒的大小对钢的性能有重要 影响,晶粒越细,钢的强度和
韧性越好。
加热温度和时间是影响奥氏体 晶粒大小的主要因素。
为了获得细小的奥氏体晶粒, 通常采用快速加热和短时间保
回火
总结词
回火是一种将淬火后的金属重新加热至低温 并保持一段时间的过程,主要用于消除淬火 过程中产生的内应力、提高金属的韧性和塑 性。
详细描述
回火的主要目的是通过低温加热使金属内部 组织结构发生转变,消除淬火过程中产生的 内应力,提高金属的韧性和塑性。回火工艺 通常包括将淬火后的金属加热到低温回火温
开裂
是指热处理过程中,由于内应力过大 或组织转变不均匀,导致钢的表面出 现裂纹。开裂可以通过优化热处理工 艺、控制冷却速度和改善材料成分来 减少。
金属学与热处理
金属学与热处理---第3章钢的热处理热处理就是将钢在固态下通过加热、保温和不同的冷却方式,改变金属内部组织结构,从而获得所需性能的操作工艺,作用:它不改变工件的形状和尺寸,只改变工件的性能,如提高材料的强度和硬度,增加耐磨性,或者改善材料的塑性、韧性和加工性等。
第一节热处理的基本原理一、钢在加热时的组织转变(一)钢在加热和冷却时的相变温度铁碳合金相图中的A1、A3和Acm 线是反映不同含碳量的钢在极为缓慢加热或冷却时的相变温度。
但钢在实际加热和冷却时不可能非常缓慢,因此,钢中的相转变不能完全按铁碳合金相图中的A1、A3和Acm线,而有一定的滞后现象,即出现过热(加热时)或过冷(冷却时)现象。
加热或冷却时的速度越大,组织转变偏离平衡临界点的程度也越大。
为区别起见,把冷却时的临界点记作Ar1、Ar3 、Arcm;加热时的临界点记作Ac1、A1c3、Accm。
例如,共析钢在平衡状态下珠光体和奥氏体的转变温度为A1;冷却时奥氏体转变为珠光体的温度为Ar1;加热时珠光体转变为奥氏体的温度为Ac1。
这些临界点是正确选择钢在热处理时的加热温度和冷却时结构发生变化的温度的主要依据。
(二)奥氏体的形成共析钢在常温时具有珠光体组织,加热到Ac1以上温度时,珠光体开始转变为奥氏体。
只有使钢呈奥氏体状态,才能通过不同的冷却方式转变为不同的组织,从而获得所需要的性能。
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
在铁素体和渗碳体的相界面上首先出现许多奥氏体晶核。
这是因为铁素体与渗碳体是两个具有不同晶体结构的相,在二相界面上有晶格扭曲或原子排列紊乱等缺陷,原子处于高能量状态,有利于奥氏体核形成。
奥氏体晶核形成后,便开始长大。
它是依靠铁素体向奥氏体继续转变和渗碳体不断溶入而进行的。
铁素体向奥氏体转变的速度比渗碳体溶解快,因此,铁素体消失后,仍有部分残余渗碳体,它将随着时间的延长,继续不断地向奥氏体溶解直至全部消失。
钢的热处理
• 无论是上贝氏体还是下贝氏体,其中的铁素体与 母相奥氏体之间的晶体学位向关系均遵循K-S关 系。上贝氏体中铁素体的惯习面为{111}γ;下贝 氏体中铁素体的惯习面为{225}γ。
片状珠光体的片层间距和珠光体团的示意图
a) 珠光体的片层间距;b) 珠光体团
片状珠光体形核与长大过程示意图 珠光体团直径和片层间距越小,强度、硬度越高,塑性也越好。
根据片层间距的大小,可将片状珠光体细分为以下三类: (1) 珠光体:在A1~650℃范围内形成,层片较粗,片层间 距平均大于0.3μm,在放大400倍以上的光学显微镜下便可分 辨出层片,硬度10~20HRC;
2. 不完全退火
将亚共析钢在 Ac1~Ac3 之间或过共析钢在 Ac1~Accm之间 两相区加热,保温足够时间后缓慢冷却的热处理工艺,称 为不完全退火。 不完全退火的目的是:改善珠光体组织,消除内应力, 降低硬度以便切削加工。 亚共析钢不完全退火的温度一般为740~780℃,其优点 是加热温度低,操作条件好,节省燃料和时间。 3. 球化退火
针片状马氏体的立体形态呈凸透镜状,显微组织常呈片 状或针状。针片状马氏体之间交错成一定角度。最初形成的 马氏体针片往往贯穿整个奥氏体晶粒,较为粗大;后形成的 马氏体针片则逐渐变细、变短。由于针片状马氏体内的亚结 构主要为孪晶,故又称它为孪晶马氏体。
高 碳 马 氏 体 的 形 成 过 程
2、性能特征 高硬度是马氏体的主要特点。马氏体的硬度主要受含碳 量的影响,在含碳量较低时,马氏体硬度随着含碳量的增加 而迅速上升;当含碳量超过0.6%之后,马氏体硬度的变化 趋于平缓。含碳量对马氏体硬度的影响主要是由于过饱和碳 原子与马氏体中的晶体缺陷交互作用引起的固溶强化所造成。 板条马氏体中的位错和针片状马氏体中的孪晶也是强化的重 要因素,尤其是孪晶对针片状马氏体的硬度和强度的贡献更 为显著。 一般认为马氏体的塑性和韧性都很差,实际只有针片状 马氏体是硬而脆的,而板条马氏体则具有较好的强度和韧性。
钢在加热及冷却时的组织转变
2.奥氏体的形成
钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。
物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。
因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。
原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。
二、钢在冷却时的组织转变
冷却方式是决定热处理组织和性能的主要因素。
热处理冷却方式分为等温冷却和连续冷却。
等温转变产物及性能:用等温转变图可分析钢在A
线以下不同温度进行等温转变
1
所获的产物。
根据等温温度不同,其转变产物有珠光体型和贝氏体型两种。
~550℃ ,获片状珠光体型(F+P)组织。
[ 高温转变]:转变温度范围为A
1
依转变温度由高到低,转变产物分别为珠光体、索氏体、托氏体,片层间距由粗到细。
其力学性能与片层间距大小有关,片层间距越小,则塑性变形抗力越大,强度
炉冷V
:比较缓慢,相当于随炉冷却(退火的冷却方式),它分别与C曲线的
1
转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。
空冷V
:相当于在空气中冷却(正火的冷却方式),它分别与C曲线的转变开
2
始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断。
08讲 钢在加热、冷却时组织的转变
《机械制造技术基础》教案教学内容:钢在加热和冷却时的组织转变教学方式:结合实际,由浅如深讲解教学目的:1.掌握钢在加热时组织转变——钢的奥氏体化;2.明确过冷奥氏体的等温转变;3.掌握冷奥氏体连续冷却转变。
重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程:1.3 钢的热处理热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。
热处理的分类:1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。
2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。
3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。
钢的热处理过程包括加热、保温和冷却三个阶段。
其主要工艺参数是加热温度、保温时间和冷却速度。
1.3.1 钢在加热和冷却时的组织转变1.3.1.1钢在加热时组织转变Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。
但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。
即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。
通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。
如图6-1所示。
图6-1 钢在加热、冷却时的相变温度钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。
1.奥氏体的形成珠光体转变为奥氏体是一个从新结晶的过程。
由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。
下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。
1)奥氏体形核奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。
钢在加热和冷却时的组织转变
钢在加热和冷却时的组织转变嘿,咱聊聊钢在加热和冷却时那神奇的组织转变。
钢啊,这硬家伙,平时看着就挺牛。
可你知道吗?当它被加热的时候,那可就像变魔术一样。
一开始,温度慢慢升高,钢就开始有点小动静了。
就好像一个睡眼惺忪的人,逐渐被唤醒。
那原本排列整齐的原子们,也开始不安分起来。
温度再高点,钢的组织就发生大变化啦。
这时候的钢,就如同一个正在进行大改造的工厂。
各种原子重新排列组合,形成新的结构。
那场面,可壮观了。
想象一下,无数的小原子们,就像一群忙碌的小工人,在高温的催促下,热火朝天地干着活。
要是继续加热,钢可就彻底不一样了。
它变得更加活跃,就像一个疯狂的派对现场。
原子们尽情地舞动,结构也变得越来越复杂。
这时候的钢,有着强大的力量,仿佛能征服一切。
可别光看加热的时候,冷却也很有看头呢。
当钢开始冷却,就像是一场疯狂派对后的安静。
原子们不再那么疯狂,开始慢慢回归秩序。
温度逐渐降低,钢的组织也逐渐稳定下来。
这就像一个人在经历了一场刺激的冒险后,开始平静地思考人生。
冷却过程中,钢的变化可细腻了。
有时候,它会变得更加坚硬,就像一个坚强的战士,不屈不挠。
有时候,它又会变得更加有韧性,像一个灵活的运动员,能应对各种挑战。
不同的加热和冷却方式,会让钢有不同的组织转变。
就好比不同的人生选择,会带来不同的结果。
如果加热得太快,冷却得太急,钢可能就会变得很脆弱。
但如果掌握好节奏,钢就能变得无比强大。
咱再想想,生活中的很多东西不都跟钢的组织转变有点像吗?我们在经历一些事情的时候,也会发生变化。
有时候是好的变化,让我们变得更强大;有时候可能不太好,但我们也能从中学到东西。
钢在加热和冷却时的组织转变,真的很神奇。
它让我们看到了物质的奇妙之处,也让我们思考人生的各种可能性。
总之,钢的组织转变告诉我们,变化是不可避免的,我们要学会适应变化,让自己变得更强大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.1 钢在加热时的组织转变
2、奥氏体晶粒长大及其控制措施 钢加热时珠光体向奥氏体转变刚刚结束时,奥氏体晶 粒是比较细小的。如果继续加热或保温,奥氏体晶粒会变 粗大,影响热处理后钢的强度、塑性、韧性较低。因此, 加热时获得细小晶粒的奥氏体对提高热处理效果和钢的性 能有重要的意义。 控制奥氏体晶粒长大措施: 1)合理选择加热温度和保温时间 2)采用快速加热和短时间保温 3)加入一定量合金元素(除锰、磷外)
1-3
3.2.1 钢在加热时的组织转变
1、奥氏体的形成 以共析钢为例,当加热到AC1以上时,发生珠光体向 奥氏体的转变(即奥氏体化)过程可分为三个阶段: 1)奥氏体晶核的形成和长大 2)剩余渗碳体的溶解 3)奥氏体均匀化 当加热到AC1线稍上时钢中的珠光体向奥氏体转变, 只有分别加热到AC3或ACCm温度以上,保温足够时间, 才能获得成分均匀的单相奥氏体。
1-7
3.2.2 钢在冷却时的组织转变
1、过冷奥氏体的等温转变 以共析钢为例,介绍等温转变曲线及转变产物。 1)过冷奥氏体等温转变曲线(C曲线) 左边曲线为过冷奥氏体转 变开始线,右边曲线为过冷奥 氏体等温转变终了线。 A1线以上是奥氏体稳定区; A1线以下,转变开始线的左边 为过冷奥氏体区,转变终了线 的右边是转变产物区,转变开 始线和终了线之间为过冷奥氏 体和转变产物共存区。
课题二 钢在加热和冷却 时组织转变
1-1
本课题重点与难点 教 学 重 点 教 学 难 点
奥氏体的形成及其晶粒大小 的控制措施,C曲线及其应用。
钢在加热时和冷却时组织转变。
1-2
3.2.1 钢在加热时的组织转变
A1、A3、Acm各相变点 是固态下铁碳合金的组 织转变线,是在极其缓 慢加热和冷却条 件下 得到的。 在实际生产中,固态相 变时都有不同程度的过 热度或过冷度(见右 图)。为便于区别,将 加热时各相变点用ACl、 AC3、ACcm表示,冷却 时各相变点用Arl、Ar3、 Arcm表示。
1-12
3.2.2 钢在冷却时的组织转变
2、过冷奥氏体的连续冷却转变 过冷奥氏体连续冷却转变产物的组织与性能见下表:
1-13
3.2.2 钢在冷却时的组织转变
2)马氏体转变(MS~Mf) 马氏体的组织形态有板条状和片状两种类型,主要取决 于奥氏体中碳含量。1、当Wc<0.20%时,形成板条状低碳马 氏体,有较好的强韧性;2、当Wc>1.0%时,形成片状(针 状)高碳马氏体,性能硬而脆;3、当Wc在0.20%~l.0%时, 形成片状和板条状马氏体的混合组织。 强度、硬度随碳含量增加而增大,当碳含量超过0.6%, 强度和硬度增加不明显。马氏体转变不能进行到底。 残余奥氏体的存在,会降低淬火钢的硬度和耐磨性,并 且在工件长期使用过程中残余奥氏体会逐步转变为马氏体, 使工件变形而引起尺寸的不稳定。 减少残余奥氏体的措施:冷处理。即把淬火后的工件继续 冷却到室温以下-80~-50℃,以减少残余奥氏体的含量。
1Hale Waihona Puke 93.2.2 钢在冷却时的组织转变
2)过冷奥氏体等温转变产物的组织与性能 (1)珠光体型转变(A1~550℃)
(2)贝氏体转变(550℃~MS)
1-10
3.2.2 钢在冷却时的组织转变
3)亚共析钢和过共析钢的等温转变 由于亚共析钢和过共析钢的碳含量低于或高于共析 成分,当过冷奥氏体在C曲线“鼻尖”上部区域等温时, 亚共析钢先析出铁素体,然后进行珠光体转变,得到 铁素体和珠光体组织;同理,过共析钢先析出渗碳体, 然后进行珠光体转变,得到渗碳体和珠光体组织。
1-14
1-8
3.2.2 钢在冷却时的组织转变
转变开始线与纵坐标轴之间的 时间为孕育期。在C曲线拐弯的 “鼻尖处”(约550℃),孕育 期最短,过冷奥氏体最不稳定。 水平线MS为马氏体转变开始线 (约230℃),水平线Mf为马氏 体转变终了线(约-50℃)。 A′:残余奥氏体,即淬火冷却 到室温后残留的奥氏体。
1-11
3.2.2 钢在冷却时的组织转变
2、过冷奥氏体的连续冷却转变 以共析钢为例,介绍等温转变曲线及转变产物。 1)等温转变曲线在连续冷却转变中的应用 共折钢连续冷却时,根据 冷却速度曲线V1、V2、V3、V4 与C曲线相交的位置,可估计 连续冷却转变的产物。 马氏体临界冷却速度Vk: 与冷却曲线相切,称临界冷却 速度,是获得全部马氏体转变 的最小冷却速度。
1-5
3.2.2 钢在冷却时的组织转变
钢经加热奥氏体化后,可以采用不同方式冷却,获得 所需要的组织和性能。 成分相同的钢,奥氏体化后,采用不同方式冷却,将 获得不同的力学性能,见下表。
1-6
3.2.2 钢在冷却时的组织转变
实际生产中,必须过冷到A1温度以下才开始转变。 在相变温度A1以下还没有发生转变而处于不稳定状态的奥 氏体称过冷奥氏体。 过冷奥氏体有等温 转变和连续冷却转变 两种冷却转变方式 (见右图)。