新版高中数学人教A版必修4习题:第三章三角恒等变换3-2-1(1)
高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)
第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。
高中数学 第三章 三角恒等变换 3-1-3二倍角的正弦、余弦、正切公式 新人教A版必修4
π 2
(k∈Z),且
α≠kπ+4π(k≠Z).当α=kπ+π2时,求tan2α应使用诱导公式.请
读者自己寻求tan2α=2tanα的条件.
3.使用二倍角公式应注意的问题
(1)对“二倍角”应该有广义上的理解,不仅局限于2α是α
的2倍.只要公式中等号左边的角是右边角的2倍,就可以使用
二倍角公式,如3α与
自 (1)2sinαcosα S2α 我 (2)cos2α-sin2α 2cos2α-1 1-2sin2α C2α
校
2tanα
对 (3)1-tan2α T2α
思考探究 上述公式如何推导得到? 提示 在两角和的正弦、余弦、正切公式中,令β=α即可 得到.
名师点拨 1.对“倍角”的理解 (1)本节所说的“倍角”专指“二倍角”,遇到“三倍 角”等名词时,“三”字不能省略. (2)“倍”是描述两个数量关系的,2α是α的二倍,4α是2α 的二倍,α2是α4的二倍,这里蕴含着换元思想.
变式训练2 求下列各式的值:(1)cos215°-sin215°; (2)cos1π2cos152π;(3)sin150°+cos530°.
解
(1)原式=cos(2×15°)=cos30°=
3 2.
(2)原式=cos1π2sin1π2=12sin6π=14.
(3)原式=coss5in05°+0°co3ss5i0n°50°
第三章 三角恒等变换
§3.1 两角和与差的正弦、余弦和正切公式
3.1.3 二倍角的正弦、余弦、正切公式
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
学习目标 1.理解并掌握二倍角的正弦、余弦、正切公式. 2.正确运用二倍角的正弦、余弦、正切公式进行化简、 求值、证明.
高一数学必修4同步练习:3-2-1三角恒等变换
3-2-1三角恒等变换一、选择题1.设-3π<α<-5π2,则化简1-cos (α-π)2的结果是( )A .sin α2B .cos α2C .-cos α2D .-sin α2[答案] C[解析] ∵-3π<α<-52π,∴-32π<α2<-54π,∴cos α2<0,∴原式=1+cos α2=|cos α2=-cos α2. 2.已知cos α=-15,π2<α<π,则sin α2等于( )A .-105B.105C .-155D.155[答案] D[解析] ∵π2<α<π,∴π2<α2<π2,则sin α2=1-cos α2=155. 3.2sin 2αsin2α·2cos 2αcos2α( ) A .tan α B .tan2α C .1 D.12[答案] B[解析] 原式=(2sin αcos α)2sin2αcos2α=sin 22αsin2αcos2α=sin2αcos2αtan2α.4.已知钝角α满足cos α=-13,则sin α2等于( )A.13 B.23 C.63D.16[答案] C[解析] ∵α为钝角,∴sin α2∴sin α2=1-cos α2=1+132=63. 5.化简cos2αtan ⎝ ⎛⎭⎪⎫π4+α=( )A .sin αB .cos αC .1+sin2αD .1-sin2α[答案] D[解析] 原式=sin ⎝ ⎛⎭⎪⎫π2+2αtan ⎝ ⎛⎭⎪⎫π4+α=sin2⎝ ⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4+α=2sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4α·cos ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4+α=2cos 2⎝ ⎛⎭⎪⎫π4+α=1+cos2⎝ ⎛⎭⎪⎫π4+α =1+cos ⎝ ⎛⎭⎪⎫π2+2α=1-sin2α. 6.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3+12-12cos2x ,则f (x )可化为( )A.12-32sin2x B.12+32sin2x C .1-3sin2x D .-32sin2x[答案] A[解析] f (x )=cos2x cos π3-sin2x sin π3+12-12cos2x =12cos2x -32sin2x +12-12cos2x=12-32sin2x . 7.函数f (x )=cos 2x +sin x cos x 的最大值是( ) A .2 B.32 C.2+12D.1+222[答案] C[解析] f (x )=cos x (cos x +sin x )=cos x ·2(22cos x +22sin x )=2cos x sin(x +π4)=22[sin(2x +π4)+sin π4]=22sin(2x +π4)+12∴当sin(2x +π4)=1时,f (x )取得最大值即f (x )max =22×1+12=2+12.8.若cos2αsin ⎝ ⎛⎭⎪⎫α-π4=-22,则cos α+sin α的值为( )A .-72B .-12C.12D.72[答案] C[解析] 法一:原式左边=sin ⎝ ⎛⎭⎪⎫π2-2α-sin ⎝ ⎛⎭⎪⎫π4-α=2sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α-sin ⎝ ⎛⎭⎪⎫π4-α=-2cos ⎝ ⎛⎭⎪⎫π4-α=-2(sin α+cos α)=-22,∴sin α+cos α=12,故选C.法二:原式=cos 2α-sin 2αsin α·cos π4-cos α·sinπ4=(cos α-sin α)(cos α+sin α)22(sin α-cos α)=-2(sin α+cos α)=-22,∴cos α+sin α=12,故选C. 9.(2012·全国高考山东卷)若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin2θ=378,则sin θ=( )A.35 B.45 C.74 D.34[答案] D[解析] 由θ∈⎣⎢⎡⎦⎥⎤π4,π2可得2θ∈⎣⎢⎡⎦⎥⎤π2,π,cos2θ=-1-sin 22θ=-18,sin θ=1-cos2θ2=34,答案应选D 。
【新】版高中数学第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式学案新人教A版必修4
3.1.3 二倍角的正弦、余弦、正切公式1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.(重点)2.能利用两角和与差的正切公式进行化简、求值、证明.(难点)3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.(易错点)[基础·初探]教材整理 二倍角的正弦、余弦、正切公式 阅读教材P 132~P 133例5以上内容,完成下列问题. 1.二倍角的正弦、余弦、正切公式2.3.正弦的二倍角公式的变形(1)sin αcos α=12sin 2α,cos α=sin 2α2sin α.(2)1±sin 2α=(sin α±cos α)2.1.判断(正确的打“√”,错误的打“×”)(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( )【解析】 (1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π4+k π(k ∈Z ),故此说法错误.(2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-32时,cos 2α=2cos α.【答案】 (1)× (2)√ (3)×2.已知cos α=13,则cos 2α等于________.【解析】 由cos α=13,得cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫132-1=-79.【答案】 -79[小组合作型]利用二倍角公式化简三角函数式化简求值.(1)cos 4 α2-sin 4 α2;(2)sin π24·cos π24·cos π12;(3)1-2sin 2750°;(4)tan 150°+1-3tan 2150°2tan 150°.【精彩点拨】 灵活运用倍角公式转化为特殊角或产生相消项,然后求得.【自主解答】 (1)cos 4 α2-sin 4 α2=⎝⎛⎭⎪⎫cos 2 α2-sin 2 α2⎝ ⎛⎭⎪⎫cos 2 α2+sin 2 α2=cos α.(2)原式=12⎝ ⎛⎭⎪⎫2sin π24cos π24·cos π12=12sin π12·cos π12=14⎝ ⎛⎭⎪⎫2sin π12·cos π12=14sin π6=18.∴原式=18.(3)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.∴原式=12.(4)原式=2tan 2150°+1-3tan 2150°2tan 150°=1-tan 2150°2tan 150°=1tan 2×150°=1tan 300°=1tan360°-60°=-1tan 60°=-33.∴原式=-33.二倍角公式的灵活运用:(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2 α-sin 2α=cos 2α,2tan α1-tan α=tan 2α. (2)公式的变形:公式间有着密切的联系,这就要求思考时要融会贯通,有目的地活用公式.主要形式有:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,1+cos 2α=2cos 2α,cos 2 α=1+cos 2α2,sin 2α=1-cos 2α2.[再练一题] 1.求下列各式的值: (1)sin π12cos π12;(2)2tan 150°1-tan 2150°;(3)1sin 10°-3cos 10°; (4)cos 20°cos 40°cos 80°.【解】 (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=tan(2×150°)=tan 300°=tan(360°-60°) =-tan 60°=- 3.(3)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=-2sin 10°cos 10°=4sin 20°sin 20°=4.(4)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.利用二倍角公式解决求值问题(1)已知sin α=3cos α,那么tan 2α的值为( ) A.2 B.-2 C.34D.-34(2)已知sin ⎝ ⎛⎭⎪⎫π6+α=13,则cos ⎝ ⎛⎭⎪⎫2π3-2α的值等于( ) A.79 B.13 C.-79D.-13(3)已知cos α=-34,sin β=23,α是第三象限角,β∈⎝ ⎛⎭⎪⎫π2,π. ①求sin 2α的值;②求cos(2α+β)的值.【精彩点拨】 (1)可先求tan α,再求tan 2α;(2)可利用23π-2α=2⎝ ⎛⎭⎪⎫π3-α及π3-α=π2-⎝ ⎛⎭⎪⎫π6+α求值; (3)可先求sin 2α,cos 2α,cos β,再利用两角和的余弦公式求cos(2α+β). 【自主解答】 (1)因为sin α=3cos α, 所以tan α=3,所以tan 2α=2tan α1-tan 2 α=2×31-32=-34. (2)因为cos ⎝ ⎛⎭⎪⎫π3-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π6+α=13,所以cos ⎝⎛⎭⎪⎫2π3-2α=2cos 2⎝ ⎛⎭⎪⎫π3-α-1=2×⎝ ⎛⎭⎪⎫132-1=-79.【答案】 (1)D (2)C(3)①因为α是第三象限角,cos α=-34,所以sin α=-1-cos 2α=-74, 所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-74×⎝ ⎛⎭⎪⎫-34=378. ②因为β∈⎝ ⎛⎭⎪⎫π2,π,sin β=23, 所以cos β=-1-sin 2β=-53, cos 2α=2cos 2α-1=2×916-1=18, 所以cos(2α+β)=cos 2αcos β-sin 2αsin β=18×⎝ ⎛⎭⎪⎫-53-378×23=-5+6724.直接应用二倍角公式求值的三种类型(1)sin α(或cos α)――→同角三角函数的关系cos α(或sin α)――→二倍角公式sin 2α(或cos 2α).(2)sin α(或cos α)――→二倍角公式cos 2α=1-2sin 2 α(或2cos 2α-1). (3)sin α(或cos α)――→同角三角函数的关系⎩⎨⎧cos α或sin α,tan α――→二倍角公式tan 2α.[再练一题] 2.(1)已知α∈⎝ ⎛⎭⎪⎫π2,π,sinα=55,则sin 2α=______,cos 2α=________,tan 2α=________.(2)已知sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=16,且α∈⎝ ⎛⎭⎪⎫π2,π,求tan 4α的值. 【导学号:70512043】【解析】 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-255,所以sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,tan 2α=sin 2αcos 2α=-43.【答案】 -45 35 -43(2)因为sin ⎝ ⎛⎭⎪⎫π4-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫π4+α, 则已知条件可化为sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=16,即12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+α=16, 所以sin ⎝ ⎛⎭⎪⎫π2+2α=13,所以cos 2α=13.因为α∈⎝ ⎛⎭⎪⎫π2,π,所以2α∈(π,2π),从而sin 2α=-1-cos 22α=-223,所以tan 2α=sin 2αcos 2α=-22,故tan 4α=2tan 2α1-tan 22α=-421--222=427.利用二倍角公式证明求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ; (2)cos 2θ(1-tan 2θ)=cos 2θ.【精彩点拨】 (1)可考虑从左向右证的思路:先把左边降幂扩角,再用余弦的和、差角公式转化为右边形式.(2)证法一:从左向右:切化弦降幂扩角化为右边形式; 证法二:从右向左:利用余弦二倍角公式升幂后向左边形式转化. 【自主解答】 (1)左边=1+A +2B2-1-A -2B2=cos2A +2B +cos 2A -2B2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边, ∴等式成立.(2)法一:左边=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ =cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边.证明问题的原则及一般步骤:观察式子两端的结构形式,一般是从复杂到简单,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角”、“异名化同名”、“变量集中”等原则,设法消除差异,达到证明的目的.[再练一题]3.证明:1+sin 2α2cos 2α+sin 2α=12tan α+12. 【导学号:00680072】 【证明】 左边=sin 2α+cos 2α+2sin αcos α2cos 2α+2sin αcos α=α+cos α22cos αα+cos α=sin α+cos α2cos α=12tan α+12=右边.所以1+sin 2α2cos 2α+sin 2α =12tan α+12成立. [探究共研型]倍角公式的灵活运用探究1 请利用倍角公式化简:2+2+2cos α(2π<α<3π). 【提示】 ∵2π<α<3π, ∴π<α2<3π2,π2<α4<3π4,∴2+2+2cos α=2+4cos2α2=2-2cos α2=4sin2α4=2sin α4. 探究2 如何求函数f (x )=2cos 2x -1-23·sin x cos x (x ∈R )的最小正周期? 【提示】 求函数f (x )的最小正周期,可由f (x )=(2cos 2x -1)-3×(2sin x cos x )=cos 2x -3sin 2x =2sin ⎝ ⎛⎭⎪⎫π6-2x ,知其最小正周期为π.求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,7π24的最小值,并求其单调减区间.【精彩点拨】 化简f x 的解析式→f x =A ωx +φ+B→ωx +φ的范围→求最小值,单调减区间【自主解答】 f (x )=53·1+cos 2x 2+3·1-cos 2x2-2sin 2x=33+23cos 2x -2sin 2x =33+4⎝⎛⎭⎪⎫32cos 2x -12sin 2x=33+4⎝ ⎛⎭⎪⎫sin π3cos 2x -cos π3sin 2x =33+4sin ⎝⎛⎭⎪⎫π3-2x =33-4sin ⎝⎛⎭⎪⎫2x -π3.∵π4≤x ≤7π24,∴π6≤2x -π3≤π4, ∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤12,22,∴当2x -π3=π4,即x =7π24时,f (x )取最小值为33-2 2.∵y =sin ⎝⎛⎭⎪⎫2x -π3在⎣⎢⎡⎦⎥⎤π4,7π24上单调递增,∴f (x )在⎣⎢⎡⎦⎥⎤π4,7π24上单调递减.本题考查二倍角公式,辅助角公式及三角函数的性质.解决这类问题经常是先利用公式将函数表达式化成形如y =Aωx +φ的形式,再利用函数图象解决问题.[再练一题]4.求函数y =sin 4x +23sin x cos x -cos 4x 的最小正周期和最小值,并写出该函数在[0,π]上的单调递减区间.【解】 y =sin 4x +23sin x cos x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )+23sin x cos x =-cos 2x +3sin 2x =2⎝⎛⎭⎪⎫32sin 2x -12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6,所以T =2π2=π,y min =-2.由2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,得k π+π3≤x ≤k π+5π6,k ∈Z ,又x ∈[0,π],所以令k =0,得函数的单调递减区间为⎣⎢⎡⎦⎥⎤π3,5π6.1.sin 22°30′·cos 22°30′的值为( ) A.22 B.24C.-22D.12【解析】 原式=12sin 45°=24.【答案】 B2.已知sin x =14,则cos 2x 的值为( )A.78B.18C.12D.22【解析】 因为sin x =14,所以cos 2x =1-2sin 2x =1-2×⎝ ⎛⎭⎪⎫142=78.【答案】 A3.⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12的值为( ) 【导学号:00680073】 A.-32B.-12C.12D.32【解析】 原式=cos 2π12-sin 2π12=cos π6=32. 【答案】 D4.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.【解析】 sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.小中高 精品 教案 试卷制作不易 推荐下载 11 【答案】 -565.求下列各式的值:(1)cos π5cos 2π5; (2)12-cos 2π8. 【解】 (1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sin π54sin π5=14. (2)原式=1-2cos 2π82=-2cos 2π8-12=-12cos π4=-24.。
高中数学必修四 第三章三角恒等变换 3.2.1三角恒等变换
<
0.
∴tan
������ 2
=
−
1-cos������ 1+cos������
=
−
1-
3 3
1+
3 3
=
−
2-
3
=−
1 2
8-4
3
=
−
1 2
( 6- 2)2 =
22
6.
解法二:
用
tan
������ 2
=
1-cos������ sin������
来处理
∵α 为第四象限角,∴sin α<0.
∴sin α=−
(2)y=sin
x(cos
x-sin
x)+
1 2
=sin
xcos
x-sin2x+
1 2
=
1 2
sin
2x−
1-cos2������ 2
+
1 2
=
1 2
sin
2x+
1 2
cos
2x−
1 2
+
1 2
22
2
= 2 2 sin2������ + 2 cos2������
2
π
= 2 sin 2������ + 4 .
������ 2
的值为
()
A.
6 3
B.
−
6 3
C.
±
6 3
D.
±
3 3
解析:∵α∈(0,π),∴
������ 2
∈
0,
π 2
,
∴cos
������ 2
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A必修4 (1)
类型二 逆用公式化简与求值
2 例2 (1)sin(70°-x)cos(25°-x)-cos(70°-x)sin(155°+x)= 2 .
解析 ∵(20°+x)+(70°-x)=90°, (25°-x)+(155°+x)=180°, ∴原式=cos(20°+x)cos(25°-x)-cos[90°-(20°+x)]·sin[180°
∴T=2ωπ=2π,值域[-2,2].
由-π2+2kπ≤x-π6≤π2+2kπ 得,递增区间[-π3+2kπ,23π+2kπ],k∈Z.
解析答案
类型三 公式的变形应用 例 3 已知 sin(α+β)=12,sin(α-β)=13,求ttaann αβ的值.
解 ∵sin(α+β)=12,∴sin αcos β+cos αsin β=12.
=
cos 20°
=cosc2o0s°s2i0n°30°=sin 30°=12.
重点难点 个个击破
解析答案
(2)若 sin34π+α=153,cosπ4-β=35,且 0<α<π4<β<34π,求 cos(α+β)的值. 解 ∵0<α<π4<β<34π, ∴34π<34π+α<π,-π2<π4-β<0.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 两角和的余弦公式
思考 如何由两角差的余弦公式得到两角和的余弦公式?
答 用-β代换cos(α-β)=cos αcos β+sin αsin β便可得到.
公式 简记符号
cos(α+β)=
cos αcos β-sin αsin β Cα+β
使用条件
方法一
原式=2cosπ3sin
高中数学 第三章 三角恒等变换 3_1-3_1.3 二倍角的正弦、余弦、正切公式练习 新人教A版必修4
3.1.3 二倍角的正弦、余弦、正切公式A 级 基础巩固一、选择题1.sin 15°sin 75° 的值为( ) A.12 B.32 C.14 D.34解析:原式=sin 15°cos 15°=12(2sin 15°cos 15°)=12sin 30°=14. 答案:C2.已知sin α=23,则cos (π-2α)=( ) A .-53 B .-19 C.19 D.53 解析:因为sin α=23, 所以cos (π-2α)=-cos 2α=-(1-2sin 2 α)=-1+2×⎝ ⎛⎭⎪⎫232=-19. 答案:B3.1-sin 24°等于( )A.2cos 12° B .2cos 12° C .cos 12°-sin 12° D .sin 12°-cos 12°解析:1-sin 24°=sin 2 12°-2sin 12°cos12°+cos 212°= (sin 12°-cos 12°)2=|sin 12°-cos 12°|=cos 12°-sin 12°.答案:C4.已知cos ⎝ ⎛⎭⎪⎫α+π4=14,则sin 2α的值为( )A.78 B .-78 C.34 D .-34解析:因为cos ⎝ ⎛⎭⎪⎫α+π4=14,所以sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4=1-2cos 2⎝ ⎛⎭⎪⎫α+π4=1-116×2=78.答案:A5.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2 α+cos 2α=14,则tan α的值等于()A.22 B.33 C. 2 D.3解析:因为sin 2 α+cos 2α=14,所以sin 2 α+cos 2 α-sin 2 α=cos 2 α=14所以cos α=±12.又α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=12,sin α=32.所以tan α= 3.答案:D二、填空题 6.已知tan α=-13,则sin 2α -cos 2 α1+cos 2α=________. 解析:sin 2α-cos 2 α1+cos 2α=2sin αcos α-cos 2 α1+2cos 2α-1= 2sin αcos α-cos 2 α2cos 2 α=tan α-12=-56. 答案:-56 7.已知sin θ2+cos θ2=233,那么sin θ=________,cos 2θ=________. 解析:因为sin θ2+cos θ2=233, 所以⎝ ⎛⎭⎪⎫sin θ2+cos θ22=43, 即1+2sin θ2cos θ2=43,所以sin θ=13, 所以cos 2θ=1-2sin 2 θ=1-2×⎝ ⎛⎭⎪⎫132=79. 答案:13 798.已知sin ⎝ ⎛⎭⎪⎫π4-x =35,则sin 2x 的值等于________. 解析:法一:因为sin ⎝ ⎛⎭⎪⎫π4-x =35,所以cos ⎝ ⎛⎭⎪⎫π2-2x =1-2sin 2⎝ ⎛⎭⎪⎫π4-x =1-2×⎝ ⎛⎭⎪⎫352=725, 所以 sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =725. 法二:由sin ⎝ ⎛⎭⎪⎫π4-x =35,得22(sin x -cos x )=-35, 所以sin x -cos x =-325,两边平方得 1-sin 2x =1825, 所以sin 2x =725. 答案:725三、解答题9.化简:tan 70°cos 10°(3tan 20°-1). 解:原式sin 70°cos 70°·cos 10°·⎝ ⎛⎭⎪⎫3sin 20°cos 20°-1= sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20°= sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°= -sin 70°cos 70°·sin 20°cos 20°=-1. 10.已知tan α=17,tan β=13,并且α、 β均为锐角,求α+2 β的值. 解:因为tan β=13,所以tan 2 β=2tan β1-tan 2 β=2×131-⎝ ⎛⎭⎪⎫132=34,所以tan(α+2 β )=tan α+tan 2 β1-tan αtan 2 β=17+341-17×34=1. 0<tan α=17<1,0<tan β=13<1, 又已知α, β均为锐角,所以0<α<π4,0< β <π4,0<2 β <π2, 所以0<α+2 β <3π4. 又tan(α+2 β )=1,所以α+2 β=π4. B 级 能力提升1.函数y =12sin 2x +sin 2 x ,x ∈R 的值域是( ) A.⎣⎢⎡⎦⎥⎤-12,32 B.⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎢⎡⎦⎥⎥⎤-22+12,22+12 D.⎣⎢⎢⎡⎦⎥⎥⎤-22-12,22-12 解析:y =12sin 2x +1-cos 2x 2= 22⎝⎛⎭⎪⎪⎫22sin 2x -22cos 2x +12= 22sin ⎝ ⎛⎭⎪⎫2x -π4+12. 因为x ∈R,所以2x -π4∈R ,sin ⎝⎛⎭⎪⎫2x -π4∈[-1,1], 所以函数y 的值域是⎣⎢⎢⎡⎦⎥⎥⎤-22+12,22+12.答案:C2.已知等腰三角形底角的余弦值等于45,则这个三角形顶角的正弦值为________. 解析:设此三角形的底角为α,顶角为 β,则cos α=45,sin α=35, 所以sin β=sin (π-2α)=sin 2α=2sin αcos α=2×35×45=2425. 答案:24253.(2014·江苏卷)已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55. (1)求sin ⎝ ⎛⎭⎪⎫π4+α的值; (2)求cos ⎝ ⎛⎭⎪⎫5π6-2α的值. 解:(1)由题意知cos α=- 1-⎝ ⎛⎭⎪⎪⎫552=-255, 所以sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α= 22×⎝ ⎛⎭⎪⎪⎫-255+22×55=-1010. (2)sin 2α=2sin αcos α=-45, cos 2α=2cos 2 α-1=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=-32×35+12×⎝ ⎛⎭⎪⎫-45=-33+410.。
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A版必修4
2
2
(2) 3 sin x cos x.
解:(1)1 cos x 3 sin x (2) 3 sin x cos x
2
2
sin 30 cos x cos 30 sin x
2( 3 sin x 1 cos x)
2
2
sin(30 x);
2(sin x cos 30 cos x sin 30 )
解:原式 sin(72 18 ) sin 90 1.
第十三页,共31页。
例1 已知 sin 3 , 是第四象限角,求 sin( ),
5
4
cos( )的值.
4
解:由sin=-
3 5
,
是第四象限角,得
cos 1 sin2 1 ( 3)2 4 , 55
于是有sin( ) sin cos cos sin
第七页,共31页。
探究(tànjiū)二:两角和与差的正弦公式
1.利用哪些公式可以实现正弦(zhèngxián)、余弦的互 化?
提示(tíshìs)i:n cos( ) 2
sin(
)
cos
2
(
)
第八页,共31页。
2.由两角和与差的余弦公式如何推导两角和与 差的正弦(zhèngxián)公式?
(2) 2 cos x 6 sin x.
解:(1)原式 (2 2 sin x 2 cos x)
2
2
2sin(x ).
4
(2)原式 2 (2 1 cos x 3 sin x)
2
2
2 2 sin( x).
6
第二十一页,共31页。
1.(2015·四川高考)下列函数中,最小正周期为π且图象关
【2020】最新高中数学第三章三角恒等变换3-1两角和与差的正弦、余弦和正切公式3-1-2第1课时两角和与差的正
(2)正确.当α=45°,β=0°时,sin(α-β)=sin α-sin β. (3)错误.当α=30°,β=-30°时,sin(α+β)=sin α+sinβ成立.(4)正确.因为sin 54°cos 24°-sin 36°sin 24° =sin 54°cos 24°-cos 54°sin 24°=sin(54°-24°) =sin 30°,故原式正确.[答案] (1)√ (2)√ (3)× (4)√2.cos 57°cos 3°-sin 57°sin 3°的值为( ) A.0 B.12C.32D.cos 54°B [原式=cos(57°+3°)=cos 60°=12.]3.若cos α=-35,α是第三象限的角,则sin ⎝ ⎛⎭⎪⎫a -π4=________.-210 [∵cos α=-35,α是第三象限的角, ∴sin α=-1-cos2α=-45,∴sin ⎝⎛⎭⎪⎫α-π4=22sin α-22cos α=22×⎝ ⎛⎭⎪⎫-45-22×⎝ ⎛⎭⎪⎫-35=-210.][合 作 探 究·攻 重 难]给角求值问题(1)cos 70°sin 50°-cos 200°sin 40°的值为( ) A.-32B.-12C.12D.32(2)若θ是第二象限角且sin θ=513,则cos(θ+60°)=________.(3)求值:(tan 10°-3)cos 10°sin 50°.(1)D (2)-12+5326 [(1)∵cos 200°=cos(180°+20°)=-cos20°=-sin 70°,sin 40°=cos 50°,∴原式=cos 70°sin 50°-(-sin 70°)cos 50° =sin(50°+70°)=sin 120°=32. (2)∵θ是第二象限角且sin θ=513, ∴cos θ=-1-sin2θ=-1213, ∴cos(θ+60°)=12cos θ-32sin θ=12×⎝ ⎛⎭⎪⎫-1213-32×513 =-12+5326. (3)原式=(tan 10°-tan 60°)cos 10°sin 50°=⎝ ⎛⎭⎪⎫sin 10°cos 10°-sin 60°cos 60°cos 10°sin 50°=sin -50°cos 10°cos 60°·cos 10°sin 50°=-2.][规律方法] 解决给角求值问题的策略 1对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各局部的变形.2一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消的项并消项求值,化分子、分母形式进行约分,解题时要逆用或变用公式.提醒:在逆用两角的和与差的正弦和余弦公式时,首先要注意结构是否符合公式特点,其次注意角是否满足要求.[跟踪训练] 1.化简求值: (1)sin 50°-sin 20°cos 30°cos 20°;(2)sin(θ+75°)+cos(θ+45°)-3cos(θ+15°). [解] (1)原式=sin20°+30°-sin 20°cos 30°cos 20°=sin 20°cos 30°+cos 20°sin 30-sin 20°cos 30°cos 20°=cos 20°sin 30°cos 20°=sin 30°=12.(2)设α=θ+15°,则原式=sin(α+60°)+cos(α+30°)-3cos α=⎝ ⎛⎭⎪⎫12sin α+32cos α+⎝ ⎛⎭⎪⎫32cos α-12sin α-3cos α=0.给值求值、求角问题(1)已知P ,Q 是圆心在坐标原点O 的单位圆上的两点,且分别位于第一象限和第四象限,点P 的横坐标为45,点Q 的横坐标为513,则cos∠POQ =________.(2)已知cosα=55,sin(α-β)=1010,且α,β∈⎝⎛⎭⎪⎫0,π2.求:①cos(2α-β)的值;②β的值.[思路探究](1)先由任意角三角函数的定义求∠xOP 和∠xOQ 的正弦、余弦值,再依据∠POQ =∠xOP +∠xOQ 及两角和的余弦公式求值.(2)先求sinα,cos(α-β),依据2α-β=α+(α-β)求cos(2α-β).依据β=α-(α-β)求cos β再求β.(1)5665 [(1)由题意可得,cos∠xOP =45,所以sin ∠xOP =35.再根据cos∠xOQ =513, 可得sin∠xOQ =-1213, 所以cos∠POQ =cos(∠xOP +∠xOQ )=cos∠xOP ·cos∠xOQ -sin∠xOP ·si n ∠xOQ =45×513-35×⎝ ⎛⎭⎪⎫-1213=5665.(2)①因为α,β∈⎝ ⎛⎭⎪⎫0,π2, 所以α-β∈⎝ ⎛⎭⎪⎫-π2,π2,又sin(α-β)=1010>0,所以0<α-β<π2, 所以sin α=1-cos2α=255,cos(α-β)=1-sin2α-β=31010, cos(2α-β)=cos[α+(α-β)] =cos αcos(α-β)-sin αsin(α-β) =55×31010-255×1010=210. ②cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =55×31010+255×1010=22,又因为β∈⎝ ⎛⎭⎪⎫0,π2,所以β=π4.][规律方法] 给值求值问题的解题策略在解决此类题目时,一定要注意已知角与所求角之间的关系,恰当地运用拆角、拼角技巧,同时分析角之间的关系,利用角的代换化异角为同角,具体做法是:1当条件中有两角时,一般把“所求角”表示为已知两角的和或差. 2当已知角有一个时,可利用诱导公式把所求角转化为已知角.[跟踪训练]2.已知锐角α,β满足cos α=255,sin(α-β)=-35,求sin β的值.[解] 因为α,β是锐角,即0<α<π2,0<β<π2, 所以-π2<α-β<π2, 因为sin(α-β)=-35<0,所以cos(α-β)=45,因为cos α=255,所以sin α=55, 所以sin β=s in[α-(α-β)]=sin αcos(α-β)-cosαsin(α-β)=55×45+255×35=255. 辅助角公式的应用[探究问题]1.能否将函数y =sin x +cosx (x ∈R )化为y =A sin(x +φ)的形式⎝ ⎛⎭⎪⎫|φ|∈⎝ ⎛⎭⎪⎫0,π2?提示:能.y =sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4.2.如何推导a sin x +b cos x =a2+b2sin(x +φ)⎝ ⎛⎭⎪⎫tan φ=b a 公式.提示:a sin x +b cos x=a2+b2⎝⎛⎭⎪⎫a a2+b2sin x +b a2+b2cos x , 令cos φ=a a2+b2,sin φ=ba2+b2,则a sin x +b cos x =a2+b2(sin x cos φ+cos x sin φ) =a2+b2sin(x +φ)(其中φ角所在象限由a ,b 的符号确定,φ角的值由tan φ=ba确定,或由sin φ=b a2+b2和cos φ=aa2+b2共同确定). (1)sinπ12-3cos π12=________. (2)已知a =(3,-1),b =(sin x ,cosx ),x ∈R ,f (x )=a·b ,求函数f (x )的周期,值域,单调递增区间.[思路探究]解答此类问题的关键是巧妙构建公式C (α-β)、C (α+β)、S (α-β)、S (α+β)的右侧,逆用公式化成一个角的一种三角函数值.(1)-2 [(1)原式=2⎝ ⎛⎭⎪⎫12sin π12-32cos π12.法一:(化正弦)原式=2⎝ ⎛⎭⎪⎫cos π3sin π12-si n π3cos π12=2⎝ ⎛⎭⎪⎫sin π12cos π3-co s π12sin π3=2sin ⎝ ⎛⎭⎪⎫π12-π3=2sin ⎝ ⎛⎭⎪⎫-π4=- 2.法二:(化余弦)原式=2⎝⎛⎭⎪⎫sin π6sin π12-co s π6cos π12⎣⎢⎡⎦⎥⎤-3π4+2kπ,π4+2kπ,k ∈Z .[规律方法] 辅助角公式及其运用 1公式形式:公式a sin α+b cos α=a2+b2sin α+φ或a sin α+b cos α=a2+b2cosα-φ将形如a sinα+b cosαa ,b 不同时为零的三角函数式收缩为同一个角的一种三角函数式.2形式选择:化为正弦还是余弦,要看具体条件而定,一般要求变形后角α的系数为正,这样更有利于研究函数的性质.提醒:在使用辅助角公式时常因把辅助角求错而致误.[当 堂 达 标·固 双 基]1.sin 245°sin 125°+sin 155°sin 35°的值是( ) A.-32B.-12C.12D.32B [∵sin 245°=sin(155°+90°)=cos 155°, sin 125°=sin(90°+35°)=cos 35°, ∴原式=cos 155°cos 35°+sin 155°sin 35°=cos(155°-35°)=cos 120°=-12.]2.化简2cos x -6sin x 等于( ) A.22sin ⎝ ⎛⎭⎪⎫π6+xB.22cos ⎝ ⎛⎭⎪⎫π6-xC.22sin ⎝ ⎛⎭⎪⎫π3-xD.22cos ⎝ ⎛⎭⎪⎫π3+xD [2cos x -6sin x =22⎝ ⎛⎭⎪⎫12cos x -32sin x=22⎝ ⎛⎭⎪⎫cos π3cos x-si n π3sin x=22cos ⎝ ⎛⎭⎪⎫π3+x .]。
高中数学 第三章 三角恒等变换 3.1.3 二倍角的正弦、
3.1.3 二倍角的正弦、余弦、正切公式1.知识与技能以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.2.过程与方法经历二倍角公式的探究过程,培养学生发现数学规律的思维方法,培养学生分析问题和解决问题的能力,并体会化归与转化的思想方法.3.情感、态度与价值观通过对二倍角公式的探究学习,培养学生的探索精神和应用意识,体会数学的科学价值和应用价值,不断提高自身的文化修养.重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式.难点:二倍角的理解及其灵活运用.1.+2的化简结果是()A.2cos 4-4sin 4B.2sin 4C.2sin 4-4cos 4D.-2sin 4解析:原式=+2+2=2|sin 4|+2|sin 4-cos 4|.∵sin 4<0,sin 4<cos 4,∴原式=-2sin 4+2(cos 4-sin 4)=2cos 4-4sin 4.答案:A2.函数f(x)=sin-2sin2x的最小正周期是.解析:f(x)=sin-2sin2x=sin 2x-cos 2x-2=sin 2x+cos 2x-=sin,故该函数的最小周期为=π.答案:π3.如图,以Ox为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于P,Q两点,已知点P的坐标为.(1)求的值;(2)若=0,求sin(α+β).解:(1)由三角函数定义得cos α=-,sin α=,∴原式===2cos2α=2×.(2)∵=0,∴α-β=.∴β=α-.∴sin β=sin=-cos α=,cos β=cos=sin α=.∴sin(α+β)=sin αcos β+cos αsin β=.。
人教A版数学必修四培优教程练习:第3章 三角恒等变换3-1-2-1a
A 级:基础巩固练一、选择题1.化简cos(x +y )sin y -sin(x +y )cos y 等于( ) A .sin(x +2y ) B .-sin(x +2y ) C .sin x D .-sin x答案 D解析 cos(x +y )sin y -sin(x +y )cos y =sin[y -(x +y )]=-sin x . 2.已知cos ⎝⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝⎛⎭⎪⎫α+7π6的值为( )A .-235B .235C .-45D .45答案 C解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=32cos α+12sin α+sin α=32cos α+32sin α=3⎝ ⎛⎭⎪⎫12cos α+32sin α=3sin ⎝ ⎛⎭⎪⎫α+π6=435, ∴sin ⎝⎛⎭⎪⎫α+π6=45,∴sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45.3.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( )A .-3B .-1C .1D .3答案 A解析 由根与系数的关系可知tan α+tan β=3, tan αtan β=2,tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.4.函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .⎣⎢⎡⎦⎥⎤-32,32答案 B解析 因为f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6 =sin x -cos x cos π6+sin x sin π6 =sin x -32cos x +12sin x=3⎝ ⎛⎭⎪⎫32sin x -12cos x=3sin ⎝ ⎛⎭⎪⎫x -π6(x ∈R ),所以f (x )的值域为[-3,3].5.△ABC 中,若0<tan A ·tan B <1,则△ABC 是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .无法确定答案 B解析 ∵0<tan A ·tan B <1, ∴tan A >0,tan B >0,tan(A +B )=-tan C =tan A +tan B1-tan A ·tan B >0.∴tan C <0,又∵0<C <π,∴π2<C <π. 二、填空题6.cos23°+sin15°sin8°sin23°-cos15°sin8°的值为________.答案 2+ 3解析 原式=cos (15°+8°)+sin15°sin8°sin (15°+8°)-cos15°sin8°=cos15°cos8°sin15°cos8° =cos15°sin15°=cos (45°-30°)sin (45°-30°)=22⎝⎛⎭⎪⎫32+1222⎝⎛⎭⎪⎫32-12=2+ 3. 7.若点P (-3,4)在角α的终边上,点Q (-1,-2)在角β的终边上,则sin(α-β)=________,cos(α+β)=________.答案 -255 11525解析 因为点P (-3,4)在角α的终边上,所以r =5, 故sin α=45,cos α=-35.又因为点Q (-1,-2)在角β的终边上, 所以r ′=5,故sin β=-255,cos β=-55,则sin(α-β)=sin α·cos β-cos α·sin β=45×⎝ ⎛⎭⎪⎫-55-⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-255=-255.cos(α+β)=cos αcos β-sin αsin β=⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-55-45×⎝⎛⎭⎪⎫-255=11525.8.在△ABC 中,A =120°,则sin B +sin C 的最大值为________. 答案 1解析 由A =120°,A +B +C =180°,得sin B +sin C =sin B +sin(60°-B )=32cos B +12sin B =sin(60°+B ).显然当B =30°时,sin B +sin C 取得最大值1.三、解答题 9.化简下列各式:(1)sin ⎝ ⎛⎭⎪⎫x +π3+2sin ⎝ ⎛⎭⎪⎫x -π3-3cos ⎝ ⎛⎭⎪⎫2π3-x ; (2)sin (2α+β)sin α-2cos(α+β).解 (1)原式=sin x cos π3+cos x sin π3+2sin x cos π3-2cos x sin π3-3cos 2π3cos x -3sin 2π3sin x=12sin x +32cos x +sin x -3cos x +32cos x -32sin x=⎝ ⎛⎭⎪⎫12+1-32sin x +⎝ ⎛⎭⎪⎫32-3+32cos x =0.(2)原式=sin[(α+β)+α]-2cos (α+β)sin αsin α =sin (α+β)cos α-cos (α+β)sin αsin α =sin[(α+β)-α]sin α =sin βsin α.10.(1)已知sin α=35,cos β=-513,且α为第一象限角,β为第二象限角,求sin(α+β)和sin(α-β)的值;(2)求值:3sin π12+cos π12;(3)在△ABC 中,tan B +tan C +3tan B tan C =3,且3tan A +3tan B +1=tan A tan B ,判断△ABC 的形状.解 (1)因为α为第一象限角,β为第二象限角, sin α=35,cos β=-513,所以cos α=45,sin β=1213,∴sin(α+β)=sin αcos β+cos αsin β=35×⎝⎛⎭⎪⎫-513+45×1213=3365,sin(α-β)=sin αcos β-cos αsin β=35×⎝ ⎛⎭⎪⎫-513-45×1213=-6365.(2)原式=2⎝ ⎛⎭⎪⎫32sin π12+12cos π12=2⎝ ⎛⎭⎪⎫sin π12cos π6+cos π12sin π6 =2sin ⎝⎛⎭⎪⎫π12+π6=2sin π4= 2.(3)tan A =tan[180°-(B +C )]=-tan(B +C )=tan B +tan Ctan B tan C -1=3-3tan B tan Ctan B tan C -1=-3,而0°<A <180°,∴A =120°.tan C =tan[180°-(A +B )]=-tan(A +B )=tan A +tan Btan A tan B -1=tan A +tan B 3tan A +3tan B=33,而0°<C <180°,∴C =30°,∴B =180°-120°-30°=30°,∴△ABC 是顶角为120°的等腰三角形.B 级:能力提升练1.在△ABC 中,3sin A +4cos B =6,3cos A +4sin B =1,则C 的大小为( )A .π6B .5π6C .π6或5π6D .π3或2π3答案 A解析 由已知可得(3sin A +4cos B )2+(3cos A +4sin B )2=62+12,即9+16+24sin(A +B )=37.所以sin(A +B )=12.所以在△ABC 中sin C =12,所以C =π6或C =5π6.又1-3cos A =4sin B >0,所以cos A <13.又13<12,所以A >π3,所以C <2π3. 所以C =5π6不符合题意,所以C =π6.2.已知0<α<π2<β<π,sin ⎝ ⎛⎭⎪⎫α-π3=4-3310,cos(β-α)=210. (1)求sin α的值; (2)求β的值.解 (1)∵0<α<π2<β<π,∴-π3<α-π3<π6,0<β-α<π. 由sin ⎝ ⎛⎭⎪⎫α-π3=4-3310,cos(β-α)=210得 cos ⎝ ⎛⎭⎪⎫α-π3=3+4310,sin(β-α)=7210. 于是sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π3+π3=sin ⎝ ⎛⎭⎪⎫α-π3cos π3+cos ⎝ ⎛⎭⎪⎫α-π3sin π3 =4-3310×12+3+4310×32=45.(2)由(1)知sin α=45且0<α<π2,所以cos α=35.于是cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α=210×35-7210×45=-22,因为π2<β<π,所以β=3π4.由Ruize收集整理。
高中数学第三章三角恒等变换3.1.4二倍角的正弦、余弦、正切公式练习(含解析)新人教A版必修4
高中数学第三章三角恒等变换3.1.4二倍角的正弦、余弦、正切公式练习(含解析)新人教A 版必修41.设α是第四象限角,已知sin α=-35,则sin2α,cos2α和tan2α的值分别为( )A .-2425,725,-247B .2425,725,247C .-2425,-725,247D .2425,-725,-247答案 A解析 因为α是第四象限角,且sin α=-35,所以cos α=45,所以sin2α=2sin αcos α=-2425,cos2α=2cos 2α-1=725,tan2α=sin2αcos2α=-247.2.已知sin ⎝ ⎛⎭⎪⎫α+π4=7210,cos2α=725,则cos α=( )A .45B .-45C .-35D .35 答案 A解析 ∵sin ⎝ ⎛⎭⎪⎫α+π4=7210,∴22sin α+22cos α=7210,即sin α+cos α=75,∵cos2α=725,∴cos 2α-sin 2α=725,即(cos α-sin α)(cos α+sin α)=725,∴cos α-sin α=15,可得cos α=45,故选A .3.1-tan 215°2t an15°等于( )A . 3B .33C .1D .-1 答案 A解析 原式=12tan15°1-tan 215°=1tan30°=3.4.cos 275°+cos 215°+cos75°cos15°的值等于( ) A .62 B .32 C .54 D .1+34答案 C解析 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=1+14=54.5.sin65°cos25°+cos65°sin25°-tan 222.5°2tan22.5°等于( )A .12 B .1 C .3 D .2 答案 B解析 原式=sin90°-tan 222.5°2tan22.5°=1-tan 222.5°2tan22.5°=1tan45°=1.6.3-sin70°2-cos 210°的值是________. 答案 2 解析3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=23-cos20°3-cos20°=2. 7.若cos(75°-α)=13,则cos(30°+2α)=________.答案 79解析 由cos(75°-α)=13,得cos(150°-2α)=2cos 2(75°-α)-1=-79,则cos(30°+2α)=cos[180°-(150°-2α)] =-cos(150°-2α)=79.8.若α∈2,2,则1+sin α+1-sin α的值为( )A .2cos α2B .-2cos α2 C .2sin α2 D .-2sin α2 答案 D解析 ∵α∈5π2,7π2,∴α2∈5π4,7π4,∴原式=sin α2+cos α2+sin α2-cos α2=-sin α2-cos α2-sin α2+cos α2=-2sin α2. 9.已知角α在第一象限且cos α=35,则1+2cos2α-π4sin α+π2等于( )A .25B .75C .145D .-25 答案 C解析 ∵cos α=35且α在第一象限,∴sin α=45.∴cos2α=cos 2α-sin 2α=-725,sin2α=2sin αcos α=2425,∴原式=1+2cos2αcos π4+sin2αsinπ4cos α=1+cos2α+sin2αcos α=145.10.已知sin x 2-2cos x2=0.(1)求tan x 的值;(2)求cos2xcos ⎝ ⎛⎭⎪⎫5π4+x sin π+x 的值.解 (1)由sin x 2-2cos x 2=0,知cos x2≠0,∴tan x2=2,∴tan x =2tanx21-tan 2x 2=2×21-22=-43.(2)由(1),知tan x =-43,∴cos2xcos ⎝ ⎛⎭⎪⎫5π4+x sin π+x =cos2x-cos ⎝ ⎛⎭⎪⎫π4+x -sin x=cos 2x -sin 2x⎝ ⎛⎭⎪⎫22cos x -22sin x sin x=cos x -sin x cos x +sin x22cos x -sin x sin x=2×cos x +sin x sin x =2×1+tan x tan x =24.对应学生用书P90一、选择题1.12-sin 215°=( ) A .64 B .6-24 C .32 D .34答案 D解析 原式=12-1-cos 2×15°2=cos30°2=34.2.函数f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 答案 C解析 ∵f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1=-cos2x 2+π4=-cos ⎝ ⎛⎭⎪⎫x +π2=sin x ,∴函数f (x )=2sin 2⎝ ⎛⎭⎪⎫x 2+π4-1是最小正周期为2π的奇函数.3.已知cos π4-x =35,则sin2x 的值为( )A .1825B .725C .-725D .-1625 答案 C解析 因为sin2x =cos π2-2x =cos2π4-x =2cos 2π4-x -1,所以sin2x =2×352-1=1825-1=-725.4.已知cos2θ=23,则sin 4θ+cos 4θ的值为( ) A .1318 B .1118 C .79 D .-1 答案 B解析 sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ =1-12sin 22θ=1-12(1-cos 22θ)=1118.5.若cos2αsin α-π4=-22,则cos α+sin α的值为( )A .-72 B .-12C .12D .72 答案 C解析 cos2αsin α-π4=cos 2α-sin 2α22sin α-cos α=cos α+sin αcos α-sin α22sin α-cos α=-2(cos α+sin α)=-22. ∴sin α+cos α=12.二、填空题6.已知tan x +π4=2,则tan xtan2x 的值为________.答案 49解析 ∵tan x +π4=2,∴tan x +11-tan x =2,∴tan x =13.∴tan x tan2x =tan x 2tan x 1-tan 2x=1-tan 2x2=1-192=49. 7.已知sin 22α+sin2αcos α-cos2α=1,α∈0,π2,则 α=________.答案π6解析 ∵sin 22α+sin2αcos α-(cos2α+1)=0. ∴4sin 2αcos 2α+2sin αcos 2α-2cos 2α=0. ∵α∈0,π2.∴2cos 2α>0.∴2sin 2α+sin α-1=0.∴sin α=12(sin α=-1舍).∴α=π6.8.设a =12cos7°-32sin7°,b =2cos12°·cos78°,c =1-cos50°2,则a ,b ,c 的大小关系是________.答案 c >b >a解析 a =12cos7°-32sin7°=sin30°cos7°-cos30°sin7°=sin(30°-7°)=sin23°,b =2cos12°cos78°=2sin12°·cos12°=sin24°,c =1-cos50°2=1-1-2sin 225°2=sin 225°=sin25°,所以c >b >a .三、解答题9.求下列各式的值:(1)sin π8sin 3π8;(2)cos 215°-cos 275°;(3)2cos25π12-1;(4)tan30°1-tan 230°; (5)求s in10°sin30°sin50°sin70°的值. 解 (1)∵sin 3π8=sin ⎝ ⎛⎭⎪⎫π2-π8=cos π8,∴sin π8sin 3π8=sin π8cos π8=12·2sin π8cos π8=12sin π4=24.(2)∵cos 275°=cos 2(90°-15°)=sin 215°, ∴cos 215°-cos 275°=cos 215°-sin 215°=cos30°=32. (3)2cos25π12-1=cos 5π6=-32. (4)tan30°1-tan 230°=12×2tan30°1-tan 230°=12tan60°=32. (5)解法一:∵sin10°sin50°sin70°=sin20°sin50°sin70°2cos10°=sin20°cos20°sin50°2cos10°=sin40°sin50°4cos10°=sin40°cos40°4cos10°=sin80°8cos10°=18,∴sin10°sin30°sin50°sin70°=116.解法二:sin10°sin30°sin50°sin70°=12cos20°cos40°cos80°=2sin20°cos20°cos40°cos80°4sin20°=sin40°cos40°cos80°4sin20°=sin80°cos80°8sin20°=116·sin160°sin20°=116.10.已知α为钝角,且tan π4-α=2.(1)求tan α的值;(2)求sin2αcos α-sin αcos2α的值.解 (1)tan π4-α=1-tan α1+tan α,所以1-tan α1+tan α=2,1-tan α=2+2tan α,所以tan α=-13.(2)sin2αcos α-sin αcos2α=2sin αcos 2α-sin αcos2α=sin α2cos 2α-1cos2α=sin αcos2αcos2α=sin α.因为tan α=-13,所以cos α=-3sin α,又sin 2α+cos 2α=1,所以sin 2α=110,又α为钝角,所以sin α=1010, 所以sin2αcos α-sin αcos2α=1010.。
高中数学第三章三角恒等变换3.2简单的三角恒等变换知识巧解学案新人教A版必修04
,π<2α< ,求 tanα.
13
2
3
3
解: ∵π<2α< ,∴ <α< .
2
2
4
由 cos 2
1 sin 2
5
1 ( 12 ) 2
5 ,得 tan
1 cos2
1 13
3
13
13
sin 2
12 2
13
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
或 tan 或 tan
或 tan
2 1 cos
2 sin
可避开符号的讨论 .
③若角α的倍角 2α是特殊角,则可用半角公式求α的函数值,以α为桥梁,可把
的函数值连在一起 .
知识点二 积化和差公式的应用
例 4 求下列各式的值:
5 (1) cos sin ; (2)2cos50° cos70° -cos20° .
12 12
5
15
1
3
.
2
24
(2)原式 =cos(50° +70° )+cos(50°-70° )-cos20°
1
=cos120°+cos20° -cos20° =cos120°=-cos60° = .
2
31
例 5 求证: (1)sin80°cos40° =
sin 40 ;
42
11
(2)sin37.5° sin22.5° = + cos15° .
( 2 3) .
例 2 求 cos , tan 的值 . 8 12
2
解: 由于 cos2
1 cos 1
4
2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2简单的三角恒等变换
第1课时三角恒等变换
课时过关·能力提升
基础巩固1设5π<θ<6π,co
A.
C.
解析:若5π<θ<6π,
则si
答案:D
2y=sin x cos x+sin2x可化为()
A.y
B.y
C.y=si
D.y=2si
解析:y2x
2x2x
答案:A
3已知cos α=
A.
C.
解析:si
答案:D
A.tan α
B.tan 2α
C.1 D
解析:原2α.
答案:B
5化
A.sin α
B.cos α
C.1+sin 2α
D.1-sin 2α解析:原
=2si
=2cos
=1+co2α.
答案:D
6已知sin θ
解析:∵θ∈
∴cosθ=
∴co
答案:
7
解析:由已知
α+cosα
答案:
8已知ta
解析:∵ta
cosα
答案:
9已知sin θ+cos θ=2sin α,sin2β=sin θcos θ,求证:2cos 2α=cos 2β.
分析观察已知条件和要证的结论,发现要证的等式中不含角θ,因此从已知条件中消去角θ,问题即可得证.证明由题意,
①2-②×2,得4sin2α-2sin2β=1.
∴1-2sin2β=2-4sin2α,
则有cos2β=2cos2α.
10已知函数f(x)=2sin(π-x)cos x.
(1)将f(x)化为A sin(ωx+φ)的形式(A>0,ω>0);
(2)求f(x)的最小正周期;
(3)求f(x)在区
解(1)f(x)=2sin(π-x)cos x
=2sin x cos x=sin2x.
(2)由(1)知函数f(x)的最小正周期为T
(3)≤x≤≤2x≤π,。