最新人教版九年级上册数学24.1.4 圆周角1 精品学案
人教版数学九年级上册24.1.4圆周角(第1课时)优秀教学案例
1.采用启发式教学,引导学生通过观察、实践、合作交流等过程,自主发现圆周角的性质和判定定理。
2.设计丰富的教学活动,如小组讨论、问题解决、实例分析等,培养学生主动探究、合作学习的习惯。
3.创设生活情境,让学生在实际问题中运用圆周角知识,提高学生分析问题和解决问题的能力。
4.注重培养学生的几何直观和空间想象能力,通过作图、观察、推理等环节,发展学生的几何思维。
二、教学目标
(一)知识与技能
1.让学生掌握圆周角的概念,理解圆周角与圆心角的区别与联系,能准确判断并命名圆周角。
2.引导学生通过观察、推理,掌握圆周角定理,并能运用定理解决相关问题。
3.培养学生运用圆周角定理进行计算和证明的能力,提高学生的几何逻辑思维。
4.让学生学会运用圆周角知识解决生活中的实际问题,增强学生的知识应用能力。
4.小组之间进行成果展示和交流,共享学习经验,培养学生的团队协作能力和表达能力。
(四)反思与评价
1.鼓励学生在课后进行自我反思,总结自己在学习圆周角过程中的收获和不足,为下一阶段的学习制定合理的学习计划。
2.教师对学生的学习过程和结果进行评价,关注学生的知识掌握、技能运用、情感态度等方面的表现,给予积极的反馈和建议。
2.学生通过观察和思考,初步感知圆周角的概念。
(二)讲授新知
1.教师引导学生通过画圆、量角等活动,探究圆周角的定义和性质。
“请大家拿出圆规和直尺,画一个圆,并在圆上任选三个点,组成两个圆周角。观察这两个圆周角的大小,大家发现了什么规律?”
2.教师根据学生的发现,总结圆周角的定义和性质。
“圆周角是指圆上任意两点与圆心所组成的角。圆周角的度数是360度,且圆周角等于其所对的圆心角的两倍。”
人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.创设情境:通过展示一幅美丽的圆形喷泉图片,引导学生观察并思考:为什么喷泉的水流会呈现出圆形?这与我们今天要学习的圆周角有什么关系?
这些媒体资源在教学中的作用是:直观展示几何图形,降低学生的认知难度;激发学生的学习兴趣,提高他们的学习积极性;丰富教学手段,提高教学效果。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:在课堂提问环节,我将鼓励学生积极发言,及时给予肯定和鼓励,营造轻松、愉快的课堂氛围。同时,针对学生的疑问,给予耐心解答,引导他们深入思考。
在整个课程体系中,圆周角定理及推论处于几何模块的圆部分,是圆的基本性质和定理之一。在此之前,学生已经学习了圆的基本概念、圆的对称性以及圆的弦、弧等相关知识。本节课的主要知识点包括:圆周角的定义、圆周角定理及推论、圆内接四边形的性质等。
(二)教学目标
1.知识与技能目标:
(1)理解圆周角的概念,掌握圆周角定理及其推论。
在教学过程中,我预见到以下问题或挑战:
1.学生在理解圆周角定理的证明过程时可能存在困难。
2.部分学生对几何图形的空间想象能力较弱,影响解题效果。
3.课堂时间有限,可能无法充分满足所有学生的学习需求。
为应对这些问题,我将在课堂上增加师生互动,及时解答学生的疑问,并通过实际操作活动,培养学生的空间想象能力。课后,我将通过作业完成情况、课堂表现和学生反馈来评估教学效果。
4.数学游戏:设计一些与圆周角相关的数学游戏,让学生在游戏中学习,提高他们的学习积极性。
人教版数学九年级上册24.1.4圆周角定理教学设计
(3)鼓励学生参加数学竞赛、课外活动,拓宽知识视野,提高数学素养。
四、教学内容与过的基本概念,如圆心、半径、直径等,为新课的学习做好铺垫。
(1)请学生回顾圆的定义及圆的基本性质。
(2)提问:圆心角和弧有什么关系?如何计算圆心角的度数?
(二)讲授新知
1.圆周角定理的推导:
(1)引导学生观察圆中的圆周角,尝试总结其性质。
(2)教师通过动画演示,直观展示圆周角定理的推导过程。
(3)讲解圆周角定理:圆周角等于其所对圆心角的一半。
2.圆周角定理的应用:
(1)结合实际例题,讲解如何运用圆周角定理解决问题。
(2)引导学生关注圆周角定理在解决角度、弧度等问题中的应用。
(二)过程与方法
1.通过观察、分析、归纳,培养学生发现问题的能力。
2.通过自主探究、合作交流,提高学生解决问题的能力。
3.通过实际操作,培养学生的动手能力和空间想象能力。
4.引导学生从不同角度思考问题,培养学生思维的灵活性和创新意识。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,提高学生对数学美的感受。
2.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.培养学生的团队协作精神,学会与人沟通交流。
4.通过圆周角定理的学习,使学生体会数学与生活的紧密联系,培养学生的应用意识。
1.导入:通过复习圆的基本概念,引导学生关注圆周角。
2.自主探究:让学生观察圆周角的特点,尝试总结圆周角定理。
3.合作交流:分组讨论,分享探究成果,互相学习,共同完善圆周角定理。
1.学生总结:请学生谈谈本节课的学习收获,对圆周角定理的理解和运用。
新人教版九年级数学上册《24.1.4圆周角(1)》学案
新人教版九年级数学上册《24.1.4圆周角(1)》学案学习[来源学科网ZXXK][来源:][来源学科网][来源:]方法制作:班级姓名九年级数学方法总结学习内容明确目标做到心中有数自学课本完成概念分情况证明圆周角定理,注意分类思想的应用,转化思想的渗透24.1.4圆周角(1)学习目标:1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(重点)2渗透由“特殊到一般”,由“一般到特殊”的数学思想方法(难点)学习过程(一)圆周角的概念1、复习:(1)什么是圆心角?(2)圆心角定理是什么2、什么是圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)定义:。
(二)圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部。
(1)当圆心在圆周角的一边上时,图(1)(2)当圆心在圆周角内部时图(2)图(3)(3)当圆心在圆周角外部时学习制作:田峰班级姓名九年级数学方法方法学习内容总结总结定理记忆定理检测自我找到不足及时弥补由此可得圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的。
巩固练习:课本第87页第4题,88页第12题。
自我评价1、下列各图中,哪一个角是圆周角?()A B CD2、求下图中的x。
3在⊙O中,一条弧所对的圆心角和圆周角分别为(2x+100)°和(5x-30)°,则x=_4、在⊙O中,∠CBD=30°,∠BDC=20°,求∠A5、已知, ⊙O的弦AB长等于圆的半径,求该弦所对的圆心角和圆周角的度数。
BAO . 70°xAO . X120°教法二次备课。
九年级数学上册 24.1.4 圆周角 精品导学案 新人教版
O CB A D E O A BC O AB C E D C OB A 圆周角课题:24.1.4.圆周角 序号:学习目标:1、知识与技能(1) 了解圆周角与圆心角的关系(2) 掌握圆周角的性质和直径所对圆周角的性质(3) 能运用圆周角的性质解决问题2、过程与方法:在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题3、情感.态度与价值观:引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
学习重点:圆周角与圆心角的关系,圆周角的性质和直径所对的圆周角的特征学习难点:发现并证明圆周角定理导学过程课前预习:阅读课本P84---86的有关内容,完成《导学》教材导读中的问题及自主测评。
.二、课堂导学:1.情境导入.阅读《导学案》87页的问题导学2. 出示任务 , 自主学习阅读84-86页内容解决下列问题问题1、如图1,在⊙O 中,∠B,∠D,∠E 的大小有什么关系?为什么?问题2、如图2,AB 是⊙O 的直径,C 是⊙O 上任一点,你能确定∠ACB 的度数吗?问题3、如图3,圆周角∠B C A=90º,弦AB 经过圆心O 吗?为什么?圆周角定理的推论1:同圆或等圆中, 所对的圆周角相等;同圆或等圆中, 所对的弧也相等。
圆周角定理的推论2:半圆(或直径)所对的圆周角是 ;所对的弦是直径。
3.合作探究《导学》难点探究和展题设计 三、展示 与反馈检查预习情况,解决学生疑惑 四、课堂小结1. 圆周角定理:2.圆周角定理的推论1:同圆或等圆中, 所对的圆周角相等;同圆或等圆中, 所对的弧也相等。
ED CO B A3.圆周角的推论2:半圆(或直径)所对的圆周角是;所对的弦是直径。
五、达标检测:教材86-87页3练习1-3题完成87页《导学案》.自主测评1—4题课后作业:1必做题:教材89页习题24.1 12-15题板书设计:24.1.4圆周角1. 圆周角的定义2. 圆周角定理及其推论课后反思:通过本节课的学习,教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
九年级数学上册高效课堂(人教版)24.1.4圆周角(第1课时)教学设计
1.教学内容:设计具有针对性的练习题,让学生在解决实际问题的过程中,加深对圆周角知识的理解。
教学过程:
-教师出示练习题,要求学生独立完成。
-学生在解题过程中,教师巡回指导,关注学生的解题方法和思路。
-教师针对学生的解答进行点评,强调解题规范和注意事项。
-学生针对自己的错误进行改正,巩固所学知识。
(三)学生小组讨论
1.教学内容:针对圆周角的相关问题,组织学生进行小组讨论,加深对知识点的理解。
教学过程:
-教师提出具有挑战性的问题,如圆周角与圆心角的关系、圆周角定理在不同情境下的应用等。
-学生分组进行讨论,共同分析问题,寻求解决方案。
-各小组汇报讨论成果,分享解题思路和心得。
-教师对各组的表现进行点评,总结讨论成果,强调重点问题。
(五)总结归纳
1.教学内容:对本节课的知识点进行总结,帮助学生梳理所学内容,提高他们的数学素养。
教学过程:
-教师引导学生回顾本节课所学的圆周角的定义、性质、定理及推论。
-学生分享学习心得,总结自己在学习圆周角过程中的收获和困惑。
-教师对学生的总结进行补充和指导,强调圆周角知识在实际生活中的应用。
-布置课后作业,要求学生运用所学知识解决实际问题,为下一节课的学习做好铺垫。
3.教学评价:
-采用多元化评价方式,包括课堂问答、课后作业、小组讨论、拓展题完成情况等,全面了解学生的学习状况;
-关注学生的个体差异,给予每个学生个性化的评价,鼓励他们不断进步;
-注重过程性评价,关注学生在课堂上的参与度、合作意识和思考过程,培养他们的自主学习能力。
4.教学策略:
-针对不同层次的学生,制定分层教学目标,使每个学生都能在原有基础上得到提高;
人教版九年级上册数学24.1.4圆周角优秀教学案例
1.利用多媒体课件,讲解圆周角的定义及其性质。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.运用几何图形,解释圆周角定理及其推论。
在讲授新知环节,我将利用多媒体课件,讲解圆周角的定义及其性质。通过动画演示,让学生直观地感受圆周角的形成过程。在此基础上,我会运用几何图形,解释圆周角定理及其推论。在这个过程中,注重引导学生积极参与,鼓励他们提出问题,以便更好地理解和掌握圆周角的知识。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论。
2.让学生通过合作、交流,共同探究圆周角的性质。
3.组织学生展示讨论成果,分享彼此的想法和收获。
三、教学策略
(一)情景创设
1.利用多媒体课件,展示生活中的圆周角实例,引导学生认识圆周角。
2.通过动画演示,让学生直观地感受圆周角的形成过程。
3.设计有趣的数学问题,激发学生的求知欲。
在情景创设方面,我将运用多媒体课件,以生动形象的方式展示圆周角的特点,帮助学生建立起空间观念。通过展示生活中的圆周角实例,引导学生认识圆周角,激发他们的学习兴趣。同时,设计有趣的数学问题,激发学生的求知欲,让他们在解决问题的过程中,自然而然地引入圆周角的知识。
人教版九年级上册数学24.1.4圆周角优秀教学案例
一、案例背景
本节内容为人教版九年级上册数学24.1.4圆周角,旨在让学生掌握圆周角的定义、性质及其在几何中的应用。通过对圆周角的学习,培养学生观察、思考、推理的能力,提高他们的空间想象力。
圆周角是圆心角的一种,它在圆中具有重要的地位。在本节内容中,学生需要了解圆周角的定义、性质,并能运用圆周角定理解决实际问题。在教学过程中,我将结合生活实例,引导学生认识圆周角,并通过小组合作、讨论交流的方式,让学生探究圆周角的性质,从而提高他们的合作意识和解决问题的能力。
人教版数学九年级上册教学设计24.1.4《圆周角》
人教版数学九年级上册教学设计24.1.4《圆周角》一. 教材分析《圆周角》是人教版数学九年级上册第24章的一部分,主要介绍了圆周角的定义、性质和应用。
通过本节课的学习,学生能够理解圆周角的概念,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的定义、半径、直径等。
同时,学生也具备了一定的观察、分析和解决问题的能力。
但是,对于圆周角的定义和性质,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.知识与技能:理解圆周角的定义,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。
2.过程与方法:通过观察、分析和归纳,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.圆周角的定义和性质。
2.运用圆周角解决实际问题。
五. 教学方法1.讲授法:通过讲解圆周角的定义和性质,引导学生理解和掌握相关知识。
2.案例分析法:通过分析具体案例,让学生更好地理解圆周角的运用。
3.小组讨论法:通过小组讨论,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.课件:制作相关的课件,包括圆周角的定义、性质和应用等方面的内容。
2.案例:准备一些具体的案例,用于分析和解决实际问题。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)利用课件呈现圆周角的定义和性质,让学生初步了解并掌握相关知识。
3.操练(15分钟)让学生通过观察和分析具体的案例,运用圆周角的知识解决问题,巩固所学内容。
4.巩固(5分钟)让学生完成一些练习题,检查对圆周角知识的掌握程度,并对存在的问题进行讲解和辅导。
5.拓展(5分钟)引导学生进一步思考和探讨圆周角在实际问题中的应用,培养学生的解决问题的能力。
人教版九年级数学上册24.1.4《圆周角》教学设计
人教版九年级数学上册24.1.4《圆周角》教学设计一. 教材分析《圆周角》是人民教育出版社九年级数学上册第24章《圆》的第四节内容。
本节主要让学生通过探究圆周角的性质,掌握圆周角定理及其推论,并能在实际问题中运用。
圆周角定理是圆的内接四边形定理的重要组成部分,对于学生理解圆的性质,解决与圆有关的问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。
但学生对于圆周角的理解和应用还不够深入,需要通过本节内容的学习,进一步巩固和提高。
同时,学生对于几何图形的观察和分析能力有待提高,需要在教学过程中加强引导和培养。
三. 教学目标1.知识与技能目标:使学生掌握圆周角定理及其推论,能运用圆周角定理解决简单问题。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:圆周角定理及其推论。
2.难点:圆周角定理的证明和应用。
五. 教学方法1.采用问题驱动法,引导学生观察、分析、推理,从而得出圆周角定理。
2.运用案例教学法,让学生通过实际问题,运用圆周角定理解决问题。
3.采用小组合作学习法,培养学生的团队合作意识。
六. 教学准备1.准备相关的几何模型和图片,以便于学生观察和分析。
2.准备一些实际问题,供学生练习和应用。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用PPT展示一些与圆有关的实际问题,引导学生思考圆周角的概念。
2.呈现(10分钟)利用PPT展示圆周角定理的内容,让学生初步了解圆周角定理。
3.操练(10分钟)让学生分组讨论,通过观察、分析、推理,证明圆周角定理。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用圆周角定理解决一些实际问题,巩固所学知识。
5.拓展(10分钟)让学生进一步探索圆周角定理的推论,了解圆周角定理在几何中的应用。
24.1.4 圆周角 人教版数学九年级上册教案
24.1.4 圆周角一、【教材分析】知识技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明.过程方法1、培养学生观察、分析、想象、归纳和逻辑推理的能力;2、渗透由“特殊到一般”,由“一般到特殊”,体验分类讨论的数学思想方法.教学目标情感态度敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点圆周角定理及定理的三个推论的应用.教学难点圆周角定理的证明,三个推论的灵活应用.二、【教学流程】教学环节问题设计师生活动二次备课情景创设观察与思考:(教师边演示自制教具边介绍,其中底面圆片上标注好有关的字母、线条)假设这是一个圆柱形的房子,同学们可以站在房中通过圆弧形玻璃窗AB向外观看外面的风景,同学甲站在圆心O的位置,同学乙站在正创设问题情境,开展学习活动,引起学生学习的兴趣图图c图画出来.3、利用第2题的图形,分别证明图a、图b、图c中的∠B OC=2∠B AC.4、用自己的语言说出圆周角定理的内容是什么?(1)在同圆或等圆中,同弧或等弧所对的圆周角相等;动,归纳出:⑴在圆周角的一条边上(如图a);⑵在圆周角的内部(如图b);⑶在圆周角的外部(如图c).学生自己独立完成图a的证明.对于图b、图c两种情况的证明,我们可以先尝试让学生小组交流,寻找证题方法,教师可以参与小组讨论,及时给予引导、点拨,然后板书展示证明过程,最后全班进行点评,引导学生体会“转换化归”在解决从特殊到一般问题时的应用思路和方法.以小组为单位讨论、探索,教师参与其中,指导帮助学生完成问题的解答.最后归纳通过制作演示折纸,培养学生动手操作的能力,促进学生参与教学的意识的形成.学会分类讨论、转换化归是教学突破的关键通过观察、交流、归纳,锻炼学生的逻辑思维能力,体验分类讨论的数学思想方法C三、【板书设计】四、【教后反思】本节课首先设计了一个问题情境,展示了圆心角与圆周角的位置关系,引出圆周角的概念.然后通过测量、猜想,得出同弧所对的圆周角等于圆心角的一半的结论.接着通过让学生折纸,观察与思考,利用分类讨论的思想方法,分三种情况给出系统的证明及思维过程.至此我们利用迁移、转化的思想方法化未知为已知,将圆周角的问题转化为圆心角来求解.其后为进一步探索圆周角的其他性质,我们又以设置的问题为导线,将学生带入到教学活动中,同时再次通过交流、讨论、合作、归纳出圆周角定理的三个推论,并运用它们进行解题,实现从认识到应用的转化.。
九年级数学上册(人教版)24.1.4圆周角(第一课时)优秀教学案例
1. 引导探究:引导学生观察、分析圆周角与圆心角的关系,引导学生归纳总结圆周角定理;
2. 解决问题:让学生运用圆周角定理解决实际问题,提高解决问题的能力;
3. 拓展思考:设计拓展性问题,如“圆周角定理在其他几何图形中的应用”,引导学生深入思考,提高逻辑思维能力。
问题导向环节是本节课的核心部分。在这一环节,我会引导学生观察、分析圆周角与圆心角的关系,让学生通过自主探究,归纳总结出圆周角定理。在解决问题环节,我会设计不同难度的题目,让学生运用所学知识解决实际问题,提高解决问题的能力。此外,我还会设计拓展性问题,激发学生的思考兴趣,提高学生的逻辑思维能力。
2. 问题情境:设计具有启发性的问题,如“圆周角与圆心角有什么关系?”,引导学生主动探究,引发思考;
3. 实践情境:让学生亲自动手作图,体验圆周角定理的应用,提高实践能力。
在情景创设环节,我会注重引导学生观察生活中的圆形物体,让学生感受到数学与生活的紧密联系。通过设计具有启发性的问题,激发学生的求知欲,引导学生主动探究。同时,我会组织学生进行实践操作,让学生在动手实践中体验圆周角定理的应用,提高实践能力。
(三)学生小组讨论
1. 讨论问题:让学生分组讨论如何运用圆周角定理解决实际问题;
2. 分享讨论成果:鼓励学生分享讨论过程中的收获和感悟,互相学习;
3. 教师指导:针对学生的讨论情况进行点评,引导学生进一步思考。
在学生小组讨论环节,我会提出讨论问题,让学生分组讨论如何运用圆周角定理解决实际问题。在讨论过程中,我会巡回指导,关注学生的讨论情况。讨论结束后,鼓励学生分享讨论成果,互相学习。最后,我会针对学生的讨论情况进行点评,引导学生进一步思考。
2. 问题导向的教学方式:通过设计具有启发性的问题,如“圆周角与圆心角有什么关系?”引导学生主动探究,引发思考。这种问题导向的教学方式,能够有效地激发学生的求知欲,培养学生的逻辑思维能力,并且能够让学生在学习过程中始终保持积极的状态。
人教版数学九年级上册24.1.4圆周角(第2课时)教学设计
(一)导入新课
1.教学活动设计:
-利用多媒体展示生活中含有圆周角的物体,如时钟、风扇、自行车轮等,引导学生观察并思考这些物体上的圆周角特点。
-提问学生:“你们知道什么是圆周角吗?圆周角有哪些特点?”激发学生对圆周角的兴趣。
2.教学目的:
-通过生活中的实例,让学生感知圆周角的存在,为新课的学习做好铺垫。
2.自主探究,构建概念:
-让学生通过画圆、量角等活动,直观感受圆周角的特点。
-引导学生通过小组合作,探讨圆周角的定义,推导圆周角定理及推论。
-教师适时给予提示和引导,帮助学生理解圆周角的性质和定理。
3.实践应用,巩固知识:
-设计具有挑战性的练习题,让学生独立完成,巩固圆周角的知识。
-通过实际案例,如园林设计、道路规划等,让学生运用圆周角知识解决实际问题。
-对本节课学习的圆周角的定义、定理、推论进行梳理和归纳。
-总结圆周角知识在实际生活中的应用。
2.教学方法:
-学生分享学习体会,总结圆周角知识的关键点。
-教师点评学生的发言,强调重点知识,并对本节课进行总结。
五、作业布置
为了巩固学生对圆周角知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
-激发学生的好奇心,引导学生积极思考,为新知的探究奠定基础。
(二)讲授新知
1.教学内容:
-圆周角的定义:从圆上任意两点分别向圆内引两条不重合的射线,所形成的角叫做圆周角。
-圆周角定理:ห้องสมุดไป่ตู้周角的度数等于它所对圆弧的度数的一半。
-圆周角推论:圆内接四边形的对角互补。
2.教学方法:
-采用讲解、演示、举例等教学方法,让学生理解圆周角的定义及性质。
人民教育出版社九年级数学上册第二十四章24.1.4圆周角教学设计
(四)课堂练习
1.教师设计具有梯度、层次的练习题,让学生独立解答,巩固所学知识。
2.练习题包括以下类型:
a.基础题:直接应用圆周角定理求解;
b.提高题:涉及圆周角定理推论的应用;
c.拓展题:综合运用圆周角定理及相关知识解决问题。
3.教师针对学生的答题情况,进行个别辅导,解答学生的疑问。
3.部分学生对数学学科存在恐惧心理,对几何知识的学习兴趣不高。教师应关注这部分学生的情感态度,通过设计生动有趣的教学活动和实例,激发他们的学习兴趣。
4.学生的自主学习能力和探究精神有待提高。教师应鼓励学生在课堂上积极思考、提问,培养他们独立解决问题的能力。
针对以上学情,教师在教学过程中应采取有针对性的教学策略,关注学生的个体差异,激发学生的学习兴趣,提高他们的几何素养。
(五)总结归纳
1.教师带领学生回顾本节课所学内容,总结圆周角定理及其推论。
2.学生分享自己在学习过程中的收获和感悟,教师给予肯定和鼓励。
3.教师强调本节课的重点和难点,提醒学生加强课后练习和巩固。
4.教师布置课后作业,要求学生独立完成,固学生对圆周角知识的掌握,提高他们的几何素养,特布置以下作业:
3.教师在批改作业时,及时给予评价和反馈,指导学生改进学习方法,提高学习效果。
1.基础知识巩固:
完成课本练习题24.1.4中的1-6题,要求学生熟练掌握圆周角定理及其推论,并能运用相关知识解决简单问题。
2.提高题训练:
完成课本练习题24.1.4中的7-10题,这部分题目涉及圆周角定理的灵活运用,旨在培养学生分析问题和解决问题的能力。
3.拓展题挑战:
完成课本练习题24.1.4中的11-15题,这部分题目具有一定的难度,要求学生综合运用所学知识,提高逻辑思维和空间想象力。
人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论优秀教学案例
3.教师关注每个小组的学习进度,及时给予指导和鼓励,使他们在合作中共同成长。
(四)总结归纳
1.教师引导学生进行总结,让学生回顾本节课所学的内容,巩固知识点。
2.教师通过归纳总结,提炼出圆周角定理的重要性和应用价值,使学生能够更好地理解和掌握。
3.教师对学生的学习情况进行评价,鼓励他们继续保持良好的学习态度。
(五)作业小结
1.教师布置相关的作业,让学生巩固所学知识,提高他们的应用能力。
2.教师要求学生.教师对学生的作业进行批改和评价,及时给予反馈,帮助学生提高。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我注重导入新课,讲授新知,引导学生进行小组讨论,进行总结归纳,以及布置作业小结。通过这五个方面的教学内容与过程,我希望能够为学生提供一个全面、深入的学习平台,帮助他们更好地理解和掌握圆周角定理及推论,提高他们的数学素养。
在教学过程中,我关注每一个学生的学习状态,及时给予反馈和鼓励,使他们在课堂上充分展示自己。针对不同学生的学习需求,我采取个性化的辅导措施,使他们在原有基础上得到提高。
此外,我还注重培养学生的团队协作能力和表达能力。在课堂讨论环节,我鼓励学生积极参与,表达自己的观点,与他人交流,从而提高他们的沟通能力和合作意识。
3.学生通过小组合作、讨论交流,培养他们的团队合作精神和沟通能力,提高他们的人际交往能力。
4.学生能够在学习过程中,养成积极思考、主动探究的良好学习习惯,培养他们的自主学习能力。
作为一名特级教师,我始终坚持以学生为中心,关注每一个学生的全面发展。在教学过程中,我注重知识的传授与技能的培养,更注重学生过程与方法的体验,以及情感态度与价值观的塑造。通过制定这份详细的教学目标,我希望能够为学生提供一个全面、深入的学习平台,帮助他们更好地理解和掌握圆周角定理及推论,提高他们的数学素养。
学案2:24.1.4圆周角
24.1.4圆周角学习目标:1、经历探索圆周角的有关性质的过程2、知道圆周角定义,掌握圆周角定理,会用定理进行推证和计算3、体会分类、转化等数学思想学习重点:圆周角的性质及应用学习难点:圆周角的性质及应用教学过程:一、问题情境:我们学过哪些与圆有关的角?它们之间有什么关系?二、探究学习尝试、交流(1)BC是☉O的直径,它所对的圆周角是锐角、还是钝角、还是直角?为么?(2)圆周角∠BAC=900,弦BC过圆心吗?为什么?2、总结:直径所对的圆周角是角,900的圆周角所对的弦是。
三、例题:例1、AB是☉O直径,弦CD与AB相交于点E,∠ACD=600,∠ADC=500,求∠CEB的度数.例2、如图,△ABC的3个顶点都在⊙O上,AD是△ABC的高,AE是⊙O的直径,△ABE 与△ACD相似吗?为什么?例3、已知,如图,AB是⊙O的直径,OD⊥AB,DB交⊙O于点C.(1) 求证:BO·AB=BC·BD(2)求证:2BO2=BC·BD课堂小结:1、探索了圆周角的有关性质2、圆周角定义、圆周角定理,会用定理进行推证和计算3、体会分类、转化等数学思想课堂练习:如图,AB、CD是⊙O的直径,弦CE∥AB. 弧BD与弧BE相等吗?为什么?2、如图,△ABC的3个顶点都在⊙O上,直径AD=4,∠ABC=∠DAC,求AC的长。
3、如图,AB是⊙O的直径,CD是⊙O的弦,AB=6, ∠DCB=30°,求弦BD的长。
答案1.相等连结OE,因为∠DOE和∠DCE分别是弧DE的圆心角和圆周角,所以∠DOE等于2∠DCE 又因为CE平行于AB,所以∠DOB和∠DCE相等,即等于1/2∠DCE,所以∠DOB=∠BOE,所以弧BD与弧BE相等2.连接CD,∵AD是直径,∴∠ACD=90°,∵∠ABC=∠DAC,∠ADC=∠ABC,∴∠ADC=∠DAC=45°,∵直径AD=4,∴AC=AD•cos45°=23.∠DAB=∠DCB=30°而∠ADB=90°∴BD=3。
24.1.4圆周角(教案)-2024学年人教版数学九年级上册
1.理论介绍:首先,我们要了解圆周角的基本概念。圆周角是指圆上任意两点所夹的角,它是圆心角的一半。圆周角在几何图形的求解中具有重要作用,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,展示圆周角在实际中的应用,以及它如何帮助我们解决问题。
a.引导学生通过画图,观察圆周角与圆心角的关系。
b.通过小组讨论,引导学生发现并理解圆周角定理的推论。
c.教师提供多个变式图形,让学生尝试应用推论解决问题,加强理解和记忆。
d.在解决实际问题时,教师指导学生如何识别问题类型,选择合适的方法运用圆周角定理及其推论。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆周角》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解圆中角度的情况?”(例如:在自行车轮的转动中,如何计算轮子上的一个扇形区域的角度?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、圆周角定理及其推论的重要性。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-推导和应用圆周角定理的推论:学生需掌握推论的逻辑推理过程,并能够在不同的问题情境中应用。
-识别和应用圆内接四边形的性质:学生需要能够识别圆内接四边形,并运用其对角互补性质解决几何问题。
九年级数学上册高效课堂(人教版)24.1.4圆周角(第1课时)优秀教学案例
3.教师可以设计一些练习题,让学生在解决问题的过程中,巩固对圆周角的理解和应用能力。
(三)小组合作
1.教师将学生分成小组,鼓励学生进行合作学习和讨论,共同探究圆周角的性质和定理。
2.教师可以设计一些小组活动,如一起完成一个关于圆周角的实验或调查,促进学生之间的交流和合作。
3.教师对小组合作的过程进行观察和评估,及时给予反馈和指导,提高学生的小组合作效果。
2.教师设计一些小组活动,如一起完成一个关于圆周角的实验或调查,促进学生之间的交流和合作。
3.教师对小组合作的过程进行观察和评估,及时给予反馈和指导,提高学生的小组合作效果。
(四)总结归纳
1.教师引导学生进行自我反思,回顾和总结自己在学习圆周角过程中的理解和困惑,培养学生的自我评价能力。
2.教师通过提问、讨论等方式,引导学生对圆周角的学习内容进行评价,帮助学生形成全面、深入的理解。
3.教师对学生的学习成果进行评价,关注学生的知识掌握和能力发展,给予积极的反馈和鼓励,激发学生的学习动力。
(五)作业小结
1.教师布置一些与圆周角相关的作业,让学生巩固所学知识和技能,提高解决问题的能力。
2.教师要求学生在作业中运用圆周角定理,解决一些实际问题,培养学生的应用能力。
3.教师对学生的作业进行批改和评价,及时给予反馈和指导,帮助学生提高作业质量。
五、案例亮点
1.生活情境的引入:教师通过展示生活中的圆形物体,如硬币、圆桌等,引导学生观察和思考圆周角的现象,激发了学生的兴趣和好奇心。这种生活情境的引入使得学生能够更好地理解和贴近实际生活中的数学问题,提高了学生的学习动力。
人教版九年级上册数学学案:24.1.4圆周角(1)
O A B C24.1.4圆周角(1)【学习目标】1、使学生理解圆周角的概念,掌握圆周角定理及其推论,并运用它们进行论证和计算。
2、了解分类思想和完全归纳的思想。
【自主学习】(阅读教材P85-86,自主完成下列题目,然后师友互查,互助完善)知识点1:圆周角的概念1、圆周角定义: 叫圆周角.2、判断下列各图形中的是不是圆周角.(A )2个, (B )3个, (C )4个, (D )5个。
3、圆周角的两个特征: ① 角的顶点在 ;② 角的两边都 。
知识点2:圆周角定理及其推论1、分别度量下图中AB 所对的两个圆周角∠C ,∠D 的度数,比较一下,∠C_______∠D 。
变动点C 的位置,圆周角的度数有没有发生变化?(1)一个弧上所对的圆周角的个数有多少个?(2)同弧所对的圆周角的度数是否发生变化?(3)同弧上的圆周角与圆心角有什么关系?2、如图所示,在⊙O 任取一个圆周角∠BAC ,将圆对折,使折痕经过圆心O 和圆周角的顶点C ,这时折痕可能下图出现三种情况:观察分析这三种情况中AB 所对的圆周角与它所对圆心角的数量关系(1)如图1,当圆周角∠BAC 的一边AB 刚好是折痕(⊙O 的直径)时;(2)如图2,当圆周角∠BAC 的两边AB 、AC 在折痕(⊙O 的直径AD)的两侧时;(3)如图3,当圆周角∠BAC 的两边AB 、AC 在折痕(⊙O 的直径AD)的同侧时。
我们可以总结归纳出:圆周角定理:同弧或等弧所对的圆周角_____,都等于___________的 的一半.3.如图,BC 是⊙O 的直径,它所对的圆周角是锐角、钝角,还是直角?为什么?在⊙O 中,圆周角∠BAC=90°,弦BC 经过圆心吗?为什么?归纳自己总结的结论:半圆(或直径)所对的圆周角是_______,90°的圆周角所对的弦是________。
【尝试应用】(先自主完成,然后师友交流,简单的知识学友讲给师傅听,较难理解的问题,师傅给学友讲解,师友探究后仍有疑问的问题与组内其他师友交流.师友展示.)1、将量角器按如图1所示的方式放置在三角形纸板上,使点C 在半圆上.A 、B 的读数分别为86°、30°,则∠ACB 的大小为( )A .15B .28C .29D .342、如图,⊙O 是△ABC 的外接圆,连结OB 、OC ,若OB=BC ,则∠BAC=( )A 、60°B 、45°C 、30°D 、20°3、如图5,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =500 ,则∠OCD 的度数是( )A .40°B .45°C .50°D .60°4、已知:如图,四边形ABCD 的四个顶点都在圆上,且AB ∥CD . 求证:AB=CD【拓展提高】(先自主完成,然后师友交流,师友交流后仍有问题的再与小组其他师友交流解决)1.如图,AB 是⊙O 的直径,弦CD 与AB 相交于点E ,∠ACD=60°,∠ADC=50°,求∠CEB 的度数.【总结提升】(师友总结评价本节课的得与失,知识点的掌握、数学思想方法的运用、存在的困惑等)【课后感悟】︒︒︒︒A C O A B C O D 第1题图 第2题图 第3题图 第4题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版九年级上册数学精品资料设计
最新人教版九年级上册数学精品资料设计 1 24.1.4 圆周角
姓 名: 班级: 组别: 评定等级
【自主学习】
(一)复习巩固:
1.圆周角的定义.
2.圆周角定理.
3.在半径为R 的圆内,长为R 的弦所对的圆周角为 .
(二)新知导学
1.直径(或半圆)所对的圆周角是 .
2.900的圆周角所对的弦是 .
3.圆的内接多边形,多边形的内接圆。
圆内接四边形的对角 。
【合作探究】
如图,AB 是⊙O 的直径,AB=AC ,D 、E 在⊙O 上.求证:BD=DE .
【自我检测】
1.如图,AB 是⊙O 的直径,∠AOD 是圆心角,∠BCD 是圆周角.若∠BCD=25°,
则∠AOD= .
2.如图,⊙O 直径MN ⊥AB 于P ,∠BMN=30°,则∠AON= .
3.如图,A 、B 、C 是⊙O 上三点,∠BAC 的平分线AM 交BC 于点D ,交⊙O 于点M .若∠BAC=60°,∠ABC=50°,则∠CBM= ,∠AMB= .
4.如图,⊙O 中,两条弦AB ⊥BC ,AB=6,BC=8,求⊙O 的半径= .
5.下列说法正确的是( )
A .顶点在圆上的角是圆周角
B .两边都和圆相交的角是圆周角
C .圆心角是圆周角的2倍
D .圆周角度数等于它所对圆心角度数的一半
6.下列说法错误的是( )
A .等弧所对圆周角相等
B .同弧所对圆周角相等
C .同圆中,相等的圆周角所对弧也相等.
D .同圆中,等弦所对的圆周角相等
7.在⊙O 中,同弦所对的圆周角( )
A .相等
B .互补
C .相等或互补
D .都不对
8.如图,在⊙O 中,弦AD=弦DC ,则图中相等的圆周角的对数是( )
A .5对
B .6对
C .7对
D .8对。