完整三角函数公式表 - 成人高考资讯网 -- 成考生的网络家园!

合集下载

三角函数公式大全

三角函数公式大全

三角函数公式大全三角函数是数学中非常重要的一个分支,广泛应用于物理学、工程学、计算机科学等多个领域。

下面为大家带来一份三角函数公式大全。

一、基本三角函数1、正弦函数(sin):在直角三角形中,一个锐角的正弦是它的对边与斜边的比值。

即 sinA = a / c (其中 A 为锐角,a 为 A 的对边,c 为斜边)。

2、余弦函数(cos):一个锐角的余弦是它的邻边与斜边的比值。

即 cosA = b / c (其中 b 为 A 的邻边)。

3、正切函数(tan):一个锐角的正切是它的对边与邻边的比值。

即 tanA = a / b 。

二、同角三角函数基本关系1、平方关系:sin²A + cos²A = 1 。

2、商数关系:tanA = sinA / cosA 。

三、诱导公式1、终边相同的角的三角函数值相等:sin(2kπ + A) = sinA ,cos(2kπ + A) = cosA ,tan(2kπ + A) = tanA (k ∈ Z)。

2、关于 x 轴对称:sin(A) = sinA ,cos(A) = cosA ,tan(A) =tanA 。

3、关于 y 轴对称:sin(π A) = sinA ,cos(π A) = cosA ,tan(π A) = tanA 。

4、关于原点对称:sin(π + A) = sinA ,cos(π + A) = cosA ,tan(π + A) = tanA 。

5、 90°相关:sin(π/2 A) = cosA ,cos(π/2 A) = sinA 。

四、两角和与差的三角函数公式1、两角和的正弦:sin(A + B) = sinAcosB + cosAsinB 。

2、两角差的正弦:sin(A B) = sinAcosB cosAsinB 。

3、两角和的余弦:cos(A + B) = cosAcosB sinAsinB 。

4、两角差的余弦:cos(A B) = cosAcosB + sinAsinB 。

三角函数公式全解

三角函数公式全解

三角函数定义及其三角函数公式大全一:三角函数公式大全同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαtan(π+α)=tanαcot(π+α)=cotα两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)tanβtan(α-β)=——————1+ta nα ·tanβ半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+ 1βα-βsinα+sinβ=2sin—--·cos—-—2 2α+βα-βsinα-sinβ=2cos—--·sin—-—2 2α+βα-βcosα+cosβ=2cos—--·cos—-—2 2α+βα-βcosα-cosβ=-2sin—--·sin—-—2 2sinα ·cosβ=-[sin(α+β)+sin(α-β)]21 cosα ·sinβ=-[sin(α+β)-sin(α-β)]21 cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=- -[cos (α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)二:初中三角函数公式及其定理1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

三角函数公式表大全

三角函数公式表大全

三角函数公式表大全以下是常用的三角函数公式表:1. 正弦函数(Sine Function):- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数与正弦函数的关系:cosθ = 邻边/斜边- 正弦函数的倒数:cosecθ = 1/sinθ- 余弦函数的倒数:secθ = 1/cosθ- 正弦函数的平方:sin^2θ + cos^2θ = 1- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ- 正弦函数的倍角公式:sin2θ = 2sinθcosθ2. 余弦函数(Cosine Function):- 余弦函数的定义:cosθ = 邻边/斜边- 正弦函数与余弦函数的关系:sinθ = 对边/斜边- 余弦函数的倒数:secθ = 1/cosθ- 正弦函数的倒数:cosecθ = 1/sinθ- 余弦函数的平方:cos^2θ + sin^2θ = 1- 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓sinαsinβ- 余弦函数的倍角公式:cos2θ = cos^2θ - sin^2θ3. 正切函数(Tangent Function):- 正切函数的定义:tanθ = 对边/邻边= sinθ/cosθ- 正切函数的倒数:cotθ = 1/tanθ = cosθ/sinθ- 正切函数与正弦、余弦的关系:tanθ = sinθ/cosθ = (对边/斜边) / (邻边/斜边) = 对边/邻边- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓tanαtanβ)4. 反三角函数:- 反正弦函数(Arcsine Function):sin⁻¹(x) = θ,其中-π/2 ≤ θ ≤ π/2- 反余弦函数(Arccosine Function):cos⁻¹(x) = θ,其中0 ≤ θ ≤ π- 反正切函数(Arctangent Function):tan⁻¹(x) = θ,其中-π/2 < θ < π/2这些是常用的三角函数公式,可以根据具体的问题和需要,灵活运用这些公式进行计算和推导。

完整三角函数公式表

完整三角函数公式表

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)?诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα??sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)?两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ??????????????tanα+tanβtan(α+β)=——————??????? 2tan(α/2) sinα=——————?????? 1+tan2(α/2) ???????1-tan2(α/2) cosα=——————?????? 1+tan2(α/2) ???????2tan(α/2)?????????????1-tanα ·tanβ??????????????tanα-tanβtan(α-β)=——————?????????????1+tanα ·tanβ tanα=——————??????1-tan2(α/2)?半角的正弦、余弦和正切公式三角函数的降幂公式??二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α??????? ?2tanαtan2α=—————?????? ?1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα???????3tanα-tan3αtan3α=——————?????? ?1-3tan2α??三角函数的和差化积公式三角函数的积化和差公式?????????????????α+β???????α-βsinα+sinβ=2sin———·cos———??????????????????2??????????2 ?????????????????α+β???????α-βsinα-sinβ=2cos———·sin———??????????????????2??????????2 ?????????????????α+β???????α-βcosα+cosβ=2cos———·cos———??????????????????2??????????2 ???????????????????α+β???????α-βcosα-cosβ=-2sin———·sin———????????????????????2??????????2???????????1sinα ·cosβ=-[sin(α+β)+sin(α-β)] ???????????2???????????1cosα ·sinβ=-[sin(α+β)-sin(α-β)] ???????????2???????????1cosα ·cosβ=-[cos(α+β)+cos(α-β)] ???????????2??????????????1sinα ·sinβ=—-[cos(α+β)-cos(α-β)]??????????????2?化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)arc sin x + arc sin y = arc sin x – arc sin y =?arc cos x + arc cos y = arc cos x – arc cos y =??arc tan x + arc tan y = arc tan x – arc tan y =?2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =?三角形中三角函数基本定理Tag: ? 点击:1522 【正弦定理】式中R为ABC的外接圆半径(图.【余弦定理】【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图,即勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.【正切定理】或【半角与边长的关系公式】式中,r为ABC的内切圆半径,且式中S为ABC的面积.。

(完整版)三角函数常用公式表

(完整版)三角函数常用公式表

1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; (2)、与α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈⋅+=,360|αββ}(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。

2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。

(2)、度数与弧度数的换算:π=180弧度,1弧度)180( =π(3)、弧长公式:r l ||α= (α是角的弧度数)扇形面积:2||2121r lr S α===3、三角函数 (1)、定义:(如图) (2)yry x r x xrx y r y ======ααααααcsc cot cos sec tan sin 4、同角三角函数基本关系式(1)平方关系: (2)商数关系: (3)倒数关系:1cos sin 22=+αα αααcos sin tan = 1cot tan =αα αα22sec tan 1=+ αααsin cos cot =1csc sin =αα αα22csc cot 1=+ 1sec cos =αα(4)同角三角函数的常见变形:(活用“1”) ①、αα22cos 1sin-=, αα2cos 1sin -±=;αα22sin 1cos -=, αα2sin 1cos -±=;②θθθθθθθ2sin 2cos sin sin cos cot tan 22=+=+,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±, |cos sin |2sin 1ααα±=±xy+ +_ _O xy++__ Oαtanxy+ +__O=r αsec αsinαtan αcotcsc5、诱导公式:(奇变偶不变,符号看象限)公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 补充:ααπααπααπcot )2tan(sin )2cos(cos )2sin(=-=-=- ααπααπααπcot )2tan(sin )2cos(cos )2sin(-=+-=+=+ ααπααπααπcot )23tan(sin )23cos(cos )23sin(=--=--=- ααπααπααπcot )23tan(sin )23cos(cos )23sin(-=+=+-=+6、两角和与差的正弦、余弦、正切 7 .辅角公式 ⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a(其中ϕ称为辅助角,ϕ的终边过点),(b a ,ab =ϕtan ) (多用于研究性质) 8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质) α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα (3)、二倍角公式的常用变形:①、|sin |22cos 1αα=-, |cos |22cos 1αα=+;②、|sin |2cos 2121αα=-, |cos |2cos 2121αα=+③22sin 1cos sin 21cos sin 22244ααααα-=-=+; ααα2cos sin cos 44=-;④半角:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan +-±=ααααcos 1sin sin cos 1+=-=9、三角函数的图象性质 (1)、函数的周期性:①、定义:对于函数f (x ),若存在一个非零常数T ,当x 取定义域内的每一个值时,都有:f (x +T )= f (x ),那么函数f (x )叫周期函数,非零常数T 叫这个函数的周期;②、如果函数f (x )的所有周期中存在一个最小的正数,这个最小的正数叫f (x )的最小正周期。

三角函数的公式大全

三角函数的公式大全

三角函数的公式大全1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A–Sin² A=2Cos² A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a)4、半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA) 5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA8、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα14、公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα√表示根号,包括{……}中的内容18、三角函数记忆口诀三角函数是函数,象限符号坐标注。

完整三角函数公式表

完整三角函数公式表

完整三角函数公式表三角函数是数学中的一个重要分支,可以用来描述角度和三角形。

在三角函数中,最常见的三个函数是正弦函数、余弦函数和正切函数。

这三个函数在数学和工程等学科的研究中有着广泛的应用。

下面是完整的三角函数公式表:一、正弦函数正弦函数又称为正弦曲线,是三角函数中最基本的函数之一。

正弦函数的定义域是整个实数集,值域是[-1,1]。

正弦函数的图像呈现出周期性的波动,因此被广泛应用于波动和振动的研究。

正弦函数的公式如下:$sin\theta=\frac{opposite}{hypotenuse}=\frac{y}{r}$其中,$\theta$表示角度,$y$表示三角形的垂直边长,$r$表示斜边长。

二、余弦函数余弦函数是三角函数中另一个基础函数,它描述的是角度的余弦值。

余弦函数的定义域是整个实数集,值域也是[-1,1]。

余弦函数的图像呈现出周期为$2\pi$的波动,与正弦曲线相比,它形状上有所不同。

余弦函数的公式如下:$cos\theta=\frac{adjacent}{hypotenuse}=\frac{x}{r}$其中,$\theta$表示角度,$x$表示三角形的水平边长,$r$表示斜边长。

三、正切函数正切函数是三角函数中的另一个常用函数,它描述的是角度的正切值。

正切函数的定义域是所有不等于$\frac{\pi}{2}+k\pi$的实数,值域是整个实数集。

正切函数是周期性函数,其周期为$\pi$。

正切函数的公式如下:$tan\theta=\frac{opposite}{adjacent}=\frac{y}{x}$其中,$\theta$表示角度,$y$表示三角形的垂直边长,$x$表示三角形的水平边长。

四、反正弦函数反正弦函数描述的是一个给定值的正弦函数所对应的角度。

反正弦函数的定义域是[-1,1],值域是$[-\frac{\pi}{2},\frac{\pi}{2}]$。

反正弦函数是单调递增的,因此可以将它应用于求解正弦函数逆运算。

完整版三角函数常用公式表

完整版三角函数常用公式表

1、角 :(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角;( 2)、与 终边相同的角,连同角 在内,都可以表示为会集{ |k 360 , k Z }( 3)、象限的角:在直角坐标系内,极点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。

2、弧度制 :( 1)、定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。

( 2)、度数与弧度数的换算:180弧度, 1 弧度( 180 )57 18'yP ( x ,y ) ( 3)、弧长公式: l || r ( 是角的弧度数)rx 2 y 2扇形面积: S1lr 1 | | r 2 r22x 3、三角函数 ( 1)、定义:(如图)( 2)、各象限的符号:siny y r tan x secr x cosx x r cotycscryyyy++_+_+OxOxOx___++_( 3)、 特别角的三角函数值sincostan的角度 0 30456090120 135 150180270 360的弧度2 353 26432 3462sin1 2 3 1 32 1 012 2 2222cos13 2 1 01 2 3 112 22222tan3 13—3 13 0—334、同角三角函数基本关系式sincos(1)平方关系:(2)商数关系:(3)倒数关系:sin 2cos21tansin tan cot1costancot11 tan 2sec 2cotcos sin csc1sin1 2csc 2cossec1seccsccot( 4)同角三角函数的常有变形: (活用“ 1”)①、 sin 21 cos2 , sin1 cos2 ; cos 21 sin2 , cos1 sin2 ;②tancotcos 2sin 22 , cottancos 2sin 2 2 cos2 2 cot 2sin cossin 2sin cos sin 2③ (sincos )2 1 2sin cos1sin 2 ,1 sin 2| sincos |5、引诱公式:(奇变偶不变,符号看象限) 公式一: sin( k 360 ) sincos(k360 ) costan(k 360 ) tan公式二:公式三:公式四:公式五:sin(180 ) sinsin(180 ) sin sin( ) sinsin(360 ) sin cos(180 ) cos cos(180 )coscos( ) cos cos(360 ) costan(180)tantan(180) tantan()tantan(360)tansin( )cossin()cos3)cossin(3) cossin(2222补充:cos()sincos()sincos(3)sincos(3)sin2222tan()cottan()cottan(3) cottan(3)cot22226、两角和与差的正弦、余弦、正切两角和与差的三角函数公式全能公式sin( ) sin cos cos sinsin2 tan( / 2) sin( ) sin coscos sin1 tan 2( / 2)cos( ) cos cos sin sin1 tan 2( / 2)cos() coscossin sincos1 tan 2(/ 2)tan tantan()1 tantan2 tan( / 2)tan1 tan 2( / 2)tan tantan()1 tantan7 . 辅角公式a sin x bcosxa 22asin xb2 cosxb22 a 2ba ba 2b 2 (sin x coscos x sin ) a 2 b 2 sin(x)(其中称为辅助角,的终边过点 (a,b) , tanb) (多用于研究性质)a8、二倍角公式 :( 1)、 S 2 :sin 22 sin cos( 2)、降次公式: (多用于研究性质)C 2 : cos 2cos2sin2sin cos1sin 221 2 sin22cos21sin21 cos21cos212 22 T 2 :tan 22 tancos 21 cos21 cos2 11 tan 222 2 ( 3)、二倍角公式的常用变形:①、1cos22 | sin | , 1 cos22 | cos|;②、 11cos2| sin |,11cos2| cos |2 222③ sin 4cos 41 2sin 2cos 21 sin2 2;cos 4sin 4cos2 ;2④半角: sin1 cos, cos1 cos , tan 1 cos1 cos sin22 1 cossin1 cos222三角函数的和差化积公式三角函数的积化和差公式sinsin 2sincossincos 1 sin() sin()222sinsin2cossincos sin1 sin( ) sin()222coscos 2coscoscoscos 1 cos( ) cos()2 22coscos2sinsinsinsin1cos( ) cos()2229、三角函数的图象性质( 1)、函数的周期性:①、定义:关于函数f ( x ),若存在一个非零常数 T ,当 x 取定义域内的每一个值时,都有: f ( x+T ) = f (x ),那么函数 f ( x )叫周期函数,非零常数 T 叫这个函数的周期;②、若是函数 f ( x )的所有周期中存在一个最小的正数,这个最小的正数叫f ( x )的最小正周期。

最全的三角函数公式

最全的三角函数公式

最全的三角函数公式三角函数是研究三角形边长与角度之间关系的数学函数。

在数学和物理等领域中,三角函数具有广泛的应用。

下面将介绍三角函数的定义、性质和常用公式。

一、正弦函数(sin)正弦函数的周期为2π,即sin(x)=sin(x+2π)。

常用的正弦函数的性质和公式如下:1. sin(π/2 - θ) = cosθ:这个公式表明正弦函数和余弦函数之间存在关系,可以用余弦函数表示正弦函数。

2. sin(-θ) = -sinθ:表示角的负数的正弦值等于负数乘以角的正弦值。

3. sin(θ + 2πn)= sinθ:这个公式表示正弦函数的周期性。

4. sin2θ = 2sinθcosθ:这个公式称为正弦函数的倍角公式。

5. sin(θ + φ) = sinθcosφ + cosθsinφ:这个公式称为正弦函数的和角公式。

二、余弦函数(cos)余弦函数的周期为2π,即cos(x)=cos(x+2π)。

常用的余弦函数的性质和公式如下:1. cos(π/2 - θ) = sinθ:这个公式表明余弦函数和正弦函数之间存在关系,可以用正弦函数表示余弦函数。

2. cos(-θ) = cosθ:表示角的负数的余弦值等于角的余弦值。

3. cos(θ + 2πn) = cosθ:这个公式表示余弦函数的周期性。

4. cos2θ = cos²θ - sin²θ:这个公式称为余弦函数的倍角公式。

5. cos(θ + φ) = cosθcosφ - sinθsinφ:这个公式称为余弦函数的和角公式。

三、正切函数(tan)正切函数的周期为π,即tan(x)=tan(x+π)。

常用的正切函数的性质和公式如下:1. tanθ = sinθ/cosθ:这个公式表示正切函数可以用正弦函数和余弦函数来表示。

2. tan(-θ) = -tanθ:表示角的负数的正切值等于负数乘以角的正切值。

3. tan(θ + πn) = tanθ:这个公式表示正切函数的周期性。

三角函数公式大全表格

三角函数公式大全表格

三角函数公式大全表格本文将为读者提供一个包含主要三角函数公式的大全表格。

请注意,本文所提供的公式仅表示一部分常用的三角函数公式,可能并不涵盖所有的情况。

对于更加复杂的问题,读者可参考相关教材或进行进一步的研究。

下面是三角函数公式大全表格:值域和周期函数值域周期正弦函数[-1, 1]2π余弦函数[-1, 1]2π正切函数(-∞, ∞)π余切函数(-∞, ∞)π正割函数(-∞, -1] ∪ [1, ∞)2π余割函数(-∞, -1] ∪ [1, ∞)2π三角函数的基本关系1.正弦函数(sine function):sinesine2.余弦函数(cosine function):cosinecosine3.正切函数(tangent function):tangenttangent4.余切函数(cotangent function):cotangentcotangent5.正割函数(secant function):secantsecant6.余割函数(cosecant function):cosecantcosecant三角函数的诱导公式1.正弦函数和余弦函数的诱导公式:sine_cosinesine_cosinecosine_sinecosine_sine2.正切函数和余切函数的诱导公式:tangent_cotangenttangent_cotangentcotangent_tangentcotangent_tangent三角函数的和差化简公式1.正弦函数和余弦函数的和差化简公式:sine_cosine_sumsine_cosine_sumcosine_sine_sumcosine_sine_sum2.正切函数和余切函数的和差化简公式:tangent_cotangent_sumtangent_cotangent_sumcotangent_tangent_sumcotangent_tangent_sum以上是三角函数公式大全的部分内容。

高数中常用到的三角函数公式总表

高数中常用到的三角函数公式总表

⾼数中常⽤到的三⾓函数公式总表三⾓公式总表⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ?π⒉正弦定理:A asin =B b sin =Cc sin = 2R (R 为三⾓形外接圆半径)⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cosc 2=a 2+b2-2ab C cos bca cb A 2cos 222-+=⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr =))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三⾓形内切圆半径)⒌同⾓关系:⑴商的关系:①θtg =x y =θθcos sin =θθsec sin ? ②θθθθθcsc cos sin cos ?===y x ctg ③θθθtg ry==cos sin ④θθθθcsc cos 1sec ?===tg x r ⑤θθθctg rx==sin cos ⑥θθθθsec sin 1csc ?===ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平⽅关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++=+b a b a(其中辅助⾓?与点(a,b )在同⼀象限,且ab tg =?)⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T =ωπ2, 频率f =T1, 相位?ω+?x ,初相?⒎五点作图法:令?ω+x 依次为ππππ2,23,,20 求出x 与y ,依点()y x ,作图⒏诱导公试三⾓函数值等于α的同名三⾓函数值,前⾯加上⼀个把α看作锐⾓时,原三⾓函数值的符号;即:函数名不变,符号看象限三⾓函数值等于α的异名三⾓函数值,前⾯加上⼀个把α看作锐⾓时,原三⾓函数值的符号;即:函数名改变,符号看象限⒐和差⾓公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(µ=± ③βαβαβαtg tg tg tg tg ?±=±µ1)( ④)1)((βαβαβαtg tg tg tg tg ?±=±µ⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ?-?-?-??-++=++1)( 其中当A+B+C=π时,有:i).tgC tgB tgA tgC tgB tgA ??=++ ii).1222222=++Ctg B tg C tg A tg B tg A tg ⒑⼆倍⾓公式:(含万能公式) ①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍⾓公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+?-?=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+?-?=+-=③)60()60(313323θθθθθθθ+?-?=--=tg tg tg tg tg tg tg ⒓半⾓公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin ⒕和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2 sin2sin 2cos cos βαβαβα-+-=- ⒖反三⾓函数:⒗最简单的三⾓⽅程。

完整三角函数公式表

完整三角函数公式表

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=c otαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————tan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=—-[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y =2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =三角形中三角函数基本定理Tag:三角函数点击: 1522 【正弦定理】式中R为ABC的外接圆半径(图1.3).【余弦定理】【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图1.4),即勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.【正切定理】或【半角与边长的关系公式】式中,r为ABC的内切圆半径,且式中S为ABC的面积.。

(完整版)三角函数常用公式表

(完整版)三角函数常用公式表

1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; (2)、与α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈⋅+=,360|αββ}(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。

2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。

(2)、度数与弧度数的换算:π=180弧度,1弧度)180( =π(3)、弧长公式:r l ||α= (α是角的弧度数)扇形面积:2||2121r lr S α===3、三角函数 (1)、定义:(如图) (2)yry x r x xrx y r y ======ααααααcsc cot cos sec tan sin 4、同角三角函数基本关系式(1)平方关系: (2)商数关系: (3)倒数关系:1cos sin 22=+αα αααcos sin tan = 1cot tan =αα αα22sec tan 1=+ αααsin cos cot =1csc sin =αα αα22csc cot 1=+ 1sec cos =αα(4)同角三角函数的常见变形:(活用“1”) ①、αα22cos 1sin-=, αα2cos 1sin -±=;αα22sin 1cos -=, αα2sin 1cos -±=;②θθθθθθθ2sin 2cos sin sin cos cot tan 22=+=+,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±, |cos sin |2sin 1ααα±=±xy+ +_ _O xy++__ Oαtanxy+ +__O=r αsec αsinαtan αcotcsc5、诱导公式:(奇变偶不变,符号看象限)公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 补充:ααπααπααπcot )2tan(sin )2cos(cos )2sin(=-=-=- ααπααπααπcot )2tan(sin )2cos(cos )2sin(-=+-=+=+ ααπααπααπcot )23tan(sin )23cos(cos )23sin(=--=--=- ααπααπααπcot )23tan(sin )23cos(cos )23sin(-=+=+-=+6、两角和与差的正弦、余弦、正切 7 .辅角公式 ⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a(其中ϕ称为辅助角,ϕ的终边过点),(b a ,ab =ϕtan ) (多用于研究性质) 8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质) α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα (3)、二倍角公式的常用变形:①、|sin |22cos 1αα=-, |cos |22cos 1αα=+;②、|sin |2cos 2121αα=-, |cos |2cos 2121αα=+③22sin 1cos sin 21cos sin 22244ααααα-=-=+; ααα2cos sin cos 44=-;④半角:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan +-±=ααααcos 1sin sin cos 1+=-=9、三角函数的图象性质 (1)、函数的周期性:①、定义:对于函数f (x ),若存在一个非零常数T ,当x 取定义域内的每一个值时,都有:f (x +T )= f (x ),那么函数f (x )叫周期函数,非零常数T 叫这个函数的周期;②、如果函数f (x )的所有周期中存在一个最小的正数,这个最小的正数叫f (x )的最小正周期。

三角函数公式大全

三角函数公式大全

三角函数公式大全三角函数是数学中的重要概念,它们描述了角度与三角形各边之间的关系。

在数学和物理领域中,三角函数公式被广泛应用。

本文将为您提供一个三角函数公式的大全,包括正弦、余弦、正切、余切、正割和余割的常见公式及其推导。

一、正弦函数公式:1. 正弦函数的定义:在直角三角形中,正弦函数定义为对边与斜边的比值。

记作sinθ = a/c,其中θ为角度,a为对边长,c为斜边长。

2. 基本正弦函数公式:正弦函数的值在一个周期内的变化可用以下公式表示:sin(θ + 2πn) = sinθ,其中n为任意整数。

sin(π - θ) = sinθ。

sin(π + θ) = -sinθ。

3. 正弦函数的和差公式:sin(A + B) = sinAcosB + cosAsinB。

sin(A - B) = sinAcosB - cosAsinB。

4. 正弦函数的倍角公式:sin2θ = 2sinθcosθ。

sin2θ = 1 - 2cos²θ。

sin3θ = 3sinθ - 4sin³θ。

二、余弦函数公式:1. 余弦函数的定义:在直角三角形中,余弦函数定义为邻边与斜边的比值。

记作cosθ = b/c,其中θ为角度,b为邻边长,c为斜边长。

2. 基本余弦函数公式:余弦函数的值在一个周期内的变化可用以下公式表示:cos(θ + 2πn) = cosθ,其中n为任意整数。

cos(π - θ) = -cosθ。

cos(π + θ) = -cosθ。

3. 余弦函数的和差公式:cos(A + B) = cosAcosB - sinAsinB。

cos(A - B) = cosAcosB + sinAsinB。

4. 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ。

cos2θ = 2cos²θ - 1。

cos3θ = 4cos³θ - 3cosθ。

三、正切函数公式:1. 正切函数的定义:在直角三角形中,正切函数定义为对边与邻边的比值。

(完整版)大学用三角函数公式大全

(完整版)大学用三角函数公式大全

倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1cosα/sinα=cotα=cscα/secα1+cot^2(α)=csc^2(α)tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ双曲函数sh a = [e^a-e^(-a)]/2ch a = [e^a+e^(-a)]/2th a = sin h(a)/cos h(a)sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanα三角函数的诱导公式(六公式)公式一sin(-α) = -sinαtan (-α)=-tanα公式二sin(π/2-α) = cosαcos(π/2-α) = sinα公式三sin(π/2+α) = cosαcos(π/2+α) = -sinα公式四sin(π-α) = sinαcos(π-α) = -cosα公式五sin(π+α) = -sinαcos(π+α) = -cosα公式六tanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²]cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)^2+(cosα)^2=1(平方和公式)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2(csca)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。

完整版)完整三角函数公式表

完整版)完整三角函数公式表

完整版)完整三角函数公式表三角函数公式表同角三角函数的基本关系式三角函数是数学中的重要概念,它们在数学和物理学中都有广泛的应用。

同角三角函数的基本关系式包括倒数关系、商的关系和平方关系。

其中,倒数关系式如下:tan\alpha\cdot\cot\alpha=1$$sin\alpha\cdot\csc\alpha=1$$cos\alpha\cdot\sec\alpha=1$$商的关系式如下:frac{\sin\alpha}{\cos\alpha}=\tan\alpha=\frac{\sec\alpha}{\csc\alpha}$$frac{\cos\alpha}{\sin\alpha}=\cot\alpha=\frac{\csc\alpha}{\sec\alpha}$$平方关系式如下:sin^2\alpha+\cos^2\alpha=1$$2^2+ \tan^2\alpha=\sec^2\alpha$$1+\cot^2\alpha=\csc^2\alpha$$这些关系式可以用六边形记忆法和记忆方法来记忆。

其中,六边形记忆法是指图形结构“上弦中切下割,左正右余中间1”,而记忆方法是指对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

诱导公式诱导公式是指通过已知的三角函数值来推导其他角度的三角函数值的公式。

它们可以用口诀“奇变偶不变,符号看象限”来记忆。

具体来说,诱导公式包括三角函数的奇偶性和象限问题。

奇偶性公式如下:sin(-\alpha)=-\sin\alpha$$cos(-\alpha)=\cos\alpha$$tan(-\alpha)=-\tan\alpha$$cot(-\alpha)=-\cot\alpha$$象限问题公式如下:sin\left(\frac{3\pi}{2}-\alpha\right)=-\cos\alpha$$ cos\left(\frac{3\pi}{2}-\alpha\right)=-\sin\alpha$$ sin(2\pi-\alpha)=-\sin\alpha$$cos(2\pi-\alpha)=\cos\alpha$$tan\left(\frac{3\pi}{2}-\alpha\right)=\cot\alpha$$ tan(2\pi-\alpha)=-\tan\alpha$$cot\left(\frac{3\pi}{2}-\alpha\right)=\tan\alpha$$ cot(2\pi-\alpha)=-\cot\alpha$$另外,还有两个特殊的角度:sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$$cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha$$ tan\left(\frac{\pi}{2}-\alpha\right)=\cot\alpha$$ cot\left(\frac{\pi}{2}-\alpha\right)=\tan\alpha$$ sin\left(\frac{\pi}{2}+\alpha\right)=\cos\alpha$$ cos\left(\frac{\pi}{2}+\alpha\right)=-\sin\alpha$$ tan\left(\frac{\pi}{2}+\alpha\right)=-\cot\alpha$$ cot\left(\frac{\pi}{2}+\alpha\right)=-\tan\alpha$$ sin(\pi-\alpha)=\sin\alpha$$cos(\pi-\alpha)=-\cos\alpha$$tan(\pi-\alpha)=-\tan\alpha$$cot(\pi-\alpha)=-\cot\alpha$$sin(\pi+\alpha)=-\sin\alpha$$cos(\pi+\alpha)=-\cos\alpha$$tan(\pi+\alpha)=\tan\alpha$$cot(\pi+\alpha)=\cot\alpha$$两角和与差的三角函数公式最后,还有两角和与差的三角函数公式。

三角函数常用公式表格

三角函数常用公式表格

三角函数常用公式表格三角函数是数学中一个重要的分支,在几何、物理、工程等众多领域都有着广泛的应用。

为了方便学习和使用,我们将常见的三角函数公式整理成一个表格,并对每个公式进行详细的解释。

一、基本三角函数定义1、正弦函数(Sine Function):sin(θ) =对边/斜边2、余弦函数(Cosine Function):cos(θ) =邻边/斜边3、正切函数(Tangent Function):tan(θ) =对边/邻边二、同角三角函数基本关系1、平方关系:sin²(θ) +cos²(θ) = 1这意味着对于任何角度θ,正弦的平方加上余弦的平方总是等于1。

2、商数关系:tan(θ) =sin(θ) /cos(θ)只要余弦不为零,正切就等于正弦除以余弦。

三、诱导公式1、sin(θ) =sin(θ)2、cos(θ) =cos(θ)3、sin(π θ) =sin(θ)4、cos(π θ) =cos(θ)5、sin(π +θ) =sin(θ)6、cos(π +θ) =cos(θ)诱导公式可以帮助我们将不同象限的角度的三角函数值进行转化。

四、和差角公式1、sin(α +β) =sin(α)cos(β) +cos(α)sin(β)2、sin(α β) =sin(α)cos(β) cos(α)sin(β)3、cos(α +β) =cos(α)cos(β) sin(α)sin(β)4、cos(α β) =cos(α)cos(β) +sin(α)sin(β)这些公式在求解三角函数的和差运算时非常有用。

五、二倍角公式1、sin(2θ) =2sin(θ)cos(θ)2、cos(2θ) =cos²(θ) sin²(θ) =2cos²(θ) 1 =1 2sin²(θ)3、tan(2θ) =2tan(θ) /(1 tan²(θ))二倍角公式常用于将角度加倍时的三角函数计算。

三角函数公式大全

三角函数公式大全

三角函数公式大全三角函数常用公式:(^表示乘方,例如^2表示平方) 正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数vercosθ =1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]赞同50| 评论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cosα-cosβ=-2sin---·sin---
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
鸟欲高飞先振翅,人求上进先读书。——李苦禅
三角函数公式表
同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=-----
1-tan2α sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=------
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
1+tan2α=sec2α
1+cot2α=csc2α
(六边形记忆法:图形结构"上弦中切下割,左正右余中间1";记忆方法"对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。")
诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα
sinα-sinβ=2cos---·sin---
2 2
α+β α-β
cosα+cosβ=2cos---·cos---
2 2
α+β α-β
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=- -[cos(α+β)-cos(α-β)]
2 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
sinα=------
1+tan2(α/2)
1-tan2(α/2)
cosα=------
1+tan2(α/2)
2tan(α/2)
tanα=------
1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα
ta
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=------
1+tanα ·tanβ 2tan(α/2)
cot(2kπ+α)=cotα
(其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
鸟欲高飞先振翅,人求上进先读书。——李苦禅
1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β
sinα+sinβ=2sin---·cos---
2 2
α+β α-β
相关文档
最新文档