平面直角坐标系知识点及经典练习题

合集下载

七平面直角坐标系知识点 例题

七平面直角坐标系知识点 例题

平面直角坐标系一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。

1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; • 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

七、用坐标表示平移:见下图坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点象限角平分线上 的点X 轴 Y 轴 原点 平行X 轴 平行Y 轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0)(0,y )(0,0)纵坐标相同,横坐标不同横坐标相同,纵坐标不同x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m)P(x,y+a)向上平移a 个单位二、经典例题知识一、坐标系的理解例1、平面内点的坐标是( )A 一个点B 一个图形C 一个数对D 一个有序数对学生自测1.在平面内要确定一个点的位置,一般需要________个数据; 在空间内要确定一个点的位置,一般需要________个数据.2、在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x 轴上,坐标为(x,0)在x 轴的负半轴上时,x<0, 在x 轴的正半轴上时,x>0 点在y 轴上,坐标为(0,y )在y 轴的负半轴上时,y<0, 在y 轴的正半轴上时,y>0 第一、三象限角平分线上的点的横纵坐标相同(即在y=x 直线上);坐标点(x ,y )xy>0 第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x 直线上);坐标点(x ,y )xy<0 平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。

(完整版)平面直角坐标系知识点归纳及例题

(完整版)平面直角坐标系知识点归纳及例题

X平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0; 坐标轴上的点 不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1 )点P ( x, y )所在的象限 —►横、纵坐标X 、y 的取值的正负性;(2 )点P ( X, y )所在的数轴 —*■横、纵坐标X 、y 中必有一数为零;5、 在平面直角坐标系中,已知点p (a,b ),则(1) 点P 到X 轴的距离为b ;( 2 )点P 到y 轴的距离为(3) 点P 到原点o 的距离为PO = .a 2 b 26、 平行直线上的点的坐标特征:a )在与x 轴平行的直线上,所有点的纵坐标相等;b )在与y 轴平行的直线上,所有点的横坐标相等;d bJ_____ P(a,b) 1____________ 1-3 -2 -1 0 -1-2 -31a X点A 、B 的纵坐标都等于m ;象限 横坐标X 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限负 负 第四象限正负点C、D的横坐标都等于n ;X7、对称点的坐标特征:8、两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P ( m,n )在第一、三象限的角平分线上,则 b)若点P ( m,n )在第二、四象限的角平分线上,则习题1、在平面直角坐标系中,线段 BC// x 轴,则 A.点B 与C 的横坐标相等 BC •点B 与C 的横坐标与纵坐标分别相等D 2 •若点P (x, y)的坐标满足xy 0则点P 必在A.原点 B . x 轴上 C . y 轴上 D . x 轴或y 轴上 3.点P在x 轴上,且到y 轴的距离为5,则点P 的坐标是 (A. (5,0) B . (0,5) C . (5,0)或(-5,0) D . (0,5)或(0,-5) 4.平面上的点(2,-1)通过上下平移不能与之重合的是 (A . (2,-2)B . (-2,-1)C . (2,0)D . 2,-3)5. 将△ ABC 各顶点的横坐标分别减去3,纵坐标不变,得到的厶ABC 相应顶点的坐标,则 △ A 'B 'C '可以看成厶ABCi 卜y1 y匸y n P--------- —--•P2 • __ n P _ ___ 亠n -------- * P1m ;亠 1 11 ----- T P U f imII V 1 ""O ' XHm O ------------ X 1 1 O mn __ _ ▲1Rb-n关于x 轴对称 关于y 轴对称关于原点对称点P (m,n)关于y 轴的对称点为 b) 点P (m,n)关于原点的对称点为P 3( m, n),即横、纵坐标都互为相反数; c) XP 2( m,n),即纵坐标不变,横坐标互为相反数; a)点P (m, n)关于x 轴的对称点为 R(m, n),即横坐标不变,纵坐标互为相反数;m n ,即横、纵坐标相等;m n ,即横、纵坐标互为相反数;( •点B 与C 的纵坐标相等 •点B 与C 的横坐标、纵坐标都不相等 )) ) )y在第一、三象限的角平分线上在第二、四象限的角平分线上A.向左平移3个单位长度得到B .向右平移三个单位长度得到C•向上平移3个单位长度得到 D •向下平移3个单位长度得到6•线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是A . (2,9)B . (5,3)C . (1,2)D . (-9,-4)7•在坐标系内,点P (2, -2)和点Q(2,4 )之间的距离等于______________ 单位长度,线段PQ和中点坐标是____________8. 将点M(2,-3)向左平移2个单位长度,再向下平移1个单位长度,得到的点的坐标为9. 在直角坐标系中,若点P(a 2,b 5)在y轴上,则点P的坐标为___________________10. 已知点P( 2,a),Q(b,3),且PQ// x 轴,则a ___________ ,b ____________11. 将点P( 3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x, 1),则xy = _______12. 则坐标原点0( 0,0 ),A (-2,0 ) ,B(-2,3)三点围成的△ ABO勺面积为_______________13. 点P(a,b)在第四象限,则点Q(b, a)在第_________ 限14. 已知点P在第二象限两坐标轴所成角的平分线上,且到x轴的距离为3,则点P的坐标为 ____________15. 在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果在图形a中点A的坐标为(5, 3),则图形b中与A对应的点A'的坐标为______________16. 在平面直角坐标系中,将坐标为(0,0),(2,0),(3,4),(1,4) 的点用线段依次连接起来形成一个图像,并说明该图像是什么图形。

(完整版):平面直角坐标系经典例题解析

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得:20 mm>⎧⎨->⎩,解得:m>2.故答案为:m>2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1 如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(—,+);第三象限(-,—);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是()A.(2,0) B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1)分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1),故选:D.点评:此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.例2 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0)C.(6,4) D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A .(1,﹣1)B . (﹣1,1)C . (﹣1,﹣2)D . (1,﹣2)分析: 根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答: 解:∵A(1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3, ∴绕四边形ABCD 一周的细线长度为2+3+2+3=10, 2012÷10=201…2,∴细线另一端在绕四边形第202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(﹣1,1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.例2 如图,在平面直角坐标系xOy 中,点P (-3,5)关于y 轴的对称点的坐标为( ) A .(—3,—5) B .(3,5) C .(3.—5) D .(5,—3) 答:B考点二:函数的概念及函数自变量的取值范围 例3 在函数1x y x+=中,自变量x 的取值范围是 . 思路分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围. 解:根据题意得:x+1≥0且x≠0 解得:x≥-1且x≠0. 例3 函数y=31x x +-中自变量x 的取值范围是( ) 思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解. 解:根据题意得,x+3≥0且x —1≠0, 解得x≥—3且x≠1. 故选D .点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数2y x =+中自变量x 的取值范围是( )A .x >—2B .x≥2 C.x≠—2 D .x≥-2 3.A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回思路分析:根据图象可知,有一段时间内时间在增加,而路程没有增加,意味着有停留,与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断.解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准确,错误;C 、从家出发,一直散步(没有停留),然后回家了,图形为上升和下降的两条折线,错误;D 、从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴表示的量,再根据函数图象用排除法判断.例5 如图,ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在ABCD 的顶点上,它们的各边与ABCD 的各边分别平行,且与ABCD 相似.若小平行四边形的一边长为x ,且0<x≤8,阴影部分的面积的和为y ,则y 与x 之间的函数关系的大致图象是( )A .B .C .D .思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形的面积,再根据相似多边形面积的比等于相似比的平方列式求出y 与x 之间的函数关系式,然后根据二次函数图象解答. 解:∵四个全等的小平行四边形对称中心分别在ABCD 的顶点上,∴阴影部分的面积等于一个小平行四边形的面积, ∵小平行四边形与ABCD 相似,∴2()328y x =, 整理得212y x =,又0<x≤8,纵观各选项,只有D 选项图象符合y 与x 之间的函数关系的大致图象. 故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0,6),点P为BC 边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t 的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与m= 16t2-116t+6,即可求得t的值.点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0。

初二平面直角坐标系知识点及习题

初二平面直角坐标系知识点及习题

平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系画平面直角坐标系时, x 轴、y 轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一坐标轴上相同长度的线段表示的单位数量相同。

2、各个象限内点的特征:第一象限:(+,+) 点P (x,y ),则x >0, y >0;第二象限:(-,+) 点P (x,y ),则x <0, y >0;第三象限:(-,-) 点P (x,y ),则x <0, y <0;第四象限:(+,-) 点P (x,y ),则x >0, y <0;在x 轴上:(x,0) 点P (x,y ),则y =0;在x 轴的正半轴:(+,0) 点P (x,y ),则x >0, y =0;在x 轴的负半轴:(—,0) 点P (x,y ),则x <0, y =0;在y 轴上:(0,y ) 点P (x,y ),则x =0;在y 轴的正半轴:(0,+) 点P (x,y ),则x =0, y >0;在y 轴的负半轴:(0,—) 点P (x,y ),则x =0, y <0;坐标原点:(0,0) 点P (x,y ),则x =0, y =0;3、点到坐标轴的距离:点P (x,y )到x 轴的距离为 |y|, 到y 轴的距离为 |x|到坐标原点的距离为d=y x 224、点的对称:点P(m,n),关于x 轴的对称点坐标是(m,-n),关于y 轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)5、平行线:平行于x 轴的直线上的点的特征:纵坐标相等;平行于y 轴的直线上的点的特征:横坐标相等。

6、象限角的平分线:。

点P(a,b)(b, a) 第二、四象限角平分线上的点横纵坐标互为相反数,可记作点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)7、点的平移:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x-a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。

第七章 平面直角坐标系知识点及习题

第七章 平面直角坐标系知识点及习题

第七章平面直角坐标系知识点1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

2、平面直角坐标系:在平面内两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标> 0,纵坐标> 0;②第二象限的点:横坐标< 0,纵坐标> 0;③第三象限的点:横坐标< 0,纵坐标< 0;④第四象限的点:横坐标> 0,纵坐标< 0。

7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标> 0,纵坐标= 0;②x轴负半轴上的点:横坐标< 0,纵坐标= 0;③y轴正半轴上的点:横坐标= 0,纵坐标> 0;④y轴负半轴上的点:横坐标= 0,纵坐标< 0;⑤坐标原点:横坐标= 0,纵坐标= 0。

(填“>”、“<”或“=”)8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点P(2,-3) 到x轴的距离是3;到y轴的距离是2;点P(2,3) 关于x轴对称的点坐标为(2,-3);点P(2,-3) 关于y轴对称的点坐标为(-2,3)。

11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。

平面直角坐标系复习讲义(知识点+典型例题)

平面直角坐标系复习讲义(知识点+典型例题)

D、第四象限.
【例 3】点 P(m,1)在第二象限内,则点 Q(-m,0)在( )
A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上
【例 4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则 a= ,点的坐标为

(2)当 b=______时,点 B(-3,|b-1|)在第二、四象限角平分线上.
电量为 8 千瓦时,则应交电费 4.4 元;④若所交电费为 2.75 元,则用电量为 6 千瓦时,其中正确的有( )
A.4 个 B.3 个 C.2 个 D.1 个
【例 7】小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕
耽误上课,故加快速度继续匀速行驶赶往学校.如图是行驶路程 S(米)与时间 t(分)的函数图象,那么符合小明骑
D. .
11、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离 y(千米)与时间 t(分钟)的关系如图所示.根 据图象回答下列问题:
2
2
巩固练习
5
1、下列 各曲线中表示 y 是 x 的函数的是( )
A.
B.
C.
D.
2、下列平面直角坐标系中的图象,不能表示 y 是 x 的函数的是( )
A.
B.
C.
D.
3、下列四个选项中,不是 y 关于 x 的函数的是( )
A.|y|=x﹣1 B.y=
C.y=2x﹣7 D.y=x2
4、下列四个关系式:(1)y=x;(2) y x2 ;(3) y x3 ;(4) y x ,其中 y 不是 x 的函数的是( )

【例 8】在坐标系内,点 P(2,-2)和点 Q(2,4)之间的距离等于

(完整版)八年级数学《平面直角坐标系》经典例题.doc

(完整版)八年级数学《平面直角坐标系》经典例题.doc

考点 1:考点的坐标与象限的关系知识解析: 各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限. )1、在面直角坐标中,点 M - , 3) 在( )( 2A .第一象限B .第二象限C .第三象限 D.第四象限、在平面直角坐标系中,点 P - , 2 + 1) 所在的象限是() 2 ( 2 xA .第一象限B .第二象限C .第三象限D .第四象限、若点 P ( a , a )在第四象限,则 a 的取值范围是( ).3 -2A .-2 < a <B. < a <2 C.a >2 D. a <4、点 P ( m , 1)在第二象限内,则点 Q ( -m ,0)在()A . x 轴正半轴上B .x 轴负半轴上C . y 轴正半轴上D .y 轴负半轴上 5、若点 P (a ,b )在第四象限,则点 M ( b - a , a - b )在()A.第一象限B.第二象限C.第三象限D.第四象限6、在平面直角坐标系中,点 A( x 1,2 x) 在第四象限,则实数 x 的取值范围是 .7、对任意实数 x ,点 P( x , x 2 2x) 一定不在 ()..A .第一象限B .第二象限C .第三象限D .第四象限8、如果 a -b <0, 且 ab < 0, 那么点 (a ,b) 在( )A 、第一象限B 、第二象限C 、第三象限 ,D 、第四象限 .考点 2:点在坐标轴上的特点x 轴上的点纵坐标为 0,y轴上的点横坐标为 0. 坐标原点( 0, 0)1、点 P ( m+3,m+1)在 x 轴上,则 P 点坐标为()A .(0,-2 )B .(2, 0)C .( 4, 0)D .( 0, -4 )、已知点 P m , m - 1) 在 y 轴上,则 P 点的坐标是 。

2 (2考点 3:考对称点的坐标知识解析:、关于 x 轴对称: A ( a ,b )关于 x 轴对称的点的坐标为( a , b )。

初二平面直角坐标系知识点及习题

初二平面直角坐标系知识点及习题

平面直角坐标系1、定义:平面上互相垂直且有公共的两条构成平面直角,简称为直角坐标系画平面直角坐标系时, x 轴、y 轴上的单位长度通常应相同,但在实际应用中,有时会遇到取相同的单位长度有困难的情况,这时可灵活规定单位长度,但必须注意的是,同一上相同长度的线段表示的单位数量相同。

2、各个内点的特征:第一象限:(+,+) 点P (x,y ),则x >0, y >0;第二象限:(-,+) 点P (x,y ),则x <0, y >0;第三象限:(-,-) 点P (x,y ),则x <0, y <0;第四象限:(+,-) 点P (x,y ),则x >0, y <0;在x 轴上:(x,0) 点P (x,y ),则y =0;在x 轴的正:(+,0) 点P (x,y ),则x >0, y =0;在x 轴的负半轴:(—,0) 点P (x,y ),则x <0, y =0;在y 轴上:(0,y ) 点P (x,y ),则x =0;在y 轴的正半轴:(0,+) 点P (x,y ),则x =0, y >0;在y 轴的负半轴:(0,—) 点P (x,y ),则x =0, y <0;坐标原点:(0,0) 点P (x,y ),则x =0, y =0;3、点到坐标轴的距离:点P (x,y )到x 轴的距离为 |y|, 到y 轴的距离为 |x|到坐标原点的距离为d=y x 224、点的对称:点P(m,n),关于x 轴的坐标是(m,-n),关于y 轴的对称点坐标是(-m,n)关于原点的对称点坐标是(-m,-n)5、平行线:平行于x 轴的直线上的点的特征:相等;平行于y 轴的直线上的点的特征:横坐标相等。

6、的平分线:。

点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a)第二、四象限角平分线上的点横纵坐标互为,可记作点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)7、点的平移:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a ,y );将点(x,y )向左平移a 个单位长度,可以得到对应点(x-a ,y );将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b );将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。

平面直角坐标系知识点归纳及例题

平面直角坐标系知识点归纳及例题

平面直角坐标系知识点归纳与自我检测一、基本知识:1、 在平面内,__________________________的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点P 的坐标,都和惟一的一对 _______________(b a ,) 一一对应;其中,a 为________,b 为_________;3、x 轴上的点,_________;y 轴上的点,_______________; 坐标轴上的点___________任何象限;4、 四个象限的点的坐标具有如下特征:5、 在平面直角坐标系中,已知点P ),(b a ,则(1) 点P 到x 轴的距离为________ (2)点P 到y 轴的距离为________; (3) 点P 到原点O 的距离为PO = _________________ 6、 平行直线上的点的坐标特征:a) 在与x 轴平行的直线上, 所有点的____________;点A 、B 的纵坐标都等于____________;b) 在与y 轴平行的直线上,所有点的____________;点C 、D 的横坐标都等于______________;象限 横坐标x纵坐标y第一象限 第二象限 第三象限 第四象限-3 -2 -1 0 1 ab1-1 -2 -3P(a,b)YxXYA BmXY CDn7、 对称点的坐标特征:a) 点P ),(n m 关于x 轴的对称点为_________, 即_____________________________; b) 点P ),(n m 关于y 轴的对称点为_________, 即_____________________________; c) 点P ),(n m 关于原点的对称点为_________,即_______________________________;关于x 轴对称 关于y 轴对称 关于原点对称8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P (n m ,)在第一、三象限的角平分线上,则__________,即__________________________________;b) 若点P (n m ,)在第二、四象限的角平分线上,则__________,即__________________________________;在第一、三象限的角平分线上 在第二、四象限的角平分线上 9、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为_____,确定x 轴、y 轴的_______; • 根据具体问题确定适当的_______,在坐标轴上标出__________; •在坐标平面内画出这些点,写出各点的______和各个地点的_______。

平面直角坐标系典型例题含答案

平面直角坐标系典型例题含答案

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。

注意a 与b 的先后顺序对位置的影响。

2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。

这个平面叫做坐标平面。

(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。

3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点)P到X轴距离为y,到y轴的距离为x。

x,(y7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限.A .一B .二C .三D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( )A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。

3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( )A .原点上B .x 轴上C .y 轴上D .x 轴上或y 轴上(除原点) 考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( )A.)2,3(-B.)2,3(-C.)3,2(-D.(2,3)2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3)3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( )A .a=4,b=-1B .a=-4,b=1C .a=-4,b=-1D .a=4,b=1考点4:点的平移1.已知点A (-2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A ′,则点A ′的坐标是( )A .(-5,6)B .(1,2)C .(1,6)D .(-5,2)2.已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于将A 经过( )的平移到了C .A .向左平移4个单位,再向上平移6个单位B .向左平移4个单位,再向下平移6个单位C .向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A .2B .4C .0或4D .4或-42.如图,已知:)4,5(-A 、)2,2(--B 、)2,0(C 。

(完整版)初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)

(完整版)初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)知识点:1、对应关系:平面直角坐标系内的点与有序实数对一一对应。

2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

图形的平移规律找特殊点(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。

常考题:一.选择题(共15小题)1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)2.如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)3.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)4.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B (﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.57.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)8.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)11.在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣112.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)14.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方15.如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺二.填空题(共10小题)16.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.17.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.18.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C 点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是.19.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.20.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是.21.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是.22.如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是.23.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).24.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.25.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为.三.解答题(共15小题)26.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.27.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?28.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+3),从B到A记为:A→B(﹣1,﹣3),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.29.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.30.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米.早晨6:00﹣7:00与奶奶一起到和平广场锻炼上午9:00﹣11:00与奶奶一起上老年大学下午4:30﹣5:30到和平路小学讲校史(1)请依据图示中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.31.已知点A(﹣1,﹣2),点B(1,4)(1)试建立相应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.32.在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.35.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.36.有趣玩一玩:中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图,按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→→(六,4)(2)请你再给出另一种走法(只要与前面的两种走法不完全相同即可,步数不限),你的走法是:.你还能再写出一种走法吗.37.如图,在直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (﹣2,﹣3)、B (5,﹣2)、C (2,4)、D (﹣2,2),求这个四边形的面积.38.如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ?若存在这样一点,求出点P 的坐标;若不存在,试说明理由.39.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),C 点的坐标为(0,6),点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线移动(即:沿着长方形移动一周).(1)写出点B 的坐标( ).(2)当点P 移动了4秒时,描出此时P 点的位置,并求出点P 的坐标.(3)在移动过程中,当点P 到x 轴距离为5个单位长度时,求点P 移动的时间.40.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共15小题)1.(2007•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.2.(2007•长春)如图,小手盖住的点的坐标可能为()A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(2007•盐城)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2)【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(2002•江西)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(2017春•潮阳区期末)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4)【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.6.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【分析】根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.8.(2013秋•平川区期末)如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4)【分析】因为点P(m+3,m+1)在直角坐标系的x轴上,那么其纵坐标是0,即m+1=0,m=﹣1,进而可求得点P的横纵坐标.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.【点评】本题主要考查了点在x轴上时纵坐标为0的特点,比较简单.9.(2017春•和县期末)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.10.(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【分析】逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(2008•菏泽)在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为()A.﹣1<m<3 B.m>3 C.m<﹣1 D.m>﹣1【分析】根据点P(m﹣3,m+1)在第二象限及第二象限内点的符号特点,可得一个关于m的不等式组,解之即可得m的取值范围.【解答】解:∵点P(m﹣3,m+1)在第二象限,∴可得到,解得m的取值范围为﹣1<m<3.故选A.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号以及不等式组的解法,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题关键.13.(2014•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)【分析】根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.【点评】本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.14.(2009秋•杭州期末)小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力,画出平面示意图能直观地得到答案.15.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺【分析】根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700,再向西直走DE=100公尺.【解答】解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.【点评】本题考查了坐标确定位置,根据题意画出图形是解题的关键.二.填空题(共10小题)16.(2014•黔西南州)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=(3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.17.(2013•天水)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(2013•绵阳)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3).【分析】先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.【解答】解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).【点评】本题考查了平移变换的知识,注意左右平移纵坐标不变,上下平移横坐标不变.19.(2015•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).【分析】根据绝对值的意义和平方根得到x=±5,y=±2,再根据第二象限的点的坐标特点得到x<0,y>0,于是x=﹣5,y=2,然后可直接写出P点坐标.【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).20.(2005•杭州)如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应该是(﹣3,﹣7).【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:由白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8)得出:棋盘的y轴是右侧第一条线,横坐标从右向左依次为﹣1,﹣2,﹣3,…;纵坐标是以上边第一条线为﹣1,向下依次为﹣2,﹣3,﹣4,….∴黑棋①的坐标应该是(﹣3,﹣7).故答案为:(﹣3,﹣7).【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.根据已知条件建立坐标系是关键,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.21.(2015•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).【分析】先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.【解答】解:点A变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(2,3),故答案为(2,3).【点评】此题考查了坐标与图形性质的知识,根据图形得到点A的坐标是解答本题的关键.22.(2015•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y 轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是(10,8).【分析】根据A点坐标,可建立平面直角坐标系,根据直角三角形的性质,可得AC 的长,根据勾股定理,BC的长.【解答】解:如图:连接AB,作BC⊥x轴于C点,由题意,得AB=16,∠ABC=30°,AC=8,BC=8.OC=OA+AC=10,B(10,8).【点评】本题考查了坐标确定位置,利用A点坐标建立平面直角坐标系是解题关键,利用了直角三角形的性质:30°的角所对的直角边是斜边的一半.23.(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n 表示).的坐标,然后根据变化规律写【分析】根据图形分别求出n=1、2、3时对应的点A4n+1出即可.。

平面直角坐标系知识点及经典练习题

平面直角坐标系知识点及经典练习题

平面直角坐标系一、本章的要紧知识点〔一〕有序数对:有顺序的两个数a 与b 组成的数对。

1、记作〔a ,b 〕; 2、注意:a 、b 的前后顺序对位置的阻碍。

〔二〕平面直角坐标系1、历史:法国数学家笛卡儿最先引入座标系,用代数方式研究几何图形 ;2、组成坐标系的各类名称;3、各类特殊点的坐标特点。

〔三〕坐标方式的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标一样; 平行于y 轴(或纵轴)的直线上的点的横坐标一样。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标一样; 第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标一样,纵坐标互为相反数 关于y 轴对称的点的纵坐标一样,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 五、特殊位置点的特殊坐标:六、用坐标表示平移:见以下图一、判定题〔1〕坐标平面上的点与全部实数一一对应〔 〕 〔2〕横坐标为0的点在轴上〔 〕〔3〕纵坐标小于0的点必然在轴下方〔 〕〔4〕到轴、轴距离相等的点必然知足横坐标等于纵坐标〔 〕 〔5〕假设直线轴,那么上的点横坐标必然一样〔 〕 〔6〕假设,那么点P 〔〕在第二或第三象限〔 〕〔7〕假设,那么点P 〔〕在轴或第一、三象限〔 〕二、选择题坐标轴上 点P 〔x ,y 〕 连线平行于 坐标轴的点 点P 〔x ,y 〕在各象限 的坐标特点 象限角平分线上 的点 X 轴Y 轴原点平行X 轴平行Y 轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0) (0,y) (0,0) 纵坐标一样横坐标不同横坐标一样纵坐标不同x >0 y >0x <0 y >0x <0 y <0x >0 y <0(m,m)(m,-m)P 〔x ,y 〕P 〔x ,y -P 〔x -a ,P 〔x +a ,P 〔x ,y +向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位一、假设点P ()n m ,在第二象限,那么点Q ()n m --,在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限2、点P 的横坐标是-3,且到x 轴的距离为5,那么P 点的坐标是〔 〕A. 〔5,-3〕或〔-5,-3〕B. 〔-3,5〕或〔-3,-5〕C. 〔-3,5〕D. 〔-3,-5〕3、若是点M 到x 轴和y 轴的距离相等,那么点M 横、纵坐标的关系是 〔 〕 A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数4、在平面直角坐标系中,点()2,12+-m 必然在 〔 〕 A .第一象限 B .第二象限 C .第三象限 D .第四象限5、若是a -b <0,且ab <0,那么点(a ,b)在 ( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限.6、如上右图,小明从点O 动身,先向西走40米,再向南走30米抵达点M ,若是点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是 ( ) A 、点A B 、点B C 、点C D 、点D7、一个长方形在平面直角坐标系中三个极点的坐标为〔-1,- 1〕、〔-1,2〕、〔3,-1〕,那么第四个极点的坐标为 〔 〕 A .〔2,2〕 B .〔3,2〕 C .〔3,3〕 D .〔2,3〕 8、假设点P 〔a ,b 〕到x 轴的距离是2,到y 轴的距离是3,那么如此的点P 有 〔 〕A.1个 B.2个 C.3个 D.4个9、点P(102-x ,x -3)在第三象限,那么x 的取值范围是 〔 〕 A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤310、过点A 〔2,-3〕且垂直于y 轴的直线交y 轴于点B ,那么点B 坐标为 〔 〕 A .〔0,2〕 B .〔2,0〕C .〔0,-3〕D .〔-3,0〕11、线段CD 是由线段AB 平移取得的,点A 〔–1,4〕的对应点为C 〔4,7〕,那么点B 〔-4,–1〕的对应点D 的坐标为 〔 〕 A .〔2,9〕 B .〔5,3〕 C .〔1,2〕 D .〔– 9,– 4〕12、到x 轴的距离等于2的点组成的图形是 〔 〕 A. 过点〔0,2〕且与x 轴平行的直线 B. 过点〔2,0〕且与y 轴平行的直线 C. 过点〔0,-2〕且与x 轴平行的直线D. 别离过〔0,2〕和〔0,-2〕且与x 轴平行的两条直线 三、填空题一、:点P 的坐标是〔m ,1-〕,且点P 关于x 轴对称的点的坐标是〔3-,n 2〕,那么_________,==n m . 2、点 A 在第二象限 ,它到 x 轴 、y 轴的距离别离是3、5,那么坐标是 .点M(2m+1,3m-5)到x 轴的距离是它到y 轴距离的2倍,那么m=3、直线a 平行于x 轴,且过点〔-2,3〕和〔5,y 〕,那么y=4、假设│3-a │+〔a-b+2〕2=0,那么点M 〔a ,b 〕关于y 轴的对称点的坐标为_______. 5、点P 的坐标〔2-a ,3a+6〕,且点P 到两坐标轴的距离相等,那么点P 的坐标是__________。

平面直角坐标系知识点及练习

平面直角坐标系知识点及练习

平面直角坐标系知识点及练习一、平面直角坐标系的定义及相关概念:1、平面直角坐标系①定义:在平面内两条有公共点并且互相垂直的数轴就构成了平面直角坐标系。

②横轴:通常把其中水平的一条数轴叫横轴或x轴,习惯上取向右的方向为正方向;③纵轴:铅直的数轴叫纵轴或y轴,习惯上取向上的方向为正方向;④原点:两数轴的交点叫做坐标原点。

2、有序数对:①定义:有顺序的两个数a与b组成的数对叫有序数对;当a=b时,(a,b)与(b,a)表示同一个有序数对;当a≠b时,(a,b)与(b,a)表示不同的有序数对。

②记法:由a,b组成的有序数对记作(a,b),两个数之间用逗号隔开。

③应用:用有序数对能准确地表示出一个位置。

如电影院内座位的确定;利用经纬度确定地球上点的位置。

3、点的坐标及点间距离:①对于平面直角坐标系内任意一点P,过点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点P的横坐标是a,纵坐标是b,有序数对(a,b)叫做P的坐标。

②坐标名称:a是点P的横坐标;b是点P的纵坐标。

③记法:P(a,b),书写时先横后纵再括号,两个数之间用逗号隔开。

④点与有序实数对的关系:坐标平面内的点可以用有序实数对来表示,反过来每一个有序实数对应着坐标平面内的一个点,即坐标平面内的点和有序实数对是一一对应的关系。

⑤点的对称:关于x轴对称的两个点的横坐标相等,纵坐标互为相反数.关于y轴对称的两点的横坐标互为相反数,纵坐标相等.关于原点对称的两点的横坐标纵坐标都互为相反数.如果一个点的坐标为(a,b),那么这个点关于x轴、y轴、原点的对称点分别是(a,-b)、(-a,b)、(-a,-b).它的逆命题亦成立.⑥距离:A:点到坐标轴的距离:点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|。

到坐标原点的4、象限①建立了直角坐标系的平面叫坐标平面.x轴和y轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,第一象限还可以写成Ⅰ,第二象限还可以写成Ⅱ,第三象限还可以写成Ⅲ,第四象限也可以写成Ⅳ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系
一、本章的主要知识点
(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);
2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系
1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;
2、构成坐标系的各种名称;
3、各种特殊点的坐标特点。

(三)坐标方法的简单应用
1、用坐标表示地理位置;
2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:
平行于x轴(或横轴)的直线上的点的纵坐标相同;
平行于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:
第一、三象限角平分线上的点的横纵坐标相同;
第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:
关于x轴对称的点的横坐标相同,纵坐标互为相反数
关于y轴对称的点的纵坐标相同,横坐标互为相反数
关于原点对称的点的横坐标、纵坐标都互为相反数
五、特殊位置点的特殊坐标:
一、判断题
(1
(2)横坐标为0的点在轴上()
(3)纵坐标小于0的点一定在轴下方()
(4)到轴、轴距离相等的点一定满足横坐标等于纵坐标()
(5)若直线轴,则上的点横坐标一定相同()
(6)若,则点P ()在第二或第三象限( )
(7)若,则点P ()在轴或第一、三象限( )
二、选择题
1、若点P ()n m ,在第二象限,则点Q ()n m --,在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2、点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )
A. (5,-3)或(-5,-3)
B. (-3,5)或(-3,-5)
C. (-3,5)
D. (-3,-5)
3、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是 ( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数
4、在平面直角坐标系中,点()
2,12+-m 一定在 ( ) A .第一象限 B .第二象限
C .第三象限
D .第四象限
5、如果a -b <0,且ab <0,那么点(a ,b)在 ( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限.
6、如上右图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是 ( ) A 、点A B 、点B C 、点C D 、点D
7、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,- 1)、(-1,2)、(3,-1),则第四个顶点的坐标为 ( ) A .(2,2) B .(3,2) C .(3,3) D .(2,3) 8、若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( ) A.1个 B.2个 C.3个 D.4个
9、已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( ) A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤3 10、过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为 ( ) A .(0,2) B .(2,0)C .(0,-3)D .(-3,0)
11、线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),
则点B (-4,–1)的对应点D 的坐标为 ( )
A .(2,9)
B .(5,3)
C .(1,2)
D .(– 9,– 4) 12、到x 轴的距离等于2的点组成的图形是 ( ) A. 过点(0,2)且与x 轴平行的直线 B. 过点(2,0)且与y 轴平行的直线 C. 过点(0,-2)且与x 轴平行的直线
D. 分别过(0,2)和(0,-2)且与x 轴平行的两条直线 三、填空题
1、已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m .
2、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是
3、5,则坐标是 .
已知点M(2m+1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m= 3、直线a 平行于x 轴,且过点(-2,3)和(5,y ),则y=
4、若│3-a │+(a-b+2)2
=0,则点M (a ,b )关于y 轴的对称点的坐标为_______. 5、已知点P 的坐标(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是__________。

6、如果点M ()ab b a ,+ 在第二象限,那么点N ()b a ,在第___象限.
7、若点M ()m m -+3,12关于y 轴的对称点M ′在第二象限,则m 的取值范围是 . 8、在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.
9、在平面直角坐标系中,以点P ()2,1为圆心,1为半径的圆必与x 轴有 个公共点。

10、如果点M (3a-9,1-a )是第三象限的整数点,则M 的坐标为__________; 11、已知点M ()a a -+4,3在y 轴上,则点M 的坐标为_____.
12、若点P (a ,b )在第三象限,则点P '
(-a ,-b +1)在第 象限。

四.解答题
1、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,求a 的值及点的坐标?
2、这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.
3、如图,已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位再向下平稳2个单位后,与点P 对应的点为Q ,则点Q 的坐标是什么?且在图像标出点。

3、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现
同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .
(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形
(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S =ABDC S 四边形,
3题
若存在这样一点,求出点P的坐标,若不存在,试说明理由.。

相关文档
最新文档