高三数学-2018届高考模拟试题数学精品
2018苏锡常镇高三三模数学试题
2018苏锡常镇高三三模数学试题2018届苏锡常镇高三年级第三次模拟考试(十五)数学满分160分,考试时间120分钟)11方差公式:s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],其中x=(x1+x2+…+xn).一、填空题:本大题共14小题,每小题5分,共计70分.1.若复数z满足(1+i)z=2(i是虚数单位),则z的虚部为1.2.设集合A={2,4},B={a2,2}(其中a<0),若A=B,则实数a=-2.3.在平面直角坐标系xOy中,点P(-2,4)到抛物线y2=-8x的准线的距离为2.4.一次考试后,从高三(1)班抽取5人进行成绩统计,其茎叶图如下图所示,则这五人成绩的方差为68.8.5.上图是一个算法流程图,若输入值x∈[0,2],则输出值S的取值范围是[0.4]。
6.欧阳修在《卖油翁》中写到:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超,若铜钱直径4厘米,中间有边长为1厘米的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入孔中的概率是1/16.7.已知函数f(x)=sin(πx+φ)(0<φ<2π)在x=2时取得最大值,则φ=3π/2.10.已知公差为d的等差数列{an}的前n项和为Sn,若S5=4,则d=-1/2.18.在棱长为2的正四面体PABC中,M,N分别为PA,BC的中点,D是线段PN上一点,且PD=2DN,则三棱锥DMBC的体积为8/3.9.设△ABC的内角A,B,C的对边分别是a,b,c,且满足acosB-bcosA=c,则cosA+cosB=1/2.11.在平面直角坐标系xOy中,已知圆C:(x+1)2+y2=2,点A(2,0),若圆C上存在点M,满足MA2+MO2≤10,则点M的纵坐标的取值范围是[-3.3]。
12.如图,扇形AOB的圆心角为90°,半径为1,P是圆弧AB上的动点,作点P关于弦AB的对称点Q,则OP·OQ的取值范围为[0.1/2]。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
安徽省阜阳市临泉县第一中学2018届高三数学上学期第二次模拟试题理(含解析)
临泉一中高三年级上学期数学第二次模拟考试(理科)本试卷分为必考部分和选考部分.满分150分,考试时间120分钟必考部分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.将所选答案标记在题后答题框内.1. 设集合2 [「:•,二:一 .,.,• 4 I ,若口厂1「则卜1 ()A. :'-1:B. '■).:C. 二;D.【答案】C【解析】•••集合二| I .'】;•,二:+ Ill HL, - f '丨丨;••• •丨是方程. Ill匚的解,即丨丨I •]]••• I - 7•二:一、+ III 川■;■ ■■■ -4- + ■!.:■;■■]丄.:■•;•,故选C2. 命题"若a > b,则a丰c > b + c”的否命题是()A.若丨•,则.1 | I;i ■B.若「i「I;i ■U 和二「C.若,则「: I.D. 若■: - I,则门-I: li -【答案】A【解析】命题"若a > b,则a十c》b + L的否命题是"若a<b,贝ija + c< b + c",故选A3. 已知点-■ ::H': I..-.III'c在第三象限,则角IJ的终边在()A.第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】试题分析:点MU-在第三象限可知;;:;;:;,所以角"的终边位置在第二象限考点:四个象限三角函数值的正负问题A. 'B. '■.:,C. 「ID.;丨;i4.若:.■-);!"L “门,贝y '的大小关系(【答案】D【解析】T、;一「、|「• J二 c 二^(-cosx) Q二-^(COSTI-COS O)二扌.•7 1._ I 一 -,门-I己,故选D5. 已知I I [ ' 口,;'. II :: I 一'.:■■■';. I, h,:,“11=( )A. B. C. D.4 32【答案】C【解析】IT E - C. ,.J、11=2cosa • ::;I「I门〔贝VCDSH二-3• r ¥;F Hl 二:■■.:■ ■■;:]= ',故选C6. 下列函数中,在丨丨|上与函数一二.:n 的单调性和奇偶性都相同的是( )A. < 「八B. ■■■ - 1 1C. ■ ■■:■:.D. : - -J ―【答案】D【解析】-一;-…r在-■ '■上递增,在d「上递减,且¥为偶函数,而:「- / - ■{也具有相同的奇偶性和单调性•本题选择D选项•7. 已知T\ -:■ =';in - .■:|r i= in ?'-,则下列结论中正确的是( )A. 函数1 1〔m:的周期为"B. 将li「的图像向左平移"个单位后得到NI -':的图像C. 函数I': - - ';':■:的最大值为ID. . I ■[I一:的一个对称中心是:.、【答案】Dn 1【解析】选项A:. “ …I rill :|一・]dr ■ ■. i;in.'-,则周期丨'兀,故A不对;选项B:将|的图像向左平移’「个单位后得到的函数解析式为■w <- ' - : ;in;.-. - :i i --JII ■,得不到‘乂的图像,故B不对;1 a .选项C :由A可得f(x),g(x) = 2sin2x ,因为sin2x的最大值为1 T所以朋)* 泊大值为指故C不对;选项D:+ g(x) = sin(x + ;) + sin(n-x)二sinx + cosx 二\J2sin(x +》根据正弦函数的对称性,令• - b II ■ •「,得• | 11- I- ■..',当•.-丨时,>:=.',故D正确.故选D8. 已知「:,-■:.,函数f 门[二Mi .:.:>■'在-二Y内单调递减,则‘::‘的取值范围是( )A.(斶B.開]。
山东省淄博市2018届高三下学期第一次模拟考试数学(理)
山东省淄博市2018届高三下学期第一次模拟考试数学(理)淄博市2017-2018学年度高三模拟考试试题理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合 $A=\{x\in N|2x\leq 8\},B=\{0,1,2,3,4\}$,则$A\cap B=$A。
$\{0,1,2,3\}$B。
$\{1,2,3\}$C。
$\{0,1,2\}$D。
$\{0,1,2,3,4\}$2.在复平面内,复数 $z$ 满足 $z(1+i)=1-2i$,则 $z$ 对应的点位于A。
第一象限B。
第二象限C。
第三象限D。
第四象限3.若 $0.43a=3,b=0.4,c=\log_{0.4}3$,则A。
$b<a<c$B。
$c<a<b$XXX<c<b$D。
$c<b<a$4.若 $\sin2\alpha=\frac{\sin(\alpha-\pi/2)}{2\cos(\alpha+\pi/2)}$,则 $\sin\alpha$ 的值为A。
$\frac{5}{7}$B。
$\frac{5}{3}$C。
$-\frac{3}{5}$D。
$-\frac{5}{3}$5.已知某空间几何体的三视图如图所示,则该几何体的体积是A。
$\frac{2}{3}$B。
$\frac{5}{6}$C。
$1$D。
$2$6.设每天从甲地去乙地的旅客人数为随机变量 $X$,且$X\sim N(800,502)$。
记一天中从甲地去乙地的旅客人数不超过 $2X\sim N(\mu,\sigma^2)$ 的概率为 $p$,则 $p$ 的值为(参考数据:若 $P(\mu-\sigma<X\leq\mu+\sigma)=0.6826$,$P(\mu-2\sigma<X\leq\mu+2\sigma)=0.9544$,$P(\mu-3\sigma<X\leq\mu+3\sigma)=0.9974$)A。
山东省济南市2018届高三第二次模拟考试理数试题word含答案
山东省济南市2018届高三第二次模拟考试理数试题word含答案山东省济南市2018届高三第二次模拟(5月)考试理科数学参考公式:锥体的体积公式:V=1/3Sh,其中S为锥体的底面积,h为锥体的高。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
21.设全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分表示的集合为()小幅度改写:已知全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分为集合A和集合B的交集。
2.设复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是()小幅度改写:已知复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是z=-1+i。
3.已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα等于()小幅度改写:已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα=±3/5.4.已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为()小幅度改写:已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为x2/b2-y2/a2=1.5.某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
则中奖的概率为()小幅度改写:某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
2018江苏高考数学模拟试题含答案
2018江苏高考数学模拟试题(含答案)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本市卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(3)执行如图所示的程序框图,输出的s值为(A)8(B)9(C)27(D)36(7)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x−y的最大值为(A)−1 (B)3 (C)7 (D)8(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号 1 2 3 4 5 6 7 8 9 10立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.6030秒跳绳(单位:次)63 a 75 60 63 72 70 a−1 b 65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A)2号学生进入30秒跳绳决赛(B)5号学生进入30秒跳绳决赛(C)8号学生进入30秒跳绳决赛(D)9号学生进入30秒跳绳决赛2018江苏高考数学模拟试题第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)(14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.2018江苏高考数学模拟试题三、解答题(共6题,共80分.解答应写出文字说明,演算步骤或证明过程)(15)(本小题13分)已知{an}是等差数列,{bn}是等差数列,且b2=3,b3=9,a1=b1,a14=b4.(Ⅰ)求{an}的通项公式;(Ⅱ)设cn=an+bn,求数列{cn}的前n项和.(16)(本小题13分)已知函数f(x)=2sin ωxcosωx+cos 2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.(17)(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费. (18)(本小题14分)。
山东省临沂市2018届高三第三次高考模拟考试数学(理)试题有答案
2018年普通高考模拟考试理科数学2018.5本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={}x x a >,B={}232x x x -+>0,若A ∪B=B ,则实数a 的取值范围是(A) (),1-∞ (B) (],1-∞ (C) ()2,+∞(D) [)2,+∞2.欧拉公式cos sin ix e x i x =+ (i 为虚数单位)是由瑞士著名数学家欧拉发明的,他将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,3i e 表示的复数在复平面中位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.给出以下三种说法:①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+<”; ②已知,p q 为两个命题,若p q ∨为假命题,则()()p q ⌝∧⌝为真命题; ③命题“,a b 为直线,α为平面,若//,//,a b αα,则//a b ”为真命题. 其中正确说法的个数为 (A)3个 (B)2个 (C)1个 (D)0个4.已知4cos 45πα⎛⎫-=⎪⎝⎭,则sin 2α= (A) 725- (B) 15- (C) 15 (D) 7255.直线40x y m ++=交椭圆2116x y +=于A ,B 两点,若线段AB 中点的横坐标为l ,则,m= (A)-2 (B)-1 (C)1 (D)2 6.执行如图所示的程序框图,则输出的a = (A)6.8 (B)6.5 (C)6.25 (D)67.已知定义域为R 的奇函数()f x 在(0,+∞)上的解析式为()()()23log 5,0233,,2x x f x f x x ⎧-<≤⎪⎪=⎨⎪->⎪⎩则()()32018f f +=(A)-2(B)-1 (C)1(D)28.一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“▂”组成.已知在一个显示数字8的显示池中随机取一点A ,点A 落在深色区域内的概率为12,若在一个显示数字0的显示池中随机取一点B ,则点B 落在深色区域内的概率为(A)67(B)37 (C) 34 (D) 389.记不等式组10,330,10x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,所表示的平面区域为D ,若对任意点(00,x y )∈D ,不等式0020x y c -+≤恒成立,则c 的取值范围是 (A) (],4-∞- (B) (],1-∞-(C) [)4,-+∞(D) [)1,-+∞10.如图是某几何体的三视图,则该几何体的体积为(A) 13π+(B) 223π+(C) 23π+(D) 123π+11.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为F 1,F 2,点A 为双曲线C 虚轴的一个端点,若线段AF 2与双曲线右支交于点B ,且112::AF BF BF =3:4:2,则双曲线C 的离心率为(A)(B)10(C)(D) 1012.在△ABC 中,D 为边BC 上的点,且满足∠DAC=90°,sin ∠BAD=13,若S △ADC =3S △ABD ,则cosC=(A)(B)6 (C)23(D)23二、填空题:本题共4小题,每小题5分,共20分。
江苏省常州市2018届高三数学第一次模拟考试
江苏省常州市2018届高三数学第一次模拟考试2018届高三年级第一次模拟考试(二)数学满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共计70分.1.若集合A={-2,1},B={x|x^2>1},则集合A∩B={1}.2.命题“∃x∈[0,1],x^2-1≥0”是真命题.3.若复数z满足z·2i=|z|^2+1(其中i为虚数单位),则|z|=2.4.若一组样本数据2015,2017,x,2018,2016的平均数为2017,则该组样本数据的方差为2.5.如图是一个算法的流程图,则输出的n的值是3.6.函数f(x)=lnx的定义域记作集合D.随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数1,2,…,6),记骰子向上的点数为t,则事件“t∈D”的概率为1/2.7.已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为3.8.在各项均为正数的等比数列{an}中,若a2a3a4=a2+a3+a4,则a3的最小值为3.9.在平面直角坐标系xOy中,设直线l:x+y+1=0与双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的两条渐近线都相交且交点都在y轴左侧,则双曲线C的离心率e的取值范围是(1,√2).10.已知实数x,y满足2x+y-2≥0,x-2y+4≥0,则x+y的取值范围是[2,∞).11.已知函数f(x)=bx+lnx,其中b∈R.若过原点且斜率为k 的直线与曲线y=f(x)相切,则k-b的值为1/e.12.如图,在平面直角坐标系xOy中,函数y=sin(ωx+φ)(ω>0,0<φ<π)的图象与x轴的交点A,B,C满足OA+OC=2OB,则φ=π/3.13.在△ABC中,AB=5,AC=7,BC=3,P为△ABC内一点(含边界),若满足BP=4BA+λBC(λ∈R),则BA·BP的取值范围为[25/4,35/4].二、解答题:共计90分.14.已知函数f(x)=sinx+cosx,x∈[0,π/2],则f(x)的最小值是√2-1.15.已知函数f(x)=x^3-3x,x∈[-2,2],则f(x)在[-2,2]上的最大值是4.16.如图,在△ABC中,AD是边BC上的高,点E,F分别在AB,AC上,且满足BE=CF=AD.若BE=CF=AD=1,AB=2,AC=√5,则三角形AEF的面积为(√5-1)/2.17.已知函数f(x)=x^3-3x,g(x)=f(x-2),则g(x)在[-2,2]上的最小值是-5.18.如图,在平面直角坐标系xOy中,点A(1,0),B(0,1),C(-1,0),D(0,-1),E(2,0),F(0,2),G(-2,0),H(0,-2).若点P(x,y)满足PA^2+PB^2+PC^2+PD^2=PE^2+PF^2+PG^2+PH^2,则点P的坐标为(0,0).19.已知函数f(x)=ln(1+2x)-ax,其中a为常数,f(x)在[0,1]上取得最大值,且f(1/2)=0,则a=1/2.20.已知函数f(x)=x^3-3x,g(x)=f(x-2),则当g(x)在[1,3]上单调递增时,x的取值范围是[1,3].已知在三角形ABC中,AB=AC=3,存在点P在三角形ABC所在平面内,使得PB²+PC²=3PA²=3,则三角形ABC的面积最大值为______。
普通高等学校2018届高三招生全国统一考试仿真卷(三)数学理
2
B. 0, 2
C. 1,2
D. 1,2
7.在 △ABC 中,内角 A , B , C 的对边分别为,,,若函数
f x 1 x3 bx2 a2 c2 ac x 1无极值点,则角 B 的最大值是(
)
3
A. 6
B. 4
C. 3
D. 2
8.公元 263 年左右, 我国数学家刘徽发现当圆内接正多边形的边数无限增加时,
2B 铅笔将答题卡上试卷类型
A 后的方框涂黑。
2、选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
号
场
3 、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题
考
卷、草稿纸和答题卡上的非答题区域均无效。
绝密 ★ 启用前
2018 年普通高等学校招生全国统一考试仿真卷
理科数学(三)
本试题卷共 2 页, 23 题(含选考题)。全卷满分
150 分。考试用时 120 分钟。
号
位 座
★ 祝考试顺利 ★
注意事项:
1 、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形
码粘贴在答题卡上的指定位置。用
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用
2B 铅笔涂黑。答案写
在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
号
一、选择题:本大题共
12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
证
合题目要求的。
高三数学全真模拟考试试题(一)理(含解析)
荆州中学2018年普通高等学校招生全国统一考试理科数学(模拟一)选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合,则A、 B、C、 D、【答案】D【解析】【分析】分别求出集合,,再利用交集定义就可求出结果【详解】则故选【点睛】本题主要考查了集合的交集及其运算,属于基础题、2、欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里特别重要,被誉为“数学中的天桥"、依照欧拉公式可知,表示的复数位于复平面中的A、第一象限 B。
第二象限 C、第三象限 D、第四象限【答案】B【解析】【分析】由欧拉公式(为虚数单位)可得:,再利用诱导公式化简,即可得到答案【详解】由欧拉公式(为虚数单位)可得:表示的复数对应的点为,此点位于第二象限故选【点睛】本题主要考查的是欧拉公式的应用,诱导公式,复数与平面内的点的一一对应关系,考查了学生的运算能力,转化能力。
3、要得到函数的图象,只需将函数的图象A。
向左平移个周期B、向右平移个周期C、向左平移个周期D、向右平移个周期【答案】D【解析】【分析】利用函数的图象变换规律,三角函数的周期性,得出结果【详解】将函数的图象向右平移个单位,可得的图象,即向右平移个周期故选【点睛】本题考查了三角函数图像的平移,运用诱导公式进行化简成同名函数,然后运用图形平移求出结果,本题较为基础。
4。
某地区空气质量监测表明,一天的空气质量为优良的概率是,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天空气质量为优良的概率是A。
B。
C、 D、【答案】A【解析】试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,因此,故选A、考点:条件概率。
视频5、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是A、 2 B。
2018年河南省郑州市高考数学一模试卷(文科)
2018年河南省郑州市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.36.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm37.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.912.(5分)若对于任意的正实数x,y都有成立,则实数m的取值范围为()A. B.C.D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.2018年河南省郑州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i【解答】解:==﹣1﹣3i故选A2.(5分)设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是()A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}【解答】解:∵A∩B=A,∴A⊆B.∵集合A={x|1<x<2},B={x|x<a},∴a≥2故选:D.3.(5分)设向量=(1,m),=(m﹣1,2),且≠,若(﹣)⊥,则实数m=()A.2 B.1 C.D.【解答】解:∵(﹣)⊥,∴(﹣)•=0,即2﹣•=0,即1+m2﹣(m﹣1+2m)=0,即m2﹣3m+2=0,得m=1或m=2,当m=1时,量=(1,1),=(0,2),满足≠,当m=2时,量=(1,2),=(1,2),不满足≠,综上m=1,故选:B.4.(5分)下列说法正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.∃x0∈(0,+∞),使成立D.“若,则”是真命题【解答】解:“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故A错;“若am2<bm2,则a<b”的逆命题为假命题,比如m=0,若a<b,则am2=bm2,故B错;对任意x>0,均有3x<4x成立,故C错;对若,则”的逆否命题是“若α=,则sinα=”为真命题,则D正确.故选D.5.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.3【解答】解:模拟执行程序,可得a=1,A=1,S=0,n=1S=2不满足条件S≥10,执行循环体,n=2,a=,A=2,S=不满足条件S≥10,执行循环体,n=3,a=,A=4,S=不满足条件S≥10,执行循环体,n=4,a=,A=8,S=满足条件S≥10,退出循环,输出n的值为4.故选:A.6.(5分)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.7.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)【解答】解:将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)=sin[2(x+)+]=﹣sin2x的图象,故本题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g(x)的单调递增区间为[kπ+,kπ+],k∈Z,故选:B.8.(5分)已知数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),记T n=,则T2018=()A.B.C.D.【解答】解:数列{a n}的前n项和为S n,a1=1,a2=2,且a n+2﹣2a n+1+a n=0(n∈N*),则:数列为等差数列.设公差为d,则:d=a2﹣a1=2﹣1=1,则:a n=1+n﹣1=n.故:,则:,所以:,=,=,=.所以:.故选:C9.(5分)已知函数,若函数f(x)在R上有两个零点,则实数a的取值范围是()A.(0,1]B.[1,+∞)C.(0,1) D.(﹣∞,1]【解答】解:当x≤0时,f(x)单调递增,∴f(x)≤f(0)=1﹣a,当x>0时,f(x)单调递增,且f(x)>﹣a.∵f(x)在R上有两个零点,∴,解得0<a≤1.故选A.10.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A.B.C.D.【解答】解:方法一:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,∵PF1⊥PF2,则•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.方法二:由直线AB的方程为,整理得:bx﹣ay+ab=0,由题意可知:直线AB与圆O:x2+y2=c2相切,可得d==c,两边平方,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.11.(5分)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则的最小值为()A.B.2 C.D.9【解答】解:甲班学生成绩的中位数是80+x=81,得x=1;由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y,乙班学生的平均分是86,且总分为86×7=602,所以y=4,若正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,则xy=G2,2G=a+b,即有a+b=4,a>0,b>0,则+=(a+b)(+)=(1+4++)≥(5+2)=×9=,当且仅当b=2a=时,的最小值为.12.(5分)若对于任意的正实数x,y都有成立,则实数m的取值范围为()A. B.C.D.【解答】解:根据题意,对于(2x﹣)•ln≤,变形可得(2x﹣)ln≤,即(2e﹣)ln≤,设t=,则(2e﹣t)lnt≤,t>0,设f(t)=(2e﹣t)lnt,(t>0)则其导数f′(t)=﹣lnt+﹣1,又由t>0,则f′(t)为减函数,且f′(e)=﹣lne+﹣1=0,则当t∈(0,e)时,f′(t)>0,f(t)为增函数,当t∈(e,+∞)时,f′(t)<0,f(t)为减函数,则f(t)的最大值为f(e),且f(e)=e,若f(t)=(2e﹣t)lnt≤恒成立,必有e≤,解可得0<m≤,即m的取值范围为(0,];故选:D.二、填空题(本题共4小题,每题5分,共20分)13.(5分)设变量x,y满足约束条件则目标函数z=4x﹣y的最小值为1.【解答】解:设变量x,y满足约束条件在坐标系中画出可行域三角形,平移直线4x﹣y=0经过点A(1,3)时,4x﹣y最小,最小值为:1,则目标函数z=4x﹣y的最小值:1.故答案为:1.14.(5分)如果直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,则a=3.【解答】解:∵直线ax+2y+3a=0与直线3x+(a﹣1)y=a﹣7平行,∴,解得a=3.故答案为:3.15.(5分)已知数列{a n}满足,且a1+a2+a3+…+a10=1,则log2(a101+a102+…+a110)=100.【解答】解:∵,∴log2a n+1﹣log2a n=1,即,∴.∴数列{a n}是公比q=2的等比数列.则a101+a102+…+a110=(a1+a2+a3+…+a10)q100=2100,∴log2(a101+a102+…+a110)=.故答案为:100.16.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为y=±x.【解答】解:由题意得右焦点F(c,0),设一渐近线OM的方程为y=x,则另一渐近线ON的方程为y=﹣x,由FM的方程为y=﹣(x﹣c),联立方程y=x,可得M的横坐标为,由FM的方程为y=﹣(x﹣c),联立方程y=﹣x,可得N的横坐标为.由2=,可得2(﹣c)=﹣c,即为﹣c=,由e=,可得﹣1=,即有e4﹣5e2+4=0,解得e2=4或1(舍去),即为e=2,即c=2a,b=a,可得渐近线方程为y=±x,故答案为:y=±x.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.(1)求角C;(2)若△ABC的面积为,求ab的最小值.【解答】解:(1)由正弦定理可知:===2R,a=2RsinA,b=2RsinB,c=2RsinC,由2ccosB=2a+b,则2sinCcosB=2sin(B+C)+sinB,∴2sinBcosC+sinB=0,由0<B<π,sinB≠0,cosC=﹣,0<C<π,则C=;(2)由S=absinC=c,则c=ab,由c2=a2+b2﹣2abcosC=a2+b2+ab,∴=a2+b2+ab≥3ab,当且仅当a=b时取等号,∴ab≥12,故ab的最小值为12.18.(12分)2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?男性女性总计体育达人非体育达人总计临界值表:P(K2≥k0)0.100.050.0250.0100.005 k0 2.706 3.841 5.024 6.6357.879附:(,其中n=a+b+c+d)【解答】解:(1)按分层抽样男生应抽取80名,女生应抽取20名;∴x=80﹣(5+10+15+47)=3,y=20﹣(2+3+10+2)=3;抽取的100名且测试等级为优秀的学生中有三位男生,设为A,B,C;两位女生设为a,b;从5名任意选2名,总的基本事件有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个;设“选出的两名学生恰好是一男一女为事件A”;则事件包含的基本事件有Aa,Ab,Ba,Bb,Ca,Cb共6个;∴P(A)==;(2)填写2×2列联表如下:男生女生总计体育达人50555非体育达人301545总计8020100则K2=≈9.091;∵9.091>6.635且P(K2≥6.635)=0.010,∴在犯错误的概率不超过0.010的前提下认为“是否为‘体育达人’与性别有关”.19.(12分)如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若,求点B到平面PAC的距离.【解答】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos,∴=8,∴CD=2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,∴CD⊥平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,∴PD⊥平面ABC.解:(2)∵,∴PD=AD=4,∴PA=4,在Rt△PCD中,PC==2,∴△PAC是等腰三角形,∴,设点B到平面PAC的距离为d,由V E=V P﹣AEC,得,﹣PAC∴d==3,故点B到平面PAC的距离为3.20.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.【解答】解:(1)圆C:x2+y2+2x﹣2y+1=0可化为(x+1)2+(y﹣1)2=1,则圆心为(﹣1,1).抛物线E:y2=2px(p>0),焦点坐标F(),由于:圆心C到抛物线焦点F的距离为.则:,解得:p=6.故抛物线的方程为:y2=12x(2)设直线的方程为x=my+t,A(x1,y1),B(x2,y2),则:,整理得:y2﹣12my﹣12t=0,所以:y1+y2=12m,y1y2=﹣12t.由于:OA⊥OB.则:x1x2+y1y2=0.即:(m2+1)y1y2+mt(y1+y2)+t2=0.整理得:t2﹣12t=0,由于t≠0,解得t=12.故直线的方程为x=my+12,直线经过定点(12,0).当CN⊥l时,即动点M经过圆心C(﹣1,1)时到直线的距离取最大值.当CP⊥l时,即动点M经过圆心C(﹣1,1)时到动直线L的距离取得最大值.k MP=k CP=﹣,则:m=.此时直线的方程为:x=,即:13x﹣y﹣156=0.21.(12分)已知函数f(x)=lnx﹣a(x+1),a∈R在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有成立,求k的取值范围.【解答】解:(1)由已知可得f(x)的定义域为(0,+∞),∵f′(x)=﹣a,∴f′(1)=1﹣a=0,解得:a=1,∴f′(x)=,令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,故f(x)在(0,1)递增,在(1,+∞)递减;(1)不等式f(x)﹣+2x+>k(x﹣1)可化为lnx﹣+x﹣>k(x﹣1),令g(x)=lnx﹣+x﹣﹣k(x﹣1),(x>1),g′(x)=,∵x>1,令h(x)=﹣x2+(1﹣k)x+1,h(x)的对称轴是x=,①当≤1时,即k≥﹣1,易知h(x)在(1,x0)上递减,∴h(x)<h(1)=1﹣k,若k≥1,则h(x)≤0,∴g′(x)≤0,∴g(x)在(1,x0)递减,∴g(x)<g(1)=0,不适合题意.若﹣1≤k<1,则h(1)>0,∴必存在x0使得x∈(1,x0)时,g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.②当>1时,即k<﹣1,易知必存在x0使得h(x)在(1,x0)递增,∴h(x)>h(1)=1﹣k>0,∴g′(x)>0,∴g(x)在(1,x0)递增,∴g(x)>g(1)=0恒成立,适合题意.综上,k的取值范围是(﹣∞,1).22.(10分)在平面直角坐标系xOy中,直线l过点(1,0),倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若,设直线l与曲线C交于A,B两点,求△AOB的面积.【解答】(1)直线L的参数方程为:(α为参数).曲线C的极坐标方程是,转化为直角坐标方程为:y2=8x(2)当时,直线l的参数方程为:(t为参数),代入y2=8x得到:.(t1和t2为A和B的参数),所以:,t1t2=﹣16.所以:.O到AB的距离为:d=.则:=.23.设函数f(x)=|x+3|,g(x)=|2x﹣1|.(1)解不等式f(x)<g(x);(2)若2f(x)+g(x)>ax+4对任意的实数x恒成立,求a的取值范围.【解答】解:(1)由已知得|x+3|<|2x﹣1|,即|x+3|2<|2x﹣1|2,则有3x2﹣10x﹣8>0,∴x<﹣或x>4,故不等式的解集是(﹣∞,﹣)∪(4,+∞);(2)由已知,设h(x)=2f(x)+g(x)=2|x+3|+|2x﹣1|=,当x≤﹣3时,只需﹣4x﹣5>ax+4恒成立,即ax<﹣4x﹣9,∵x≤﹣3<0,∴a>=﹣4﹣恒成立,∴a>,∴a>﹣1,当﹣3<x<时,只需7>ax+4恒成立,即ax﹣3<0恒成立,只需,∴,∴﹣1≤a≤6,当x≥时,只需4x+5>ax+4恒成立,即ax<4x+1,∵x≥>0,∴a<=4+恒成立,∵4+>4,且无限趋近于4,∴a≤4,综上,a的取值范围是(﹣1,4].。
2018届吉林省长春市普通高中高三一模考试数学试题卷
2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则(?1+2i)(2?i)=()A. 5iB. ?5iC. 5D. -5【答案】A【解析】由题意可得:(?1+2i)(2?i)=?2+4i+i?2i2=5i.本题选择A选项.2. 集合{a,b,c}的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合{a,b,c}含有3个元素,则其子集的个数为23=8.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=?√3x上,则角α的取值集合是()A. {α|α=2kπ?π3,k∈Z} B. {α|α=2kπ+2π3,k∈Z}C. {α|α=kπ?2π3,k∈Z} D. {α|α=kπ?π3,k∈Z}【答案】D【解析】因为直线y=?√3x的倾斜角是2π3,所以终边落在直线y=?√3x上的角的取值集合为{α|α=kπ?π3,k∈Z}或者{α|α=kπ+2π3,k∈Z}.故选D.7. 已知x>0,y>0,且4x+y=xy,则x+y的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:4y +1x=1,则:x+y=(x+y)(4y +1x)=5+4xy+yx≥5+2√4xy×yx=9,当且仅当x=3,y=6时等号成立,综上可得:则x+y的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2√3,且四棱锥O?ABCD的体积为8√3,则R等于()A. 4B. 2√3C. 4√7D. √139【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为2√3,从而球的半径R=4.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+?+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2?y2=1的左、右焦点,点P为双曲线上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(?x),当x∈[0,π2]时,f(x)=√x,则函数g(x)=(x?π)f(x)?1在区间[?3π2,3π]上所有零点之和为()A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=?f(x)?T=2π,g(x)=(x−π)f(x)−1=0?f(x)=1x?π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角α,β满足?π2<α?β<π2,0<α+β<π,则3α?β的取值范围是__________.【答案】(?π,2π)【解析】结合题意可知:3α?β=2(α?β)+(α+β),且:2(α?β)∈(?π,π),(α+β)∈(0,π),利用不等式的性质可知:3α−β的取值范围是(−π,2π).点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,且|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,则|a ⃑+b ⃑⃑+c ⃑|=__________. 【答案】2【解析】因为平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,所以由题意可知,a ⃑,b ⃑⃑,c ⃑的夹角为120°,又知|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,所以a ⃑.b ⃑⃑=?12 ,a ⃑?c ⃑=b ⃑⃑?c ⃑=?32,|a ⃑+b ⃑⃑+c ⃑|= √1+1+9+2×(?12)+2×(?32)+2×(?32)=2 故答案为2.15. 在ΔABC 中,三个内角A,B,C 的对边分别为a,b,c ,若(12b?sinC)cosA =sinAcosC ,且a =2√3,ΔABC 面积的最大值为__________. 【答案】3√3【解析】由(12b −sinC)cosA =sinAcosC 可得12bcosA =sin (A +C )=sinB ,cosA2=sinB b=sinA a,得 tanA =√3,A =π3,由余弦定理12=b 2+c 2?bc ≥2bc?bc =bc , ΔABC 面积的最大值为12×12×√32=3√3,当且仅当b =c 时取到最大值,故答案为3√3.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及b 2 、a 2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________. 【答案】2√3π【解析】设圆锥的底面半径为R ,由题意可得其体积为:V =13Sℎ=13×πR 2×√9?R 2=2π×√R 2×R 2×(9?R 2)=23π×3√3=2√3π.当且仅当R =√6时等号成立.综上可得圆锥体积的最大值为2√3π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列{a n}的前n项和S n=2n+1+n?2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n?1),求证:1b1b2+1b2b3+1b3b4+?+1b n b n+1<1.【答案】(Ⅰ)a n=2n+1;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列{a n}的通项公式;(Ⅱ)化简b n=log2(a n?1)=log22n=n,则1b n b n+1=1n−1n+1,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由{S n=2n+1+n−2S n−1=2n+(n−1)−2(n≥2),则a n=2n+1(n≥2). 当n=1时,a1=S1=3,综上a n=2n+1.(Ⅱ)由b n=log2(a n−1)=log22n=n.1 b1b2+1b2b3+1b3b4+...+1b n b n+1=11×2+12×3+13×4+...+1n(n+1)=(1−12)+(12−13)+(13−14)+...+(1n−1n+1)=1−1n+1<1. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.【答案】(Ⅰ)2;(Ⅱ)1003.【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以12节应选出12×636=2节;(Ⅱ)X的所有可能取值为0,1,2,3,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000. (Ⅱ)X的可能取值为0,20,40,60P(X=0)=1C62=115P(X=20)=C31C21C62=615=25P(X=40)=C21+C32C62=515=13P(X=60)=C31C62=315=15则X的分布列为0 20 40 60即EX=1003.19. 如图,四棱锥P?ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA=1,∠ABC=60°,三棱锥E?ACD的体积为√38,求二面角D?AE?C的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)√1313.【解析】试题分析:(Ⅰ) )连接BD交AC于点O,连接OE,根据中位线定理可得PB//OE,由线面平行的判定定理即可证明PB//平面AEC;(Ⅱ)以点A为原点,以AM方向为x轴,以AD方向为y轴,以AP方向为z轴,建立空间直角坐标系,分别求出平面CAE与平面DAE的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(Ⅰ)连接BD交AC于点O,连接OE在△PBD中,PE =DEBO =DO }?PB//OE OE?平面ACE PB?平面ACE}?PB//平面ACE(Ⅱ)V P−ABCD =2V P−ACD =4V E−ACD =√32,设菱形ABCD 的边长为aV P−ABCD =13S ?ABCD ?PA =13×(2×√34a 2)×1=√32,则a =√3.取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D(0,√3,0),A(0,0,0),E(0,√32,12),C(32,√32,0) AE⃑⃑⃑⃑⃑⃑=(0,√32,12),AC ⃑⃑⃑⃑⃑⃑=(32,√32,0), n 1⃑⃑⃑⃑⃑=(1,−√3,3),n 2⃑⃑⃑⃑⃑=(1,0,0) cosθ=|n1⃑⃑⃑⃑⃑⃑?n 2⃑⃑⃑⃑⃑⃑||n 1⃑⃑⃑⃑⃑⃑|?|n 2⃑⃑⃑⃑⃑⃑|=√1+3+9=√1313, 即二面角D −AE −C 的余弦值为√1313.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 20. 已知椭圆C 的两个焦点为F 1(?1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=λF 1B ⃑⃑⃑⃑⃑⃑⃑⃑,且2≤λ<3,求直线的斜率k 的取值范围. 【答案】(Ⅰ)x 24+y 23=1;(Ⅱ)0<k ≤√52. 【解析】试题分析:(1)由题意可得a =2,c =1,b =√3,则椭圆方程为x 24+y 23=1. (2)联立直线与椭圆的方程,结合韦达定理得到关于实数k 的不等式,求解不等式可得直线的斜率k 的取值范围是k=√52. 试题解析:(1)由椭圆定义2a =|EF 1|+|EF 2|=4,有a =2,c =1,b =√3,从而x 24+y 23=1.(2)设直线l:y =k (x +1)(k >0),有{y =k (x +1)x 24+y 23=1 ,整理得(3k 2+4)y 2−6k y −9=0, 设A (x 1,y 1),B (x 2,y 2),有y 1=−λy 2,y 1y 2=−λ(1−λ)2(y 1+y 2)2,(1−λ)2λ=43+4k 2,λ+1λ−2=43+4k 2, 由于2≤λ<3,所以12≤λ+1λ−2<43,12≤43+4k 2<43,解得0<k ≤√52. 3+4k 2=8,k =±√52,由已知k =√52.21. 已知函数f (x )=e x ,g (x )=ln (x +a )+b .(Ⅰ)若函数f (x )与g (x )的图像在点(0,1)处有相同的切线,求a,b 的值; (Ⅱ)当b =0时,f (x )?g (x )>0恒成立,求整数a 的最大值;(Ⅲ)证明:ln2+(ln3?ln2)2+(ln4?ln3)3 +?+[ln(n +1)?lnn]n <ee?1. 【答案】(Ⅰ)1,1;(Ⅱ)2;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出f′(x )与g′(x ),由f(1)=g(1)且f ′(1)=g ′(1)解方程组可求a,b 的值;(Ⅱ)f (x )−g (x )>0恒成立等价于e x ≥ln(x +a)恒成立,先证明当a ≤2时恒成立,再证明a ≥3时不恒成立,进而可得结果;(Ⅲ))由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2),令n =1,2,3,4... ,各式相加即可得结果.试题解析:(Ⅰ)由题意可知,f(x)和g(x)在(0,1)处有相同的切线, 即在(0,1)处f(1)=g(1)且f ′(1)=g ′(1), 解得a =1,b =1.(Ⅱ)现证明e x ≥x +1,设F(x)=e x −x −1, 令F ′(x)=e x −1=0,即x =0,因此F(x)min =F(0)=0,即F(x)≥0恒成立, 即e x ≥x +1, 同理可证lnx ≤x −1.由题意,当a ≤2时,e x ≥x +1且ln(x +2)≤x +1,即e x ≥x +1≥ln(x +2), 即a =2时,f(x)−g(x)>0成立.当a ≥3时,e 0<lna ,即e x ≥ln(x +a)不恒成立. 因此整数a 的最大值为2. (Ⅲ)由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2)由此可知,当n =1时,e 0>ln2, 当n =2时,e −1>(ln3−ln2)2, 当n =3时,e −2>(ln4−ln3)3, ……当n =n 时,e −n+1>[ln(n +1)−lnn]n .综上:e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n11−1e>e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln (n +1)−lnn ]n .即ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n <ee−1.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,π2),若直线过点P ,且倾斜角为π6,圆C 以M 圆心,3为半径. (Ⅰ)求直线的参数方程和圆C 的极坐标方程; (Ⅱ)设直线与圆C 相交于A,B 两点,求|PA|?|PB|. 【答案】(Ⅰ){x =1+√32ty =2+12t(t 为参数),ρ=6sinθ;(Ⅱ)7. 【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C 的极坐标方程(2)利用ρsinθ=y,x 2+y 2=ρ2将圆C 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA |?|PB |=|t 1t 2|=7 试题解析:(Ⅰ)直线的参数方程为{x =1+√32t,y =2+12t, (t 为参数), 圆的极坐标方程为ρ=6sinθ .(Ⅱ)把{x =1+√32t,y =2+12t,代入x 2+(y −3)2=9,得t 2+(√3−1)t −7=0, ∴t 1t 2=−7,设点A,B 对应的参数分别为t 1,t 2,则|PA |=|t 1|,|PB |=|t 2|,|PA |?|PB |=7. 23. 选修4-5:不等式选讲设不等式||x +1|?|x?1||<2的解集为A .(Ⅰ)求集合A ;(Ⅱ)若a,b,c ∈A ,求证:|1?abcab?c |>1.【答案】(Ⅰ){x|?1<x <1};(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为(1−a 2b 2)(1−c 2)>0,再根据a,b,c ∈A ,证明(1−a 2b 2)(1−c 2)>0试题解析:(1)由已知,令f(x)=|x +1|−|x −1|={2(x ≥1)2x(−1<x <1)−2(x ≤−1)由|f(x)|<2得A ={x|−1<x <1}.(2)要证|1−abcab−c |>1,只需证|1−abc|>|ab −c|,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1−a 2b 2>c 2(1−a 2b 2)只需证(1−a 2b 2)(1−c 2)>0,由a,b,c ∈A ,则(1−a 2b 2)(1−c 2)>0恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。
全国普通高等学校高考数学模拟试卷(理科)及答案
全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0},片&|占<3玄丈歼} , C=(x|x=2n, n€81N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}2. (5分)设i是虚数单位,若-- ' ― ,x,y€ R,则复数x+yi的共轭复数2^1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i3. (5分)已知等差数列{a n}的前n项和是S h,且%+a5+a6+a z=18,贝U下列命题正确的是()A. a5是常数B. S5是常数C. a i0是常数D. Si o是常数4. (5分)七巧板是我们祖先的一项创造,被誉为东方魔板”它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()BCD2 25. (5分)已知点F为双曲线C: = 一一(a>0,b>0)的右焦点,直线x=aa b与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,贝U双曲线的离心率为()A. "B. I ■:C. I」订D. - % -6. (5分)已知函数f&)二sinx, K E [-冗50]诋(0t i]A . 7 .nJTD.——-74 一(5分)执行如图所示的程序框图,则输出的S的值为()2+ n B. C.盒2*出£产〔筠棗)*>201A.二7B. 「」C.. - 厂D. +-8 (5分)已知函数f仗)二sin 3葢X^\/3C^OS23(3> 0) 的相邻两个零点差的绝对值为二,则函数f (x)的图象(4A . 可由函数(X)=cos4x的图象向左平移个单位而得B. 可由函数(X)=cos4x的图象向右平移C. 可由函数(X)=cos4x的图象向右平移D . 可由函数(X)=cos4x的图象向右平移丄个单位而得24丄个单位而得245兀个单位而得9. (5 分)(羽-3)(1的展开式中剔除常数项后的各项系数和为(A . —73 B.—61 C.—55 D.—6310. (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是(nanA . 317£~6~B.31兀C.481K D丑価兀. ■:6411. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线l i , I 2,直 线l i 与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若l i 与12 的斜率的平方和为1,则|AB|+| DE 的最小值为( )A . 16 B. 20 C. 24 D . 3212. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x ) =f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在 区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,zg ■-2,,1 ©卄比)二戈函数.若? X 1€ [6, 8] , ?X 2€L<Y <2’二、填空题(每题5分,满分20分,将答案填在答题纸上) 13 . ( 5分)已知向量, ^占口),-1),且旦丄1,则1)-=为 ______ .15. (5分)在等比数列{a n }中,a 2?a 3=2a 1,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为 ______ .16.(5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,一二亍「二,点14. ( 5分)已知x , y 满足约束条件(0, +x ),使g (X 2)- f (X 1)w 0成立,则实数m 的取值范围是( 的最小值E是线段CD上异于点C, D的动点,EF丄AD于点^将厶DEF沿EF折起到△ PEF 的位置,并使PF丄AF,则五棱锥P-ABCEF勺体积的取值范围为________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点D 满足■ /(1)求a及角A的大小;18. (12分)在四棱柱ABCD- A i B i C i D i中,底面ABCD是正方形,且匚-:-,/ A1AB=Z A1AD=6C°.(1)求证:BD丄CG;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB所成角的正弦值为I .19. (12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数「(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N (卩,d2),利用该正态分布,求Z落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为^=V142. 75^11-95;②若〜N — b 2 ),贝U P (卩―crV Z< p+ o)=0.6826,P (卩―2 o< Z< (J+2 C)=0.9544.0e030 ・-0-025 ・*0.020 - 0.0150.01010 2030 4050各水饺质量指标丄一,且以两焦点为直20. (12分)已知椭圆C: 亏〔呂0)的离心率为径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线I: y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21. (12分)已知函数f (x) =e x- 2 (a- 1) x- b,其中e为自然对数的底数.(1)若函数f (x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g (x) =e x-(a- 1) x2- bx- 1,且g (1) =0,若函数g (x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在平面直角坐标系xOy中,圆C i的参数方程为\ K-_Uacos® ( 0ty=-l+asin9为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为p =2^2^05 ( .(1)求圆C i的极坐标方程和圆C2的直角坐标方程;(2)分别记直线I: ^吕,P€ R与圆C i、圆C2的异于原点的焦点为A,B,若圆C i与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23. 已知函数f (x) =|2x+1| .(1)求不等式f (x)< 10-| x-3|的解集;(2)若正数m,n 满足m+2n=mn,求证:f (m) +f (- 2n)》16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0}, B二丘|丄<罗<27} , C={x|x=2n, n€31N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}【解答】解:A={x| - x2+4x> 0} ={x| 0< x< 4},駐〔兀I去V3y 27} ={x| 3-4v 3x v 33}={x| - 4<x< 3},oJL则A U B={x| - 4< x<4},C={x| x=2n, n € N},可得(A U B)n C={0, 2, 4},故选C.2. (5分)设i是虚数单位,若' ,x, y€ R,则复数x+yi的共轭复数2-1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i【解答】解:由一「2-1得x+yi= — -i —-! ■=2+i得x+yi= =2+i,•••复数x+yi的共轭复数是2 -i.3(5分)已知等差数列{a n}的前n项和是S,且a4+a5+a e+a7=18,则下列命题正确的是()A. a5是常数B. S5是常数C. a10是常数D. Si0是常数故选:A.【解答】解:•••等差数列{a n }的前n 项和是S n ,且a 4+a 5+a 6+a 7=18, 二 a 4+a 5+a 6+a 7=2 (a i +a io ) =18, --a i +a io =9, …Sg 二乎(有十^10)=45- 故选:D .4. (5分)七巧板是我们祖先的一项创造,被誉为 东方魔板”它是由五块等腰 直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形) 、- 块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()【解答】解:设AB=2,则BC=CD=DE=EF=1V B —订,S 平行四边形EFG 阳2S BC =2 X — , •••所求的概率为口 +S 平行四边形EPGH g 正方形AB5 =2x7故选:A .2 25. (5分)已知点F 为双曲线C : 云丄尹1 (a >0, b >0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为 A ,若AF 的中点在双曲线上,贝U 双曲线 的离心率为()16BCDA. . 1B. I ■:C.「'.打D. I 口2 2【解答】解:设双曲线C:青冬二1的右焦点F (c, 双曲线的渐近线方程为y丄x,a由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(誓,寺b),代入双曲线的方程可得卄J -丄=1,可得4a2- 2ac- c2=0,由e*,可得e2+2e- 4=0,a解得e= !.- 1 (- 1 —汀舍去),故选:D. 0),6. (5分)已知函数f&)二则.A. 2+ nB. JT T-2J Ql-/dK=/ cOSdt= J 1 址齐t芒1 2+',J 2开£(只),xE [-TT , 0]2,址© 1]^rcsinx *兀4+ (- COSX:=(2. 故选:D.7. (5分)执行如图所示的程序框图,则输出的 S 的值为()A ...工7B .C.. -厂 D . m【解答】解:第1次循环后,S=-,不满足退出循环的条件,k=2; 第2次循环后,S= -;,不满足退出循环的条件,k=3; 第3次循环后,S= =2,不满足退出循环的条件,k=4;第n 次循环后,S= ,不满足退出循环的条件,k=n+1 ; 第2018次循环后,S=,3.「儿 不满足退出循环的条件,k=2019第2019次循环后,S==2「|「,满足退出循环的条件, 故输出的S 值为2厂「, 故选:C& (5分)已知函数f (瓷)sin® xug®負7勺(3> 0)的相邻两个 零点差的绝对值为「则函数f (x )的图象()A. 可由函数g (x ) =cos4x 的图象向左平移卑匚个单位而得B. 可由函数g (x ) =cos4x 的图象向右平移2二个单位而得24C. 可由函数g (x ) =cos4x 的图象向右平移丄?个单位而得D. 可由函数g (x ) =cos4x 的图象向右平移一个单位而得O【解答】 解:函数 f (7) =sinseesxVsccs5 工=寺 sin7T=sin (2^)-—)(3>0)的相邻两个零点差的绝对值为才?爲=:,二①=2 f (x ) =sin (4x -中=cos[(2 3X )]=cos (4x普).故把函数g (x ) =cos4x 的图象向右平移竺个单位,可得f (X )的图象,24 故选:B.9・(5分)©-3)(代/的展开式中剔除常数项后的各项系数和为( )A .- 73B .- 61C.- 55D .- 63【解答】解:丄广展开式中所有各项系数和为(2- 3) (1+1) 6=- 64; ⑵-3)(1 丄)社(2x -3) (1忑碍+•••),工工/其展开式中的常数项为-3+12=9,• ••所求展开式中剔除常数项后的各项系数和为 -64 - 9=- 73.故选:A . 6【解答】解:如图,可得该几何体是六棱锥 P -ABCDEF 底面是正六边形,有一 PAF 侧面垂直底面,且P 在底面的投影为AF 中点,过底面中心N 作底面垂线, 过侧面PAF 的外心M 作面PAF 的垂线,两垂线的交点即为球心 0, 设厶PAF 的外接圆半径为r ,/二(2P )牛(寺严,解得r #,•価二0昨茅6 (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF 是边长为 1的正六边形,点G 为AF 的中点,则该几何体的外接球的表面积是()A .B .312Z8 C.鋁1叽64D.48MAS11. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线11, 12,直 线11与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若11与12 的斜率的平方和为1,则|AB|+| DE 的最小值为()A . 16 B. 20 C. 24 D . 32【解答】解:抛物线C: y 2=4x 的焦点F (1, 0),设直线11: y=k i (x- 1),直线 12: y=k 2 (x - 1),由题意可知,贝U 叭Jk 『二1,设 A (X 1 , y 1), B (X 2 , y 2),贝 U X 1+X 2= -------k l 4设 D (X 3 , y 3), E (X 4 , y 4),同理可得:X 3+X 4=2+ ° ,k2由抛物线的性质可得:丨AB | =X 1+x 2+p=4+则该几何体的外接球的半径•••表面积是则该几何体的外接球的表面积是7 V4M+1 FS=4冗 R =°*l 兀.64联立丿y=k] (i-lj,整理得:k 12x 2-( 2k 12+4) x+k 12=0,R= I :. 故选:C.C,| DE | =X 3+X 4+pk l=84 ,当且仅当k®目时,上式“我立• ••• | AB|+| DE 的最小值 24, 故选:C.12. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x )=f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,f(2-Kb 1<X<2(0 , +x),使g (x 2)- f (X 1)w 0成立,贝U 实数m 的取值范围是(【解答】解:根据题意,对于函数f(x ),当x € [0 , 2)时,f k)弓2fCE-s), Kx<2-2,有最大值f (0)二,最小值f (1)2,当1v x v 2时,f (x ) =f (2 -x ),函数f (x )的图象关于直线x=1对称,则此时 有-一v f (x )v又由函数y=f (x )是定义在区间[0, +7 内的2级类周期函数,且T=2; 则在€ [6, 8) 上, f (x ) =23?f (x -6),则有—12<f (x )w 4,则 f (8) =2f (6) =4f (4) =8f (2) =16f (0) =8,则函数f (x )在区间[6 , 8]上的最大值为8,最小值为-12;A .—] B. (a, 13 ] C. 〔a,32 J2」2」D .[普g| AB|+| DE =8+1 k 24(ki 2+k 2Z ) 8P4、412 J一 _ _ •若? xi € [ 6, 8] , ? X 2 €函数 =-21nx分析可得:当O w x < 1时,f (x) --=84 ,对于函数山)二-加4^5切,有g'(x) =-Z +X+1」®之-炉1)3切L x x x分析可得:在(0 , 1)上,g (x)v0,函数g (x)为减函数,在(1 , +x)上,g r (x)>0,函数g (x)为增函数,则函数g (x )在(0, +x )上,由最小值f (1) =_ +m ,2若? x i € [6, 8] , ? X 2 €(0, +x ),使 g (X 2)— f (x i )< 0 成立, ,即一+m < 8, ,即m 的取值范围为(-x,必有 g (x ) min < f (x ) max 故选:B. 解可得m 13 2 、填空题(每题5分,满分20分,将答案填在答题纸上) 13. (5 分)已知向重.I _ d •二二「,,| 丄---,且-一、,则! . I I ]【解答】解:根据题意,向重 丁(2営cgd ),b=(l, -1), 若;丄卞,则 ^?b=2sin a cos a =0 则有 tan a又由 sin 2 a +COS 2 a=1 则有 则 则 |..|-: 2^5sina=^ a" COS Cl - !_ 亍),或 = sin a 二芈^ 5 n _砸 C0S 或(— 5则崙丄)2=3品2- 21?工半 5故答案为: 14. (5分)已知x , y 满足约束条件 的最小值为L_. 【解答】解:由约束条件作出可行域如图,X = — 22n -4,联立fxWQ ,解得A (2, 4), J 23<2,令t=5x -3y ,化为y 专富诗,由图可知,当直线宾耳过A 时, 」 J "J 直线在y 轴上的截距最大,t 有最小值为-2. •••目标函数 玄二彳; 的最小值为2~^-^. 故答案为:丄.15. (5分)在等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为—亠〕/" _.丄ka【解答】解:等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17, 设首项为a 1,公比为q , 则:整理得:+血]<1 二 34解得: 则: 所以:b n =a 2n -1 — a 2n =屯一」116. (5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,上-二一二-_,点 E 是线段CD 上异于点C , D 的动点,EF 丄AD 于点^将厶DEF 沿 EF 折起到△ PEF 的位置,并使PF 丄AF ,则五棱锥P -ABCEF 的体积的取值范围为【解答】 解:T PF 丄AF , PF 丄EF, AF G EF=F 二PF 丄平面ABCD 设 PF=x 贝U O v x v 1, 且 EF=DF=x•五棱锥P-ABCEF 的体积V 丄 丄(3-x 2) x 设 f (x ) (3x - x 3),贝U f ' (x) — (3 - 3x 2)6 6•••当 O v x v 1 时,f'(x )>0,则:T 2n = I' 1-4 故答案为: 討护). (0,丄) •五边形ABCEF 的面积为S=S 弟形ABCD - x( 1+2)x 1-—X 2丄(3-x 2). (3x — x 3), (1-x 2),••• f(x)在(0, 1)上单调递增,又f (0)=0, •五棱锥P-ABCEF的体积的范围是(0,丄).故答案为:三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点 D 满足 【解答】 解:(1)由2bcosA+acosC+ccosA=0及正弦定理得-2sinBcosA=sinAcos&osAsinC 即—2si nBcosA=si n( A+C ) =s inB, 在厶 ABC 中,sinB >0,所以一”二二. 在厶 ABC 中,c=2b=2,由余弦定理得 a 2=b 2+c 2 - 2bccosA=k J +c 2+bc=7, 18. (12分)在四棱柱ABCD — A i B i C i D i 中,底面ABCD 是正方形,且匚-■-,/ A 1AB=Z A 1AD=6C °.(1) 求证:BD 丄CG ;(2) 若动点E 在棱C 1D 1上,试确定点E 的位置,使得直线DE 与平面BDB 所成 角的正弦值为….又A €(0, n),所以(1)求a 及角A 的大小; C所以一 I【解答】解:(1)连接A i B, A i D, AC,因为AB=AA=AD,/ A i AB=Z A i AD=60,所以△ A i AB和厶A i AD均为正三角形,于是A i B=A i D.设AC与BD的交点为0,连接A i O,则A i O丄BD,又四边形ABCD是正方形,所以AC丄BD, 而A i O n AC=O,所以BD丄平面A i AC.又AA i?平面A i AC,所以BD丄AA i, 又CG // AA i,所以BD丄CG.(2)由,及BDW2AB=2,知A i B丄A i D,结合A i O丄BD, AO n AC=O 得A i O丄底面ABCD, 所以OA、OB、OA i两两垂直.如图,以点O为坐标原点,| &的方向为x轴的正方向,建立空间直角坐标系 -xyz 则A (i, 0, 0), B (0 , i , 0), D (0 , - i , 0), A i (0 , 0 , i) , C(- i , 0 , DB=(O, 2, 0),瓦二瓯二(一1・ 0, 1), D]C[二磋(T, 1;",由i 丨,得Di (- i, - i , i).设:,I- ■:.:'(疋[0 , i]),则(X E+i , y E+i , Z E- i)=入(-i , i , 0),即 E (-入—i,入—i , i), 所以;「―■•亠.设平面B i BD的一个法向量为|• • •'!,O 0),B,从而A i O丄AO,设直线DE 与平面BDB 所成角为9, 则血*k^<运,(—'—D+oy m 丨申, V2XV X 2+(-1-\)£+1 14 解得二二或•,二丄(舍去),2 3所以当E 为D i C i 的中点时,直线DE 与平面BDBi 所成角的正弦值为「.19. ( 12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节 前夕,A 市某质检部门随机抽取了 100包某种品牌的速冻水饺,检测其某项质量 指标,(1) 求所抽取的100包速冻水饺该项质量指标值的样本平均数■:(同一组中的 数据用该组区间的中点值作代表);(2) ①由直方图可以认为,速冻水饺的该项质量指标值 Z 服从正态分布N(卩, ;),利用该正态分布,求Z 落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了 4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10, 30)内的包数为X ,求X 的分布列和数 学期望. 附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为②若(卩,^ ),贝U P (卩―eV Z w p+ o ) =0.6826, P (卩―2 eV Z w (J +2 o ) =0.9544.得n=(l, 0, 1),n ・ E6=0 {十…… n • &B-i =0 L得 产。
成都七中2018年度高考模拟数学(理科)试题一
成都七中高2018届高考模拟数学试题一理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}043{},4{2>-=≤=x x B x x x A ,则=B A I ( ) A .)0(,-∞ B .)34,0[ C .]4,34( D .)0(,-∞ 2.已知i 为虚数单位,R a ∈,若ia i --2为纯虚数,则=a ( ) A .21 B .21- C .2 D .-2 3.某公司新研发了两种不同型号的平板电脑,公司统计了消费者对这两种型号平板电脑的评分情况,如下图,则下列说法不正确的是( )A .甲、乙型号平板电脑的综合得分相同B .乙型号平板电脑的拍照功能比较好C .在性能方面,乙型号平板电脑做得比较好D .消费者比较喜欢乙型号平板电脑的屏幕 4.已知33)67sin(=+απ,则)232cos(απ-=( ) A .32-B .31- C.32 D .31 5.113)23(x x -展开式中任取一项,则所取项是有理项的概率为( )A .121 B .61 C.112 D .1116.函数)1(1)(-+=xx e x e x f 的图像大致为( ) A . B .C. D .7.已知平面向量a ρ与b ρ的夹角为32π,若)1,3(-=a ρ,1322=-b a ρρ,则b ρ( )A .3B .4 C.3 D .2 8.设20π<<x ,则”“2cos x x <是”“x x <cos 的( ) A .充分而不必要条件 B .必要而不充分条件 C.充分必要条件D .既不充分也不必要条件9.已知⎰=102xdx a ,函数⎪⎭⎫⎝⎛<>>+=2,0,0)sin()(πϕωϕωA x A x f 的部分图像如图所示,则函数a x f +⎪⎭⎫ ⎝⎛-4π图像的一个对称中心是( )A .⎪⎭⎫ ⎝⎛-1,12π B .⎪⎭⎫ ⎝⎛2,12π C.⎪⎭⎫ ⎝⎛1,127π D .⎪⎭⎫ ⎝⎛2,43π 10.双曲线()0,01:2222>>=-a by a x C 的离心率332=e ,右焦点为F ,点A 是双曲线C 的一条渐近线上位于第一象限内的点,OAF AOF ∠=∠,AOF ∆的面积为33,则双曲线C 的方程为( )A .1123622=-y x B .161822=-y x C. 13922=-y x D .1322=-y x 11.设函数2ln )(2+-=x x x x f ,若存在区间⎪⎭⎫⎢⎣⎡+∞⊆,21],[b a ,使)(x f 在],[b a 上的值域为)]2(),2([++b k a k ,则k 的取值范围是( )A .⎪⎭⎫ ⎝⎛+42ln 29,1 B .⎥⎦⎤⎢⎣⎡+42ln 29,1 C. ⎥⎦⎤ ⎝⎛+102ln 29,1 D .⎥⎦⎤⎢⎣⎡+102ln 29,1 12.如图,在矩形ABCD 中,,6,4==BC AB 四边形AEFG 为边长为2的正方形,现将矩形ABCD 沿过点F 的动直线l 翻折,使翻折后的点C 在平面AEFG 上的射影1C 落在直线AB 上,若点C 在折痕l 上射影为2C ,则221CC C C 的最小值为( )A .1356-B .25- C.21 D .32 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知变量y x ,满足⎪⎩⎪⎨⎧≤+≥+≤622y x y x xy ,则y x z -=2的最大值为 .14.执行下面的程序框图,输出的结果为 .15.已知圆044:22=+--+m y x y x C 与y 轴相切,抛物线)0(2:2>=p px y E 过点C ,其焦点为F ,则直线CF 被抛物线所截得的弦长等于 .16.在ABC ∆中,点D 在边AB 上,AD BD CD AC BC CD 2,5,35,===⊥,则AD 的长为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知}{n a 是递增数列,前n 项和为n S ,11>a ,且*),2)(12(10N n a a S n n n ∈++=.(1)求数列}{n a 的通项n a ;(2)是否存在*,,N k n m ∈,使得k n m a a a =+)(2成立?若存在,写出一组符合条件的k n m ,,的值;若不存在,请说明理由;18.如图,等腰直角PAD ∆为梯形ABCD 所在的平面垂直,且,//,,BC AD PA PA PD PA ⊥=E ADC CD BC AD ,120,422ο=∠===为AD 中点.(1)证明:⊥BD 平面PEC ;(2)求二面角D PB C --的余弦值.19.甲、乙两品牌计划入驻某大型商场,该商场批准两个品牌先进场试销10天.量品牌提供的返利方案如下:甲品牌无固定返利,卖出90件以内(含90件)的产品,每件产品返利5元,超出90件的部分每件返利7元;乙品牌每天固定返利a 元,且每卖出一件产品再返利3元.经统计,两家品牌的试销情况的茎叶图如下:(1)现从乙品牌试销的10天中抽取三天,求这三天的销售量中至少有一天低于90的概率.(2)若将频率视作概率,商场拟在甲、乙两品牌中选择一个长期销售,如果仅从日平均返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.20. 已知圆)0,1(),0,1(,4:2122F F y x O -=+,点D 圆O 上一动点,OF +=22,点C 在直线1EF 上,且02=⋅EF ,记点C 的轨迹为曲线W . (1)求曲线W 的方程;(2)已知)0,4(N ,过点N 作直线l 与曲线W 交于B A ,不同两点,线段AB 的中垂线为l ',线段AB 的中点为Q 点,记l '与y 轴的交点为M ,求MQ 的取值范围.21.已知函数),0()3()(R a x xae x xf x ∈>+-=. (1)当43->a 时,判断函数)(x f 的单调性; (2)当)(x f 有两个极值点时,若)(x f 的极大值小于整数m ,求m 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为⎪⎪⎩⎪⎪⎨⎧-==32cos 2165sin ππt y t x ,在极坐标系中曲线D 的极坐标方程为θθρ2cos sin 22+=. (1)求曲线C 的普通方程与曲线D 的直角坐标方程; (2)若曲线C 与曲线D 交于B A ,两点,求AB.23.选修4-5:不等式选讲 已知函数2)(-=x x f .(1)解不等式2)42()(<+-x f x f ;(2)若m m x f x f 2)3()(2+≥++对R x ∈恒成立,求实数m 的取值范围.成都七中高2018届高考模拟数学试题一理科数学 参考答案一、选择题1-5:CBDBB 6-10:AAACC 11、12:CA二、填空题13.10; 14.854; 15.825; 16.5. 三、解答题17.(1))2)(12(10111++=a a a ,得0252121=+-a a ,解得21=a ,或211=a . 由于11>a ,所以21=a .因为)2)(12(10++=n n n a a S ,所以252102++=n n n a a S . 故252252101010212111---++=-=++++n n n n n n n a a a a S S a ,整理,得0)(5)(21221=+--++n n n n a a a a ,即0]5)(2)[(11=--+++n n n n a a a a . 因为}{n a 是递增数列,且21=a ,故0)(1≠++n n a a ,因此251=-+n n a a .则数列}{n a 是以2为首项,25为公差的等差数列. 所以)15(21)1(252-=-+=n n a n . (2)满足条件的正整数k n m ,,不存在,证明如下: 假设存在*,,N k n m ∈,使得kn m a a a =+)(2,则)15(211515-=-+-k n m . 整理,得5322=-+k n m ,①显然,左边为整数,所以①式不成立. 故满足条件的正整数k n m ,,不存在.18.【解析】(1)在等腰直角PAD ∆中,PD PA =, 又E 为AD 中点,所以AD PE ⊥, 又平面⊥PAD 平面ABCD ,平面I PAD 平面ABCD =AD , 所以⊥PE 平面ABCD , 故⊥PE BD .如图,连接BE ,在梯形ABCD 中,BC AD //,且BC ED =, 所以四边形BCDE 为平行四边形,又2==CD BC ,所以四边形BCDE 为菱形, 所以BD EC ⊥. 又E EC PE =I , 所以⊥BD 平面PEC .(2)如图,过点E 作DB EF //,交AB 于F , 因为EC BD ⊥,所以BC EF ⊥.由(1)知⊥PE 平面ABCD ,故以点E 为坐标原点,分别以EP EC EF ,,所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系xyz E -. 在PAD Rt ∆中,2==EA ED , 又PD PA PD PA ⊥=,,所以2=EP .在梯形ABCD 中,ο120=∠ADC ,2==DC ED ,故32=EC .ο60,2=∠==BEF DC EB .所以),60sin 2,60cos 2(),0,32,0(),2,0,0(οοB C P 即)0,3,1(),0,3,1(-D B .故)0,0,2(),2,32,0(),2,3,1(=-=-=DB PC PB .设平面PBC 的法向量为),,(111z y x n =ρ, 由⎪⎩⎪⎨⎧==n n ρρ,得⎪⎩⎪⎨⎧=-=-+023*********z y z y x . 令31=z ,则3,111==x y . 所以)3,1,3(=n ρ为平面PBC 的一个法向量.设平面PBD 的法向量为),,(222z y x m =ρ. 由⎪⎩⎪⎨⎧==DBm m ρρ,得⎩⎨⎧==-+020232222x z y x . 令32=z ,则2,022==y x . 所以)3,2,0(=m ρ为平面PBD 的一个法向量. 所以75313323321,cos 2=++⨯+⨯+⨯=⋅⋅=n m n m n m ρρρρρρ. 由图可知,二面角D PB C --为锐二面角,故其余弦值等于75. 19.解(1)方法一:记“乙品牌这三天的销售量中至少有一天低于90”为事件A , 由题意知抽取的10天中,销售量不低于90的有7天,销售量低于90的有3天. 则2417)(310330723171327=++=C C C C C C C A P 方法二:记“这三天的销售量至少有一天低于90”为事件A , 则A 为:“这三天的销售量都不低于90”, 则247)(3103703==C C C A P , 所以24172471)(1)(=-=-=A P A P (2)①设甲品牌的日销售量为t ,由茎叶图可知t 可取86,87,89,90,92,93.当t =86时,=X 86⨯5=430;当t =87时,=X 87⨯5=435;当t =89时,=X 89⨯5=445;当t =90时,=X 90⨯5=450;当t =92时,=X 90⨯5+2⨯7=464;当t =93时,=X 90⨯5+3⨯7=471.∴X 的所有可能取值为:430,435,445,450,464,471.∴X 的分别列为∴5.44510147110146451450544554355430=⨯+⨯+⨯+⨯+⨯+⨯=EX (元) ②依题意,乙品牌的日平均销售量为:7.909310192529151895186101=⨯+⨯+⨯+⨯+⨯ ∴乙品牌的日平均返利额为:1.27237.90+=⨯+a a (元).当5.4451.272>+a ,即4.173>a (元)时,推荐该商场选择乙品牌长期销售; 当5.4451.272=+a ,即4.173=a (元)时,该商场任意选择甲、乙品牌即可; 当5.4451.272<+a ,即4.173<a (元)时,推荐该商场选择甲品牌长期销售. 综上,当4.173>a 元时,推荐该商场选择乙品牌长期销售;当4.173=a 元时,该商场任意选择甲、乙品牌即可;当4.173<a 元时,推荐该商场选择甲品牌长期销售. 20.解:(1)13422=+y x . (2)由题意可知直线l 的斜率存在,设l :),(),,(),,(),4(002211y x Q y x B y x A x k y -=.联立直线与椭圆⎪⎩⎪⎨⎧=+-=134)4(22y x x k y ,消去y 得0126432)34(2222=-+-+k x k x k . 341264,343222212221+-=+=+k k x x k k x x , 又0)1264)(34(4)32(2222>-+--=∆k k k ,解得2121<<-k , 3412)4(,3416220022210+-=-=+=+=k k x k y k k x x x , 所以⎪⎪⎭⎫ ⎝⎛+-+3412,3416222k k k k Q所以)(1:00x x ky y l --=-',即⎪⎪⎭⎫ ⎝⎛+--=++341613412222k k x k k k y . 化简得:34412++-=k k x k y , 令0=x ,得3442+=k k m ,即⎪⎭⎫ ⎝⎛+344,02k k M , =MQ ()22242222222341634163416++⋅=⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=k k k k k k k MQ , 令342+=k t ,则)4,3[∈t , 所以]11213[163216434316222222+⋅-⎪⎭⎫ ⎝⎛⋅-⋅=--⋅=-+⎪⎭⎫ ⎝⎛-⋅=t t t t t t t t MQ , 所以)5,0[∈MQ . 21.(1)由题)0()33()3(])3([)(222>--+-=----+-='x x a e x x x a e x x e x e x f x x x x . 方法1:由于43)33(,01,0433322-<-+-<-<-<-≤-+-x x e x x e x x , 又43->a ,所以0)33(2<--+-a e x x x ,从而0)(<'x f , 于是)(x f 为),0(+∞上的减函数.方法2:令a e x x x h x --+-=)33()(2,则x e x x x h )()(2+-=',当10<<x 时,0)(>'x h ,)(x h 为增函数;当1>x 时,0)(<'x h ,)(x h 为减函数. 故)(x h 在1=x 时取得极大值,也即为最大值.则a e h x h --==)1()(max .由于43->a ,所以0)1()(max <--==a e h x h , 于是)(x f 为),0(+∞上的减函数.(2)令a e x x x h x --+-=)33()(2,则x e x x x h )()(2+-=',当10<<x 时,0)(>'x h ,)(x h 为增函数;当1>x 时,0)(<'x h ,)(x h 为减函数. 当x 趋近于∞+时,)(x h 趋近于∞-.由于)(x f 有两个极值点,所以0)(='x f 有两个不等实根,即0)33()(2=--+-=a e x x x h x 有两不等实根21,x x (21x x <). 则⎩⎨⎧><,0)1(,0)0(h h 解得e a -<<-3.可知)1,0(1∈x ,由于0)1(>--=a e h ,034343)23(2323<+-<--=e a e h ,则)23,1(2∈x . 而0)33()(2222222=--+-='x a e x x x f x ,即332222-+-=x x a e x (#) 所以2222)3()()(x a e x x f x f x +-==极大值,于是332)(22222+--=x x a ax x f ,(*) 令)211(2222-<<-+=⇒-=t t x x t ,则(*)可变为a tt a t t t t g 1111)(2++=++=, 可得321111-<++<-t t ,而e a -<<-3,则有31111)(2<++=++=a tt a t t t t g , 下面再说明对于任意)23,1(,32∈-<<-x e a ,2)(2>x f . 又由(#)得)33(2222-+-=x x e a x ,把它代入(*)得2)2()(22x e x x f -=, 所以当)23,1(2∈x ,2)1()(22x ex x f -='0<恒成立, 故2)2()(22x e x x f -=为)23,1(的减函数,所以221)23()(232>=>e f x f . 所以满足题意的整数m 的最小值为3.22.解:(1)曲线C 的参数方程为⎪⎩⎪⎨⎧+==ty t x 121,消去参数t ,得x y 21+=,故曲线C 的普通方程为012=+-y x . 因为θθθθθρsin 12sin 1)sin 1(2cos sin 2222-=-+=+=,即2sin =-θρρ. 所以曲线D 的直角坐标方程为222=-+y y x ,即442+=y x .(2)由⎩⎨⎧+=+=44212y x x y ,消去y ,可得4)21(42++=x x ,即0882=--x x . 所以821=+x x ,821-=x x ,所以304)8(482122=-⨯-+=AB .23.解:(1)由题知不等式2)42()(<+-x f x f 即2222<+--x x , 等价于⎩⎨⎧<+++--<22221x x x 或⎩⎨⎧<--+-≤≤-222221x x x 或⎩⎨⎧<--->22222x x x ,解得2-<x 或232≤<-x 或2>x , ∴原不等式的解集为),(,∞+---∞32)2(Y . (2)由题知31212)3()(=---≥++-=++x x x x x f x f , ∴)3()(++x f x f 的最小值为3,∴322≤+m m ,解得13≤≤-m ,∴实数m 的取值范围为]1,3[-.。
山西省运城市康杰中学2018届高考模拟(四)数学(理)试题(精编含解析)
康杰中学2018年数学(理)模拟试题(四)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 复数的实部为A. -1B. 0C. 1D. 2【答案】B【解析】【分析】利用复数代数形式的乘除运算化简得答案.【详解】==,∴复数的实部为0.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.2. 设集合,集合,则等于A. B. C. D. R【答案】D【解析】【分析】先求出集合A和集合B,由此能求出.【详解】∵集合A={y|y=log2x,0<x≤4}={y|y≤2},集合B={x|e x>1}={x|x>0},∴= R.故选:D.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.3. “结绳计数”是远古时期人类智慧的结晶,即人们通过在绳子上打结来记录数量,如图所示的是一位猎人记录自己采摘果实的个数,在从右向左依次排列的不同绳子上打结,满四进一,根据图示可知,猎人采摘的果实的个数(用十进制表示)是A. 492B. 382C. 185D. 123【答案】D【解析】由题意满四进一,可得该图示是四进位制,化为十进位制为:.故选:D4. 给出下列四个结论:①命题“.”的否定是“.”;②“若,则.”的否命题是“若则.”;③若是真命题,是假命题,则命题中一真一假;④若,则是的充分不必要条件.其中正确结论的个数为A. 1B. 2C. 3D. 4【答案】C【解析】对于①命题“”的否定是“”,正确;对于②“若,则”的否命题是“若,则”,正确;对于③是真命题说明命题至少有一个是真命题,是假命题说明命题至少有一个是假命题,∴命题中一真一假,正确;对于③由,解得:;由解得:,∴是的必要不充分条件,命题错误;故选:C5. 已知,则A. B. C. D.【答案】C【解析】根据诱导公式得到,结合两式得到.故答案为:C。
2018届江苏高考数学模拟试题(2)数学之友
2018届江苏高考数学模拟试题(2)数学I 注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:球体的体积公式:V =334R π,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合},02/{2R x x x x M ∈=+=,},02/{2R x x x x N ∈≤-=, 则=N M ▲.2.已知复数z 满足=i ,其中i 为虚数单位,则复数z 的虚部为▲.3.某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示.成绩分组为[50,60),[60,70),…,[90,100],则在本次竞赛中,得分不低于80分的人数为▲.4.在标号为0,1,2,4的四张卡片中随机抽取两张卡片,则这两张卡片上的标号之和为奇数的概率是▲.5.运行如图所示的流程图,则输出的结果S 是▲.6.已知等差数列{a n }的前n 项和为S n .若S 15=30,a 7=1,则S 10的值为.7.已知()y f x =是R 上的奇函数,且0x >时,()1f x =,则不等式2()(0)f x x f -<的解集为▲.8.在直角坐标系xOy 中,双曲线x 2-=1的左准线为l ,则以l 为准线的抛物线的标准方程是▲.9.四面体ABCD 中,AB ⊥平面BCD ,CD ⊥平面ABC ,且1c mA BB C C D ===,则四面体ABCD 的外接球的表面积为▲2cm .10.已知0πy x <<<,且tan tan 2x y =,1sin sin 3x y =,则x y -=▲. 11.在平面直角坐标系xOy 中,若直线l :20x y +=与圆C :22()()5x a y b -+-=相切,且圆心C 在直线l 的上方,则ab 的最大值为▲.(第3题)12.正五边形ABCDE的边长为AE AC ⋅的值为▲.13.设0a ≠,e 是自然对数的底数,函数2,0,(),0x ae x x f x x ax a x ⎧-≤⎪=⎨-+>⎪⎩有零点,且所有零点的和不大于6,则a 的取值范围为▲. 14.若对任意实数x 和任意θ∈[0,],恒有(x +2sin θcos θ)2+(x +a sin θ+a cos θ)2≥, 则实数a 的取值范围是▲.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且(,)62ππα∈.将角α的终边按逆时针方向旋转3π,交单位圆于点B ,记A (x 1,y 1),B (x 2,y 2). (1)若113x =,求2x ;(2)分别过A ,B 作x 轴的垂线,垂足依次为C ,D , 记△AOC 的面积为S 1,△BOD 的面积为S 2,若122S S =, 求角α的值. .16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,BC =BB 1,D 为AB 的中点.(1)求证:BC 1∥平面A 1CD ; (2)求证:BC 1⊥平面AB 1C . 17.(本小题满分14分)某生物探测器在水中逆流行进时,所消耗的能量为n E cv T =,其中v 为探测器在静水中行进时的速度,T 为行进时的时间(单位:小时),c 为常数,n 为能量次级数.如果水的速度为4km/h ,该生物探测器在水中逆流行进200km . (1)求T 关于v 的函数关系式;(2)(i)当能量次级数为2时,求该探测器消耗的最少能量; (ii)当能量次级数为3时,试确定v 的大小,使该探测器消耗的能量最少.18.(本小题满分16分)如图,椭圆22:143x y C +=的右焦点为F ,右准线为l ,过点F 且与x 轴不重合的直线交椭圆于A ,B 两点,P 是AB 的中点,过点B 作BM ⊥l 于M ,连AM 交x 轴于点N ,连PN . (1)若165AB =,求直线AB 的倾斜角; (2)当直线AB 变化时,求PN 长的最小值. 19.(本小题满分16分)设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且x 1<x 2.(1)求a 的取值范围; (2)证明:0f '<(()f x '为函数()f x 的导函数);(3)设点C 在函数()y f x =的图象上,且△ABC 为等腰直角三角形,t =,求(1)(1)a t --的值.20.(本小题满分16分)已知数列{n a }满足*111,||,.n n n a a a p n N +=-=∈(1)若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值; (2)若12p =,且{21n a -}是递增数列,{2n a }是递减数列,求数列{n a }的通项公式.数学Ⅱ(附加题)一个特征向量.C .选修4—4:坐标系与参数方程 已知点P 是曲线C :⎩⎨⎧==θθsin 3cos 2y x (θ为参数,πθπ2≤≤)上一点,O 为原点.若直线OP 的倾斜角为3π,求点P 的直角坐标. D .选修4—5:不等式选讲已知实数x ,y ,z 满足x +y+z =2,求22232z y x ++的最小值.(第21题A)【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡...指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某小组共10人,利用暑期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中选出2人作为该组代表参加座谈会.(1)记“选出2人参加义工活动的次数之和为4”为事件A ,求事件A 的发生的概率;(2)设X 为选出2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.23.(本小题满分10分)在集合{A =1,2,3,4,…,2n }中,任取m (m n ≤,m ,n ∈N *)元素构成集合m A .若m A 的所有元素之和为偶数,则称m A 为A 的偶子集,其个数记为()f m ;若m A 的所有元素之和为奇数,则称m A 为A 的奇子集,其个数记为()g m .令()()()F m f m g m =-. (1)当2n =时,求(1)F ,(2)F ,的值; (2)求()F m .2018高考数学模拟试题(2)数学I 答案一、填空题答案 1.{0}2.33.1204.215.216.-57.(0,1)8.y 2=2x9.3π10.3π11.258解:因为直线l :20x y +=与圆C :22()()5x a y b -+-=相切,又因为圆心C 在直线l 的上方,所以20a b +>,所以25a b +=,52a b =+≥所以ab 的最大值为258. 12.6解:利用在上的投影得,221=⋅=6. 13.()[]6,40, ∞-解:①0<a0≤x 时,01e )(<-=x a x 'f ,所以)(x f 在)0(,-∞单调递减,且0)0(<=a f ,所以)(x f 在)0(,-∞有一个小于0的零点.0>x 时,)(x f 在)0(+∞,单调递增,因为1)1(=f ,所以)(x f 在)0(+∞,有一个小于1的零点. 因此满足条件. ②0>a(1)1≤0a <时,)(x f 在)0(,-∞单调递减,0)0(>=a f ,所以)(x f 在(]0,∞-上没有零点.又因为042<-=∆a a ,故)(x f 在)0(+∞,上也没有零点.因此不满足题意.(2)41<<a 时,)(x f 在⎪⎭⎫ ⎝⎛∞-a 1ln ,上单调递减,在⎪⎭⎫⎝⎛01ln ,a上单调递增, 0ln 11ln >+=⎪⎭⎫⎝⎛a a f ,所以)(x f 在(]0,∞-上没有零点.又因为042<-=∆a a ,故)(x f 在)0(+∞,上也没有零点.因此不满足题意.(3)4=a 时,⎩⎨⎧>+--=04404)(2x x x x x e x f x ,≤ ,,)(x f 在(]0,∞-上没有零点,零点只有2,满足条件.(4)4>a 时,)(x f 在(]0,∞-上没有零点,在)0(+∞,上有两个不相等的零点,且和为a ,故满足题意的范围是64≤a <. 综上所述,a 的取值范围为()[]6,40, ∞-. 14.a ≤或a ≥解:因为222()2a b a b -+≥对任意a 、b 都成立,所以,(x +2sin θcos θ)2+(x +a sin θ+a cos θ)2≥(2sin θcos θ-a sin θ-a cos θ)2, (2sin θcos θ-a sin θ-a cos θ)2≥,即对任意θ∈[0,],都有132sin cos 2sin cos a θθθθ++≥+或132sin cos 2sin cos a θθθθ+-≤+,因为132sin cos 512sin cos sin cos 2sin cos θθθθθθθθ++=++⋅++,当θ∈[0,]时,1sin cos θθ≤+≤所以72a ≥,同理a ≤.因此,实数a 的取值范围是a ≤或a ≥. 二、解答题答案15.解:(1)由三角函数定义,1cos x α=,2cos()3x πα=+,因为(,)62ππα∈,1cos 3α=,所以sin 3α==. 211cos()cos 3226x πααα-=+=-=.(2)依题意,1sin y α=,2sin()3y πα=+,所以111111cos sin sin 2224S x y ααα==⋅=,)322sin(41-)3sin()3cos(2121222παπαπα+=++-==y x S ,依题意,2sin 22sin(2)3παα=-+,化简得cos20α=, 因为62ππα<<,则23παπ<<,所以22πα=,即4πα=.16.证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1⊥平面A 1B 1C 1,四边形ACC 1A 1为矩形,设AC 1∩A 1C =G ,则G 为AC 1中点,D 为AB 中点,连DG ,则DG ∥BC 1. 因为DG ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD.(2)由(1)四边形BCC 1B 1为矩形,又BC =BB 1,则四边形BCC 1B 1为正方形,所以BC 1⊥B 1C , 由(1)CC 1⊥平面ABC ,所以CC 1⊥AC , 又AC ⊥BC ,则AC ⊥平面BCC 1B 1,AC ⊥BC 1, 因此,BC 1⊥平面AB 1C .17.解:(1)由题意得,该探测器相对于河岸的速度为200T, 又该探测器相对于河岸的速度比相对于水的速度小4km/h ,即4v -,所以200T=4v -,即2004T v =-,4v >; (2)(ⅰ)当能量次级数为2时,由(1)知22004v E c v =⋅-,4v >, 3200c =(当且仅当1644v v -=-即8v =km/h 时,取等号)(9分)(ⅱ)当能量次级数为3时,由(1)知32004v E c v =⋅-,4v >,所以222(6)2000(4)v v E c v -'=⋅=-得6v =,当6v <时,0E '<;当6v >时,0E '>, 所以当6v =时,min E 21600c =.答:(ⅰ)该探测器消耗的最少能量为3200c ; (ⅱ)6v =km/h 时,该探测器消耗的能量最少. 18.解(1)显然)0,1(,21,3,2F e b a ===,当AB ⊥x 轴时,易得221635b AB a ==≠,不合题意.所以可设AB 的方程为(1)(0)y k x k =-≠,与椭圆方程联立得2222(43)84120k x k x k +-+-=,设A (x 1,y 1),B (x 2,y 2),则212221228,4341243k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,因此2212(1)16435k k +=+,解得k =,所以直线AB 的倾斜角等于60o 或120o . (2)因为椭圆的右准线的方程为4x =,由(1),当AB 不垂直于x 轴时,点211(4,(1)),(,(1))M k x A x k x --,所以直线AM 的方程为12111()(1)()4k x x y k x x x x ---=--,令y =0,得1121254N x x x x x x --=- 2211221212412205454343k k x x k k x x x x ----++==--=1121255()522x x x x x -+=-. 当AB ⊥x 轴时,易得52N x =,所以无论AB 如何变化,点N 的坐标均为5(,0)2.因此,当AB ⊥x 轴时,PN 取最小值,PN min =53122-=.19.解(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾. 所以0a >,令()0f x '=,则ln x a =. 当ln x a <时,()0f x '<,()f x 是单调减函数; 当ln x a >时,()0f x '>,()f x 是单调增函数. 于是当ln x a =时,()f x 取得极小值.因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2),所以(ln )(2ln )0f a a a =-<,即2e a >.. 此时,存在1ln (1)e 0a f <=>,;存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围.(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,,两式相减得2121e e x x a x x -=-.记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s sx x f s x x s ++-+-'⎡⎤=-=--⎣⎦-, 设()2(e e )s s g s s -=--,则()2(ee )0ssg s -'=-+<,所以()g s 是单调减函数,则有()(0)0g s g <=,而122e 02x x s+>,所以()1202x x f +'<. 又()e x f x a '=-是单调增函数,且122x x +>所以0f '<.(3)依题意有e 0ix i ax a -+=,则(1)e 0i x i a x -=>⇒112i x i >=(,).于是122ex x +=,在等腰三角形ABC 中,显然C =90°,所以12012()2x x x x x +=∈,,即00()0y f x =<, 由直角三角形斜边的中线性质,可知2102x x y -=-, 所以21002x x y -+=,即1221212e ()022x x x x a x x a +--+++=,所以2112()022x x a x x a -+++=,即2112(1)(1)[(1)(1)]022x x a x x ----+-+=. 因为110x -≠,则()2211111110212x x x a x ----++=-,t =,所以221(1)(1)022a at t t -++-=, 即211a t =+-,所以(1)(1) 2.a t --= 20.解:(1)因为{n a }是递增数列,所以n n n p a a =-+1, 又11=a ,1,1232++=+=p p a p a ,因为12,3,23a a a 成等差数列,所以p p p p p a a a =+++=++=223123,333144,34,解得0,31==p p ,当0=p ,01=-+n n a a ,与{n a }是递增数列矛盾,所以31=p . (2)因为{21n a -}是递增数列,所以01212>--+n n a a , 于是()+-+n n a a 212()0122>--n n a a ① 由于1222121-<n n ,所以122212-+-<-n n n n a a a a ② 由①②得()0122>--n n a a ,所以()122121222121----=⎪⎭⎫ ⎝⎛=-n n n n n a a ③ 因为{2n a }是递减数列,所以同理可得0212<-+n n a a ,()nn nnn a a 21222122121++-=⎪⎭⎫⎝⎛-=-.④ 由③④得()nn nn a a 2111++-=-,所以()()()123121--++-+-+=n n n a a a a a a a a()()()123122121211--++-+-+=n n()11213134211211211---+=+⎪⎭⎫⎝⎛--⋅+=n nn , 所以数列{n a }的通项公式为()1213134--+=n nn a . 数学Ⅱ答案21.【选做题】答案 A .选修4—1:几何证明选讲 解:连结OC ,BE .因为AB 是圆O 的直径,所以BE ⊥AE .因为AB =8,BC =4,所以OB =OC =BC =4,即△OBC 为正三角形.所以∠BOC =60?.又直线l 切⊙O 与于点C ,所以OC ⊥l . 因为AD ⊥l ,所以AD ∥l . 所以∠BAD =∠BOC =60?.在Rt △BAE 中,因为∠EBA =90?-∠BAD =30°, 所以AE =AB =4. B .选修4—2:矩阵与变换解:矩阵M 的特征多项式为f (λ)==(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一个根, 所以(3-1)(3-x )-4=0,解得x =1.由(λ-1)(λ-1)-4=0,得λ=-1或3,所以λ2=-1. 设λ2=-1对应的一个特征向量为α=, 则从而y =-x . 取x =1,得y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=. C .选修4—4:坐标系与参数方程解:由题意得,曲线C 的普通方程为22143x y +=(1)00sin 2≤⇒≤⇒≤≤y θπθπ 直线OP的方程为y =(2)A D(第21题A)联立(1)(2)得55xy⎧=⎪⎪⎨⎪=⎪⎩(舍)或55xy⎧=-⎪⎪⎨⎪=-⎪⎩所以点P的坐标为(D.选修4—5:不等式选讲解:由柯西不等式可知22222221)1](23)z x y z ++⋅≤++++,所以2222()24231111123x y zx y z++++≥=++,当且仅当1112,114,116===zyx时取等号.【必做题】答案22.解:(1)由已知有P(A)=C31C41+C32C102=13,所以事件A发生的概率为13.(2)随机变量X的所有可能的取值为0,1,2P(X=0)=C32+C32+C42C102=415;P(X=1)=C31C31+C31C41C102=715;P(X=2)=C31C41C102=415.所以随机变量X的分布列为23.解:(1)当2n =时,集合为{1,2,3,4}.当1m =时,偶子集有{2},{4},奇子集有{1},{3},(1)2f =,(1)2g =,(1)0F =;当2m =时,偶子集有{2,4},{1,3},奇子集有{1,2},{1,4},{2,3},{3,4},(2)2f =,(2)4g =,(2)2F =-;(2)当m 为奇数时,偶子集的个数0224411()C C C C C C C C m m m m n n n nn n n n f m ---=++++, 奇子集的个数11330()C C C C C C m m m n n n nn n g m --=+++, 所以()()f m g m =,()()()0F m f m g m =-=. 当m 为偶数时,偶子集的个数022440()C C C C C C C C m m m m n n n nn n n n f m --=++++, 奇子集的个数113311()C C C C C C m m m n n n nn n g m ---=+++, 所以()()()F m f m g m =-0112233110C C C C C C C C C C C C m m m m m m n n n n n n n nn n n n ----=-+-+-+. 一方面,01220122(1)(1)(C C C C )[C C C (1)C ]n n n n n n nn n n n n n n n x x x x x x x x +-=++++-+-+-,所以(1)(1)n n x x +-中m x 的系数为0112233110C C C C C C C C C C C C m m m m m m n n n n n n n nn n n n -----+-+-+;另一方面,2(1)(1)(1)nnnx x x +-=-,2(1)nx -中mx 的系数为22(1)C mm n-,故()F m =22(1)C m m n-.综上,22(1)C , ()0,m mn m F m m ⎧⎪-=⎨⎪⎩为偶数, 为奇数.。
浙江省杭州市第二中学2018届高三仿真考数学试题(精编含解析)
的最大值为( ,然后分析平面
详解:作出不等式组对应的平面区域如图所示:
则 解得
,所以平面区域的面积
,此时
,
由图可得当
过点 时,
, 取得最大值 9,故选 C.
5. 一个几何体的三视图如图所示,则这个几何体的体积为( )
A.
B.
C.
D.
【答案】D
【解析】该立方体是由一个四棱锥和半个圆柱组合而成的,
所以体积为
根据题意可知
,得
), ,
解得
,而
,故选 B.
点睛:该题考查的是数列的有关问题,涉及到的知识点有三个数成等差数列的条件,等比数列的性质等,
注意题中的隐含条件.
3. 函数 f(x)=sin(wx+ )(w>0, < )的最小正周期是 π,若将该函数的图象向右平移 个单位后得到的函
数图象关于直线 x= 对称,则函数 f(x)的解析式为( )
,再根据全集
R,求出
,从而求得结果.
详解:由
可得
,所以
,
从而可求得
,所以
,故选 B.
点睛:该题考查的是有关集合的运算的问题,注意把握交集和补集的概念,即可求得结果,属于基础题目.
2. 各项都是正数的等比数列 中, , , 成等差数列,则
的值为( )
A.
B.
C.
D.
或
【答案】B
详解:设 的公比为 q(
;
(4)AE 的中点 M 与 AB 的中点 N 连线交平面 BCD 于点 P,则点 P 的轨迹为椭圆.
其中,正确说法的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】分析:首先结合正四面体的特征以及等腰直角三角形在旋转的过程中对应的特点,得到相关的信
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学模拟试题
本试卷分第一卷(选择题)和第二卷(非选择题),共150分,考试时间120分钟.
一、选择题:本大题共12小题,每小题
5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.如图,点O 是正六边形ABCDEF 的中心,则以图中点
A 、
B 、
C 、
D 、
E 、
F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量
OA 外,与向量
OA 共线的向量共有(
)
A .2个
B .3个
C .6个
D .7个
2.已知曲线C :y 2
=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线
的距离为( )
A .
2
1
B . 1
C . 2
D . 4 3.若(3a 2
-3
12a ) n
展开式中含有常数项,则正整数
n 的最小值是
(
)
A .4
B .5
C . 6
D .8 4.从5名演员中选3人参加表演,其中甲在乙前表演的概率为
()
A .203
B .103
C .201
D .10
1
5.抛物线y 2
=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是(
)
A.(3,0)
B.(2,0)
C.(1,0)
D.(-1,0)
6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为(
)
A.(a ,-b )
B.(-a ,b )
C.
(b ,-a ) D.(-b ,-a )
3.如果S={x |x=2n+1,n ∈Z },T={x |x=4n ±1,n ∈Z },那么A.S T
B.T S
C.S =T
D.S ≠T
7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么
A.S
T
B.T
S
C.S=T
D.S ≠T
8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有(
)
A .36种
B .48种
C .72种
D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m
β.给出四个命题:(1)若α∥β,则l ⊥m;
(2)若l ⊥m,则α∥β;(3)若α⊥β,则l ∥m;(4)若l ∥m,则α⊥β,其中正确的命题个数是
(
)
A.4
B.1
C.3
D.2
10.已知函数f(x)=log 2(x 2
-ax +3a)在区间[2,+∞)上递增,则实数
a 的取值范围是(
)
A.(-∞,4)
B.(-4,4]
C.(-∞,-4)∪[2,+∞)
D.[-4,2)
11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2
只笔与3本书的价格比较()
A .2只笔贵
B .3本书贵
C .二者相同
D .无法确定
E
F D
O
C
B
A。