河北省阜城中学高三数学11月月考试题 理(无答案)
阜城县高中2018-2019学年高三上学期11月月考数学试卷含答案
阜城县高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________ 姓名__________ 分数__________一、选择题1. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形2. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.A .甲B .乙C .丙D .丁4. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B .C .D .5. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( ) A .两个点 B .四个点C .两条直线D .四条直线6. 若偶函数y=f (x ),x ∈R ,满足f (x+2)=﹣f (x ),且x ∈[0,2]时,f (x )=1﹣x ,则方程f (x )=log 8|x|在[﹣10,10]内的根的个数为( ) A .12B .10C .9D .87. (2016广东适应)已知双曲线的顶点为椭圆1222=+y x 长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于1,则双曲线的方程是( )A .122=-y xB .122=-x yC .222=-y xD .222=-x y8. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )A .2B .C .D .9. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A . B .C .D .10.双曲线的渐近线方程是( )A .B .C .D .11.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014C .2015D .20161111]12.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种二、填空题13.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .14.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.15.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________. 16.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .17.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .18.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= .三、解答题19.已知函数f(x)=和直线l:y=m(x﹣1).(1)当曲线y=f(x)在点(1,f(1))处的切线与直线l垂直时,求原点O到直线l的距离;(2)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;(3)求证:ln<(n∈N+)20.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.21.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.22.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n项和为T n,(1)求数列{a n}和{b n}的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.23.已知函数f(x0=.(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;(2)解不等式f(x﹣1)≤﹣.24.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.(1)求椭圆C的离心率的值;(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.阜城县高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即s i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 2. 【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 3. 【答案】C【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大, 甲、乙、丙、丁四人的射击环数的方差中丙最小, ∴丙的射击水平最高且成绩最稳定,∴从这四个人中选择一人参加该运动会射击项目比赛, 最佳人选是丙. 故选:C .【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.4. 【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.5.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.6.【答案】D【解析】解:∵函数y=f(x)为偶函数,且满足f(x+2)=﹣f(x),∴f(x+4)=f(x+2+2)=﹣f(x+2)=f(x),∴偶函数y=f(x)为周期为4的函数,由x∈[0,2]时,f(x)=1﹣x,可作出函数f(x)在[﹣10,10]的图象,同时作出函数f(x)=log8|x|在[﹣10,10]的图象,交点个数即为所求.数形结合可得交点个为8,故选:D.7.【答案】D,∴,【解析】∵椭圆的端点为(0,,离心率为2c=,b=D.依题意双曲线的实半轴a=∴28.【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=﹣2x+z,由图可知z max=2×1+1=3,z min=2a+a=3a,由6a=3,得a=.故选:B.【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.9. 【答案】C【解析】解:∵f (x )≤0⇔x 2﹣x ﹣2≤0⇔﹣1≤x ≤2, ∴f (x 0)≤0⇔﹣1≤x 0≤2,即x 0∈[﹣1,2], ∵在定义域内任取一点x 0, ∴x 0∈[﹣5,5], ∴使f (x 0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键10.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x . 故选:B .【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.11.【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)12.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法. 根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案. 由分类计数原理,可得不同的分配方案共有18+18=36种, 故选A .【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.二、填空题13.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.14.【答案】 ②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误; 对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),可以认为是圆(x ﹣1)2+(y ﹣2)2=1的切线系,故②正确;对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,如圆C :(x ﹣1)2+(y ﹣2)2=100,故③正确;对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确; 对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误. 故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.15.【答案】1e e- 【解析】解析: 由ln a b ≥得ab e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“ab e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为111|a a e da e e ==-⎰,∴随机事件“ln a b ≥”的概率为1e e-. 16.【答案】 6 .【解析】解:双曲线的方程为4x 2﹣9y 2=36,即为:﹣=1,可得a=3, 则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.17.【答案】.【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况∴所求概率为=.故答案为:.18.【答案】1.【解析】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.三、解答题19.【答案】【解析】(Ⅰ)解:由f(x)=,得,∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.原点O到直线l的距离为;(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立..①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,当△≤0,即m时,g′(x)≤0,∴g(x)在(1,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),,,当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.综上所述,m;(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.不妨令,∴ln,(k∈N*).∴..….累加可得:,(n∈N*).即ln<(n∈N*).【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是压轴题.20.【答案】【解析】解:若p为真,则△=4﹣4m<0,即m>1 …若q为真,则,即m≤﹣2 …∵p∧q为假命题,p∨q为真命题,则p,q一真一假若p真q假,则,解得:m>1 …若p假q真,则,解得:m≤﹣2 …综上所述:m≤﹣2,或m>1 …21.【答案】【解析】解:(Ⅰ)f'(x)=3ax2+2,若a≥0,则f'(x)>0,函数f(x)在R上单调递增;若a<0,令f'(x)>0,∴或,函数f(x)的单调递增区间为和;(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,又f n(1)=n+2﹣n=2>0,f n()====﹣当n≥2时,g(n)=n2﹣n﹣1>0,,n≥2时存在唯一x n且(i i)当n≥2时,,∴(零点的区间判定)∴,(数列裂项求和)∴,又f1(x)=x3+2x﹣1,,(函数法定界),又,∴,∴,(不等式放缩技巧)命题得证.【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.22.【答案】【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=因为数列{a n}是等比数列,所以,所以c=1.又公比q=,所以;由题意可得:=,又因为b n>0,所以;所以数列{}是以1为首项,以1为公差的等差数列,并且有;当n≥2时,b n=S n﹣S n﹣1=2n﹣1;所以b n=2n﹣1.(2)因为数列前n项和为T n,所以==;因为当m∈[﹣1,1]时,不等式恒成立,所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,设g(m)=﹣2tm+t2,m∈[﹣1,1],所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,所以,解得t<﹣2或t>2,所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).(3)T1,T m,T n成等比数列,得T m2=T1T n∴,∴结合1<m<n知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.23.【答案】【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(﹣∞,0),(1,+∞),丹迪减区间是(0,1)(2)由已知可得或,解得x≤﹣1或≤x≤,故不等式的解集为(﹣∞,﹣1]∪[,].【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.24.【答案】【解析】解:(1)根据椭圆的定义得2a=6,a=3;∴c=;∴;即椭圆的离心率是;(2);∴x=带入椭圆方程得,y=;所以Q(0,).。
阜城县二中2018-2019学年高三上学期11月月考数学试卷含答案
阜城县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny2. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β 3. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( ) A .(﹣∞,﹣1] B .[﹣1,+∞) C .(﹣1,+∞) D .(﹣∞,﹣1)4. 若x ,y满足且z=y ﹣x 的最小值为﹣2,则k 的值为( ) A .1B .﹣1C .2D .﹣25. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( ) A.B.C.D. 6. 已知实数x ,y满足,则z=2x+y 的最大值为( )A .﹣2B .﹣1C .0D .47. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94B . C.92 D .4 8. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2x y -=9. 定义在(0,+∞)上的单调递减函数f (x ),若f (x)的导函数存在且满足,则下列不等式成立的是( )A .3f (2)<2f (3)B .3f (4)<4f (3)C .2f (3)<3f (4)D .f (2)<2f (1)10.若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10C .8D .611.在复平面内,复数Z=+i 2015对应的点位于( )A .第四象限B .第三象限C .第二象限D .第一象限班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,] D .(﹣∞,]二、填空题13.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .14.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .15.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .16.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .17.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .18.计算sin43°cos13°﹣cos43°sin13°的值为 .三、解答题19.根据下列条件,求圆的方程:(1)过点A (1,1),B (﹣1,3)且面积最小;(2)圆心在直线2x ﹣y ﹣7=0上且与y 轴交于点A (0,﹣4),B (0,﹣2).20.设f (x )=x 2﹣ax+2.当x ∈,使得关于x 的方程f (x )﹣tf (2a )=0有三个不相等的实数根,求实数t 的取值范围.21.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .22.某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?23.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++24.设函数f(x)=a(x+1)2ln(x+1)+bx(x>﹣1),曲线y=f(x)过点(e﹣1,e2﹣e+1),且在点(0,0)处的切线方程为y=0.(Ⅰ)求a,b的值;(Ⅱ)证明:当x≥0时,f(x)≥x2;(Ⅲ)若当x≥0时,f(x)≥mx2恒成立,求实数m的取值范围.阜城县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.对于A.取x=1,y=0,不成立,因此不正确;对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;对于C.利用y=x3在R上单调递增,可得x3>y3,正确;对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.故选:C.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.2.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D3.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.4.【答案】B【解析】解:由z=y﹣x得y=x+z,作出不等式组对应的平面区域如图:平移直线y=x+z由图象可知当直线y=x+z经过点A时,直线y=x+z的截距最小,此时最小值为﹣2,即y﹣x=﹣2,则x﹣y﹣2=0,当y=0时,x=2,即A(2,0),同时A也在直线kx﹣y+2=0上,代入解得k=﹣1,故选:B【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.本题主要考查的难点在于对应的区域为线段.5. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆的面积为1||2AB d '⋅=C . 6. 【答案】D【解析】解:画出满足条件的平面区域, 如图示:,将z=2x+y 转化为:y=﹣2x+z ,由图象得:y=﹣2x+z 过(1,2)时,z 最大, Z 最大值=4, 故选:D .【点评】本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.7. 【答案】]【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。
阜城县一中2018-2019学年高三上学期11月月考数学试卷含答案
19. 20.
21.(1) f x x2 x 6 ln x ;(2) n 3 ;(3)证明见解析.
22.
23. 24.
第 6 页,共 6 页
阜城县一中 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 已知集合 M={1,4,7},M∪N=M,则集合 N 不可能是( ) A.∅ B.{1,4} C.M D.{2,7} 2. 设全集 U={1,3,5,7,9},集合 A={1,|a﹣5|,9},∁UA={5,7},则实数 a 的值是( ) A.2 B.8 C.﹣2 或 8 D.2 或 8
第 2 页,共 6 页
17.已知三棱柱 ABC﹣A1B1C1 的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球 O 的表面
上,且球 O 的表面积为 7π,则此三棱柱的体积为 .
18.若复数 z sin 3 (cos 4)i 是纯虚数,则 tan 的值为
.
5
5
【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.
5.
已知 z1
1 3i , z2
3 i ,其中 i 是虚数单位,则
z1 z2
的虚部为(
)
A. 1
4
B.
5
C. i
4 D. i
5
【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容
易题.
6. 如图,该程序运行后输出的结果为( )
A.7 B.15 C.31 D.63
(i)证明:n≥2 时存在唯一 xn 且
;
(i i)若 bn=(1﹣xn)(1﹣xn+1),记 Sn=b1+b2+…+bn,证明:Sn<1.
阜城县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
阜城县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.的倾斜角为( )10y -+=A . B . C .D .150o120o60o30o2. 若集合A={x|1<x <3},B={x|x >2},则A ∩B=()A .{x|2<x <3}B .{x|1<x <3}C .{x|1<x <2}D .{x|x >1}3. 一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100米到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50米B .60米C .80米D .100米4. 已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C.D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.5. 是平面内不共线的两向量,已知,,若三点共线,则的值是12,e e u r u u r 12AB e ke =-u u u r u r u u r 123CD e e =-u u u r u r u u r,,A B D ( )A .1B .2C .-1D .-26. 已知三棱锥外接球的表面积为32,,三棱锥的三视图如图S ABC -π090ABC ∠=S ABC -所示,则其侧视图的面积的最大值为( )A.4B .C .8D.7. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是()A.B.C.D.9.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()A.﹣16B.14C.28D.3010.已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为a n,则数列{a n}是()A.公差为a的等差数列B.公差为﹣a的等差数列C.公比为a的等比数列D.公比为的等比数列11.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )。
阜城县第三中学2018-2019学年高三上学期11月月考数学试卷含答案
阜城县第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2C .3D .42. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C ) 13 (D ) 12- 3. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A. B.C. D.24. 若cos(﹣α)=,则cos(+α)的值是( )A.B.﹣ C.D.﹣5. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞) B.(,1)∪(1,2) C.(,1)∪(2,+∞) D .(0,)∪(2,+∞)6. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( ) A. B.C.D.7.已知双曲线﹣=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) A.B.C .3D .58. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .9. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( ) A .2 B .﹣2 C.﹣ D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.915211.已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .212.已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是( )A .B .C .D .0二、填空题13.已知函数f (x )=,g (x )=lnx ,则函数y=f (x )﹣g (x )的零点个数为 .14.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .15.已知向量、满足,则|+|= .16.函数f (x )=(x >3)的最小值为 .17.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= . 18.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .三、解答题19.在直角坐标系xOy 中,直线l 的参数方程为为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为.(1)写出圆C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.20.已知函数f (x )=x 3﹣x 2+cx+d 有极值.(Ⅰ)求c 的取值范围;(Ⅱ)若f (x )在x=2处取得极值,且当x <0时,f (x )<d 2+2d 恒成立,求d 的取值范围.21.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,且12||2F F =,点2在该椭圆上.(1)求椭圆C 的方程;(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.22.(本小题满分12分)已知点M为圆22+=上一个动点,点D是M在x轴上的投影,P为线段MD上一点,且与点Q关C x y:4=+.于原点O对称,满足QP OM OD(1)求动点P的轨迹E的方程;∆的面积最大时,求直线l的方程.(2)过点P作E的切线l与圆相交于,A B两点,当QAB23.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.24.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.阜城县第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C【解析】解:随机变量x 1~N (2,1),图象关于x=2对称,x 2~N (4,1),图象关于x=4对称, 因为P (x 1<3)=P (x 2≥a ), 所以3﹣2=4﹣a , 所以a=3, 故选:C .【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.2. 【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.3. 【答案】B 【解析】考点:正弦定理的应用. 4. 【答案】B【解析】解:∵cos (﹣α)=,∴cos (+α)=﹣cos=﹣cos (﹣α)=﹣.故选:B .5. 【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.6.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.7.【答案】A【解析】解:抛物线y2=12x的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于故选A.【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键.8.【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 9. 【答案】B【解析】解:因为f (x+3)=f (x ),函数f (x )的周期是3, 所以f (2015)=f (3×672﹣1)=f (﹣1);又因为函数f (x )是定义R 上的奇函数,当0<x ≤1时,f (x )=2x,所以f (﹣1)=﹣f (1)=﹣2,即f (2015)=﹣2. 故选:B .【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f (2015)=f (3×672﹣1)=f (﹣1).10.【答案】C【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x, 结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C .11.【答案】B【解析】试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以()14160,2λλ+-==,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.12.【答案】A【解析】解:取AB 的中点C ,连接OC ,,则AC=,OA=1∴sin=sin ∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A .二、填空题13.【答案】3【解析】解:令g(x)=f(x)﹣log4x=0得f(x)=log4x∴函数g(x)=f(x)﹣log4x的零点个数即为函数f(x)与函数y=log4x的图象的交点个数,在同一坐标系中画出函数f(x)与函数y=log4x的图象,如图所示,有图象知函数y=f(x)﹣log4 x上有3个零点.故答案为:3个.【点评】此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力.14.【答案】②③.【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx是偶函数,故②正确,③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.15.【答案】5.【解析】解:∵=(1,0)+(2,4)=(3,4).∴==5.故答案为:5.【点评】本题考查了向量的运算法则和模的计算公式,属于基础题.16.【答案】12.【解析】解:因为x>3,所以f(x)>0由题意知:=﹣令t=∈(0,),h(t)==t﹣3t2因为h(t)=t﹣3t2的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)∈(0,]由h(t)=⇒f(x)=≥12故答案为:1217.【答案】16.【解析】解:∵等比数列{a n}的前n项积为Πn,∴Π8=a1•a2a3•a4•a5a6•a7•a8=(a4•a5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.18.【答案】[﹣1,﹣).【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.三、解答题19.【答案】【解析】解:(1)圆C的极坐标方程为,可得直角坐标方程为x2+y2=2,即x2+(y﹣)2=3;(2)设P(3+,t),∵C(0,),∴|PC|==,∴t=0时,P到圆心C的距离最小,P的直角坐标是(3,0).20.【答案】【解析】解(Ⅰ)∵f(x)=x3﹣x2+cx+d,∴f′(x)=x2﹣x+c,要使f(x)有极值,则方程f′(x)=x2﹣x+c=0有两个实数解,从而△=1﹣4c>0,∴c<.(Ⅱ)∵f(x)在x=2处取得极值,∴f′(2)=4﹣2+c=0,∴c=﹣2.∴f(x)=x3﹣x2﹣2x+d,∵f′(x)=x2﹣x﹣2=(x﹣2)(x+1),∴当x∈(﹣∞,﹣1]时,f′(x)>0,函数单调递增,当x∈(﹣1,2]时,f′(x)<0,函数单调递减.∴x<0时,f(x)在x=﹣1处取得最大值,∵x<0时,f(x)<恒成立,∴<,即(d+7)(d﹣1)>0,∴d<﹣7或d>1,即d的取值范围是(﹣∞,﹣7)∪(1,+∞).【点评】本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.21.【答案】【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.22.【答案】【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)D x . ∵点P 与点Q 关于原点O 对称,∴2QP OP =. ∵QP OM OD =+,∴2OP OM OD =+,∴0002(,)(,)(,0)x y x y x =+,∴002x xy y =⎧⎨=⎩, ∵22004x y +=,∴2244x y +=,∴动点P 的轨迹方程:2214x y +=. (2)当直线l 的斜率不存在时,显然不符合题意, ∴设直线l 的方程为y km m =+,由2244y km m x y =+⎧⎨+=⎩,得222(41)8440k x kmx m +++-=. ∵直线l 与椭圆相切,∴2222644(41)(44)0k m k m ∆=-+-=,∴2241m k =+.原点O 到直线l的距离d =AB =∴1222QAB S AB d ∆=⋅=4==≤,当22d =,即d =QAB ∆的面积取得最大值4.此时d ==2222m k =+,由22222241m k m k ⎧=+⎪⎨=+⎪⎩,解得2m k ⎧=⎪⎨=±⎪⎩, ∴直线l的方程为2y x =+2y x =2y x =-或2y x =--23.【答案】【解析】解:(Ⅰ)由频率分布直方图,得: 10×(0.005+0.01+0.025+a+0.01)=1, 解得a=0.03.(Ⅱ)由频率分布直方图得到平均分:=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A ,B , 数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C ,D ,E ,F , 若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生, 则所有的基本事件有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ), (B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15个, 如果这两名学生的数学成绩都在[40,50)或都在[90,100)内, 则这两名学生的数学成绩之差的绝对值不大于10,记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.24.【答案】【解析】解:(1)由f(x)≤3得|x﹣a|≤3,解得a﹣3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|﹣1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x﹣2|.设g(x)=f(x)+f(x+5),于是所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,则m的取值范围为(﹣∞,5].【点评】本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题,。
阜城县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
20.已知函数 f(x)的导函数 f′(x)=x2+2ax+b(ab≠0),且 f(0)=0.设曲线 y=f(x)在原点处的切线 l1 的斜率为 k1,过原点的另一条切线 l2 的斜率为 k2. (1)若 k1:k2=4:5,求函数 f(x)的单调区间; (2)若 k2=tk1 时,函数 f(x)无极值,且存在实数 t 使 f(b)<f(1﹣2t)成立,求实数 a 的取值范围.
2 2
1 2
B.-2
1 2
A.
16
B.
12
8
)
D.
4
6. 设函数 y=x3 与 y=( )x 的图象的交点为(x0,y0),则 x0 所在的区间是( A.(0,1) B.(1,2) C.(2,3) D.(3,4) 7. 已知函数 f ( x)
3 sin x cos x( 0) , y f ( x) 的图象与直线 y 2 的两个相邻交点的距离等于
21.如图,已知五面体 ABCDE,其中△ABC 内接于圆 O,AB 是圆 O 的直径,四边形 DCBE 为平行四边形, 且 DC⊥平面 ABC. (Ⅰ)证明:AD⊥BC (Ⅱ)若 AB=4,BC=2,且二面角 A﹣BD﹣C 所成角 θ 的正切值是 2,试求该几何体 ABCDE 的体积.
第 3 页,共 14 页
) , T ,所以
2
2 ,则 f ( x) 2sin(2 x ) ,令 6
8. 【答案】D ∵Sn=n2+2n(n∈N*) 【解析】解 : ,∴当 n=1 时,a1=S1=3; 当 n≥2 时,an=Sn﹣Sn﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1 )]=2n+1. ∴ ∴ = = ﹣ . + = +… + = = + , +… +
阜城县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
阜城县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 2. 以下四个命题中,真命题的是( )A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 3. 已知i为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限4. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 65. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是( )A . C . D.6. 数列{a n }满足a 1=,=﹣1(n ∈N *),则a 10=( )A.B.C.D.7. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)8. 在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( ) A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形9f x [14]f (x )的导函数y=f ′(x )的图象如图所示. 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________)A .2B .3C .4D .510.已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是()A .3个 B.4个C .5个D .6个 11.已知M 是△ABC 内的一点,且=2,∠BAC=30°,若△MBC ,△MCA 和△MAB 的面积分别为,x ,y,则+的最小值是()A .20 B .18C .16D.912.不等式组在坐标平面内表示的图形的面积等于( )A .B .C .D .二、填空题13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.已知点P 是抛物线24y x =上的点,且P 到该抛物线焦点的距离为3,则P 到原点的距离为 . 15.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xfx fx -<',则使得()0f x >成立的x 的取值范围是__________.16.已知实数x ,y 满足约束条,则z=的最小值为 .17.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .18.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.三、解答题19.已知函数f (x )=|2x+1|+|2x ﹣3|. (Ⅰ)求不等式f (x )≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.20.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.22.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.23.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.24.已知等差数列{a n}满足a2=0,a6+a8=10.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.阜城县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】【解析】选C.可设双曲线E 的方程为x 2a 2-y 2b2=1,渐近线方程为y =±bax ,即bx ±ay =0,由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即|6b |b 2+a2=1,又a 2+b 2=6,∴b =1,a =5,∴E 的方程为x 25-y 2=1,故选C.2. 【答案】D3. 【答案】A【解析】解: ==1+i ,其对应的点为(1,1),故选:A .4. 【答案】 D.【解析】该程序框图计算的是数列前n 项和,其中数列通项为()()12121n a n n =-+()()11111113352121221n S n n n ⎡⎤∴=+++=-⎢⎥⨯⨯-++⎣⎦90.452n S n n >∴>∴最小值为5时满足0.45n S >,由程序框图可得k 值是6. 故选D .5. 【答案】D【解析】解:由题意可得f (a )+f (b )>f (c )对于∀a ,b ,c ∈R 都恒成立,由于f (x )==1+,①当t ﹣1=0,f (x )=1,此时,f (a ),f (b ),f (c )都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.综上可得,≤t≤2,故实数t的取值范围是[,2],故选D.【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.6.【答案】C【解析】解:∵=﹣1(n∈N*),∴﹣=﹣1,∴数列是等差数列,首项为=﹣2,公差为﹣1.∴=﹣2﹣(n﹣1)=﹣n﹣1,∴a n=1﹣=.∴a10=.故选:C.【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.7.【答案】D【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a <0,由f ′(x )>0得<x <0,此时函数递增,由f ′(x )<0得x <或x >0,此时函数单调递减,即函数在x=0处取得极大值f (0)=1>0,在x=处取得极小值f (), 若存在唯一的零点x 0,且x 0>0,则f ()>0,即2a ()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a <﹣1, 故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.8. 【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin (A+C )=sinAcosC+sinCcosA=2cosCsinA , ∴sinCcosA ﹣sinAcosC=0,即sin (C ﹣A )=0, ∴A=C 即为等腰三角形. 故选:D .【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.9. 【答案】C【解析】解:根据导函数图象,可得2为函数的极小值点,函数y=f (x )的图象如图所示:因为f (0)=f (3)=2,1<a <2,所以函数y=f (x )﹣a 的零点的个数为4个. 故选:C .【点评】本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.10.【答案】C【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=14,作出f (x )的图像,由数型结合,当A=14时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
河北省衡水市阜城中学1314学年高二11月月考数学理试题(附答案)
河北省衡水市阜城中学13-14学年高二11月月考 数学理试题一、选择题(每小题5 分,共12小题,满分60分) 1、对抛物线24y x =,下列描述正确的是 A 、开口向上,焦点为(0,1) B 、开口向上,焦点为1(0,)16C 、开口向右,焦点为(1,0)D 、开口向右,焦点为1(0,)162、已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的A 、充分条件B 、必要条件C 、充要条件D 、既不充分也不必要条件 3、椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为A 、25-B 、25C 、1-D 、14、在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, D A=11,c A A =1,则下列向量中与M B 1相等的向量是A 、c b a ++-2121 B 、 c b a ++2121 C 、 c b a +-2121 D 、 +--2121 5、空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足=α+β,其中α,β∈R ,α+β=1,则点C 的轨迹为 A 、平面 B 、直线C 、圆D 、线段6、已知a =(1,2,3),b =(3,0,-1),c =⎪⎭⎫ ⎝⎛--53,1,51给出下列等式:①∣++∣=∣--∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=222c b a ++ ④c b a ⋅⋅)( =)(c b a ⋅⋅其中正确的个数是 A 、1个 B 、2个 C 、3个 D 、4个 7、设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为A 、椭圆B 、双曲线C 、抛物线D 、圆8、已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的 A 、充分必要条件 B 、充分不必要条件C 、必要不充分条件D 、既不充分又不必要条件 9、已知函数f(x)=3472+++kx kx kx ,若R x ∈∀,则k 的取值范围是 A 、0≤k<43 B 、0<k<43 C 、k<0或k>43 D 、0<k ≤4310、下列说法中错误..的个数为 ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题为假,则它本身一定为真;③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④=a b =是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件.A 、2B 、3C 、4D 、512. 在正方体1111ABCD A BC D -中,E 是棱11A B 的中点,则1A B 与1D E 所成角的余弦值为A .10B .10C .5D .5二、填空题(每小题5分,共4小题,满分20分)13、已知+-=+82,3168-+-=-(,,两两互相垂直),那么b a ⋅= 。
河北省阜城中学2017-2018学年高三11月月考数学(理)试题 Word版无答案
2017-2018学年高三年级11月份月考数学试题(理科)一,选择题(共12题,每题5分)1.函数f(x)=2cos(ωx+φ)(ω≠0),对任意x都有f(+x)=f(﹣x),则f()等于( )A.2或0 B.﹣2或2 C.0 D.﹣2或02.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=4,则△ABC的面积为( )A.B.1 C.D.23.为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度4.若cosθ>0,且sin2θ<0,则角θ的终边所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.已知||=1,||=,且⊥,则|+|为( )A.B.C.2 D.26.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=( )A.B.C.D.7.在平面直角坐标系中,若P(x,y)满足,则x+2y的最大值是( )A.2 B.8 C.14 D.168.若正数x,y满足2x+y﹣1=0,则的最小值为( )A.1 B.7 C.8 D.99.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=( )A.5 B.6 C.7 D.810.已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=1,a2=3,记S n=a1+a2+…+a n,则下列结论正确的是( )A.a100=﹣1,S100=5 B.a100=﹣3,S100=5C.a100=﹣3,S100=2 D.a100=﹣1,S100=211.已知等比数列{a n}中,各项都是正数,且a1,,2a2成等差数列,则=( )A.1+B.1﹣C.3+2D.3﹣212.已知正项数列{a n}的前n项的乘积等于T n=(n∈N*),b n=log2a n,则数列{b n}的前n项和S n中最大值是( )A.S6B.S5C.S4D.S3二.填空题(每题5分)13.古代印度数学家婆什迦罗在其所著的《莉拉沃蒂》中有如下题目:“今有人拿钱赠人,第一人给3元,第二人给4元,第三人给5元,其余依次递增,分完后把分掉的钱全部收回,再重新分配,每人恰分得100元,则一共人.14.若对任意x∈R,不等式sin2x﹣2sin2x﹣m<0恒成立,则m的取值范围是.15.已知向量与的夹角为120°,且,.若,且,则实数λ=.16.如图为一个空间几何体的三视图,其主视图与左视图是边长为2的正三角形、俯视图轮廓是正方形,则该几何体的侧面积为.三.解答题17.(本题10分)已知a>0,b>0,且a+b=2.(1)求+的最小值及其取得最小值时a,b的值;18. (本题12分)△ABC中内角A, B,C的对边分别为a,b,c,向量=(2sinB,﹣),=(cos2B,﹣1)且∥.(1)求锐角B的大小;(2)如果b=2,求△ABC的面积S△ABC的最大值.19. (本题12分)已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值及取得最值时x的值.20. 已知函数f(x)=ln(x+1)+ax(1)当x=0时,函数f(X)取得极大值,求实数a的值(2)若存在x∈【1,2】,使不等式f’(x)≥2,成立,其中f’(x)为f(x)的导函数,求实数a的取值范围21. (本题12分)已知等比数列{a n}满足a2=2a1,且a2+1是a1与a3的等差中项.(1)求数列{a n}的通项公式;(2)若b n=a n﹣2log2a n,求数列{b n}的前n项和S n.22. (本题12分)已知{a n}是等差数列,其前n项的和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.(1)求数列{a n}和{b n}的通项公式;(2)记c n=a n b n,n∈N*,求数列{c n}的前n项和.。
阜城县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
阜城县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数y=+的定义域是()A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}2. 若复数z=2﹣i ( i 为虚数单位),则=()A .4+2iB .20+10iC .4﹣2iD .3. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)4. 在复平面上,复数z=a+bi (a ,b ∈R )与复数i (i ﹣2)关于实轴对称,则a+b 的值为( )A .1B .﹣3C .3D .25. 已知命题“p :∃x >0,lnx <x ”,则¬p 为( )A .∃x ≤0,lnx ≥xB .∀x >0,lnx ≥xC .∃x ≤0,lnx <xD .∀x >0,lnx <x6. 已知椭圆C :+y 2=1,点M 1,M 2…,M 5为其长轴AB 的6等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为( )A .﹣B .﹣C .D .﹣7. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .8. 复数的值是( )i i -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.9. 已知全集,,,则有( )U R ={|239}xA x =<≤{|02}B y y =<≤A .B .C .D .A ØB A B B =I ()R A B ≠∅I ð()R A B R=U ð10.如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .1C .D .11.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .12.中,“”是“”的( )ABC ∆A B >cos 2cos 2B A >A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.二、填空题13.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).14.设椭圆E :+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .15有两个不等实根,则的取值范围是.()23k x =-+16.已知函数,若∃x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2),则实数a 的取值范围是 . 17.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 . 18.在中,,,为的中点,,则的长为_________.ABC ∆90C ∠=o2BC =M BC 1sin 3BAM ∠=AC 三、解答题19.已知函数f (x )=sin (ωx+φ)(ω>0,0<φ<2π)一个周期内的一系列对应值如表:x 0y1﹣1(1)求f(x)的解析式;(2)求函数g(x)=f(x)+sin2x的单调递增区间.20.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残存的农药y(单位:微克)的统计表:x i12345y i5753403010(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;(2)若用解析式y=cx2+d作为蔬菜农药残量与用水量的回归方程,求其解析式;(c,a精确到0.01);附:设ωi=x,有下列数据处理信息:=11,=38,2iωy(ωi-)(y i-)=-811,(ωi-)2=374,ωyω对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)21.证明:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.22.已知函数f(x)=a﹣,(1)若a=1,求f(0)的值;(2)探究f(x)的单调性,并证明你的结论;(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小.23.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.(1)求证:BC1∥平面A1CD;(2)若四边形BCC1B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.24.已知数列{a n}的前n项和为S n,首项为b,若存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)问是否存在一组非零常数a,b,使得{S n}成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由.阜城县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.2.【答案】A【解析】解:∵z=2﹣i,∴====,∴=10•=4+2i,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.3.【答案】B【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,∴mx<2lnx,即<在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).故选:B.【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.4.【答案】A【解析】解:∵z=a+bi(a,b∈R)与复数i(i﹣2)=﹣1﹣2i关于实轴对称,∴,∴a+b=2﹣1=1,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.5.【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p为∀x>0,lnx≥x.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.6.【答案】B【解析】解:如图所示,由椭圆的性质可得==﹣=﹣.由椭圆的对称性可得,,∴=﹣,同理可得===﹣.∴直线AP1,AP2,…,AP10这10条直线的斜率乘积==﹣.故选:B.【点评】本题考查了椭圆的性质可得=﹣及椭圆的对称性,考查了推理能力和计算能力,属于难题.7.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,即kx﹣y﹣2=0,若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d≤1,即≤1,即k 2﹣3≥0,解得k ≤﹣或k ≥,即≤α≤且α≠,综上所述,≤α≤,故选:A . 8. 【答案】C【解析】.i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+9. 【答案】A【解析】解析:本题考查集合的关系与运算,,,∵,∴,选A .3(log 2,2]A =(0,2]B =3log 20>A ØB 10.【答案】D【解析】解:∵Rt △O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D .11.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m 可以取:0,1,2.故答案为:C 12.【答案】A.【解析】在中ABC ∆2222cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B>⇒->-⇔>⇔>,故是充分必要条件,故选A.A B ⇔>二、填空题13.【答案】 180 【解析】解:由二项式定理的通项公式T r+1=C n r a n ﹣r b r 可设含x 2项的项是T r+1=C 7r (2x )r 可知r=2,所以系数为C 102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等. 14.【答案】 .【解析】解:如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线,于是△OFM ∽△AFB ,且==,即=可得e==.故答案为:.【点评】本题考查椭圆的方程和性质,主要是离心率的求法,运用中位线定理和三角形相似的性质是解题的关键. 15.【答案】53,124⎛⎤⎥⎝⎦【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,y =()23y k x =-+y =直线的图象恒过定点,结合图象,可知,当过点时,,当直线()23y k x =-+()2,3()2,0-303224k -==+,解得,所以实数的取值范围是.111]()23y k x =-+2512k =53,124⎛⎤⎥⎝⎦考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.16.【答案】 (﹣∞,2)∪(3,5) .【解析】解:由题意,或∴a<2或3<a<5故答案为:(﹣∞,2)∪(3,5).【点评】本题考查分类讨论的数学思想,考查学生的计算能力,属于基础题.17.【答案】 ≤a<1或a≥2 .【解析】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.18.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).三、解答题19.【答案】【解析】(本题满分12分)解:(1)由表格给出的信息知,函数f(x)的周期为T=2(﹣0)=π.所以ω==2,由sin(2×0+φ)=1,且0<φ<2π,所以φ=.所以函数的解析式为f(x)=sin(2x+)=cos2x…6分(2)g(x)=f(x)+sin2x=sin2x+cos2x=2sin(2x+),令2k≤2x+≤2k,k∈Z则得kπ﹣≤x≤kπ+,k∈Z故函数g(x)=f(x)+sin2x的单调递增区间是:,k∈Z…12分【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查.20.【答案】【解析】解:(1)根据散点图可知,x 与y 是负相关.(2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线方程,y =cω+d ,=≈-2.17,-811374=y -ω=38-(-2.17)×11=61.87.a ^ c ^ ∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87,又ωi =x ,2i ∴y 关于x 的回归方程为y =-2.17x 2+61.87.(3)当y =0时,x ==≈5.3.估计最多用5.3千克水.61.872.176********.【答案】【解析】(1)证明:由函数f (x )的图象关于直线x=1对称,有f (x+1)=f (1﹣x ),即有f (﹣x )=f (x+2).又函数f (x )是定义在R 上的奇函数,有f (﹣x )=﹣f (x ).故f (x+2)=﹣f (x ).从而f (x+4)=﹣f (x+2)=f (x ).即f (x )是周期为4的周期函数.(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[﹣1,0)时,﹣x ∈(0,1],.故x ∈[﹣1,0]时,.x ∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x ∈[﹣5,﹣4]时,函数f (x )的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.22.【答案】【解析】解:(1)a=1时:f (0)=1﹣=;(2)∵f(x)的定义域为R∴任取x1x2∈R且x1<x2则f(x1)﹣f(x2)=a﹣﹣a+=.∵y=2x在R是单调递增且x1<x2∴0<2x1<2x2,∴2x1﹣2x2<0,2x1+1>0,2x2+1>0,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),∴f(x)在R上单调递增.(3)∵f(x)是奇函数∴f(﹣x)=﹣f(x),即a﹣=﹣a+,解得:a=1.∴f(ax)=f(x)又∵f(x)在R上单调递增∴x>2或x<﹣2时:|f(x)|>f(2),x=±2时:|f(x)|=f(2),﹣2<x<2时:|f(x)|<f(2).【点评】本题考查的是函数单调性、奇偶性等知识的综合问题.在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力.值得同学们体会和反思.23.【答案】【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1,∵BC1⊄平面A1CD,DO⊂平面A1CD,∴BC1∥平面A1CD.解:∵底面△ABC是边长为2等边三角形,D为AB的中点,四边形BCC1B1是正方形,且A1D=,∴CD⊥AB,CD==,AD=1,∴AD2+AA12=A1D2,∴AA1⊥AB,∵,∴,∴CD⊥DA1,又DA1∩AB=D,∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,∵矩形BCC1B1,∴BB1⊥BC,∵BC∩CD=C∴BB1⊥平面ABC,∵底面△ABC是等边三角形,∴三棱柱ABC﹣A1B1C1是正三棱柱.以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为θ,则sinθ===.∴直线A1D与平面CBB1C1所成角的正弦值为.24.【答案】【解析】解:(Ⅰ)∵数列{a n}的前n项和为S n,首项为b,存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立,由题意得当n=1时,(1﹣a)b=b﹣a2,∴a2=ab=aa1,当n≥2时,(1﹣a)S n=b﹣a n+1,(1﹣a)S n+1=b﹣a n+1,两式作差,得:a n+2=a•a n+1,n≥2,∴{a n}是首项为b,公比为a的等比数列,∴.(Ⅱ)当a=1时,S n=na1=nb,不合题意,当a≠1时,,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a,b,使得{S n}成等比数列.【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.。
阜城县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
阜城县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为( )A .B .C .D .2. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .123. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .4. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.5. 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A .(11,12)B .(12,13)C .(13,14)D .(13,12)6.已知,,那么夹角的余弦值( )A.B.C .﹣2 D.﹣7. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=8. 已知函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则函数y=f (x )的图象大致是( )A. B. C. D.9. 复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i10.已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4B.1[8 C .31[,)162 D .3[,3)811.已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( )A .1-B .C .1-或D .1-或2-12.若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、78二、填空题13.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 . 14.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.16.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单 位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.17.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .18.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.三、解答题19.已知,且.(1)求sin α,cos α的值;(2)若,求sin β的值.20.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,若不存在,说明理由.21.如图,已知五面体ABCDE ,其中△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC . (Ⅰ)证明:AD ⊥BC(Ⅱ)若AB=4,BC=2,且二面角A ﹣BD ﹣C 所成角θ的正切值是2,试求该几何体ABCDE 的体积.22.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.23.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.( I )求直方图中a 的值及甲班学生每天平均学习时间在区间[10,12]的人数;(II)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.24.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.阜城县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】 C【解析】解:在直角三角形OMP 中,OP=1,∠POM=x ,则OM=|cosx|,∴点M 到直线OP 的距离表示为x 的函数f (x )=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C . 【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.2. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质. 3. 【答案】 D【解析】解:∵g (x )=﹣f (2﹣x ),∴y=f (x )﹣g (x )=f (x )﹣+f (2﹣x ),由f (x )﹣+f (2﹣x )=0,得f (x )+f (2﹣x )=,设h (x )=f (x )+f (2﹣x ), 若x ≤0,则﹣x ≥0,2﹣x ≥2,则h (x )=f (x )+f (2﹣x )=2+x+x 2,若0≤x ≤2,则﹣2≤﹣x ≤0,0≤2﹣x ≤2,则h (x )=f (x )+f (2﹣x )=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2, 若x >2,﹣x <﹣2,2﹣x <0, 则h (x )=f (x )+f (2﹣x )=(x ﹣2)2+2﹣|2﹣x|=x 2﹣5x+8.作出函数h (x )的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=恰有4个根,则满足<<2,解得:b∈(,4),故选:D.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.4.【答案】B5.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2, 当n=2时,满足进行循环的条件,故x=9,y=10,n=3, 当n=3时,满足进行循环的条件,故x=11,y=12,n=4, 当n=4时,不满足进行循环的条件, 故输出的数对为(11,12), 故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6. 【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos <>===﹣,故选:A .【点评】本题考查了向量的夹角公式,属于基础题.7. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .8. 【答案】B【解析】解:函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则由于指数函数是单调函数,则有a >1,由底数大于1指数函数的图象上升,且在x 轴上面,可知B 正确. 故选B .9. 【答案】【解析】解析:选D.法一:由2+2z1-i =i z 得2+2z =i z +z , 即(1-i )z =-2,∴z =-21-i =-2(1+i )2=-1-i.法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,∴⎩⎪⎨⎪⎧2+2a =a -b 2b =a +b, ∴a =b =-1,故z =-1-i. 10.【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得33x =(负舍),即有121113,4223x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.11.【答案】D 【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 12.【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-二、填空题13.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B ,∴B ⊆A ,则有a+1≤1或a ≥3, 解得:a ≤0或a ≥3,故答案为:a ≤0或a ≥3.14.【答案】 2 .【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4,即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2, 故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.15.【答案】 6【解析】解:过A 作AO ⊥BD 于O ,AO 是棱锥的高,所以AO==,所以四棱锥A ﹣BB 1D 1D 的体积为V==6.故答案为:6.16.【答案】15【解析】由条件知5000.9e kP P -=,所以5e 0.9k-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,于是000.729ekt P P -=,∴315e 0.7290.9e ktk --===,所以15t =小时.17.【答案】 12 .【解析】解:设两者都喜欢的人数为x 人,则只喜爱篮球的有(15﹣x )人,只喜爱乒乓球的有(10﹣x )人, 由此可得(15﹣x )+(10﹣x )+x+8=30,解得x=3, 所以15﹣x=12, 即所求人数为12人, 故答案为:12.18.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b 的解析式是解答的关键.三、解答题19.【答案】【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,∴sinα=,∵α∈(,π),∴cosα=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin(α+β)=﹣<0,∴α+β∈(π,),∴cos(α+β)=﹣=﹣,则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.20.【答案】【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,又∵AC⊂面A1ACC1,∴AB⊥AC,以A为原点建立如图所示的空间直角坐标系A﹣xyz,则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),则D(λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF⊥AE;(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.21.【答案】【解析】(Ⅰ)证明:∵AB是圆O的直径,∴AC⊥BC,又∵DC⊥平面ABC∴DC⊥BC,又AC∩CD=C,∴BC⊥平面ACD,又AD⊂平面ACD,∴AD⊥BC.(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.则C(0,0,0),B(2,0,0),,D(0,0,a).由(Ⅰ)可得,AC⊥平面BCD,∴平面BCD的一个法向量是=,设=(x ,y ,z )为平面ABD 的一个法向量,由条件得, =,=(﹣2,0,a ).∴即,不妨令x=1,则y=,z=,∴=.又二面角A ﹣BD ﹣C 所成角θ的正切值是2,∴.∴=cos θ=,∴==,解得a=2.∴V ABCDE =V E ﹣ADC +V E ﹣ABC=+=+==8.∴该几何体ABCDE 的体积是8.【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.22.【答案】【解析】解:(Ⅰ)由直线:1l x my =-经过点1F 得1c =,当0m =时,直线l 与x 轴垂直,21||2b MF a ==,由212c b a=⎧⎪⎨=⎪⎩解得1a b ⎧=⎪⎨=⎪⎩C 的方程为2212x y +=. (4分) (Ⅱ)设1122(,),(,)M x y N x y ,120,0y y >>,由12//MF NF 知12121122||3||MF F NF F S MF y S NF y ∆∆===.联立方程22112x my x y =-⎧⎪⎨+=⎪⎩,消去x 得22(2)210m y my +--=,解得y =∴1y =,同样可求得2y =, (11分)由123y y =得123y y =3=,解得1m =, 直线l 的方程为10x y -+=. (13分)23.【答案】【解析】解:(1)由直方图知,(0.150+0.125+0.100+0.0875+a )×2=1,解得a=0.0375, 因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为.所以甲、乙两班人数均为40人,所以甲班学习时间在区间[10,12]的人数为40×0.0375×2=3(人).(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.,,,.0 23.24.【答案】【解析】解:(1).(2)ξ可取0,1,2,3,4, P (ξ=0)=(1﹣)2(1﹣)2=;P (ξ=1)=()(1﹣)()2+(1﹣)2=;P(ξ=2)=++=;P(ξ=3)==;P(ξ=4)==.∴ξ的分布列为:Eξ=0×+1×+2×+3×+4×=.【点评】本题主要考查n次独立重复实验中恰好发生k次的概率,等可能事件的概率,体现了分类讨论的数学思想,属于中档题.。
阜城县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
第 5 页,共 15 页
阜城县实验中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】D
【解析】解:将 y=cos(2x+φ)的图象沿 x 轴向右平移
个单位后,得到一个奇函数 y=cos=cos(2x+φ﹣
)的图象,
∴φ﹣ =kπ+ ,即 φ=kπ+
)>0 成立的 x 的取值范围是 .
rr 14.已知两个单位向量 a, b
rr 满足: a b
1
r ,向量 2a
r b
与的夹角为,则 cos
.
2
15.如图,在矩形 ABCD 中, AB 3 ,
BC 3, E 在 AC 上,若 BE AC ,
则 ED 的长=____________
第 3 页,共 15 页
21.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行
试销,得到如下数据: 单价 x(单位:元) 销量 y(单位:万件)
8 8.2 8.4 8.6 8.8 9 90 84 83 80 75 68
(1)现有三条 y 对 x 的回归直线方程: =﹣10x+170; =﹣20x+250; =﹣15x+210;根据所学的统计
A.n≤8? B.n≤9? C.n≤10? D.n≤11? 4. 下列满足“∀x∈R,f(x)+f(﹣x)=0 且 f′(x)≤0”的函数是( ) A.f(x)=﹣xe|x| B.f(x)=x+sinx
C.f(x)=
D.f(x)=x2|x|
5. 已知向量 =(1,1,0), =(﹣1,0,2)且 k + 与 2 ﹣ 互相垂直,则 k 的值是( )
阜城县第二中学2018-2019学年高三上学期11月月考数学试卷含答案
阜城县第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为()A .1B .C .D .22. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为()A .B .2C .D .33. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为()A .4B .8C .10D .134. 复数的值是( )i i -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.5. 在等差数列中,已知,则( )A .12B .24C .36D .486. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则()A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为()A .3B .4C .5D .68. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)9. 已知等差数列{a n }中,a n =4n ﹣3,则首项a 1和公差d 的值分别为( )A .1,3B .﹣3,4C .1,4D .1,210.下列计算正确的是( )A 、B 、C 、D 、2133x x x ÷=4554()x x =4554x x x =4455x x -=11.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .12.(2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .13二、填空题13.若复数是纯虚数,则的值为 .34sin (cos 55z αα=-+-tan α【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答) 16.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,若函数y=f (f ()210{ 21(0)xxx e x x x +≥++<(x )﹣a )﹣1有三个零点,则a 的取值范围是_____.18.曲线y=x 2与直线y=x 所围成图形的面积为 .三、解答题19.(本小题满分12分)已知向量满足:,,.,a b r r ||1a =r ||6b =r ()2a b a ∙-=r r r(1)求向量与的夹角;(2)求.|2|a b -r r20.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1. 21.已知集合A={x|2≤x≤6},集合B={x|x≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A C,求实数a的取值范围.22.在四棱锥E﹣ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F 为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE.23.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1,且这个几何体的体积为10.(Ⅰ)求棱AA1的长;(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.24.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.阜城县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1),又P 为C 上一点,|PF|=4,可得y P =3,代入抛物线方程得:|x P |=2,∴S △POF =|0F|•|x P |=.故选:C . 2. 【答案】 B【解析】解:因为AD •(BC •AC •sin60°)≥V D ﹣ABC =,BC=1,即AD •≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD ⊥面ABC ,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B .【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题. 3. 【答案】 C【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),∵2tan =2,lg =﹣1,∴(2tan )⊗lg =(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne ⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C . 4. 【答案】C【解析】.i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+5. 【答案】B【解析】,所以,故选B答案:B6.【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q≠1,则A=S n=,B=S2n=,C=S3n=,B(B﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A(C﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n);故B(B﹣A)=A(C﹣A);故选:C.【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力. 7.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.8.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档. 9. 【答案】C【解析】解:∵等差数列{a n }中,a n =4n ﹣3,∴a 1=4×1﹣3=1,a 2=4×2﹣3=5.∴公差d=a 2﹣a 1=5﹣1=4.∴首项a 1和公差d 的值分别为1,4.故选:C .【点评】本题考查了等差数列的通项公式及其首项a 1和公差d 的求法,属于基础题. 10.【答案】B 【解析】试题分析:根据可知,B 正确。
阜城县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
阜城县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( )A .1B .2C .3D .42. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 23. 某三棱锥的三视图如图所示,该三棱锥的体积是( )A . 2B .4C .D .3438【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.4. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为()A .12B .10C .8D .25. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有()A .2个B .4个C .6个D .8个6. 已知i 是虚数单位,则复数等于()A .﹣ +iB .﹣ +iC .﹣iD .﹣i7. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件8. 双曲线E 与椭圆C :+=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积x 29y 23为π,则E 的方程为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.-=1B.-=1x 23y 23x 24y 22C.-y 2=1D.-=1x 25x22y 249. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差10.已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣411.一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .D .64332312.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )二、填空题13.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 14.直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则20x y t +-=216y x =A B x O 面积的最大值为.OAB ∆【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.15.已知是数列的前项和,若不等式对一切恒成立,则的取值范围是n S 1{}2n n -n 1|12n n n S λ-+<+|n N *∈λ___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.16.下列结论正确的是 ①在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率为0.7;②以模型y=ce kx 去拟合一组数据时,为了求出回归方程,设z=lny ,其变换后得到线性回归方程z=0.3x+4,则c=e 4;③已知命题“若函数f (x )=e x ﹣mx 在(0,+∞)上是增函数,则m ≤1”的逆否命题是“若m >1,则函数f (x )=e x ﹣mx 在(0,+∞)上是减函数”是真命题;④设常数a ,b ∈R ,则不等式ax 2﹣(a+b ﹣1)x+b >0对∀x >1恒成立的充要条件是a ≥b ﹣1. 17.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个. 18.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .三、解答题19.设a ,b 互为共轭复数,且(a+b )2﹣3abi=4﹣12i .求a ,b 的值.20.已知抛物线C :y 2=2px (p >0)过点A (1,﹣2).(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 的距离等于?若存在,求直线L 的方程;若不存在,说明理由.21.(本小题满分12分)已知函数.1()ln (42)()f x m x m x m x=+-+∈R (1)时,求函数的单调区间;当2m >()f x (2)设,不等式对任意的恒成立,求实数的[],1,3t s ∈|()()|(ln 3)(2)2ln 3f t f s a m -<+--()4,6m ∈a 取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.22.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.(1)证明:平面AED ⊥平面BCDE ;(2)求二面角E ﹣AC ﹣B 的余弦值.23.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x -=)cos sin ,(cos x x x +=R x ∈.b a x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆24.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .(1)当k =时,求cos B ;54(2)若△ABC 面积为,B =60°,求k 的值.3阜城县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)|}将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M∩N中元素的个数为2个,故选B.【点评】本题既是交集运算,又是函数图形求交点个数问题2.【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B3.【答案】B4.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.5. 【答案】B【解析】解:因为B={0,1,2,3},C={0,2,4},且A ⊆B ,A ⊆C ;∴A ⊆B ∩C={0,2}∴集合A 可能为{0,2},即最多有2个元素,故最多有4个子集.故选:B . 6. 【答案】A【解析】解:复数===,故选:A .【点评】本题考查了复数的运算法则,属于基础题. 7. 【答案】B【解析】解:若f (x )的图象关于x=对称,则2×+θ=+k π,解得θ=﹣+k π,k ∈Z ,此时θ=﹣不一定成立,反之成立,即“f (x )的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键. 8. 【答案】【解析】选C.可设双曲线E 的方程为-=1,x 2a 2y 2b 2渐近线方程为y =±x ,即bx ±ay =0,b a由题意得E 的一个焦点坐标为(,0),圆的半径为1,6∴焦点到渐近线的距离为1.即=1,|6b |b 2+a 2又a 2+b 2=6,∴b =1,a =,5∴E 的方程为-y 2=1,故选C.x 259. 【答案】D【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88.B 样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A 错.平均数86,88不相等,B 错.中位数分别为86,88,不相等,C 错A 样本方差S 2= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B 样本方差S 2= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D 正确故选D .【点评】本题考查众数、平均数、中位标准差的定义,属于基础题. 10.【答案】A【解析】解:∵点P (1,3)在α终边上,∴tan α=3,∴====﹣.故选:A . 11.【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:,故选B. 1444322⨯⨯⨯=考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.12.【答案】D【解析】解:y=|x|(x ∈R )是偶函数,不满足条件,y=(x ≠0)是奇函数,在定义域上不是单调函数,不满足条件,y=x (x ∈R )是奇函数,在定义域上是增函数,不满足条件,y=﹣x 3(x ∈R )奇函数,在定义域上是减函数,满足条件,故选:D 二、填空题13.【答案】 9 .【解析】解:由题意可得:a+b=p ,ab=q ,∵p >0,q >0,可得a >0,b >0,又a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故答案为:9. 14.【解析】15.【答案】31λ-<<【解析】由,…2211111123(1)2222n n n S n n --=+⨯+⨯++-⋅+L g 211112222n S =⨯+⨯+,两式相减,得,所以,111(1)22n n n n -+-⋅+⋅2111111212222222n n n n n S n -+=++++-⋅=-L 1242n n n S -+=-于是由不等式对一切恒成立,得,解得.12|142n λ-+<-|N n *∈|12λ+<|31λ-<<16.【答案】 ①②④ 【解析】解:①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0)则正态曲线关于x=1对称.若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率P=2×0.35=0.7;故①正确,②∵y=ce kx,∴两边取对数,可得lny=ln(ce kx)=lnc+lne kx=lnc+kx,令z=lny,可得z=lnc+kx,∵z=0.3x+4,∴lnc=4,∴c=e4.故②正确,③已知命题“若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=e x﹣mx在(0,+∞)上不是增函数”,若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则f′(x)≥0恒成立,即f′(x)=e x﹣m≥0在(0,+∞)上恒成立,即m≤e x,∵x>0,∴e x>1,则m≤1.故原命题是真命题,则命题的逆否命题也是真命题,故③错误,④设f(x)=ax2﹣(a+b﹣1)x+b,则f(0)=b>0,f(1)=a﹣(a+b﹣1)+b=1>0,∴要使∀x>1恒成立,则对称轴x=,即a+b﹣1≤2a,即a≥b﹣1,即不等式ax2﹣(a+b﹣1)x+b>0对∀x>1恒成立的充要条件是a≥b﹣1.故④正确,故答案为:①②④17.【答案】 6 【解析】解:集合A为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查.18.【答案】 2016 .【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.三、解答题19.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.20.【答案】【解析】解:(I)将(1,﹣2)代入抛物线方程y2=2px,得4=2p,p=2∴抛物线C的方程为:y2=4x,其准线方程为x=﹣1(II)假设存在符合题意的直线l,其方程为y=﹣2x+t,由得y2+2y﹣2t=0,∵直线l与抛物线有公共点,∴△=4+8t≥0,解得t≥﹣又∵直线OA与L的距离d==,求得t=±1∵t≥﹣∴t=1∴符合题意的直线l存在,方程为2x+y﹣1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.21.【答案】2m-2请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.【答案】【解析】(1)证明:取ED的中点为O,由题意可得△AED为等边三角形,,,∴AC2=AO2+OC2,AO⊥OC,又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,∴平面AED⊥平面BCDE;…(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),,,,设面EAC的法向量为,面BAC的法向量为由,得,∴,∴,由,得,∴,∴,∴,∴二面角E﹣AC﹣B的余弦值为.…2016年5月3日23.【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.24.【答案】【解析】解:(1)∵sin B =sin A +sin C ,由正弦定理得b =a +c ,5454又a =4c ,∴b =5c ,即b =4c ,54由余弦定理得cos B ===.a 2+c 2-b 22ac (4c )2+c 2-(4c )22×4c ·c 18(2)∵S △ABC =,B =60°.3∴ac sin B =.即ac =4.123又a =4c ,∴a =4,c =1.由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×=13.12∴b =,13∵k sin B =sin A +sin C ,由正弦定理得k ===,a +c b 51351313即k 的值为.51313。
河北省衡水市阜城中学高二上学期11月月考数学(理)试题
河北省衡水市阜城中学2014-2015学年高二上学期11月月考理科数学试题2014.11.27 一.选择题(共12小题,每小题5分,共60分)。
1.已知命题①若a >b ,则1a <1b ,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真 2.若抛物线x 2=2py 的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( ) A .4 B .2 C .-4 D .-2 3.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,使x 30-x 20+1>0C .存在x 0∈R ,使x 30-x 20+1≤0 D .对任意的x ∈R ,x 3-x 2+1>04. 设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .125.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .12B 23 C.34 D.456.若直线l 的方向向量为a =(1,-1,2),平面α的法向量为u =(-2,2,-4),则( )A .l ∥αB .l ⊥αC .l αD .l 与α斜交7.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成的角的余弦值为( ) A.1010 B.15 C.31010 D.358.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′→=xAB →+2yBC →+3zC ′C →,则x +y +z 等于( )A .1 B.76 C.56D.239.下列说法错误的是( )A .如果命题“¬p ”与命题“p ∨q ”都是真命题,那么命题q 一定是真命题B .命题“若a =0,则ab =0”的否命题是:“若a ≠0,则ab ≠0”C .若命题p : x 0∈R ,x 02+2x 0-3<0,则¬p : x ∈R ,x 2+2x -3≥0D .“sin θ=12”是“θ=30°”的充分不必要条件 10.正方体的面内有一点,满足到点的距离等于点到面的距离,则点的轨迹是( )A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分11.下列命题正确的个数是( )①命题“”的否定是“”;②“函数ax ax x f 22sin cos )(-=的最小正周期为”是“”的必要不充分条件;③ax x x ≥+22在]2,1[∈x 上恒成立max min 2)()2(ax x x ≥+⇔在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“”.A .1B .2C .3D .412.已知抛物线C :y 2=8x 的焦点为F ,点,过点F 且斜率为k 的直线与C 交于A ,B 两点,若,则k=A .B .C .D .三.解答题:解答应写出文字说明,证明过程或演算步骤。
河北省衡水市阜城县阜城实验中学2024-2025学年高一上学期11月月考数学试题
河北省衡水市阜城县阜城实验中学2024-2025学年高一上学期11月月考数学试题一、单选题1.设集合{}{}14,25B x x B x x =<<=≤<,则图中的阴影部分表示的集合为()A .{}12x x <<B .{}12x x <£C .{}24x x ≤<D .{}15x x <<2.已知集合{}25A x x =-≤≤,{121}B xm x m =-<<+∣,若B ≠∅,且A B B = ,则实数m 的取值范围是()A .{22}mm -<<∣B .{12}mm -<<∣C .{22}mm -<≤∣D .{}12m m -≤≤3.“1x =-”是“2230x x --=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.命题“1x ∀>,220x x +->”的否定为()A .1x ∃>,220x x +-≤B .1x ∃≤,220x x +-≤C .1x ∀≤,220x x +-≤D .1x ∀>,220x x +-≤5.若集合{}2|20,A x mx x m m =++=∈R 中有且只有一个元素,则m 值的集合是()A .{}1-B .{}0C .{}1,1-D .{}1,0,1-6.已知实数1x >,则函数221y x x =+-的最小值为()A .5B .6C .7D .87.函数()13f x x =+-的定义域为()A .3,2⎡⎫+∞⎪⎢⎣⎭B .()(),33,-∞+∞C .()3,33,2⎡⎫+∞⎪⎢⎣⎭ D .()3,33,2⎛⎫+∞ ⎪⎝⎭8.已知二次函数()2321y k x x =-++的图象与x 轴有交点,则k 的取值范围是()A .4k <B .4k ≤C .4k <且3k ≠D .4k ≤且3k ≠二、多选题9.下列函数中,值域为[1,)+∞的是()A .y =B .1y x =+C .y =D .y =10.(多选)不等式20ax bx c -+>的解集是122x x ⎧⎫-<<⎨⎬⎩⎭,对于系数s s ,下列结论正确的是()A .>0B .0a <C .0b <D .0a b c -+>11.已知a Z ∈,关于x 的一元二次不等式x 2-8x +a ≤0的解集中有且仅有3个整数,则a 的值可以是()A .13B .14C .15D .17三、填空题12.已知集合{}2450A x x x =--=,集合{}210B x x =-=,则A B =.13.函数11x y x +=-的值域是.14.已知0,0,231x y x y >>+=,求32x y+的最小值四、解答题15.已知集合{}2,6A =.(1)若集合{}2+123B a a =-,,且A B =,求a 的值;(2)若集合{}260C x ax x =-+=,且A 与C 有包含关系,求a 的取值范围.16.已知集合{}2331A x a x a =-<<+,集合{}54B x x =-<<.(1)若A B ⊆,求实数a 的取值范围;(2)是否存在实数a ,使得A B =?若存在,求出a 的值;若不存在,请说明理由.17.(1)已知0x >,求972x x --+的最大值;(2)已知103x <<,求(13)x x -的最大值.18.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若2a =-,求()0f x <的解集.(2)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围;(3)解关于x 的不等式:()1f x a <-.19.关于x 的不等式()2220,R.ax a x a -++>∈(1)当1,a =求不等式的解集;(2)解关于x 的不等式.。
河北省衡水市阜城县2024-2025学年高二上学期11月月考数学试题
河北省衡水市阜城县2024-2025学年高二上学期11月月考数学试题一、单选题1.已知圆M :226260x y x y ++--=,则圆心M 的坐标和半径r 分别为()A .()3,1-,4r =B .()3,1-,2r =C .()3,1-,4r =D .()3,1-,2r =2.若直线:10l x my ++=的倾斜角为5π6,则实数m 值为()AB .C .3D .33-3.直线210x y -+=与直线23y x =+的位置关系是A .平行B .垂直C .相交但不垂直D .重合4.经过圆2240x y y ++=的圆心且与直线3420x y ++=垂直的直线方程是()A .3480x v ++=B .4360x y ++=C .4320x y --=D .4360x y --=5.若点()0,4A 在圆2222420x y kx y k k ++-+--=外,则实数k 的取值范围是()A .()1,2-B .()(),12,-∞-+∞ C .()()6,12,--+∞ D .()6,-+∞6.点()()1,1,2,3A B -,点P 在x 轴上,则PA PB +的最小值为()A .B .5C .4D 7.已知平行六面体1111ABCD A B C D -的各棱长均为1,1160A AB A AD ∠=∠=︒,90DAB ∠=︒,则1AC =()AB C D 18.已知直线:10l mx y --=,若直线l 与连接()1,2A -、()2,1B 两点的线段总有公共点,则直线l 的倾斜角范围为()A .ππ,44⎡⎤-⎢⎥⎣⎦B .3π,π4⎡⎫⎪⎢⎣⎭C .π3π,44⎡⎤⎢⎣⎦D .π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎢⎣⎦⎣⎭二、多选题9.已知直线:20l x -=,则()A .l 的倾斜角为π6B .lC .原点O 到l 的距离为1D .原点O 关于l 的对称点为(10.已知直线12:(2)80,:40,R a x ay l a l x y a ++-=+-=∈()A .若12l l ∥,则1a =-或2B .原点O 到直线1l 的最大距离为C .若12l l ⊥,则3a =-或0a =D .()1:280l a x ay ++-=不过第二象限则20a -<<11.下列说法正确的是()A .若空间中的,,,O ABC ,满足1233OC OA OB =+,则,,A B C 三点共线B .空间中三个向量,,a b c ,若//a b,则,,a b c 共面C .对空间任意一点O 和不共线的三点,,A B C ,若220222023OP OA OB OC =+-,则,,,P A B C 四点共面D .设{},,a b c 是空间的一组基底,若,m a b n a b =+=- ,则{,,}m n c不能为空间的一组基底三、填空题12.若直线3410x y ++=与直线870mx y ++=平行,则这两条直线间的距离为.13.直线l 过点1)P -,其倾斜角是直线1y =+的倾斜角的12,则直线l 的方程为.14.在空间直角坐标系中已知()1,2,1A ,()1,0,2B ,()1,1,4C -,CD 为三角形ABC 边AB 上的高,则CD =.四、解答题15.已知ABC 的顶点坐标分别是()2,2A ,()3,1B -,()5,3C .(1)求ABC 的外接圆方程;(2)求ABC 的面积.16.求满足下列条件的直线方程.(1)过点()2,4M ,且在两坐标轴上的截距相等的直线l 的方程;(2)已知()3,3A -,()1,1B ,两直线1:240l x y -+=,2:4350l x y ++=交点为P ,求过点P 且与,A B 距离相等的直线方程.17.在棱长为4的正方体1111ABCD A B C D -中,点P 在棱1CC 上,且14CC CP =.(1)求点P 到平面1ABD 的距离;(2)求二面角1P AD B --的正弦值.18.已知圆心为C 的圆经过()1,1A ,()2,2B -两点,且圆心C 在直线:10l x y -+=上.(1)求圆C 的标准方程;(2)设P 为圆C 上的一个动点,O 为坐标原点,求OP 的中点M 的轨迹方程.19.如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,//AB CD ,且2CD =,1AB =,BC =1PA =,AB BC ⊥,N 为PD 的中点.(1)求证:AN∥平面PBC;(2)在线段PD上是否存在一点M,使得直线CM与平面PBC所成角的正弦值是13.若存在,求出DMDP的值,若不存在,说明理由.。
阜城县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案
阜城县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知i 为虚数单位,则复数所对应的点在()A .第一象限B .第二象限C .第三象限D .第四象限2. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=()A .1+iB .﹣1﹣iC .﹣1+iD .1﹣i3. 函数y=x+cosx 的大致图象是()A .B .C .D .4. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( )A .0B .1C .2D .35. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A .2sin 2cos 2αα-+ B.sin 3αα+C. 3sin 1αα-+ D .2sin cos 1αα-+6. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为()A .12B .10C .8D .27. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .2D .38. 给出下列函数:①f (x )=xsinx ;②f (x )=e x +x ;③f (x )=ln (﹣x );∃a >0,使f (x )dx=0的函数是( )A .①②B .①③C .②③D .①②③9. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k)的是()A .B .C .D .10.已知函数,关于的方程()有3个相异的实数根,则的()x e f x x=x 2()2()10f x af x a -+-=a R Îa 取值范围是()A .B .C .D .21(,)21e e -+¥-21(,)21e e --¥-21(0,21e e --2121e e ìü-ïïí-ïïîþ【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.11.若复数z 满足=i ,其中i 为虚数单位,则z=()A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i12.设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}二、填空题13.定义在上的函数满足:,,则不等式(其R )(x f 1)(')(>+x f x f 4)0(=f 3)(+>xxe xf e 中为自然对数的底数)的解集为.14.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .15.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .16.已知函数的定义域R ,直线和是曲线的对称轴,且,则)(x f 1=x 2=x )(x f y =1)0(=f.=+)10()4(f f 17.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .18.不等式的解集为R ,则实数m 的范围是 .三、解答题19.如图,已知边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2,M 为BC 的中点(Ⅰ)试在棱AD 上找一点N ,使得CN ∥平面AMP ,并证明你的结论.(Ⅱ)证明:AM ⊥PM .20.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 21.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.22.(本小题满分12分)某单位共有名员工,他们某年的收入如下表:10员工编号12345678910年薪(万元)33.5455.56.577.5850(1)求该单位员工当年年薪的平均值和中位数;(2)从该单位中任取人,此人中年薪收入高于万的人数记为,求的分布列和期望;225ξξ(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为万元、万35.4元、万元、万元,预测该员工第五年的年薪为多少?6.52.7附:线性回归方程中系数计算公式分别为:a x b yˆˆˆ+= ,,其中、为样本均值.121()()()niii nii x x y y bx x ==--=-∑∑$x b y aˆˆ-=x y 23.在四棱锥E ﹣ABCD 中,底面ABCD 是边长为1的正方形,AC 与BD 交于点O ,EC ⊥底面ABCD ,F为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ;(Ⅱ)求证:BD ⊥AE .24.(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直1C 14822=+y x 21F F 、1F 于轴的直线,直线垂直于点,线段的垂直平分线交于点.2l P 2PF 2l M (1)求点的轨迹的方程;M 2C (2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积2F BD AC 、D C B A 、、、ABCD 的最小值.阜城县第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】解: ==1+i ,其对应的点为(1,1),故选:A . 2. 【答案】D【解析】解:由于,(z ﹣)i=2,可得z ﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i 故选D . 3. 【答案】B【解析】解:由于f (x )=x+cosx ,∴f (﹣x )=﹣x+cosx ,∴f (﹣x )≠f (x ),且f (﹣x )≠﹣f (x ),故此函数是非奇非偶函数,排除A 、C ;又当x=时,x+cosx=x ,即f (x )的图象与直线y=x 的交点中有一个点的横坐标为,排除D .故选:B .【点评】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力,属于中档题. 4. 【答案】C【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2.故选:C .【点评】本题考查集合的基本运算,交集的意义,是基础题. 5. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.6. 【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z 取得最大值10.7. 【答案】D 【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b 2﹣8b ﹣3=0,∴解得:b=3或﹣(舍去).故选:D . 8. 【答案】B【解析】解:对于①,f (x )=xsinx ,∵(sinx ﹣xcosx )′=xsinx ,∴xsinxdx=(sinx ﹣xcosx )=2sina ﹣2acosa ,令2sina ﹣2acosa=0,∴sina=acosa ,又cosa ≠0,∴tana=a ;画出函数y=tanx与y=x的部分图象,如图所示;在(0,)内,两函数的图象有交点,即存在a>0,使f(x)dx=0成立,①满足条件;对于②,f(x)=e x+x,(e x+x)dx=(e x+x2)=e a﹣e﹣a;令e a﹣e﹣a=0,解得a=0,不满足条件;对于③,f(x)=ln(﹣x)是定义域R上的奇函数,且积分的上下限互为相反数,所以定积分值为0,满足条件;综上,∃a>0,使f(x)dx=0的函数是①③.故选:B.【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为0,是综合性题目.9.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.10.【答案】D第Ⅱ卷(共90分)11.【答案】A【解析】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.12.【答案】D【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},∴∁U Q={1,2,6},又P={1,2,3,4},∴P∩(C U Q)={1,2}故选D.二、填空题13.【答案】),0(+∞【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即()()01>-'+x f x f xe ,因此构造函数,求导利用函数的单调性解不等式.另外本题也可()()0>-'+x x x e x f e x f e ()()x x e x f e x g -=以构造满足前提的特殊函数,比如令也可以求解.1()4=x f 14.【答案】 ( 1,±2) .【解析】解:设点P 坐标为(a 2,a )依题意可知抛物线的准线方程为x=﹣2a 2+2=,求得a=±2∴点P 的坐标为( 1,±2)故答案为:( 1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题. 15.【答案】 a ≤﹣1 .【解析】解:由x 2﹣2x ﹣3≥0得x ≥3或x ≤﹣1,若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a ≤﹣1,故答案为:a ≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键. 16.【答案】2【解析】直线和是曲线的对称轴,1=x 2=x )(x f y =∴,,(2)()f x f x -=(4)()f x f x -=∴,∴的周期.(2)(4)f x f x -=-)(x f y =2T =∴.(4)(10)(0)(0)2f f f f +=+=17.【答案】 4 .【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.18.【答案】 .【解析】解:不等式,x2﹣8x+20>0恒成立可得知:mx2+2(m+1)x+9x+4<0在x∈R上恒成立.显然m<0时只需△=4(m+1)2﹣4m(9m+4)<0,解得:m<﹣或m>所以m<﹣故答案为:三、解答题19.【答案】【解析】(Ⅰ)解:在棱AD上找中点N,连接CN,则CN∥平面AMP;证明:因为M为BC的中点,四边形ABCD是矩形,所以CM平行且相等于DN,所以四边形MCNA为矩形,所以CN∥AM,又CN⊄平面AMP,AM⊂平面AMP,所以CN∥平面AMP.(Ⅱ)证明:过P作PE⊥CD,连接AE,ME,因为边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点所以PE⊥平面ABCD,CM=,所以PE⊥AM,在△AME中,AE==3,ME==,AM==,所以AE2=AM2+ME2,所以AM⊥ME,所以AM⊥平面PME所以AM⊥PM.【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想. 20.【答案】(1);(2).122n n b +=-222(4)n n S n n +=-++【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比122n n b b +=+数列的通项公式可得,变形形式为;(2)由(1)可知,n b 12()n n b x b x ++=+122(2)nn n n a a b n --==-≥这是数列的后项与前项的差,要求通项公式可用累加法,即由{}n a 112()()n n n n n a a a a a ---=-+-+L求得.211()a a a +-+试题解析:(1),∵,112222(2)n n n n b b b b ++=+⇒+=+1222n n b b ++=+又,121224b a a +=-+=∴.2312(21)(2222)22222221n nn n a n n n +-=++++-+=-+=--L ∴.224(12)(22)2(4)122n n n n n S n n +-+=-=-++-考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式.21.【答案】【解析】解:(1)∵y=+,∴,解得x ≥﹣2且x ≠﹣2且x ≠3,∴函数y 的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x ≤4且x ≠1且x ≠3,∴函数y 的定义域是(﹣∞,1)∪(1,3)∪(3,4]. 22.【答案】【解析】(1)平均值为10万元,中位数为6万元.(2)年薪高于5万的有6人,低于或等于5万的有4人;取值为0,1,2.ξ,,,152)0(21024===C C P ξ158)1(2101614===C C C P ξ31)2(21026===C C P ξ∴的分布列为ξξ012P15215831∴.2816()012151535E ξ=⨯+⨯+⨯=(3)设分别表示工作年限及相应年薪,则,)4,3,2,1(,=i y x i i 5,5.2==y x ,21()2.250.250.25 2.255nii x x =-=+++=∑,41()() 1.5(2)(0.5)(0.8)0.50.6 1.5 2.27iii x x y y =--=-⨯-+-⨯-+⨯+⨯=∑,,121()(7 1.45()niii nii x x y y bx x ==--===-∑∑$ˆˆ5 1.4 2.5 1.5ay b x =-=-⨯=由线性回归方程为.可预测该员工年后的年薪收入为万元.1.4 1.5y x =+8.523.【答案】【解析】【分析】(Ⅰ)连接FO ,则OF 为△BDE 的中位线,从而DE ∥OF ,由此能证明DE ∥平面ACF .(Ⅱ)推导出BD ⊥AC ,EC ⊥BD ,从而BD ⊥平面ACE ,由此能证明BD ⊥AE .【解答】证明:(Ⅰ)连接FO ,∵底面ABCD 是正方形,且O 为对角线AC 和BD 交点,∴O 为BD 的中点,又∵F 为BE 中点,∴OF 为△BDE 的中位线,即DE ∥OF ,又OF ⊂平面ACF ,DE ⊄平面ACF ,∴DE ∥平面ACF .(Ⅱ)∵底面ABCD 为正方形,∴BD ⊥AC ,∵EC ⊥平面ABCD ,∴EC ⊥BD ,∴BD ⊥平面ACE ,∴BD ⊥AE.24.【答案】(1);(2).x y 82=964【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定2MF 2MF MP =义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四AC BD 边形面积.当直线和的斜率都存在时,不妨设直线的方程为,则直ABCD 22b S =AC BD AC ()2-=x k y 线的方程为.分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,BD ()21--=x ky AC .利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,BD ABCD BD AC S 21=即可得出.(2)当直线的斜率存在且不为零时,直线的斜率为,,,则直线的斜率为,AC AC ),(11y x A ),(22y x C BD k1-直线的方程为,联立,得.111]AC )2(-=x k y ⎪⎩⎪⎨⎧=+-=148)2(22y x x k y 0888)12(2222=-+-+k x k x k∴,.2221218k k x x +=+22212188kk x x +-=.由于直线的斜率为,用代换上式中的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三年级11月份月考数学试题(理科)
一,选择题(共12题,每题5分)
1.函数f(x)=2cos(ωx+φ)(ω≠0),对任意x都有f(+x)=f(﹣x),则f()等于( )
A.2或0 B.﹣2或2 C.0 D.﹣2或0
2.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=4,则△ABC的面积为( )
A.B.1 C.D.2
3.为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象( )
A.向右平移个单位长度B.向右平移个单位长度
C.向左平移个单位长度D.向左平移个单位长度
4.若cosθ>0,且sin2θ<0,则角θ的终边所在象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
5.已知||=1,||=,且⊥,则|+|为( )
A.B.C.2 D.2
6.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=( )
A.B.C.D.
7.在平面直角坐标系中,若P(x,y)满足,则x+2y的最大值是( )
A.2 B.8 C.14 D.16
8.若正数x,y满足2x+y﹣1=0,则的最小值为( )
A.1 B.7 C.8 D.9
9.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=( )
A.5 B.6 C.7 D.8
10.已知数列{a n}满足a n+1=a n﹣a n﹣1(n≥2),a1=1,a2=3,记S n=a1+a2+…+a n,则下列结论正确的是( )
A.a100=﹣1,S100=5 B.a100=﹣3,S100=5
C.a100=﹣3,S100=2 D.a100=﹣1,S100=2
11.已知等比数列{a n}中,各项都是正数,且a1,,2a2成等差数列,则=( )
A.1+B.1﹣C.3+2D.3﹣2
12.已知正项数列{a n}的前n项的乘积等于T n=(n∈N*),b n=log2a n,则数列{b n}的前n 项和S n中最大值是( )
A.S6B.S5C.S4D.S3
二.填空题(每题5分)
13.古代印度数学家婆什迦罗在其所著的《莉拉沃蒂》中有如下题目:“今有人拿钱赠人,第一人给3元,第二人给4元,第三人给5元,其余依次递增,分完后把分掉的钱全部收回,再重新分配,每人恰分得100元,则一共人.
14.若对任意x∈R,不等式sin2x﹣2sin2x﹣m<0恒成立,则m的取值范围是.
15.已知向量与的夹角为120°,且,.若,且,则实数λ=.
16.如图为一个空间几何体的三视图,其主视图与左视图是边长为2的正三角形、俯视图轮廓是正方形,则该几何体的侧面积为.
三.解答题
17.(本题10分)已知a>0,b>0,且a+b=2.
(1)求+的最小值及其取得最小值时a,b的值;
18. (本题12分)△ABC中内角A,B,C的对边分别为a,b,c,向量=(2sinB,﹣),=(cos2B,
﹣1)且∥.
(1)求锐角B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.
19. (本题12分)已知函数.
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最大值和最小值及取得最值时x的值.
20. 已知函数f(x)=ln(x+1)+ax
(1)当x=0时,函数f(X)取得极大值,求实数a的值(2)若存在x∈【1,2】,使不等式f’(x)≥2,成立,其中f’(x)为f(x)的导函数,求实数a的取值范围
21. (本题12分)
已知等比数列{a n}满足a2=2a1,且a2+1是a1与a3的等差中项.
(1)求数列{a n}的通项公式;
(2)若b n=a n﹣2log2a n,求数列{b n}的前n项和S n.
22. (本题12分)
已知{a n}是等差数列,其前n项的和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.
(1)求数列{a n}和{b n}的通项公式;
(2)记c n=a n b n,n∈N*,求数列{c n}的前n项和.。