全国优质课——基本不等式教学设计

合集下载

高中数学优质课说课基本不等式设计

高中数学优质课说课基本不等式设计

2.2基本不等式(第1课时)教学设计一、教学内容解析1.内容“基本不等式”是人教版普通高中教科书数学必修1第二章第二节内容,分为两个课时,第1课时内容为基本不等式的定义、证明方法、几何解释及应用。

核心知识是基本不等式的定义;第二节课时内容为基本不等式的实际应用。

2.内容解析:相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础。

基本不等式是一种重要且基本的不等式类型,在中学数学知识体系中是一个非常重要的、基础的内容。

基本不等式与很多重要的数学概念和性质相关。

从数与运算的角度,a+b 2是两个正数,a b 的“算术平均数”, √ab 是两个正数,a b 的“几何平均数”。

因此,不等式中涉及的是代数中的“基本量”和最基本的运算。

从几何图形的角度,“周长相等的矩形中,正方形的面积最大”“等圆中,半径不小于半弦”等,都是基本不等式的直观理解。

基本不等式的证明或推导方法很多,“分析法”的证明过程是“执果索因”,从数量关系的角度,利用不等式的性质来推导基本不等式,体现了代数证明的典型方法,是不等式性质应用的一个典型范例,“作差法”依据的是实数大小比较的基本事实,是最基本,最重要的不等式证明方法,学生在今后的学习中难免遇到代数证明的问题,而他们在初中又缺少代数证明的经验,有必要借助基本不等式的证明为学生打下这方面的基础。

从几何图形的角度,借助几何真观,通过数形结合来探究不等式的几何解释,加深对基本不等式的理解;在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法。

因此,基本不等式内容是培养学生逻辑推理、数学运算、直观想象和数学建模素养的重要载体。

基于以上分析,确定本节课的教学重点:基本不等式的定义、证明方法、几何解释及简单应用。

二、教学目标设置1.课程目标 掌握基本不等式)(0,02>>≥+b a ab b a 。

结合具体实例,能用基本不等式解决简单的最大值或最小值问题(这节内容课程目标与单元目标相同)。

基本不等式教学设计

基本不等式教学设计

基本不等式教学设计1. 引言在数学学科中,不等式是一种重要的数学概念,它在解决实际问题和推理论证中起着重要作用。

基本不等式是初中数学教学中的重要内容之一,它涉及到一些数学基本概念的运用和数学思维的发展。

本文将围绕基本不等式的教学设计展开,旨在帮助教师更好地教授这一概念。

2. 教学目标通过本课的学习,学生应能够:- 理解基本不等式的定义和性质;- 能够应用基本不等式解决实际问题;- 发展数学思维和推理能力。

3. 教学内容基本不等式的教学主要包括以下内容:- 不等式的意义和定义- 不等式的性质和基本运算- 不等式的解集和图像表示- 不等式在实际问题中的应用4. 教学步骤4.1 引入不等式的概念通过解决问题,引导学生发现不等式的概念,并通过例题引导学生理解不等式的定义。

4.2 不等式的性质和基本运算在引入不等式的基本性质和运算规则时,通过一些简单的例子让学生感受到这些性质和规则的重要性和实用性。

4.3 不等式的解集和图像表示通过一些实例,引导学生理解不等式的解集和图像表示,通过绘制不等式的图像加深学生对不等式解集的认识。

4.4 不等式在实际问题中的应用通过一些实际问题,引导学生应用所学的基本不等式解决问题,培养学生将数学理论应用于实际问题的能力。

5. 教学方法和手段5.1 启发式教学法在引入不等式的概念和性质时,采用启发式教学法,通过问题引导学生主动思考和发现,激发学生的学习兴趣和求知欲。

5.2 案例分析法在不等式的解集和图像表示环节,引入一些实例和案例,通过具体的问题激发学生对不等式解集和图像的认知和理解。

5.3 活动导向教学法在不等式的应用环节,设计一些小组或个人活动,让学生结合具体的问题进行讨论和解决,培养学生的合作和分析问题的能力。

6. 教学评价通过以下几种方式对学生进行评价:- 口头回答问题:针对不等式的定义、性质和运算规则,检查学生的掌握程度。

- 书面作业:布置一些练习题,检查学生对不等式的应用能力。

基本不等式教学设计(多篇)

基本不等式教学设计(多篇)

基本不等式教学设计(多篇)第1篇:基本不等式教学设计基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用基本不等式解决生活中的应用问题2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是基本不等式应用举例的延伸。

基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)基本不等式教学设计1教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。

要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。

基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

通过本节学习体会数学来源于生活,提高学习数学的乐趣。

课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。

启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。

难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。

基本不等式(第1课时)教学设计

基本不等式(第1课时)教学设计

第二章一元二次函数、方程和不等式2.2 基本不等式(第1课时)教学设计一、教材分析《基本不等式》在数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。

本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。

同时本节课的内容也是之后基本不等式应用的必要基础。

二、教学目标与核心素养课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。

2.经历基本不等式的推导与证明过程,提升逻辑推理能力。

3.在猜想论证的过程中,体会数学的严谨性。

数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。

重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.三、教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

四、教学工具:多媒体,交互式电子白板。

五、教学过程(一)引言师:前面我们类比等式的性质研究了不等式的性质及其证明和应用,今天我们来学习一个具体的不等式—基本不等式。

(插入中小学智慧平台)师:我门知道,乘法公式在代数式的运算中有着重要的作用,是否也存在一些不等式,在解军决不等问题时,有着与乘法公式类似的重要作用呢?下面我们就来共同研究这个问题。

其实在不等式里,数学家们也总结了一大堆常用的公式。

今天,我们就来学习最简单,也最常出现的一个不等式,叫作基本不等式。

(展示中小学智慧平台学习任务单)(二)新课探究1、引出基本不等式师:什么是基本不等式呢?大家先来看一个在小学时就学过的一条几何性质:在一组周长相等的矩形形中,正方形的面积最大。

比如,一个长方形的边长为分别为5和3,正方形的边长为4,它们的周长都是16,此时它们的面积呢?S长=15,S正=16。

基本不等式教学设计

基本不等式教学设计

基本不等式教学设计基本不等式教学设计一、教学目标1.掌握基本不等式的概念和性质;2.学会运用基本不等式解决实际问题;3.培养学生的推理能力和数学应用意识。

二、教学内容1.基本不等式的定义基本不等式是指:对于实数a和b,有in几何意义表示为:在边长为a的正方形内,以对角线为直径的圆与对角线所夹的面积为,因而是正方形面积的最小值;当且仅当a=b时,基本不等式取等号。

2.基本不等式的性质基本不等式具有如下性质:(1) 非负性:对于实数a和b,有,即基本不等式的值域为[0,1]。

(2) 等号成立条件:当且仅当a=b时,即等号成立的条件是a=b。

(3) 传递性:若a≤b,c≤d,那么ac≤bd。

(4) 对称性:对于任意实数x,y,有,即基本不等式关于原点对称。

3.基本不等式的证明方法基本不等式的证明方法有多种,以下是其中两种常用的方法:(1) 利用导数证明基本不等式对于函数f(x)=in几何意义是:在直角坐标系中,以原点为圆心、r为半径的圆的面积是,因而是随r的增大而增大;而围成圆的四条直线段均匀分布在半径r 上,每条线段的长度为2r,因而当且仅当这四条线段等长时,即当且仅当x=2π时,围成圆的四条直线段的总长度最小。

三、教学重点与难点1.教学重点(1) 基本不等式的概念和性质;(2) 利用基本不等式解决实际问题。

2.教学难点(1) 基本不等式的几何解释;(2) 利用基本不等式求最值。

四、教学方法与手段1.教学方法:讲授法、演示法、探究法、合作学习法。

2.教学手段:多媒体辅助教学、板书教学。

五、教学过程设计1.导入新课通过一系列具体的实例,引入基本不等式的概念。

比如,利用长方形的面积与对角线长度之比来引出基本不等式;或者通过等周率的概念来引出基本不等式等等。

2.讲解新课(1) 基本不等式的概念和性质。

通过实例让学生理解基本不等式的几何意义,并推导和证明基本不等式。

引导学生自己发现并总结基本不等式的性质。

(2) 利用基本不等式解决实际问题。

基本不等式课程设计

基本不等式课程设计

基本不等式课程设计一、教学目标本节课的教学目标是让学生掌握基本不等式的概念、性质和应用,能够运用基本不等式解决一些简单的问题。

具体目标如下:1.了解基本不等式的定义和性质。

2.掌握基本不等式的证明方法。

3.理解基本不等式在实际问题中的应用。

4.能够运用基本不等式解决一些简单的问题。

5.能够运用基本不等式进行不等式的证明。

情感态度价值观目标:1.培养学生的逻辑思维能力。

2.培养学生的数学美感。

二、教学内容本节课的教学内容主要包括基本不等式的定义、性质和应用。

具体内容如下:1.基本不等式的定义:介绍基本不等式的定义,解释其含义和作用。

2.基本不等式的性质:讲解基本不等式的性质,包括对称性、单调性等。

3.基本不等式的应用:介绍基本不等式在实际问题中的应用,如求最值、证明不等式等。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法:1.讲授法:教师通过讲解基本不等式的定义、性质和应用,引导学生理解并掌握知识。

2.讨论法:教师学生进行小组讨论,让学生通过互动交流,加深对基本不等式的理解。

3.案例分析法:教师通过举例子,让学生运用基本不等式解决实际问题,巩固知识。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:为学生提供《数学课本》等相关教材,作为学习的基本依据。

2.参考书:提供一些数学参考书,供学生课后拓展学习。

3.多媒体资料:制作课件、视频等多媒体资料,帮助学生直观理解基本不等式的性质和应用。

4.实验设备:准备一些实验设备,如白板、黑板等,方便教师进行演示和讲解。

五、教学评估为了全面、客观、公正地评估学生的学习成果,本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。

2.作业:布置与本节课内容相关的作业,评估学生对基本不等式的掌握情况和应用能力。

3.考试:安排一次考试,测试学生对基本不等式的概念、性质和应用的掌握程度。

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。

教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

基本不等式的教学设计一等奖4篇

基本不等式的教学设计一等奖4篇

第4篇教学设计一、素质教育目标(一)知识教学点1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.2.灵活运用不等式的基本性质进行不等式形.(二)能力训练点培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.(三)德育渗透点培养学生积极主动的参与意识和勇敢尝试、探索的精神.(四)美育渗透点通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操,数学教案-不等式和它的基本性质教学设计方案(二)。

二、学法引导1.教学方法:观察法、探究法、尝试指导法、讨论法.2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.三、重点·难点·疑点及解决办法(一)重点掌握不等式的三条基本性质,尤其是不等式的基本性质3.(二)难点正确应用不等式的三条基本性质进行不等式变形.(三)疑点弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.(四)解决办法讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.四、课时安排一课时五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.七、教学步骤(一)明确目标本节课主要学习不等式的三条基本性质并能熟练地加以应用.(二)整体感知通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.(三)教学过程1.创设情境,复习引入什么是等式?等式的基本性质是什么?学生活动:独立思考,指名回答.教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.请同学们继续观察习题:(1)用“>”或“<”填空.①7+3____4+3 ②7+(-3)____4+(-3)③7×3____4×3 ④7×(-3)____4×(-3)(2)上述不等式中哪题的不等号与7>4一致?学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.学生活动:观察思考,猜想出不等式的性质.教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”师生活动:师生共同叙述不等式的性质,同时教师板书.不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.【教法说明】观察时,引导学生注意不等号的.方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?师生活动:由学生概括总结不等式的其他性质,同时教师板书.不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.强调:要特别注意不等式基本性质3.实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.不等式的基本性质与等式的基本性质有哪些区别、联系?学生活动:思考、同桌讨论.归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.①若,则,;②若,且,则,;③若,且,则,.师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.2.尝试反馈,巩固知识请学生先根据自己的理解,解答下面习题.例1 根据不等式的基本性质,把下列不等式化成或的形式.(1)(2)(3)(4)学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.所以(2)根据不等式基本性质1,两边都减去,得(3)根据不等式基本性质2,两边都乘以2,得(4)根据不等式基本性质3,两边都除以-4得【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.例2 设,用“<”或“>”填空.(1)(2)(3)学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.解:(1)因为,两边都减去3,由不等式性质1,得(2)因为,且2>0,由不等式性质2,得(3)因为,且-4<0,由不等式性质3,得教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.3.变式训练,培养能力(1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)①∵∴()②∵∴()③∵∴()④∵∴()⑤∵∴⑥∵∴()学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.答案:①(A)②(B)③(C)④(C)⑤(C)⑥(A)【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.(2)单项选择:①由得到的条件是()A.B.C.D.②由由得到的条件是()A.B.C.D.③由得到的条件是()A.B.C.D.是任意有理数④若,则下列各式中错误的是()A.B.C.D.师生活动:教师选出答案,学生判断正误并说明理由.答案:①A ②D ③C ④D(3)判断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√②×③√④×【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.(四)总结、扩展1.本节重点:(1)掌握不等式的三条基本性质,尤其是性质3.(2)能正确应用性质对不等式进行变形.2.注意事项:(1)要反复对比不等式性质与等式性质的异同点.(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.3.考点剖析:不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.八、布置作业(一)必做题:P61 A组4,5.(二)选做题:P62 B组1,2,3.参考答案(一)4.(1)(2)(3)(4)5.(1)(2)(3)(4)(5)(6)(二)1.(1)(2)(3)2.(1)(2)(3)(4)3.(1)(2)(3)九、板书设计6.1 不等式和它的基本性质(二)一、不等式的基本性质1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.若,则,.2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.二、应用例1 解(1)(2)(3)(4)例2 解(1)(2)(3)三、小结注意不等式性质3的应用.四、背景知识与课外阅读盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?第5篇教学设计初二下册数学16.1.2分式的基本性质说课稿设计16.1.2《分式的基本性质》说课稿今天我说课的内容是《分式的基本性质》。

基本不等式——教学设计

基本不等式——教学设计

基本不等式——教学设计
基本不等式是具有研究价值的,其中包括的不等式和典的基本不等式等等。

本文旨在分析基本不等式的教,者提供一系的教指。

二、教目
(1)解基本不等式的概念:除了提供基本不等式的定,更重要的是者解不等式的概念,如基本性、用律以及由不等式等。

(2)握基本不等式的用:如果掌握基本不等式的概念,接下要如何之用於中。

因此,本文展深入的探,提供一系列有基本不等式用的具例。

三、教策略
(1)解:介基本不等式的基本概念,包括定、性、用律等,利用等形式清晰、易懂地展示基本不等式的概念,提高者不等式的理解程度。

(2)案例:以一系列具案例明基本不等式的用,合的案例,者解如何用不等式解。

(3):利用多的和者不等式的掌握程度,并其中出的行及正,保者掌握有的知。

四、置教境
(1)步:每一教步行明和置,在教境中加教支,如展示有、片,提供一些籍、站等,以足者基本不等式的需求。

(2)材容:利用各教材容和教工具,者提供一全面和清晰的境。

教材容除了要涵基本不等式的基本概念外,要一定的案例,以便固者
不等式的理解。

五、
本文基本不等式的教置教境行了系性剖析,理解、具案例以及等方面,提供了一完善的教指。

希望本文能被用於日常教,助者更深入地理解基本不等式的概念。

基本不等式教案

基本不等式教案

基本不等式教案一、教学目标1、知识与技能目标(1)学生能够理解基本不等式的内容及其证明过程。

(2)掌握运用基本不等式求最值的方法和条件。

2、过程与方法目标(1)通过对基本不等式的探究,培养学生观察、分析、归纳和逻辑推理的能力。

(2)引导学生运用基本不等式解决实际问题,提高学生的数学应用意识和能力。

3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。

(2)培养学生严谨的治学态度和勇于探索的精神。

二、教学重难点1、教学重点(1)基本不等式的内容及证明。

(2)运用基本不等式求最值的方法和条件。

2、教学难点(1)基本不等式的证明。

(2)运用基本不等式求最值时条件的判断和正确应用。

三、教学方法讲授法、探究法、练习法四、教学过程(一)导入新课通过实际生活中的问题引入,比如:某工厂要建造一个面积为 100 平方米的矩形仓库,仓库的一边靠墙,墙长 16 米,问怎样建造才能使所用材料最省?(二)新课讲授1、基本不等式的推导对于任意两个正实数 a,b,有\(a + b \geq 2\sqrt{ab}\),当且仅当 a = b 时,等号成立。

证明:\\begin{align}(a b)^2&\geq 0\\a^2 2ab + b^2&\geq 0\\a^2 + 2ab + b^2&\geq 4ab\\(a + b)^2&\geq 4ab\\a + b&\geq 2\sqrt{ab}\end{align}\当且仅当\(a b = 0\),即\(a = b\)时,等号成立。

2、基本不等式的几何解释以直角三角形为例,直角边为 a,b,斜边为 c,那么\(c =\sqrt{a^2 + b^2}\)。

对于基本不等式\(a + b \geq 2\sqrt{ab}\),可以看作是以 a,b 为直角边的直角三角形的斜边长大于等于以\(\sqrt{ab}\)为边长的正方形的对角线长。

教学设计3:2.2 第1课时 基本不等式

教学设计3:2.2 第1课时 基本不等式

2.2 第1课时 基本不等式教学目标1.掌握基本不等式及推导过程.2.能熟练运用基本不等式比较两实数的大小.3.能初步运用基本不等式进行证明和求最值.教学过程1.基本不等式(1)概念:如果a ,b 都是非负数,那么a +b 2≥ab ,当且仅当a =b 时,等号成立.我们称上述不等式为基本不等式,其中a +b 2称为a ,b 的算术平均数,ab 称为a ,b 的几何平均数.(2)文字叙述:两个正数的算术平均数不小于它们的几何平均数.(3)意义:①几何意义:半径不小于半弦.②数列意义:两个正数的等差中项不小于它们正的等比中项.问题思考1.不等式a 2+b 22≥ab 和a +b 2≥ab 成立的条件相同吗? 提示:(1)a 2+b 22≥ab 与a +b 2≥ab 成立的条件不同.前者中的a 、b 为任意实数,后者中的a 、b 只能取非负实数.(2)两个不等式都是当且仅当a =b 时取到等号,这一点在求最值时经常用到.(3)对上述两个含等号的不等式中,对“当且仅当a =b 时等号成立”的理解,可从以下两方面进行:当a =b 时等号成立,其含义是:如果a =b ,那么a 2+b 22=ab 或a +b 2=ab .仅当a =b 时等号成立,其含义是:如果a 2+b 22=ab 或a +b 2=ab ,那么a =b . 2.不等式a 2+b 22≥ab 和a +b 2≥ab 中“=”成立的条件相同吗? 提示:相同.都是当且仅当a =b 时等号成立.3.“当且仅当a =b 时,等号成立”的含义是什么?提示:a =b ⇔a 2+b 22=ab ;a =b ≥0⇔a +b 2=ab .教学案例知识点1 利用基本不等式比较大小讲一讲1.已知:a 、b ∈(0,+∞)且a +b =1,试比较1a +1b ,2a 2+b 2,4的大小. [提示] 由a +b =1,a >0,b >0可得ab ≤14,再找1a +1b ,2a 2+b 2与a +b ,ab 的关系. [解] ∵a >0,b >0,a +b ≥2ab ,∴ab ≤14. ∴1a +1b =a +b ab =1ab≥4. a 2+b 22=(a +b )2-2ab 2=12-ab ≥12-14=14, 即2a 2+b 2≤4. ∴1a +1b ≥4≥2a 2+b 2. 类题通法利用基本不等式比较两个数(式)的大小,就是把数(式)适当的放大或缩小,达到比较的目的,在放缩的过程中,要结合不等式的传递性,即要保证不等号同方向. 练一练1.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系为( ) A .R <P <QB .P <Q <RC .Q <P <RD .P <R <Q【答案】B【解析】∵a >b >1,lg a >lg b >0,∴12(lg a +lg b )>lg a ·lg b . 即Q >P .又∵a >b >1,∴a +b 2>ab , ∴lga +b 2>lg ab =12(lg a +lg b ),即R >Q ,∴有P <Q <R .知识点2 利用基本不等式证明不等式讲一讲2.(1)已知a ,b ,c 都是实数,求证:a 2+b 2+c 2≥ab +bc +ca ;(2)已知a ,b ,c 为正实数,且a +b +c =1,求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[提示] (1)考虑用不等式a 2+b 2≥2ab 证明;(2)考虑“1的代换”即把1换成a +b +c .[尝试解答] (1)∵a ,b ,c ∈R ,∴a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 三式相加得2(a 2+b 2+c 2)≥2(ab +bc +ac ).即a 2+b 2+c 2≥ab +bc +ac ,当且仅当a =b =c 时,等号成立.(2)证明:∵a ,b ,c 为正实数,且a +b +c =1,∴1a -1=a +b +c a -1=b +c a ≥2bc a>0. 同理可得1b -1≥2ac b >0,1c -1≥2ab c>0, ∴(1a -1)(1b -1)(1c -1)≥8ab ·bc ·ac abc=8, 当且仅当a =b =c 时等号成立.类题通法不等式证明问题可考虑使用基本不等式.运用时注意对要证的不等式作适当变形,变出基本不等式的形式,然后进行证明.同时要注意基本不等式成立的条件. 练一练2.[多维思考] 讲一讲(2)的条件不变,证明1a +1b +1c≥9. 解:∵a ,b ,c 为正实数∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c=3+(b a +a b )+(c a +a c )+(c b +b c) ≥3+2+2+2=9.即1a +1b +1c≥9当且仅当a =b =c 时取等号.知识点3 利用基本不等式直接求最值讲一讲3.若0<a <b 且a +b =1,则下列四个数中最大的是( ) A.12B.a 2+b 2C.2abD.a 【解析】a 2+b 2=(a +b )2-2ab ≥(a +b )2-2·⎝ ⎛⎭⎪⎫a +b 22=12. a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab .∵0<a <b 且a +b =1,∴a <12.∴a 2+b 2最大.【答案】B练一练3.10.(1)设0<x <32,求4x (3-2x )的最大值; (2)已知a >b >c ,求(a -c )⎝⎛⎭⎫1a -b +1b -c 的最小值. 解 (1)∵0<x <32,∴3-2x >0, ∴4x (3-2x )=2[2x (3-2x )]≤2⎣⎡⎦⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时,等号成立. ∵0<34<32, ∴4x (3-2x )⎝⎛⎭⎫0<x <32的最大值为92. (2)(a -c )⎝⎛⎭⎫1a -b +1b -c =(a -b +b -c )⎝⎛⎭⎫1a -b +1b -c =1+1+b -c a -b +a -b b -c. ∵a >b >c ,∴a -b >0,b -c >0,∴2+b -c a -b +a -b b -c ≥2+2b -c a -b ·a -b b -c=4, 当且仅当a -b =b -c ,即2b =a +c 时取等号,∴(a -c )⎝⎛⎭⎫1a -b +1b -c 的最小值为4.解题高手 易错题下面四个命题:①若a ,b ∈R ,则b a +a b ≥2;②若x ∈(0,π),则sin x +1sin x≥2;③若a >0,b >0,则lg a +lg b ≥2lg a ·lg b ;④若x ∈R ,则⎪⎪⎪⎪x +4x ≥4. 其中正确命题的序号是________.[错解]①②③[错因]①只有在ab >0时成立;②∵x ∈(0,π),∴sin x ∈(0,1],sin x =1时等式成立,∴②成立.③只有在lg a >0,lg b >0,即a >1,b >1时才成立.④⎪⎪⎪⎪x +4x =|x |+|4x |≥2|x |·4|x |=4,成立.①③均忽视了“两数均为正数”这个条件. [正解]②④随堂检测1.x 2+y 2=4,则xy 的最大值是( )A.12B .1C .2D .4【答案】C【解析】xy ≤x 2+y 22=2,当且仅当x =y =2或x =y =-2时,等号成立, ∴xy 的最大值为2.2.若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞]D .(-∞,-2]【答案】D 【解析】∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2x +y ≤12,∴2x +y ≤14,得x +y ≤-2,故选D. 3.已知x >0,y >0,x ≠y ,则下列四个式子中值最小的是( )A.1x +yB.14⎝⎛⎭⎫1x +1yC.12(x 2+y 2)D.12xy 【答案】C【解析】法一:∵x +y >2xy ,∴1x +y <12xy,排除D ; ∵14(1x +1y )=x +y 4xy =14xy x +y >1(x +y )2x +y=1x +y,∴排除B ; ∵(x +y )2=x 2+y 2+2xy <2(x 2+y 2),∴1x +y >12(x 2+y 2),排除A. 法二:取x =1,y =2. 则1x +y =13;14(1x +1y )=38; 12(x 2+y 2)=110;12xy =122=18.其中110最小. 4.对于任意正数a ,b ,设A =a +b 2,G = a 2+b 22,则A 与G 的大小关系是________. 【解析】∵A 2=a 2+b 2+2ab 4≤ a 2+b 2+a 2+b 24=a 2+b 22∴A ≤ a 2+b 22=G . 【答案】A ≤G5.若a >0,b >0,则a +b 2与2ab a +b的大小关系是________. 【解析】∵a +b ≥2ab ,∴2ab a +b ≤2ab 2ab =ab ≤a +b 2(当且仅当a =b 时等号成立). 【答案】a +b 2≥2ab a +b6.设a ,b ,c 均为正数.求证:12a +12b +12c ≥1b +c +1c +a +1a +b. 证明:∵a 、b 、c 均为正数,∴12(12a +12b )≥12ab ≥1a +b ,当a =b 时等号成立; 同理,12(12b +12c )≥12bc ≥1b +c,当b =c 时等号成立; 12(12c +12a )≥12ca ≥1c +a,当a =c 时等号成立. 三个不等式相加即得12a +12b +12c ≥1b +c +1c +a +1a +b, 当且仅当a =b =c 时等号成立.。

基本不等式教案

基本不等式教案

基本不等式教案一、教学目标1. 让学生理解基本不等式的概念和性质。

2. 培养学生运用基本不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维和推理能力的培养。

二、教学内容1. 基本不等式的定义和性质2. 基本不等式的证明方法3. 基本不等式在实际问题中的应用三、教学重点与难点1. 基本不等式的概念和性质的理解2. 基本不等式的证明方法的掌握3. 基本不等式在实际问题中的应用四、教学方法1. 采用讲解法,引导学生理解基本不等式的概念和性质。

2. 采用证明法,培养学生掌握基本不等式的证明方法。

3. 采用案例分析法,让学生学会运用基本不等式解决实际问题。

五、教学准备1. 教学PPT2. 教学案例及练习题3. 笔记本和文具【课堂导入】(教师通过引入实际问题或生活实例,引发学生对基本不等式的兴趣,激发学生的学习动机。

)【新课讲解】1. 基本不等式的定义与性质(1)教师讲解基本不等式的定义,解释其意义。

(2)引导学生理解基本不等式的性质,并通过示例进行说明。

2. 基本不等式的证明方法(1)教师讲解基本不等式的证明方法,如综合法、分析法等。

(2)引导学生通过示例掌握基本不等式的证明过程。

【案例分析】1. 教师呈现案例,引导学生运用基本不等式解决实际问题。

2. 学生分组讨论,分享解题思路和答案。

【课堂练习】1. 教师布置练习题,学生独立完成。

2. 教师选取部分学生答案进行点评和讲解。

2. 学生分享自己的学习收获和感悟。

【课后作业】1. 教师布置课后作业,巩固课堂所学知识。

2. 学生独立完成作业,巩固知识点。

六、教学评价1. 通过课堂讲解、案例分析和课后作业,评估学生对基本不等式的理解和掌握程度。

2. 观察学生在解决问题时的思维过程和方法,评价其逻辑思维和推理能力。

3. 收集学生反馈意见,了解教学效果,以便进行教学改进。

七、教学拓展1. 引导学生进一步学习其他不等式,如均值不等式、柯西不等式等。

2. 探讨基本不等式在数学竞赛和实际应用中的重要作用。

基本不等式教学设计

基本不等式教学设计

基本不等式教学设计教学目标:通过本节课的学习,学生能够理解基本不等式的概念、性质和解题方法,并能运用基本不等式解决实际问题。

一、导入(5分钟)1.引入问题:现有两个数x和y,x=1,y=2,如何判断x和y的大小关系?2.学生回答:可以通过比较x和y的大小来判断大小关系。

3.引出基本不等式的概念:除了可以比较数的大小,我们还可以通过不等关系来比较数的大小关系。

例如:x<y,x>y等。

4.与学生一起探讨,了解学生对基本不等式的理解程度。

二、概念讲解(10分钟)1.温习等式:在之前的学习中,我们主要学习了等式,即两个数或表达式之间通过等号连接。

2.引出不等式:除了等号,我们还可以通过不等号(<,>,≤,≥)来表示数或表达式间的大小关系。

3.将xDy的形式写成不等式的形式并对其进行讲解。

4.声明基本不等式的概念,即不等式中只含有一个未知数x(或y)。

三、基本不等式的性质(15分钟)1.大于的性质:如果a>b,那么对于任意实数c,c*a>c*b。

2.小于的性质:如果a<b,那么对于任意正实数c,c*a<c*b;对于任意负实数c,c*a>c*b。

3.引导学生理解基本不等式与等式的差异,并了解基本不等式的性质。

四、解基本不等式(20分钟)1.实例引导:给出一个基本不等式,如3x-4<7,引导学生解决不等式。

2.学生合作完成,通过移项,化简不等式。

3.带入合适的值,验证解的正确性,并讨论不等式的解集。

4.引导学生总结解决基本不等式的一般步骤:将不等式化简成标准形式,再通过移项的方式求解。

五、练习(15分钟)1.分发练习题,让学生独立完成。

2.提醒学生注意解答过程的合理性和解答方法的多样性。

3.收集学生的练习答案,并进行讲解。

六、应用(15分钟)1.给学生出示一个实际问题,例如:商场在打折销售,现有一种衣服原价100元,打了8折,现在要把所有的这种衣服都卖完,至少需要卖出多少件?2.学生独立思考解决办法,并利用基本不等式进行解答。

高中数学必修五《基本不等式》优秀教学设计

高中数学必修五《基本不等式》优秀教学设计

高中数学必修五《基本不等式》优秀教学设计教学设计一:引入1.创设情境:通过一道问题引入基本不等式的概念和应用。

举例:小明身上有一百元,他想买一双运动鞋,价格在70-90元之间,小明想要尽可能地省钱买到心仪的鞋子。

你认为小明至少要花多少钱才能买到合适的鞋子呢?2.学生思考:让学生自由思考并讨论这个问题。

引导学生思考900的平方根是多少,以及小明至少要花多少钱。

3.引出不等式:根据学生的思考和讨论,引出基本不等式的概念,即a²≥b²。

4.学习目标:通过本节课学习,学生将了解基本不等式的定义、性质和应用。

教学设计二:知识讲授1.基本概念:通过讲解和举例,引导学生了解基本不等式的定义、性质以及运用。

2.性质讲解:依次讲解基本不等式的反身性、传递性和加法性质,并通过实际例子进行说明。

3.运用设计:设计一道问题给学生解答,让他们应用基本不等式的性质来解决问题。

问题:若a>b,b>c,c>d,d>e,e>f,求证:a²>f²。

4.板书总结:总结基本不等式的定义、性质和应用,让学生掌握基本概念和方法。

教学设计三:巩固练习1.分组讨论:将学生分成小组,让他们自行解决以下问题。

问题1:若a>b,b>c,c>0,求证:a+c>b。

问题2:若a>b,b>0,求证:a>0。

问题3:若a>0,b>0,c>0,求证:bc>0。

2.小组展示:每个小组选择一道题目进行展示,并说明解题过程和思路。

3.教师点评:对学生的解题过程和答案进行点评和评价,纠正错误理解和方法。

教学设计四:拓展应用1.实际应用:举例一些实际生活中与不等式相关的问题,并引导学生将其转化为数学问题进行求解。

例1:小明今年的身高是x cm,比去年增加了10%,求去年的身高最多是多少。

例2:商品经过n次打折后的价格为x元,每次打折都是打折前的80%,求运算中所有x的最小值。

《基本不等式》教学设计

《基本不等式》教学设计

《基本不等式》教学设计基本不等式教学设计一、教学目标1. 理解基本不等式的概念和性质;2. 掌握基本不等式的证明方法;3. 能够运用基本不等式解决实际问题。

二、教学内容1. 基本不等式的定义;2. 基本不等式的证明方法;3. 基本不等式的应用。

三、教学过程设计1. 导入(5分钟)在开始教学之前,通过简单的例子引出不等式的概念,以提高学生的学习兴趣和主动性。

例如:已知a > b,b > c,求a与c的大小关系。

2. 理论讲解(15分钟)首先,介绍基本不等式的定义:若a > b,则a - b > 0,这就是基本不等式的定义。

接着,讲解基本不等式的性质:可以对不等式两边同时加上(或减去)同一个数,且不等号的方向不变;可以对不等式两边同时乘以(或除以)同一个正数,且不等号的方向不变,对不等式两边同时乘以(或除以)同一个负数,不等号的方向反转。

3. 证明方法教授(30分钟)以证明a² ≥ 0为例,介绍基本不等式的证明方法。

步骤一:假设a > 0,根据基本不等式的定义,有a - 0 > 0,即a > 0。

步骤二:两边同时乘以a得到a² > 0,即a² ≥ 0。

步骤三:当a = 0时,直接代入原不等式得到0² ≥ 0,即0 ≥ 0。

结论:无论a为正数还是零,都有a² ≥ 0成立。

4. 练习与讨论(25分钟)分发练习题给学生,让他们尝试证明不等式的正确性,并在学生结束练习后,采用板书的形式,对解题思路和方法进行梳理和讲解。

5. 应用实例(20分钟)给学生提供一些实际问题,让他们运用基本不等式解决问题。

例如:已知a + b = 10,求a² + b²的最小值。

6. 拓展延伸(10分钟)引导学生思考更复杂的不等式问题,例如:证明(a + b)(b + c)(c + a) ≥ 8abc。

7. 总结归纳(5分钟)对本节课所学的基本不等式内容进行总结,强调基本不等式在数学证明和实际问题解决中的重要性。

基本不等式课程设计

基本不等式课程设计

基本不等式课程设计一、课程目标知识目标:1. 学生能理解并掌握基本不等式的概念,包括算术平均数-几何平均数不等式、均值不等式等。

2. 学生能够运用基本不等式解决实际问题,解释生活中的不等关系。

3. 学生掌握不等式的证明方法,能合理解释不等式成立的数学原理。

技能目标:1. 学生能够准确地运用符号语言表达不等式,并能在数轴上表示出来。

2. 学生通过具体案例,培养观察、分析、解决问题的能力,提高逻辑推理和数学证明技巧。

3. 学生能够运用基本不等式进行简单的数学建模,解决实际问题。

情感态度价值观目标:1. 学生培养对数学的兴趣,特别是对不等式的学习产生积极情感。

2. 学生在学习过程中,发展合作精神,学会分享解题思路和成果。

3. 学生通过不等式的学习,认识到数学的严谨性和应用的广泛性,增强解决实际问题的自信心。

课程性质分析:本课程属于高中数学范畴,以理论学习和实际应用相结合,着重培养学生的逻辑思维能力和解决实际问题的能力。

学生特点分析:高中生具有较强的逻辑推理能力和抽象思维能力,能够理解并应用不等式解决复杂问题。

教学要求:教学应结合学生特点,通过案例导入、理论讲解、互动讨论和实际应用,帮助学生达成课程目标,确保学生在理解不等式的基础上,能够灵活运用并解决实际问题。

二、教学内容1. 引言:通过生活中的实例引入不等式的概念,让学生感知不等式在现实中的应用。

- 教材章节:第一章 不等式与不等式组2. 算术平均数-几何平均数不等式(AM-GM不等式):- 定义、性质、证明和应用- 教材章节:1.2 算术平均数与几何平均数3. 均值不等式:- 包括算术平均数、几何平均数、调和平均数等- 教材章节:1.3 均值不等式及其应用4. 不等式的证明方法:- 比较法、分析法、综合法、反证法等- 教材章节:1.4 不等式的证明5. 不等式的应用:- 解决实际问题的数学建模- 教材章节:1.5 不等式的实际应用6. 综合练习与拓展:- 设计不同难度的习题,巩固所学知识- 拓展不等式在其他学科领域的应用教学内容安排与进度:第1课时:引言与不等式的概念第2课时:算术平均数-几何平均数不等式第3课时:均值不等式第4课时:不等式的证明方法第5课时:不等式的应用第6课时:综合练习与拓展教学内容确保科学性和系统性,结合教材章节,逐步引导学生掌握不等式的相关知识。

基本不等式优秀教案初中

基本不等式优秀教案初中

基本不等式优秀教案初中教学目标:1. 理解并掌握基本不等式的概念和性质。

2. 能够运用基本不等式解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 基本不等式的定义和性质2. 基本不等式的证明3. 基本不等式在实际问题中的应用教学过程:一、导入(5分钟)1. 引导学生回顾已学过的不等式知识,例如一元一次不等式、一元二次不等式等。

2. 提问:不等式有什么特点和性质?二、基本不等式的定义和性质(15分钟)1. 介绍基本不等式的定义:基本不等式是指对于任意的实数a、b,都有a^2 + b^2 ≥ 2ab。

2. 引导学生探讨基本不等式的性质:a) 交换律:a^2 + b^2 ≥ 2ab 且b^2 + a^2 ≥ 2abb) 结合律:((a+b)^2 ≥ 4ab 且 (a-b)^2 ≥ 4abc) 平方差公式:a^2 - b^2 = (a+b)(a-b) ≥ 03. 举例说明基本不等式的应用:a) 证明两个数的和是非负数b) 证明两个数的乘积是非负数三、基本不等式的证明(20分钟)1. 引导学生思考如何证明基本不等式:a) 使用平方差公式b) 使用完全平方公式2. 分组讨论并展示证明过程。

四、基本不等式在实际问题中的应用(15分钟)1. 举例说明基本不等式在实际问题中的应用:a) 证明一个三角形的两边之和大于第三边b) 证明一个矩形的对角线长大于两边之和2. 让学生尝试解决一些实际问题,如:a) 给定两个正数a和b,求证a+b的最小值是多少?b) 给定两个正数a和b,求证ab的最小值是多少?五、总结和作业(5分钟)1. 总结基本不等式的定义、性质和应用。

2. 布置作业:a) 复习基本不等式的定义和性质b) 解决一些实际问题,如:i) 给定两个正数a和b,求证a+b的最小值是多少?ii) 给定两个正数a和b,求证ab的最小值是多少?教学反思:本节课通过导入、定义、性质、证明和应用等环节,让学生全面了解了基本不等式的相关知识。

2.2基本不等式教学设计-2024-2025学年高一上学期数学人教A版

2.2基本不等式教学设计-2024-2025学年高一上学期数学人教A版
追问1:上述证明方法叫做“分析法”,你能归纳一下用分析法证明命题的思路和步骤吗?
师生活动:学生讨论后回答.教师总结;分析法时一种“执果索因”的证明方法,即从要证的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止。
追问2:根据刚刚的证明过程,说说分析法的证明格式是怎么样的?
叫作正数a,b的算术平均数。基本等式表明两个正数的算术平均数不小于它们的几何平均数.
问题2:能否直接利用不等式的性质证明基本不等式呢?
师生活动:学生可能根据两个实数大小关系的基本事实,用作差法进行证明.教师在肯定该方法之后,给出教科书上44页用分析法证明的过程,同时指出,把上述分析过程倒过来,就能用不等式的性质来证明不等式了。
追问3:本题的解答过程中是否必须说明“当且仅当 时,等号成立”?
师生活动:学生讨论后回答.教师总结,并给出变式:
追问4:本题与例1的区别是什么?能用基本不等式解决吗?
师生活动:学生讨论后回答.教师总结:由于 ,与不等式中的正数条件不符,故需要进行转化,利用 从而求得原式的最大值,并注意验证等号成立条件。
教学设计
课程基本信息
学科
高中数学年级高一ຫໍສະໝຸດ 学期秋季课题
基本不等式不等式(1)
教科书
书 名:普通高中教科书 数学 必修 第一册 教材
出版社:人民教育出版社 出版日期:2019年4月
教学目标
1.理解基不等式的含义与几何解释,发展逻辑推理能力。
2.结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算素养。
师生活动:学生思考后回答.教师总结:由于分析法是从结论出发,逐步寻求使它成立的充分条件,所以分析法在书写过程中必须有相应的文字说明:一般每一步都要用“要证......只要证......”的格式,当推导到一个明显成立的条件之后,指出“显然×××成立”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《3.4基本不等式》教学设计
一、教学内容解析:
1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5 第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点;
2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5 进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材;
3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处;
4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点.
二、学情分析:
1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助;
2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少;
3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。

三、教学目标:
1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题;
2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养;
3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过程中,体会数学的严谨性,发现数学的实用性.
四、教学重点与难点:
1、教学重点:基本不等式的推导及其简单应用
2、教学难点:分析法证明基本不等式思路的获得和应用基本不等式求最值.
五、教学策略分析:
1、由情景1和情景2引入课题,可明确本堂的主要内容,使学生学习目标明确,进而激发学生的学习兴趣;
2、精心设置“问题串”,由简到难,由感性到理性,一步步引导学生自主探究,小组讨论推导基本不等式,让学生感受知识发生发展深化的过程,也体现学生为主体,老师为主导的教学理念;
3、为突破分析法证明基本不等式思路的获得这一教学难点,采用先学生小组讨论,再师生共同完成的策略;
4、为突破应用基本不等式求最值这一难点,先由例题归纳应用基本不等式求最值的要点,然后趁热打铁设置两个练习,由简到难,由浅入深,采用学生板演,抢答和小组讨论等方式,及时发现问题,及时纠错,让“一正二定三相等”深入人心;
5、对于转化为函数进而用函数的图像和性质求最值的问题,教师只作适当提示,不作为重点;
6、课堂小结重视知识间的联系和研究问题的方法,并强调了数学思想方法和数学核心素养在数学学习中的作用。

相关文档
最新文档