原子吸收分光光度法测定土壤样品中铜的含量

合集下载

原子吸收分光光度法测定土壤中金属元素含量

原子吸收分光光度法测定土壤中金属元素含量

PENG Yao
(Shanxi eighth Geological Engineering Survey Institute,Yuncheng 044000,China)
Abstract: In order to study and analyze the application effect of atomic absorption spectrophotometry in the determination of metal elements in soil. In the following, through the application of atomic absorption spectrophotometry, the content of copper, lead, chromium, cadmium, zinc and other metal elements in soil is analyzed and determined. In order to ensure that the determination conditions are in the best state, through the application of standard curve method, the content and change law of copper, lead, chromium, cadmium, zinc and other metal elements in different quality soil samples are investigated. Through research and analysis, in the process of determination of metal elements in soil samples, microwave digestion method is not only reasonable, but also time-saving. The content of soil samples in a certain area was determined by atomic absorption spectrophotometry. Through the study, it was found that the determination results were within the allowable range of national standards. It is proved that the atomic absorption spectrophotometry has the advantages of high sensitivity, fast analysis speed and simple operation, which is worthy of popularization and application. Keywords: atomic absorption spectrophotometry; Microwave digestion; Metal; soil

原子吸收法测定铜含量

原子吸收法测定铜含量

原子吸收法测定铜含量在我们的日常生活中,铜这个金属可真是个常客。

说到铜,咱们可能会想到那些闪闪发光的硬币,或者是厨房里的锅碗瓢盆。

铜在工业、农业,甚至咱们的生活中都有着重要的地位。

可你知道吗?有些时候,了解铜的含量可不是一件简单的事。

这时候,原子吸收法就派上用场了。

这听起来是不是有点高大上?其实不然,咱们一起来简单聊聊。

原子吸收法,顾名思义,就是通过吸收光来测定金属元素的浓度。

想象一下,一台神奇的仪器,发出一束光,当这束光经过含铜的样品时,铜原子会吸收一部分光。

这就像你在阳光下玩游戏,结果不小心被阳光打到了一样,铜原子吸收了光之后,剩下的光就会被仪器检测到。

这种“吸光”的能力就告诉我们样品里有多少铜,简单吧?不过,在实际操作中,准备工作可得仔细。

要选择好样品。

有些地方的水,或者土壤,可能铜含量特别高,而有些地方则可能根本没有。

这时候,我们得把样品采集到位,不能马虎。

然后,得把样品处理好,可能要用一些酸,像是硝酸,来把铜提取出来。

这一步就像是给铜洗个澡,让它在显微镜下好好“表现”一下。

当样品准备妥当,接下来就是最激动人心的时刻了——测量!把样品放到原子吸收仪里,眼睁睁地看着光束穿过。

这就像是一场视觉盛宴,光与铜的“斗争”就在眼前展开。

仪器会自动记录下来,告诉我们铜的含量有多少。

没错,这可不是个随便的数字,而是科学的结果,让人一看就明白。

可别以为这就结束了,咱们还得分析结果。

铜含量如果太高,可能对环境或人体有害,这可得好好注意。

想想,如果水里铜含量超标,那可真是麻烦大了。

咱们可不能让这种事情发生,得好好监管、好好处理。

反之,如果铜的含量刚刚好,那就意味着一切正常,大家可以放心了。

再说说原子吸收法的优势,简直不要太多。

它精准、灵敏,能测量极低浓度的铜,真是让人刮目相看。

而且操作起来也不复杂,适合各种实验室使用。

这就像是厨房里的万能调料,啥菜都能用得上。

不过,当然了,任何方法都有优缺点,原子吸收法也不是十全十美。

土壤铜的测定原理和方法

土壤铜的测定原理和方法

土壤铜的测定原理和方法土壤铜的测定原理和方法主要涉及以下几个方面:取样方法、样品前处理方法以及铜的测定方法。

下面将详细介绍这些内容。

1. 取样方法:取样是土壤铜测定的首要步骤,必须保证取样方法的科学性和代表性。

土壤样品通常是以土样的形式进行取样,一般需根据不同土层和区域特点进行采集,然后进行混合均匀,再按照一定比例取出分析样品。

取样层次一般分表层和剖面层两种,样品数量应根据实际需要确定。

2. 样品前处理方法:样品前处理是为了提取土壤中的铜元素。

通常采用的方法包括酸溶、盐溶和提取剂萃取等。

其中,酸溶法是最常用的方法,通过使用不同的酸对土壤样品进行溶解,将土壤中的铜元素转化为溶液中的铜离子。

盐溶法是用盐溶液将土壤中的铜反应溶解成相应的铜盐形成溶液。

提取剂萃取则是使用一种合适的提取剂和土壤进行反应,使得土壤中的铜转移到提取剂中。

3. 铜的测定方法:常用的土壤铜测定方法有原子吸收分光光度法、电感耦合等离子体质谱法、草皮样品-电感耦合等离子体质谱法等。

下面将重点介绍原子吸收分光光度法。

原子吸收分光光度法(AAS)是一种常用的土壤铜测定方法。

其原理是通过吸收样品溶液中的铜原子或离子在特定波长下的特定光线来计量铜的浓度。

具体步骤如下:(1) 样品溶液的制备:将经过前处理的土壤样品溶解于一定体积的溶液中,通常使用酸性介质(如硝酸、盐酸等)进行溶解,并加入一定的还原剂(如硝酸亚锡)或络合剂(如草酸等)。

(2) 仪器校准:选定特定波长和样品吸收光强,并利用标准样品进行仪器校准,建立标准曲线。

(3) 测定样品:样品溶液依次进入光源与反射镜之间的光路,光束经过吸收池,荧光池,至探测器接收,测定吸收光强并根据标准曲线计算铜的浓度。

4. 结果处理:根据仪器测定得到的吸光度与标准曲线的关系,计算得到样品中铜的浓度。

如果样品中铜的浓度超过仪器测定范围,则需要对样品进行稀释,再进行测定。

总结:土壤中铜的测定主要涉及取样方法、样品前处理方法以及铜的测定方法。

石墨炉原子吸收法测定土壤样品中的铅、镍、锰和铜

石墨炉原子吸收法测定土壤样品中的铅、镍、锰和铜

石墨炉原子吸收法测定土壤样品中的铅、镍、锰和铜王伟刘瑶函×(上海光谱仪器有限公司应用实验室)摘要:本文采用石墨炉原子吸收分光光度法,测定了土壤样品(GBW07402)中的微量元素铅、镍、锰、铜的含量。

通过添加基体改进剂PdCl2和MgNO3,降低了干扰。

同时采用氘灯扣背景方式,成功扣除了背景吸收。

其中镍、锰、铜采用标准曲线法测量,铅采用标准加入法测量。

通过采用峰高、峰面积不同的计算方式,各元素测试结果与GBW07402栗钙土提供数据含量相符。

一、实验部分1.1使用仪器和设备SP-3520AAPC原子吸收分光光度计(上海光谱仪器有限公司)SP-3500GA石墨炉(上海光谱仪器有限公司),平台石墨管。

恒温加热板1.2 试剂和标准溶液配置①水中铅:浓度1.00g/L, 国家二级标准物质 GBW(E)080278,上海市计量测试技术研究院②铅标准溶液配置:取1.00g/L 的标准溶液100μL稀释到100mL,得铅储备液1ppm。

而后分别取1ppm储备液2ml,4ml到100ml容量瓶,在各瓶中均加入20滴50%HNO3,用去离子水稀释至刻度,分别得到20ppb,40ppb铅标准溶液,HNO3含量均为0.5%。

③氯化钯:PdCl12,分析纯,上海试剂一厂④硝酸镁:Mg(NO3)2.6H2O, 分析纯,上海科昌精细化学品公司⑤基体改进剂:含 PdCl20.005mg/5µL,MgNO30.003mg/5µL,每50mL基体改进剂中含有0.5%HNO3,0.025%HCl。

1.3 实验方法称取0.1g(准确至0.1mg)标准样品于Pt皿中,用10 mL HF + 2 mL HClO4(光谱纯)消化,加热至干,用4 mL HNO3(光谱纯)浸出,并用去离子水定容至100mL容量瓶中,用原子吸收石墨炉法测定。

采用平台石墨管、光控大功率升温原子化方式。

用PdCl2和MgNO3混合液作为基体改进剂。

火焰原子吸收法测定土壤中铜

火焰原子吸收法测定土壤中铜

火焰原子吸收分光光度法测定土壤中的铜1 适用范围《土壤质量铜锌的测定火焰原子吸收法》(GB/T 17138-1938)规定了测定土壤中铜的火焰原子吸收分光光度法。

本标准适用于土壤中铜的测定。

称取0.5g试样消解定容至50ml时,本方法的检出限为1mg/kg。

2 方法原理采用盐酸-硝酸-氢氟酸-高氯酸全分解的方法,破坏土壤的矿物晶格,使试样中的待测元素全部进入试液。

然后,将消解液喷入空气-乙炔火焰中。

在火焰的高温下,铜化合物离解为基态原子,并对铜空心阴极灯发射的特征谱线产生选择性吸收。

在选择的最佳测定条件下,测定铜的吸光度。

3 试剂和材料本标准所用试剂除非另有说明,分析时均适用符合国家标准的分析纯化学试剂,实验用水为新制备的去离子水或蒸馏水。

3.1 盐酸:ρ=1.19 g/ml,优级纯。

3.2硝酸:ρ=1.42 g/ml,优级纯。

3.3 氢氟酸:ρ=1.49 g/ml。

3.4 高氯酸:ρ=1.68g/ml,优级纯。

3.5 5%硝酸镧水溶液。

3.6 铜标准储备液,ρ=1.000 mg/ml:购买。

3.7 铜标准使用液,ρ=50mg/L:移取铜标准储备液5.00ml于100ml容量瓶中,加水定容至标线,摇匀,临用时现配。

4 仪器和设备4.1 仪器设备原子吸收分光光度计、铜空心阴极灯、乙炔钢瓶、空压机。

4.2 仪器参数不同型号仪器的最佳测定条件不同,可根据仪器使用说明书自行选择。

表1 仪器测定条件光源Cu灯电流(mA)1测定波长(nm)324.7狭缝(nm)0.2燃烧器高度(mm)10火焰性质贫燃焰5 样品5.1 采集与保存将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至约100g。

缩分后的土样经风干后,除去土样中石子和动植物残体等异物,用玛瑙棒研压,通过2mm尼龙筛,混匀。

用玛瑙研钵将通过2mm尼龙筛的土样研磨至全部通过100目(孔径0.149 mm)尼龙筛,混匀后备用。

5.2 试样的制备准确称取0.5g(精确至0.0002 g)试样于50ml聚四氟乙烯坩埚中,用水润湿后加入10ml盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml时,取下稍冷,然后加入5ml硝酸、5ml氢氟酸、3ml高氯酸,加盖后于电热板上中温加热1h左右,然后开盖,电热板温度控制在150℃,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。

土壤中有效态Cu的测定(精)

土壤中有效态Cu的测定(精)

土壤中有效态Cu的测定一、【工作任务与要求】任务:土壤中有效态Cu的测定。

要求:掌握原子吸收分光光度法测土壤中重金属。

二、【工作程序与操作方法】(一)原理1、原子吸收法(AAS)原理根据基态原子对特征波长光的吸收,测定试样中待测元素含量的分析方法。

试液喷射成细雾与燃气混合后进入燃烧的火焰中,被测元素在火焰中转化为原子蒸气.气态的基态原子吸收从光源发射出的与被测元素吸收波长相同的特征谱线.使该谱线的强度减弱,再经分光系统分光后,由检测器接受.产生的电信号,经放大器放大,由显示系统显示吸光度。

2、浸提原理石灰性土壤中金属离子铜与DTPA达成络合平衡,又在pH=7.3的0.01mol/LCaCl2溶液中,使浸出物与CaCL2达到平衡,并可以将含碳酸盐土壤中CaCO3的溶解度减至最小程度。

提取剂中的TEA缓冲液的作用是防止过量铁及锰的溶解。

(二)仪器1.容量瓶、烧杯、振荡器、2.移液管、锥形瓶3. 原子吸收分光光度计4.Cu空心阴极灯5. 氢气钢瓶6.10μL手动进样器(三)试剂1、提取剂:中性和石灰性土壤用DTPA提取,酸性土壤用HCL提取。

DTPA浸提剂:1.96g DTPA (二乙烯三胺五醋酸)置于1L容量瓶中。

加14.92gTEA(三乙醇胺)用纯水溶解并稀释到950ml。

再加1.47克CaCl2.2H2O用6molHCL调节至pH=7.3,最后用纯水稀释到刻度。

2.、铜的标液:溶解1.0000g纯铜于少量的浓HNO3,并加5ml浓HCL,蒸发至干,用浸提剂稀释至1L,此为1000ppm含铜标准母液。

临用前稀释成100ppm 使用液。

稀释至0.1-10ppm为宜。

(四)步骤1、标准曲线绘制准确吸取铜标准溶液0、4、10、15、20 、40 ml.于50mL容量瓶中,并用浸提剂定容至50ml.,则此标准系列相当于0、8、20、30、40、80ppm的含铜量。

2、样品分析称取过2mm 尼龙筛网的风干土10.00g于150ml锥形瓶中,加20ml浸提剂,振荡2h.,振荡器的转速每分钟180次。

火焰原子吸收光谱法测定土壤中的铜

火焰原子吸收光谱法测定土壤中的铜

火焰原子吸收光谱法测定土壤中的铜铜是地壳中的重要组分,它在土壤中的生物有机过程中发挥着重要的作用。

由于土壤铜的含量变化范围很大,从几毫克每公斤到几百克每公斤不等,因此,对土壤中铜的测定一直是肥料学和土壤学研究的热点问题。

火焰原子吸收光谱法是定量分析铜的方法之一。

本文旨在介绍火焰原子吸收光谱(FAAS)法测定土壤中铜的原理和实验过程。

一、火焰原子吸收光谱(FAAS)法概述火焰原子吸收光谱法是一种实用的定量分析方法,它是利用激发态原子在其光谱线中的一次吸收来定量分析化合物浓度的方法。

根据激发原子的不同状态,原子吸收光谱法可以分为原子火焰吸收光谱法、汞灯原子吸收光谱法、等离子体吸收光谱法等。

在火焰原子吸收光谱法中,样品和一定浓度的激发剂溶液(碱金属或碱土金属)一起放入风扇吹打的狭窄的收尾火焰中,通过原子火焰使样品中的原子处于激发状态,并且吸收入射光。

由于激发态的原子吸收的波长与原子的种类有关,根据实验室测量到的原子火焰吸收光谱,可以推测出样品中存在的元素或化合物,以及其定性和定量分析。

二、铜测定1.实验组成FAAS用于测定土壤中铜的重要组成部分是以下几个:(1)样品:采用实验室提取的无离子水溶解的土壤样品,按照理化特性进行预处理。

(2)激发溶液:采用硼酸溶液(0.2 molL-1)为激发剂。

(3)收尾火焰:使用氧和甲烷气体为收尾火焰,以保证处理样品时间和原子火焰温度。

(4)检测仪:使用原子吸收光谱仪,可以测量收尾火焰温度、激发原子吸收光谱、原子火焰稳定性等参数。

2.试验步骤(1)取出一定量的土壤样品,使用氢氧化钠溶液将样品放入容器中,混合溶解。

(2)将试样和激发剂硼酸混合,得到测试溶液。

(3)将容器加热,使溶液挥发,这时,激发剂会将原子火焰处于激发状态。

(4)通过检测系统测量土壤中铜元素的原子吸收光谱,测量其吸收特征,以估算样品中铜的含量。

三、应用火焰原子吸收光谱法是一种常用的分析方法,其应用范围极其广泛。

实验四原子吸收光谱法测铜的含量

实验四原子吸收光谱法测铜的含量

实验四火焰原子吸收光谱法测定铜的含量一、目的要求1.掌握原子吸收分光光度法的基本原理2.了解原子吸收分光光度计的主要结构及操作方法3.学习火焰原子吸收光谱法测定铜的含量的方法二、实验原理溶液中的铜离子在火焰温度下变成基态铜原子,由光源(铜空心阴极灯)辐射出的铜原子特征谱线(铜特征共振线波长为324.8nm)在通过原子化系统铜原子蒸汽时被强烈吸收,其吸收的程度与火焰中铜原子蒸汽浓度的关系是符合比耳定律的,即:A=log(1/T)=KNL(其中:A—吸光度,T—透光度,L—铜原子蒸汽的厚度,K—吸光系数,N—单位体积铜原子蒸汽中吸收辐射共振线的基态原子数),铜原子蒸汽浓度N是与溶液中离子的浓度成正比的,当测定条件一定时A=KC(C—溶液中铜离子的浓度,K—与测定条件有关的比例系数。

)在既定条件下,测一系列不同铜含量的标准溶液的A值,得A—C的标准曲线,再根据铜未知溶液的吸光度值即可求出未知液中铜的浓度。

三、仪器与药品AA-6300C型原子吸收分光光度计,铜空心阴极灯,乙炔钢瓶(空气—乙炔火焰原子化),空气压缩机,容量瓶,移液管,洗瓶。

铜标准溶液100mg/L储备液,去离子水。

四、实验步骤1.仪器操作条件的设置(计算机操作)在工作站上设置分析条件:如波长,狭缝,标样个数及浓度,样品数等参数。

仪器的工作条件元素(Element)波长(nm)光谱带宽(nm)灯电流(mA)乙炔流量(L/min)燃烧头高度(mm)铜(Cu)324.7 0.7 4.0 1.6 11.02.曲线的绘制在5只50ml容量瓶中,分别加入一定量的100 mg/L铜标准溶液,以去离水定容至刻度线,摇匀,得到0.5mg/L 、1.0mg/L、2.0mg/L、4.0mg/L和6.0mg/L 标液浓度,然后去离子水为空白分别测其A值,得A—C标准曲线。

五、数据处理1、记录实验条件:仪器型号、吸收线波长、狭缝宽度、乙炔流量、空气流量。

2、记录实验结果表铜浓度与吸光度关系未知液的测定将铜待测液在同样条件下测定,根据测得的吸光度在标准曲线图上查出其浓度。

实验八--原子吸收分光光度法测定待测样品中铜的含量

实验八--原子吸收分光光度法测定待测样品中铜的含量

实验八原子吸收分光光度法测定待测样品中铜的含量一、目的要求1. 学习原子吸收分光光度法的基本原理2. 了解原子吸收分光光度计的基本结构及其使用方法3. 掌握使用标准曲线法和标准加入法进行定量分析二、实验原理原子吸收光谱法是将待测元素的溶液在高温下进行原子化变成原子蒸气,由一束锐线辐射穿过一定厚度的原子蒸气,光的一部分被原子蒸气中的基态原子吸收。

透射光经单色器分光,测量减弱后的光强度。

然后,利用吸光度与火焰中原子浓度成正比的关系求得待测元素的浓度。

图1即为原子吸收分光光度计结构图。

其主要测量方法有标准曲线法和标准加入法。

图1 原子吸收分光光度计结构图标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测出它们的吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。

试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,根据试样溶液的吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。

标准曲线法常用于分析共存的基体成分较为简单的试样。

如果试样中共存的基体成分比较复杂,则应在标准溶液中加入相同类型和浓度的基体成分,以消除或减少基体效应带来的干扰,必要时应采用标准加入法进行定量分析。

由于式样中基体成分不能准确知道,或成分十分复杂,不能使用标准曲线法进行定量测定时,可以采用另一种定量方法——标准加入法,其原理如下:取等体积的试液两份,分别置于相同容器的两只容量瓶中,其中一只加入一定量带测元素的标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则:A x=kC xA0=k(C0+C x)C x为待测元素的浓度,C0为加入标准溶液后溶液浓度的增量,A x,A0分别为两次测量的吸光度,将以上两式整理得:C x= A x×C /(A0- A x)在实际测定中,采用作图法所得结果更为准确。

土壤质量铜、锌的测定火焰原子吸收分光光度法

土壤质量铜、锌的测定火焰原子吸收分光光度法

火焰原子吸收分光光度法测定土壤中的铜和锌一、实验目的:1.掌握原子吸收分光光度法的基本原理2.了解原子吸收分光光度计的主要结构及操作方法3.学会土样的消解及重金属的测定方法。

二、仪器和仪器:1.仪器:100 mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板novAA 400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯2.试剂:(1)盐酸,优级纯; (2)硝酸,优级纯;(3)去离子水;(4)氢氟酸,ρ=1.49g/ml;(6)高氯酸,ρ=1.68 g/ml。

(7)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。

(没用吧,应去掉)(8)2%(v/v)硝酸溶液:移取20 ml浓硝酸(优级纯)于980 ml去离子水中。

(9)国际标准样品-锌-单元素标准溶液,1000 ug/mL。

(10)国家标准样品-铜-单元素标准溶液,1000 ug/mL。

(11)铜、锌混合标准使用液:分别移取10ml铜和4ml锌单元素标准溶液于25 mL容量瓶中,用2%的稀硝酸稀至刻度,配制铜、锌混合标准工作液,使铜、锌浓度分别为100 ug/ml、40 ug/ml,待用。

四、实验原理:采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素全部进入试液中。

然后,将土壤消解液喷入空气-乙炔火焰中。

在火焰的高温下,铜、锌化合物离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。

在选择的最佳测定条件下,测定铜、锌的吸光度。

五、操作方法:1.土壤样品的处理:将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,除去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。

然后用有机玻璃棒或木棒将风干土样碾碎,过2 mm尼龙筛,去掉2 mm以上的砂砾和植物残体。

将上述风干细土反复按四分法弃取,最后约留下100 g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。

hj491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法

hj491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法

hj491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法《HJ491-2019土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法》是中国环境监测标准中关于土壤和沉积物中铜、锌、铅、镍、铬等元素含量测定方法的技术规范。

本文将对该标准进行详细介绍,包括测定原理、样品处理、仪器设备和操作步骤等方面的内容。

一、测定原理该标准采用火焰原子吸收分光光度法测定土壤和沉积物中铜、锌、铅、镍、铬的含量。

具体原理如下:1.原子化:将样品中的金属元素转化为自由原子状态。

样品经过干燥、研磨和酸溶等预处理后,通过高温火焰或电石炉原子化装置,使金属元素转化为气态自由原子。

2.吸收:利用特定波长的光源,选择与待测元素的吸收线相对应的波长,通过火焰中的原子蒸汽吸收入射光的能量。

3.检测:测定吸收光的强度,通过比较样品和标准溶液之间的吸收差异,计算出待测元素的浓度。

二、样品处理1.采样:按照相关规范进行土壤和沉积物的采样,并注意避免污染和氧化。

2.预处理:将采样的土壤和沉积物样品进行干燥、研磨和筛分等预处理步骤,以获得均匀的样品粉末。

3.溶解:取适量的样品粉末加入酸性溶剂(如硝酸-盐酸混合液),在适当条件下进行酸溶解,使金属元素转化为可测定的形式。

三、仪器设备进行该测定方法需要以下仪器设备:1.原子吸收分光光度计:用于测量样品中金属元素的吸收光谱。

2.火焰原子化装置:用于将样品中的金属元素转化为气态自由原子状态。

3.标准溶液:用于建立校准曲线和质控样品。

四、操作步骤1.准备标准溶液:根据需要测定的元素,配制一系列浓度递增的标准溶液。

2.校准曲线:将标准溶液进行原子吸收分光光度计测定,并建立元素浓度与吸光度之间的线性关系。

3.样品处理:按照前述的样品处理方法,将土壤和沉积物样品转化为可测定的形式。

4.原子化和吸收:使用火焰原子化装置将样品中的金属元素原子化,通过原子吸收分光光度计测量吸收光谱,并记录吸光度数值。

原子吸收分光光度法测定土壤样品中铜的含量

原子吸收分光光度法测定土壤样品中铜的含量

原子吸收分光光度法测定土壤中铜的含量一、目的和要求1.1 了解原子吸收分光光度法的原理;1.2 掌握土壤样品的消化方法,掌握原子吸收分光光度计的使用方法。

二、原理火焰原子吸收分光光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。

将试样喷入火焰,被测元素的化合物在火焰中离解形成原子蒸气,由锐线光源(空心阴极灯)发射的某元素的特征谱线光辐射通过原子蒸气层时,该元素的基态原子对特征谱线产生选择性吸收。

在一定条件下特征谱线光强的变化与试样中被测元素的浓度比例。

通过对自由基态原子对选用吸收线吸收度测量,确定试样中该元素的浓度。

湿法消化是使用具有强氧化性酸,如HNO3、H2SO4、HClO4等与有机化合物溶液共沸,使有机化合物分解除去。

干法灰化是在高温下灰化、灼烧,使有机物质被空气中氧所氧化而破坏。

本实验采用湿法消化土壤中的有机物质。

三、仪器与试剂3.1 原子吸收分光光度计、铜空心阴极灯。

3.2 铜标准液。

准确称取0.1000g金属铜(99.8%)溶于15mL 1:1 硝酸中,移入1000mL 容量瓶中,用去离子水稀释至刻度,此液含铜量为100mg/L。

四、实验步骤4.1 标准曲线的绘制取6个25mL容量瓶,依次加入0.0、1.00、2.00、3.00、4.00、5.00mL 的浓度为100mg/L 的铜标准溶液,用1%的稀硝酸溶液稀释至刻度,摇匀,配成含0.00、0.40、0.80、1.20、1.60、2.00mg/L 铜标准系列,然后在324.7nm处测定吸光度,绘制标准曲线。

4.2 样品的测定4.2.1 样品的消化准确称取1.000g土样于100mL 烧杯中(2份),用少量去离子水润湿,缓慢加入5mL 王水(硝酸:盐酸=1:3),盖上表明皿。

同时做1份试剂空白,把烧杯放在通风厨内的电炉上加热,开始低温,慢慢提高温度,并保持微沸状态,使其充分分解,注意消化温度不易过高,防止样品外溅,当激烈反应完毕,使有机物分解后,取下烧杯冷却,沿烧杯壁加入2~4mL 高氯酸,继续加热分解直至冒白烟,样品变为灰白色,揭去表明皿,赶出过量的高氯酸,把样品蒸至近干,取下冷却,加热5mL 1%的稀硝酸溶液加热,冷却后用中速定量滤纸过滤到25mL 容量瓶中,滤渣用1%稀硝酸洗涤,最后定容,摇匀待测。

土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法

土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法

土壤和沉积物铜、锌、铅、镍、铬的测定
火焰原子吸收分光光度法
土壤和沉积物中铜、锌、铅、镍、铬等金属元素含量的测定通常
使用火焰原子吸收分光光度法(FAAS)。

FAAS利用原子在火焰中的特
定吸收光谱线来定量分析样品中金属元素的含量。

具体操作步骤如下:
1. 样品的制备:
将土壤或沉积物样品收集后,将其经过干燥、研磨、筛选等处理。

然后将样品加入溶剂中(如硝酸或王水)进行消解,可以用微波消解
仪或加热消解仪消解。

待消解完成后,将溶液用去离子水或磷酸盐缓
冲液稀释到一定的体积后即可分析。

2. 分析仪器:
火焰原子吸收分光光度计由火焰、光路、光源和检测器四部分组成。

其中,火焰是将样品中的铜、锌、铅、镍、铬等金属元素原子化
的关键部分。

火焰的燃料和氧化剂通常是丙烷和空气。

3. 标准曲线绘制:
利用标准金属元素溶液分别进行浓度逐渐加大的稀释,测量各浓
度下的吸收浓度并绘制标准曲线。

标准曲线通常包括几个标准浓度点,通过外推法计算样品中金属元素的浓度。

4. 测量:
将样品溶液静置后,用特定方法从中取出一定的体积,将其通过
火焰原子吸收分光光度计进行测量,如有需要可以与标准曲线对照计
算出样品中金属元素的浓度。

利用原子吸收法去测定矿样中铜的含量实验

利用原子吸收法去测定矿样中铜的含量实验

原子吸收法测定矿样中铜的含量一、实验目的:1.掌握原子吸收分光光度法的基本原理和原子吸收分光光度计的使用方法;2.利用原子吸收分光光度法矿样中铜的含量。

二、实验原理:原子吸收分光光度法是利用锐线光源所发出的所测定元素第一共振线的锐线光,去照射用原子化器将样品中被测组分转变成的原子蒸气,由于在一定条件下,原子蒸气对光吸收满足朗伯-比耳定律,以标准样品的吸收与被测样品进行对比,确定样品中被测组分的浓度。

原子吸收分光光度法一般用于微量组分或痕量组分的分析。

原子吸收分光光度法中所使用的锐线光源为空心阴极灯。

所采用的原子化器通常有火焰原子化器和无火焰原子化器两种。

本实验使用石墨炉原子化器实现原子化。

本实验的定量分析方法采用标准曲线法。

先测定含Cu(SO4)2·5H2O浓度为2,4,6,8,10ppm的标准溶液的吸光度,作出标准曲线,再根据矿样的溶液的吸光度在标准曲线上求出样品中铜含量。

仪器、试剂:岛津AA6601F型原子吸收分光光度计;石墨炉原子化器、铜空心阴极灯;铜标准溶液;二次蒸馏水。

三、实验内容:1.开机:打开主机电源开关和计算机电源开关,石墨炉(GFA)原子化器电源开关,自动进样器(ASC)电源开关。

双击计算机显示屏上的“AAPC”图标,在弹出的元素周期表中双击要测定的元素符号(Cu)。

在参数选择窗口选择参数项Furnace,单击“Select”按钮。

2.设置测量条件:在“View”菜单上选择“Experiment Conditions”项,弹出测量条件设置窗口。

设置如下条件:Lamp turret number: 1. Lamp current value: 6mA.Analysis line wavelength: 324.8nm. Slit width: 0.5nm.Lamp mode: NO-BGC mode.单击屏幕下方的“Line Search”按钮,仪器开始对系统进行初始化,即对仪器各部分进行检查。

原子吸收分光光度法测定土壤样品中铜的含量

原子吸收分光光度法测定土壤样品中铜的含量

原子吸收分光光度法测定土壤样品中铜的含量原子吸收分光光度法是一种常用的元素分析方法,具有高灵敏度、高精度和低干扰等优点。

本文将介绍如何使用原子吸收分光光度法测定土壤样品中铜的含量。

一、实验目的本实验的目的是通过原子吸收分光光度法测定土壤样品中铜的含量,了解原子吸收分光光度法在土壤重金属分析中的应用。

二、实验原理原子吸收分光光度法是一种基于原子能级跃迁的定量分析方法。

样品中的铜离子在高温烈焰中被激发为原子态,当铜原子通过特定波长的光源时,会吸收特定波长的光,从而导致光强减弱。

通过测量光源通过样品前后的光强,可以确定样品中铜原子的吸光度。

通常,吸光度与铜原子的浓度成正比,从而可以计算出样品中铜的含量。

三、实验步骤1.样品采集与处理选择具有代表性的土壤样品,用四分法缩分,烘干,研磨,过筛,混匀。

将处理后的土壤样品放入聚乙烯瓶中备用。

2.样品消化称取0.5g土壤样品于50ml锥形瓶中,加入硝酸-氢氟酸-高氯酸(5:2:2)混合酸,摇匀,放置过夜。

次日于电热板上加热消化至溶液清亮,加入2ml硝酸,继续加热消化至溶液呈淡黄色,加入2ml高氯酸,继续加热消化至溶液呈无色透明。

冷却后加入2ml硝酸,加热溶解盐类,蒸至近干。

用去离子水将消化液转入10ml容量瓶中,定容至刻度线。

同时做试剂空白。

3.仪器参数设置打开原子吸收分光光度计,设置波长为324.7nm,光源电流为3.0mA,燃烧器高度为8mm,空气流量为6.0L/min,乙炔流量为1.5L/min。

4.标准曲线制作分别称取铜标准溶液(1mg/ml)0.0、0.5、1.0、2.0、3.0、4.0ml于100ml容量瓶中,加入硝酸至10ml刻度线,混匀。

得到铜浓度分别为0.0、0.5、1.0、2.0、3.0、4.0mg/L的标准系列溶液。

将标准系列溶液分别吸入空气-乙炔火焰中燃烧,测定吸光度。

以吸光度为纵坐标,铜浓度为横坐标绘制标准曲线。

5.样品测定将待测样品吸入空气-乙炔火焰中燃烧,测定吸光度。

原子吸收分光光度计测定土壤中铜含量的不确定度评定

原子吸收分光光度计测定土壤中铜含量的不确定度评定
度分别为 12 /g和 2 4 m /g .0mg k .0 g k 。影响土壤中铜含量测量不确定度 的主要因素是测量土壤消解液浓度时校准曲线测量引起 的不确定度 。 关键词 : 原子 吸收分光光度计 ; 土壤 ; ; 铜 测量不确定度
1 概 述
+ 口
土壤 中 的铜 含量 是指单 位重 量 ( g i壤 样品 中铜 的 k)

32 校 准 曲线 测量溶 液浓度 的不 确定 度 .
用去离 子水 代替 试样 , 重复 上述测 定 。
() 4 校准 曲线
用(0 ± .) 50 05 的铜标准溶液配置 5 个标 准溶液 , 其
浓度 ( gL 分别 为 0 5 , .0 15 , .0 5O 。对 每 a r /) .0 1O , .0 25 , .0

试液 定 容 的 体 积 , ; mlm一称 取 试 样 的 重量 , ; g产 测试 过程 如下 :
试样 的含 水率 , %。 ( ) 液制 备 1试 准确 称 量适 量试 样 m( ) 5 ml 四氟 乙烯 坩 埚 g于 0 聚
天 平本身 的最 大允 差 带来 的不确 定 度 , 平 的 分辨 率 天
生 选择性 吸 收 , 在最 佳 的测定 条 件 下 , 定铜 的吸 光度 。 测 按 照下 述公 式计算 土壤 中铜 的含量 :

的不确定度分量, 主要包括容量瓶本身 的不确定度 以及 人员读数的不确定度 , 温度变化带来 的不确定度等 ; . 严
土壤样 品含水 率 的不 确 定 度 ; 一试 验 的重 复 性 带 来 的
式中 : 对 第 i个 标 准 溶 液 的 吸 光 度 回 归 值 ; A一 G一 第 i 个标 准溶 液 的浓度 ; 率 ; 0 截距 。 B一斜 B一

土壤中铜的测定

土壤中铜的测定

原子吸收分光光度法测定土壤中的铜一、实验目的:(一)学习测定铜的技术;(二)掌握原子吸收分光光度法的原理。

二、实验意义:土壤是植物生长的基地,是动物、人类赖以生存的物质基础,因此,土壤质量的优劣直接影响人类的生产、生活和发展。

但由于近些年人们不合理地施用农药、进行污水灌溉等致使各类污染物质通过多种渠道进入土壤。

当污染物进入土壤的数量超过土壤自净能力时,将导致土壤质量下降,甚至恶化,影响土壤的生产能力。

此外,通过地下渗漏、地表径流还将污染地下水和地表水。

我国土壤常规监测项目中,金属化合物有镉、铬、铜、汞、铅、铜;非金属无机化合物有砷、氰化物、氟化物、硫化物等;有机化合物有苯并(a)芘、三氯乙醛、油类、挥发酚、DDT、六六六等。

地壳中铜的平均含量约为70mg/kg;全球土壤中铜的含量范围一般在2—100mg/kg之间,平均含量为20mg/kg;我国土壤中铜的含量在3—300mg/kg之间,平均含量为22mg/kg。

土壤的铜含量常常与其母质来源和抗风化能力有关,因此也与土壤质地间接相关。

土壤中的铜大部分来自含铜矿物——孔雀石、黄铜矿及含铜砂岩等。

一般情况下,基性岩发育的土壤,其含铜量多于酸性岩发育的土壤,沉积岩中以砂岩含铜最低。

各类土壤的含铜量按多少排列如下:砂姜黑土(25.49mg/kg)>潮土(22.48mg/kg)>褐土(22.18mg/kg)>盐碱土(18.78mg/kg)>棕壤(17.81mg/kg)>黄棕壤(15.58mg/kg)>风沙土(8.44mg/kg)。

我国土壤表层或耕层中铜含量的背景值范围为7.3—55.1mg/kg(不同地区有不同的背景值)。

土壤中铜的环境质量标准见表一,卫生标准见表二。

表一土壤中铜的环境质量标准值(GB15618—1995)单位:mg/kg级别一级二级三级土壤pH值自然背景<6.5 6.5~7.5 >7.5 >6.5农田等≤ 35 50 100 100 400果园≤ — 150 200 200 400表二土壤中铜的卫生标准(GB11728—89)土壤中铜的阳离子交换量(毫克当量/100g干土)<10 10—20 >20土壤中的最高容许浓度(mg/kg)50 150 300三、实验方法和原理:(一)方法土壤污染监测的常用方法有:重量法——适用于测定土壤水分;容量法——适用于浸出物中含量较高的成分如Ca2+、Mg2+、Cl-、SO42-等测定;气相色谱法——适用于有机氯、有机磷及有机汞等农药的测定;分光光度法(AAS、AES、AFS)——适用于重金属如Cu、Cd、Cr、Pb、Hg、Zn等组分的测定。

土壤质量 铜、锌的测定 火焰原子吸收分光光度法

土壤质量 铜、锌的测定 火焰原子吸收分光光度法

土壤质量铜、锌的测定火焰原子吸收分光光度法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言土壤中微量元素的含量是评价土壤质量的重要指标之一。

原子吸收光谱法测定铜的含量[教材]

原子吸收光谱法测定铜的含量[教材]

原子吸收光谱法测定铜的含量原子吸收分光光度法 (Atomic Absorption Spectrophoto-metry,AAS)是基于以下工作原理:由待测元素空心阴极灯发射出一定强度和一定波长的特征谱线的光,当它通过含有待测元素基态原子蒸气的火焰时,其中部分特征谱线的光被吸收,而未被吸收的光经单色器,照射到光电检测器上被检测,根据该特征谱线光强被吸收的程度,即可测得试样中待测元素的含量。

由于原子吸收分析是测量峰值吸收,因此需要能发射出共振线锐线光作光源,用待测元素空心阴极灯能满足这一要求。

例如测定试液中镁时,可用镁元素空心阴极灯作光源,这种元素灯能发射出镁元素各种波长的特征谱线的锐线光 (通常选用其中Mg285.21nm 共振线)。

特征谱线被吸收的程度,可用朗伯-比耳定律表示:o oKLN II lg==A 式中:A 为吸光度;K 为吸光系数;L 为吸收层厚度即燃烧器的缝长,在实验中为一定值; N 0为待测元素的基态原子数,由于在火焰温度下待测元素原子蒸气中的基态原子的分布占绝对优势,因此可用N 0代表在火焰吸收层中的原子总数。

当试液原子化效率一定时,待测元素在火焰吸收层中的原子总数与试液中待测元素的浓度c 成证比,因此上式可写作:c K A '=式中K ’在一定实验条件下是一常数,即吸光度与浓度成正比,遵循比耳定律。

原子吸收分光光度分析具有快速、灵敏、准确、选择性好、干扰少和操作简便等优点,目前已得到广泛应用,可对七十余种金属元素进行分析。

火焰原子吸收分光光度分析的测定误差一般为1%~2%,其不足之处是测定不同元素时,需要更换相应的元素空心阴极灯,给试样中多元素的同时测定带来不便。

一、实验目的1.通过实验了解原子吸收方法的基本原理和原子吸收分光光度仪的使用。

2.初步学习火焰原子吸收法测量条件的选择方法。

3.初步掌握使用标准曲线法测定微量元素的实验方法。

二、实验原理原子吸收光谱法是基于从光源发射的被测元素的特征谱线通过样品蒸气时,被蒸气中待测元素基态原子吸收,由谱线的减弱程度求得样品中被测元素的含量。

火焰原子吸收分光光度法测定

火焰原子吸收分光光度法测定

6、注意事项
(1)每一批样品至少做一个试剂空白; (2)无机酸具有很大腐蚀性,实验中应 严格按要求操作,试剂配制、样品分解等 实验操作应在通风厨内进行,避免刺激性 气体污染环境或吸入体内; (3)样品转移过程动作要轻,避免样品 损失,并保持烧杯编号与坩埚号一致; (4)为保证测定准确度,样品分解过程 中要避免试样的蹦溅和污染。
实验一 火焰原子吸收分光光度法测定 土壤中铜(12学时)
一﹑实验目的 1、学习使用溶剂分解土壤样品; 2、掌握标准溶液的配制方法; 3、掌握火焰原子吸收分光光度计 的基本原理和操作方法。
一﹑实验原理 1、铜的提取:
硝酸呈强酸性,具有强氧化性, 含量65~68%,比重1.40,浓度 15mol/L, 最高沸点121℃。在样品 分解过程中,加入硝酸可使土壤中 的铜溶解,从而进入溶液,定容后 上机测试。
3、仪器和试剂
仪器: (1)可调式电热板 (2)烧杯(500ml 1个;200ml 1个;50ml 4个)、表面皿(4个)、容量瓶(100ml 4 个)、量杯(10ml 和50ml 各1个)、玻棒 (1根)、洗瓶(1个) 试剂: (1)浓HNO3(分析纯) (2)浓HCl(分析纯)
4、实验步骤
由于土壤样品组成复杂,除了硅酸盐、粘 土矿物、碳酸盐矿物外,还含有一定的有 机质等其它组分。因此,要完全分解土壤 样品,必须采用HNO3+HCl+HClO3+HF 四酸分解。 由于HF的高危害性(腐蚀性),从学生 安全考虑,本实验中采用硝酸分解,而硝 酸对有机质的分解能力比较弱,因此,本 实验采用高温法氧化有机质。另外,高温 氧化法还可以使硫氧化成二氧化硫,消除 硫对测定结果的影响。
实验(五) 数据整理、பைடு நூலகம்析及编写总报告
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子吸收分光光度法
测定土壤中铜的含量
一、目的和要求
1.1 了解原子吸收分光光度法的原理;
1.2 掌握土壤样品的消化方法,掌握原子吸收分光光度计的使用方法。

二、原理
火焰原子吸收分光光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。

将试样喷入火焰,被测元素的化合物在火焰中离解形成原子蒸气,由锐线光源(空心阴极灯)发射的某元素的特征谱线光辐射通过原子蒸气层时,该元素的基态原子对特征谱线产生选择性吸收。

在一定条件下特征谱线光强的变化与试样中被测元素的浓度比例。

通过对自由基态原子对选用吸收线吸收度测量,确定试样中该元素的浓度。

湿法消化是使用具有强氧化性酸,如HNO3、H2SO4、HClO4等与有机化合物溶液共沸,使有机化合物分解除去。

干法灰化是在高温下灰化、灼烧,使有机物质被空气中氧所氧化而破坏。

本实验采用湿法消化土壤中的有机物质。

三、仪器与试剂
3.1 原子吸收分光光度计、铜空心阴极灯。

3.2 铜标准液。

准确称取0.1000g金属铜(99.8%)溶于15mL 1:1 硝酸中,移入1000mL 容量瓶中,用去离子水稀释至刻度,此液含铜量为100mg/L。

四、实验步骤
4.1 标准曲线的绘制
取6个25mL容量瓶,依次加入0.0、1.00、2.00、3.00、4.00、5.00mL 的浓度为100mg/L 的铜标准溶液,用1%的稀硝酸溶液稀释至刻度,摇匀,配成含0.00、0.40、0.80、1.20、1.60、2.00mg/L 铜标准系列,然后在324.7nm处测定吸光度,绘制标准曲线。

4.2 样品的测定
4.2.1 样品的消化
准确称取1.000g土样于100mL 烧杯中(2份),用少量去离子水润湿,缓慢加入5mL 王水(硝酸:盐酸=1:3),盖上表明皿。

同时做1份试剂空白,把烧杯放在通风厨内的电炉上加热,开始低温,慢慢提高温度,并保持微沸状态,使其充分分解,注意消化温度不易过高,防止样品外溅,当激烈反应完毕,使有机物分解后,取下烧杯冷却,沿烧杯壁加入2~4mL 高氯酸,继续加热分解直至冒白烟,样品变为灰白色,揭去表明皿,赶出过量的高氯酸,把样品蒸至近干,取下冷却,加热5mL 1%的稀硝酸溶液加热,冷却后用中速定量滤纸过滤到25mL 容量瓶中,滤渣用1%稀硝酸洗涤,最后定容,摇匀待测。

4.2.2 测定
将消化液在与标准系列相同的条件下,直接喷入空气-乙炔火焰中,测定吸收值。

(2)土壤中铜的测定——AAS法
①标准溶液制备:制备各种重金属标准溶液推荐使用光谱纯试剂;用于溶解土样的各种酸皆选用高纯或光谱纯级;稀释用水为蒸馏去离子水。

使用浓度低于0.1mg/ml的标准溶液时,应于临用前配制或稀释。

标准溶液在保存期间,若有混浊或沉淀生成时须重新配制。

②土样预处理:称取0.5~1g 土样于聚四氟乙烯坩埚中,用少许水润湿,加入HCl 在电热板上加热消化(<450℃,防止Cd 挥发〕,加入HNO 3继续加热,再加入HF 加热分解SiO 2及胶态硅酸盐。

最后加入HClO 4加热(<200℃)蒸至近干,冷却,用稀HNO 3浸取残渣、定容。

同时作全程序空白实验。

③Cu 标准系列混合溶液的配制:各元素标准工作溶液是通过逐次稀释其标准贮备液而得。

注意:配制标准系列溶液时,所用酸和试剂的量应与待测液中所含酸和试剂的数量相等,以减少背景吸收所产生的影响。

④采用AAS 法测定Cu ⑤结果计算
铜 (mg/kg)= M/W
式中: M ——自标准曲线中查得铜含量,μg ; W——称量土样干重量,g 。

五、数据处理
所测得的吸收值(如试剂空白有吸收,则应扣除空白吸收值)在标准曲线上得到相应的浓度M (mg/mL ),则试样中:
1000m kg /mg ⨯⨯V
M )=
铜或锌的含量(
式中:M ——标准曲线上得到的相应浓度,mg/mL ; V ——定容体积,mL ;
m ——试样质量,g 。

六、注意事项
6.1 细心控制温度,升温过快反应物易溢出或炭化。

6.2 土壤消化物若不足呈灰白色,应补加少量高氯酸,继续消化。

由于高氯酸对空白影响大,要控制用量。

6.3 高氯酸具有氧化性,应待土壤里大部分有机质消化完反应物,冷却后再加入,或者在常温下,有大量硝酸存在下加入,否则会使杯中样品溅出或爆炸,使用时务必小心。

6.4 若高氯酸氧化作用进行过快,有爆炸可能时,应迅速冷却或用冷水稀释,即可停止高氯酸氧化作用。

原子吸收测量条件:
元素 Cu Zn λ/nm 324.8 213.9
I /mA 2 4
光谱通带(A) 2.5 2.1 增益 2 4 燃气 C2H2 C2H2
助气空气空气。

相关文档
最新文档