偏微分方程求解例题
偏微分方程数学考试试题

偏微分方程数学考试试题
1. 求解以下偏微分方程:
a. $ \frac{\partial u}{\partial t} = 3 \frac{\partial u}{\partial x} $
b. $ \frac{\partial^2 u}{\partial t^2} = 5 \frac{\partial^2 u}{\partial x^2} $
c. $ \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} $
2. 考虑以下边界条件问题:
$ u(0,t) = 0 $
$ u(1,t) = 2t $
$ u(x,0) = \sin(\pi x) $
求解该问题的解析解。
3. 对于给定的偏微分方程,尝试通过变量分离的方法求解。
证明解的唯一性。
4. 考虑一维热传导方程:$ \frac{\partial u}{\partial t} = \alpha
\frac{\partial^2 u}{\partial x^2} $
其中 $ \alpha $ 是热扩散系数。
解释在不同参数 $ \alpha $ 下方程的行为和性质。
5. 讨论偏微分方程的数值解法,比较有限差分法和有限元法的优缺点并举例说明。
6. 推导一维波动方程的解,并给出波动方程的初边值问题求解方法。
7. 请给出二阶常系数齐次线性偏微分方程的通解形式,并解释其中
每一个参数的物理意义。
8. 推导热传导方程的一维解,并讨论热源对温度分布的影响。
以上就是本次数学考试试题,请同学们认真作答,加油!。
2024年考研数学偏微分方程题目详解与答案

2024年考研数学偏微分方程题目详解与答案在2024年的考研数学试卷中,偏微分方程题目一直是考生们关注和备考的重点。
本文将详细解析2024年考研数学偏微分方程题目,并提供详细的解答和答案。
一、第一题题目描述:给定二阶常系数线性偏微分方程 $\frac{{\delta^2u}}{{\delta x^2}} + c\frac{{\delta u}}{{\delta t}} + ku = f(x, t)$,其中 $u = u(x, t)$ 为未知函数,$c, k$ 为常数,$f(x, t)$ 为已知连续函数。
要求求解此偏微分方程。
解析:根据题目所给的偏微分方程可知,我们需要求解二阶常系数线性偏微分方程。
此类方程的典型特点是对时间 $t$ 的导数项和对空间$x$ 的二阶导数项。
我们可以采用特征线法来求解此类方程。
首先,我们设方程的通解形式为 $u(x, t) = X(x)T(t)$,其中$X(x)$ 和 $T(t)$ 分别是 $x$ 和 $t$ 的函数。
将通解带入方程中得到:$\frac{{X''}}{{X}} + c\frac{{T'}}{{T}} + k = \frac{{f(x, t)}}{{XT}}$由于方程的左侧只与 $x$ 有关,右侧只与 $t$ 有关,故两侧等于某个常数 $-\lambda$。
得到两个常微分方程:$X'' + \lambda X = 0$ 和 $T' + \left(c -\lambda\right) T = 0$对于方程 $X'' + \lambda X = 0$,根据 $\lambda$ 的值分为三种情况讨论:1. 当 $\lambda > 0$ 时,方程的通解为 $X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$。
2. 当 $\lambda = 0$ 时,方程的通解为 $X(x) = Ax + B$。
(完整word版)偏微分方程数值解习题解答案

L试讨论逼近对蘇程詈+若。
的差分沁1)2)q1 二:行口匚1)解:设点为(X ? ,/曲)屮则町=讥心厶)=班勺厶+J + °(工心)(Y )+0(F ).ot所以截断误差为:3E=丄 ------ + ---- 「 T h 啰_喟+竺护一 o (F )T= 0(T + 力”2)解:设点为:(X y ,/林1 ) 3则町=讥勺,_)=以E ,_+1)+ (Y ) +o (巧卩 ot “;:;=班心+1 厶+i )=叽厶+i )+滋( h )+ * 臥工心)(为 2)+o ox (X)d心;=班心亠心)=班心,/+1)+敕:;D (一力)+ 3 役;D(血 2)+0(亥2)«截断误差为:2舟A 1 ” E= ------------ + ------------ — (―+ _) T h dt dx叭:=班%厶+i )+敗?心)(_勿+0 @2)〜dx-(史+空八dt dx 呼1_吋】+竺丛Q —O (X )-(叱 3 +dtdx 22・试用积分插值法推导知铁。
逼近的差分裕式班勺厶叙)一班勺,乩i)+ ——-——£)dtTq2 “-” *\ | (— 4- —)dxdt = | (un t 4- un x)ds = 0* dt & \得-U] /J+U2 r+x^ A-u4 r = 0+JE (j-l? n)F (j,n)G (j^n+l)H (j-l,n+l)^% ~ 的=旳=竹“4 = W/-lMf MTh=h T-T-ll"h + LL r H + ll:4h —LL:N =Op第二章第三章第四章第五章第六章P781.如果①'(0)二0,则称工。
是』(0)的驻点(或稳定:点)-设矩阵A对称(不必正定),求证忑是』(工)的驻点.的充要条件是1心是方程加二&的解B 42・ 试用积分插值法推导知铁。
逼近的差分裕式证: 充分性:①⑻二J 缶)+ 乂(加° -b t ^+—(Ax r x)①'(Ji) = (Ax c - A, x) + A{Ax r x) aEff))S 宀沪若①0)二Q,即(山° 一氛对=0 心怎宀A X Q -h = ()目卩 Ax-b^则帀是方程Ax^b 的解卩 必要性*若心是芳程A^ = b^\解则 Ax a —h - 0 (J 4X 0 — Z?,x) = 0+^◎ (0)=(吐命-b t x) - 0+J所以町是』0)的驻点dpg%3:证明非齐次两点边值间题心現(&)二 e it (E)二 Qu与T 7面的变分间题等价:求血EH 】,认@) = G 使 J(w t ) = min J(y)其中心SiuHU (2)-d』(#) =壬仗站)-(7» —芒⑹戲(D) +而久込叭如(2.13)(提示;先把边值条件齐衩化)+d dxO 字)+梓二/ ax13页证明:令 = w(x) + v(x)其中 w(x) = Q + (x-a)0 w(a) = a yv @) = “v(a) = 0 v(^>) = 0®所以2S = 瞥+qu = j DX DX Pd r /w 血、《, 乂 、 f"丁〔P(T + :F)]+Q(W + V )" ax dx ax* 丫 d z dv. 产 / d dw 、 豪 令 = - — O —) +(?v = /-(- —^> — +^w) = y;^ ax ax dx ax 所以(1)的等价的形式2厶” =一?0 字)= 卩ax axu(a) = a u\b) = 0a其中久=/-(-£■去字+0W )"ax ax 则由定理22知,讥是辺值间题(2)的解的充要条件是 且满定变分方程"ogf)-C/i 小 0 Vve^Pr (Zv> 一 /j )tdx + p @»: (b)f @) ① W = J(u) = J(u.+^)^— a (u^ + 兔,以.+ 无)一(/,功・ +加)[以・(E )+加@)] 2 □2=J(认)+ N[a@・,f)-(/,£)-+乙agd-Qfm 沁卜• Q dx dx 「(加•一/)加x +卩@加:(砂@)-卩@)戊@) Ja(3) => (4)所以可证得• 3必要性:若如 是边值间题(1)的解。
偏微分方程数值解法题解

偏微分方程数值解法(带程序)例1 求解初边值问题22,(0,1),012,(0,]2(,0)12(1),[,1)2(0,)(1,)0,0u ux t t x x x u x x x u t u t t ⎧⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩∂∂=∈>∂∂∈=-∈==>要求采用树脂格式 111(2)n n n n nj j j j j u u u u u λ++-=+-+,2()tx λ∆=∆,完成下列计算: (1) 取0.1,0.1,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
(2) 取0.1,0.5,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
(3) 取0.1, 1.0,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
并与解析解22()22181(,)sin()sin()2n t n u n x t n x e n ππππ∞-==∑进行比较。
解:程序function A=zhongxinchafen(x,y,la) U=zeros(length(x),length(y)); for i=1:size(x,2)if x(i)>0&x(i)<=0.5 U(i,1)=2*x(i); elseif x(i)>0.5&x(i)<1 U(i,1)=2*(1-x(i)); end endfor j=1:length(y)-1for i=1:length(x)-2U(i+1,j+1)=U(i+1,j)+la*(U(i+2,j)-2*U(i+1,j)+U(i,j)); end endA=U(:,size(U,2))function u=jiexijie1(x,t) for i=1:size(x,2) k=3;a1=(1/(1^2)*sin(1*pi/2)*sin(1*pi*x(i))*exp(-1^2*pi^2*t));a2=a1+(1/(2^2)*sin(2*pi/2)*sin(2*pi*x(i))*exp(-2^2*pi^2*t));while abs(a2-a1)>0.00001a1=a2;a2=a1+(1/(k^2)*sin(k*pi/2)*sin(k*pi*x(i))*exp(-k^2*pi^2*t));k=k+1;endu(i)=8/(pi^2)*a2;endclc; %第1题第1问clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.001:t1];y2=[0:0.001:t2];y3=[0:0.001:t3];la=0.1;subplot(131)A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold online(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2)line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3)line(x,A3,'color','r','linestyle',':','linewidth',1.5);line(x,u3,'color','b','linewidth',1); title('例1(1)');subplot(132);line(x,u1,'color','b','linewidth',1);line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解');subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5);line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解');clc; %第1题第2问clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.005:t1];y2=[0:0.005:t2];y3=[0:0.005:t3];la=0.5;subplot(131);A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold online(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2)line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3)line(x,A3,'color','r','linestyle',':','linewidth',1.5); line(x,u3,'color','b','linewidth',1);title('例1(2)'); subplot(132);line(x,u1,'color','b','linewidth',1); line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解'); subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5); line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解');clc; %第1题第3问 clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.01:t1];y2=[0:0.01:t2];y3=[0:0.01:t3];la=1.0; subplot(131);A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold on line(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2) line(x,A2,'color','r','linestyle',':','linewidth',1.5); line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3) line(x,A3,'color','r','linestyle',':','linewidth',1.5); line(x,u3,'color','b','linewidth',1);title('例1(3)'); subplot(132);line(x,u1,'color','b','linewidth',1); line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解'); subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5); line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解'); 运行结果:表1:取0.1,0.1,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解表2:取0.1,0.5,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解表3:取0.1, 1.0,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图1:取0.1,0.1,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图2:取0.1,0.5,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图3:取0.1, 1.0,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解例2 用Crank-Nicolson 格式完成例1的所有任务。
偏微分方程数值解法题解

偏微分方程数值解法(带程序)例1 求解初边值问题22,(0,1),012,(0,]2(,0)12(1),[,1)2(0,)(1,)0,0u ux t t x x x u x x x u t u t t ⎧⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩∂∂=∈>∂∂∈=-∈==>要求采用树脂格式 111(2)n n n n nj j j j j u u u u u λ++-=+-+,2()tx λ∆=∆,完成下列计算: (1) 取0.1,0.1,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
(2) 取0.1,0.5,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
(3) 取0.1, 1.0,x λ∆==分别计算0.01,0.02,0.1,t =时刻的数值解。
并与解析解22()22181(,)sin()sin()2n t n u n x t n x e n ππππ∞-==∑进行比较。
解:程序function A=zhongxinchafen(x,y,la) U=zeros(length(x),length(y)); for i=1:size(x,2)if x(i)>0&x(i)<=0.5 U(i,1)=2*x(i); elseif x(i)>0.5&x(i)<1 U(i,1)=2*(1-x(i)); end endfor j=1:length(y)-1for i=1:length(x)-2U(i+1,j+1)=U(i+1,j)+la*(U(i+2,j)-2*U(i+1,j)+U(i,j)); end endA=U(:,size(U,2))function u=jiexijie1(x,t) for i=1:size(x,2) k=3;a1=(1/(1^2)*sin(1*pi/2)*sin(1*pi*x(i))*exp(-1^2*pi^2*t));a2=a1+(1/(2^2)*sin(2*pi/2)*sin(2*pi*x(i))*exp(-2^2*pi^2*t));while abs(a2-a1)>0.00001a1=a2;a2=a1+(1/(k^2)*sin(k*pi/2)*sin(k*pi*x(i))*exp(-k^2*pi^2*t));k=k+1;endu(i)=8/(pi^2)*a2;endclc; %第1题第1问clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.001:t1];y2=[0:0.001:t2];y3=[0:0.001:t3];la=0.1;subplot(131)A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold online(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2)line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3)line(x,A3,'color','r','linestyle',':','linewidth',1.5);line(x,u3,'color','b','linewidth',1); title('例1(1)');subplot(132);line(x,u1,'color','b','linewidth',1);line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解');subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5);line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解');clc; %第1题第2问clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.005:t1];y2=[0:0.005:t2];y3=[0:0.005:t3];la=0.5;subplot(131);A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold online(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2)line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3)line(x,A3,'color','r','linestyle',':','linewidth',1.5); line(x,u3,'color','b','linewidth',1);title('例1(2)'); subplot(132);line(x,u1,'color','b','linewidth',1); line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解'); subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5); line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解');clc; %第1题第3问 clear;t1=0.01;t2=0.02;t3=0.1;x=[0:0.1:1];y1=[0:0.01:t1];y2=[0:0.01:t2];y3=[0:0.01:t3];la=1.0; subplot(131);A1=zhongxinchafen(x,y1,la);u1=jiexijie1(x,t1)line(x,A1,'color','r','linestyle',':','linewidth',1.5);hold on line(x,u1,'color','b','linewidth',1);A2=zhongxinchafen(x,y2,la);u2=jiexijie1(x,t2) line(x,A2,'color','r','linestyle',':','linewidth',1.5); line(x,u2,'color','b','linewidth',1);A3=zhongxinchafen(x,y3,la);u3=jiexijie1(x,t3) line(x,A3,'color','r','linestyle',':','linewidth',1.5); line(x,u3,'color','b','linewidth',1);title('例1(3)'); subplot(132);line(x,u1,'color','b','linewidth',1); line(x,u2,'color','b','linewidth',1);line(x,u3,'color','b','linewidth',1);title('解析解'); subplot(133);line(x,A1,'color','r','linestyle',':','linewidth',1.5); line(x,A2,'color','r','linestyle',':','linewidth',1.5);line(x,A3,'color','r','linestyle',':','linewidth',1.5);title('数值解'); 运行结果:表1:取0.1,0.1,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解表2:取0.1,0.5,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解表3:取0.1, 1.0,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图1:取0.1,0.1,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图2:取0.1,0.5,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解图3:取0.1, 1.0,x λ∆==0.01,0.02,0.1,t =时刻的解析解与数值解例2 用Crank-Nicolson 格式完成例1的所有任务。
偏微分方程求解例题

偏微分方程求解例题下面是一个求解偏微分方程的例题:问题:求解以下偏微分方程:$abla^2u=f(x,y,z)$解法:首先,我们需要对偏微分方程进行化简。
可以通过选择适当的变量代换或积分方法来实现。
这里,我们选择采用变量代换法,将偏微分方程化简为:$abla^2u=f(x,y,z)$$ightarrowabla^2u=u_x^2+u_y^2+u_z^2-f$$u_x=Acos(x)+Bsin(x)$,$u_y=Asin(y)+Bcos(y)$,$u_z=Ccos(z)+Ds in(z)$$ightarrowabla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ $u_x=Acos(x)$,$u_y=Bsin(y)$,$u_z=Ccos(z)$$ightarrowabla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ 将上述化简后的偏微分方程再次化简,得到:$abla^2u=A^2cos^2(x)+B^2sin^2(x)+C^2cos^2(z)+D^2sin^2(z)-f$ $ightarrowabla^2u=frac{1}{r^2}frac{partial}{partialr}(r^2frac{partial u}{partialr})+frac{1}{rsintheta}frac{partial}{partialtheta}(sinthetafrac{partial u}{partialtheta})+frac{1}{sin^2theta}frac{partial^2 u}{partialz^2}-frac{f}{r^2sin^2theta}$其中,$r=sqrt{x^2+y^2+z^2}$,$theta=frac{pi}{2}-x$现在我们可以对上述偏微分方程求解。
考虑到该偏微分方程属于椭圆型偏微分方程,可以使用椭圆型偏微分方程的通解公式求解。
2024年考研高等数学一偏微分方程概念与方法历年真题

2024年考研高等数学一偏微分方程概念与方法历年真题一、简介偏微分方程是数学中的重要分支,广泛应用于自然科学和工程技术领域。
作为考研高等数学的一部分,偏微分方程是必考的内容之一。
本文将对2024年考研高等数学一偏微分方程概念与方法历年真题进行分析和讨论。
二、问题一【2023年考研高等数学一真题】设u(x, t)为一个具有连续偏导数的二元函数,满足偏微分方程:∂u/∂t + ∂u/∂x = 0其中x为实数,t为正实数。
已知初始条件为u(x, 0) = sin(x),求解u(x, t)。
解答:根据题目中的偏微分方程和初始条件,可以使用分离变量法对该问题进行求解。
假设u(x, t)的解为u(x, t) = X(x)T(t),其中X(x)为只与x 相关的函数,T(t)为只与t相关的函数。
代入偏微分方程,得到:X'(x)T(t) + X(x)T'(t) + X(x)T(t) = 0整理后,得到两个关于X(x)和T(t)的方程:X'(x)/X(x) = -T'(t)/T(t) = λ对于X(x)的方程,得到X'(x)/X(x) = λ,即X'(x) - λX(x) = 0。
求解该常微分方程得到X(x) = C1e^(λx),其中C1为常数。
由于要满足题目中给出的初始条件u(x, 0) = sin(x),可以得到X(x) = sin(x)。
对于T(t)的方程,得到T'(t)/T(t) = -λ。
求解该常微分方程得到T(t) = C2e^(-λt),其中C2为常数。
将X(x)和T(t)代入u(x, t) = X(x)T(t),得到:u(x, t) = (C1sin(x))(C2e^(-λt))由于X(x)和T(t)的函数形式已经确定,我们只需要确定C1、C2和λ的值即可。
根据初始条件u(x, 0) = sin(x),可以得到C1 = 1。
由于t为正实数,所以C2e^(-λt)不能为0。
偏微分例题

当涉及到偏微分时,以下是一个例子:问题:考虑函数f(x, y) = x^2 + 2xy + y^2,计算f 对x 和y 的偏导数。
解答:要计算函数f 对x 的偏导数,我们将y 视为常数,只关注x。
同样,要计算f 对y 的偏导数,我们将x 视为常数,只关注y。
对x 求偏导数:∂f/∂x = ∂/∂x (x^2 + 2xy + y^2)= ∂/∂x (x^2) + ∂/∂x (2xy) + ∂/∂x (y^2)= 2x + 2y(∂x/∂x) + 0 (注意∂x/∂x = 1,因为x 对自身的偏导数为1)= 2x + 2y对y 求偏导数:∂f/∂y = ∂/∂y (x^2 + 2xy + y^2)= ∂/∂y (x^2) + ∂/∂y (2xy) + ∂/∂y (y^2)= 0 + 2x(∂y/∂y) + 2y (注意∂y/∂y = 1,因为y 对自身的偏导数为1)= 2x + 2y因此,函数f(x, y) = x^2 + 2xy + y^2 对x 和y 的偏导数分别为:∂f/∂x = 2x + 2y∂f/∂y = 2x + 2y这就是函数f 对x 和y 的偏导数的计算结果。
当谈及偏微分方程的例题时,以下是一个简单的例子:考虑一个二维热传导问题,假设有一块均匀导热的平板,其温度分布由偏微分方程描述:∂u/∂t = k (∂²u/∂x² + ∂²u/∂y²)其中,u(x, y, t) 是时间t、位置(x, y) 处的温度,k 是热传导系数。
现在,假设该平板在x 轴方向上的长度为L,y 轴方向上的长度为H。
给定边界条件如下:u(0, y, t) = 0, 0 ≤ y ≤ H (左边界)u(L, y, t) = 0, 0 ≤ y ≤ H (右边界)u(x, 0, t) = 0, 0 ≤ x ≤ L (下边界)u(x, H, t) = f(x, t), 0 ≤ x ≤ L (上边界)其中f(x, t) 是给定的边界条件函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程求解例题
以下是一个例题:
解决以下偏微分方程:
$$
u_t + uu_x + v_x = 0
$$
首先,我们需要对方程进行积分变换,将其转换为标准 form: $$
frac{partial u}{partial t} + frac{partial u}{partial x} + frac{partial v}{partial x} = 0
$$
然后,我们可以使用分离变量法来解决该方程。
具体来说,我们可以将 $u$、$v$ 分别写成如下形式:
$$
u = u_1(x)u_2(t)
$$
$$
v = v_1(x)u_2(t)
$$
然后,我们将 $u_1$、$v_1$ 分别代入原方程,得到:
$$
u_t + u_1^2u_2 + v_1^2u_2 = 0
$$
$$
v_t + uu_1 + v_1^2 = 0
$$
接下来,我们使用代换法,将 $u_t$、$v_t$ 分别代入上述两个方程,得到:
$$
u_t + u_1^2u_2 + v_1^2u_2 = 0
$$
$$
u_t + uu_1 + v_1^2 = 0
$$
然后,我们可以使用积分变换法来求解 $u_1$、$v_1$:
$$
u_1 = -frac{1}{2u_2}v_1^2
$$
$$
v_1 = -frac{1}{2u_2}u_1^2
$$
将这些代换带回原方程,得到:
$$
frac{partial u}{partial t} + frac{partial u}{partial x} +
frac{partial v}{partial x} = -frac{1}{2u_2^2}u_t +
frac{1}{2u_2^2}v_x = 0
$$
现在,我们已经得到了标准 form 的偏微分方程,可以使用各种求解方法来求解。
一般来说,可以使用数值方法 (如有限差分法、有限元法等) 来求解该方程。