用导数讨论含参函数的单调性

合集下载

利用导数研究含参函数单调性

利用导数研究含参函数单调性

利用导数研究含参函数单调性函数的单调性是指函数随着自变量的变化,函数值的增减规律。

利用导数可以研究含参函数的单调性。

考虑含参函数$f(x;a)$,其中$a$是函数的参数。

我们希望研究函数$f$相对于自变量$x$和参数$a$的单调性。

首先,我们来研究函数相对于自变量$x$的单调性。

要研究函数$f(x;a)$的单调性,我们需要计算其导数。

记$f'(x;a)$为函数$f(x;a)$的导数。

根据导数的定义,我们有$$f'(x;a) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x;a) - f(x;a)}{\Delta x}$$这表示了函数$f(x;a)$在$x$处的切线的斜率。

我们可以通过计算导数来研究函数的单调性。

具体来说,当导数$f'(x;a)$在一些区间内始终大于零时,函数$f(x;a)$在该区间内是递增的;当导数$f'(x;a)$在一些区间内始终小于零时,函数$f(x;a)$在该区间内是递减的。

例如,考虑函数$f(x;a) = ax^2 + bx + c$,其中$a,b,c$是参数。

我们可以计算其导数$f'(x;a) = 2ax + b$。

当$a>0$时,$f'(x;a)$在整个实数域上大于零,这表示函数$f(x;a)$是递增的;当$a<0$时,$f'(x;a)$在整个实数域上小于零,这表示函数$f(x;a)$是递减的。

接下来,我们来研究函数相对于参数$a$的单调性。

要研究函数$f(x;a)$相对于参数$a$的单调性,我们需要计算其偏导数。

记$\frac{\partial f}{\partial a}(x;a)$为函数$f(x;a)$相对于参数$a$的偏导数。

根据偏导数的定义,我们有$$\frac{\partial f}{\partial a}(x;a) = \lim_{\Delta a \to 0} \frac{f(x;a+\Delta a) - f(x;a)}{\Delta a}$$类似地,我们可以通过计算偏导数来研究函数相对于参数的单调性。

如何运用导数法判断含参函数的单调性

如何运用导数法判断含参函数的单调性

思路探寻导数法是研究函数单调性的“利器”,判断含参函数的单调性是各类试题中的常见题目.含参函数的单调性问题一般较为复杂,需要灵活运用分类讨论思想和导数法进行求解.下面我们来探讨一下如何运用导数法来判断含参函数的单调性.一般地,运用导数法判断含参函数的单调性有如下几个步骤:1.讨论并确定函数的定义域.2.对函数进行求导,并进行适当的化简.3.求出导函数的零点.若函数的零点中含有参数,需讨论零点的符号.4.用零点将函数的定义域分为几个区间段.5.在各个区间段上讨论导函数与0之间的关系.若导函数大于0,则该函数在该区间上单调递增;若导函数小于0,则该函数在该区间上单调递减.下面举例说明.例1.已知函数f (x )=ln x -(a +1)x ,讨论f (x )的单调性.解:由已知得函数的定义域为(0,+∞),且f '(x )=1-(a +1)x x.①当a ≤-1时,f '(x )>0,f (x )在(0,+∞)上单调递增;②当a >-1时,令f '(x )=0,得x =1a +1.当0<x <1a +1时,f '(x )>0;当x >1a +1时,f '(x )<0.所以f (x )在(0,1a +1)上单调递增,在(1a +1,+∞)上单调递减.综合①②可知,当a ≤-1时,f (x )在(0,+∞)上单调递增;当a >-1时,f (x )在(0,1a +1)上单调递增,在(1a +1,+∞)上单调递减.由此可见,讨论含参函数单调性的关键在于判断导函数与0之间的关系.解答本题的关键在于讨论1-(a +1)x 的符号.在求出导函数的零点后,用零点x =1a +1将函数的定义域分为两个区间段:(0,1a +1)、(1a +1,+∞),再进一步讨论导函数与0之间的关系.例2.已知函数f (x )=ax -1x-ln x ,讨论f (x )的单调性.解:由题意知f '(x )=a +1x 2-1x =ax 2-x +1x 2(x >0).①当a =0时,f '(x )=1-xx2.由f '(x )>0得0<x <1,由f '(x )<0得x >1,即f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.②当a ≠0时,令f '(x )=0,即ax 2-x +1=0,Δ=1-4a .若Δ≤0,即a ≥14,f '(x )≥0,则f (x )在(0,+∞)上单调递增.若Δ>0,即a <0或<14,由f '(x )=0得x 1=,x 2,当14时,x 2x 1>0,所以f (x )在,+∞)上单调递增,在上单调递减.当a <0时,x 1>0>x 2,所以f (x )在上单调递增,在+∞)上单调递减.在求出导函数的表达式后,我们就可以发现,只需讨论ax 2-x +1的符号,就可以确定函数的单调性.由于ax 2-x +1为二次函数,且二次项的系数含有参数,所以需运用分类讨论思想分别对二次项的系数、方程的判别式Δ进行讨论.当Δ>0时,方程有两个根,即导函数有两个零点,若为x 1,x 2,则需先比较两个零点的大小,然后再划分定义域[m ,n ]:m <n <x 1<x 2;x 1<m <n <x 2;x 1<x 2<m <n ;m <x 1<n <x 2;x 1<m <x 2<n ;m <x 1<x 2<n ,结合二次函数的图象判断导函数的符号,得出原函数的单调性.综上所述,运用导数法判断含参函数的单调性,不仅要熟练掌握上述步骤,还要明确分类讨论的对象、标准以及层级,学会灵活运用分类讨论思想,合理对参数进行分类讨论.本文系福建省教育科学“十三五”规划课题2020年度教育教学改革专项课题:学科素养视域下“读思达”教学法的数学课堂应用研究(项目编号:Fjjgzx20-077).(作者单位:福建省莆田第二中学)54 Copyright©博看网 . All Rights Reserved.。

用导数解决含参数的函数的单调性

用导数解决含参数的函数的单调性

用导数解决含参数的函数的单调性单调性是数学中一个重要的概念,用于描述函数在特定区间内的增减性质。

在解决含参数的函数的单调性时,我们可以利用导数的概念和性质进行分析和推导。

本文将介绍如何使用导数解决含参数的函数的单调性,并给出相应的示例。

首先,我们来回顾一下导数的定义。

对于函数$f(x)$在点$x=a$处可导,其导数$f'(a)$表示函数曲线在该点处的斜率,可以通过以下公式计算:$$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$其中,$h$为一个无限趋近于0的值。

导数可以帮助我们研究函数的变化趋势、最值以及单调性等性质。

接下来,我们将探讨含参数的函数的单调性。

含参数的函数形式可以表示为$f(x;a)$,其中$a$为参数。

我们的目标是找到使函数单调的参数范围。

解决这个问题的关键是求导。

首先,我们需要计算函数的一阶导数$f'(x;a)$和二阶导数$f''(x;a)$。

一阶导数反映了函数的变化趋势,二阶导数揭示了函数的曲率性质。

接下来,我们需要找出函数的临界点和在其定义域内的驻点。

临界点是导数为0或不存在的点,驻点是导数在该点处为0的点。

当我们求出一阶导数$f'(x;a)$后,我们可以通过求解方程$f'(x;a)=0$来计算临界点和驻点。

这些点将给出函数的极值或拐点。

通过对导数方程进行求解,我们可以找到参数$a$满足$f'(x;a)=0$,从而得到临界点和驻点。

接下来,我们需要进行符号分析,确定函数的区间性质。

具体来说,当一阶导数$f'(x;a)$在一些区间内大于0时,函数$f(x;a)$是递增的;当一阶导数在一些区间内小于0时,函数是递减的;当一阶导数的正负性在一些点发生改变时,该点可能是函数的拐点。

当我们确定函数的单调性时,还应该考虑到函数的定义域。

特别是当参数$a$对函数的定义域有影响时,我们需要对不同的参数范围进行分析,以确定函数的单调性。

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结

155使用导数来解决含参函数单调性的讨论方法的总结蓝荣升作者发现,使用导数来解决函数的单调性,它在高中数学试卷中占有相当大的份额。

函数的单调性是求解函数极值,最值(范围)以及零点个数问题的基础,它经常出现在压轴题的第一问,并且存在一定的困难。

求函数单调性的最困难的部分是含参函数的分类讨论,而分类讨论的思想又是高中阶段着重培养的思想方法。

因此,利用分类讨论来解决带参数的函数单调性问题已成为近年来高考的重点和热点。

这类问题的难点在于学生不懂得如何讨论,或者讨论不全面,这里总结了带参函数单调性的分类讨论的一般步骤,在学会之后,没有不知道如何讨论或讨论不全面的情况。

以下是对单调性一般步骤的讨论(解决了讨论的大部分单调性问题):第一步:求定义域,单调区间是定义域的子集,因此求单调区间必须先求定义域,定义域有三种常见的情况需要讨论。

(1)偶次根式,根号下整体不小于0。

(2)分式,分母不等于0。

(3)对数,真数大于0。

第二步:求函数导数,令0)('=x f ,求出它的根21,x x ,根的个数一般有三种情况:无根、一个根,两个根。

导函数是分式一般先通分,并且还要考虑能不能因式分解。

第三步:如果方程有两根,则要考虑4种情况;如果只有一根则只需考虑第一种情况;如果根不能被求解,并且导数不能被判断出正的或负的,那么我们就需要求函数的二阶导数,利用二阶导数的正负来确定一阶导数的单调性,然后利用最值得到一阶导数的正负,进而判断出原函数的单调性。

(1)是否存在根(判断根是否在定义域中),得到参数的讨论点。

(2)21x x =,得到参数的讨论点。

(3)21x x >,得到参数的讨论点。

(4)21x x <,得到参数的讨论点。

第四步:判断21,x x 分定义域的每个区间的导数的正负情况,如果导数大于0,则函数单调递增,如果导数小于0,则函数单调递减。

以下三种常见方法可用来判断导数的正负:(1)数轴穿根法:(2)函数图像法:(3)区域判断法:只需要判断每个因式的正负。

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结
利用导数来解决含参函数单调性问题,是一个经典的数学问题,也是高数学习者常遇到的一大难题。

要想确定一个参数函数的单调性,就要考虑它的导数变化,这就引出了利用导数来解决含参函数单调性的讨论方法。

首先,我们必须了解如何计算函数的导数。

对于一元函数,可以从原函数中求得导数的定义,即求偏导;也可以使用分部法及牛顿法,直接求出导数;而多元函数的导数一般由偏导方程式求得,其中可利用梯度、相对极值等概念计算函数的偏导数及其导数大小。

之后,可以利用导数把单调性转化为数学上的一种判断,即若一函数的导数大小符合特定条件,则该函数的单调性也得到确定,不断更新函数的参数就可以实现单调性。

如果在更新函数参数的过程中,函数的导数量一直大于0,则函数具有上升的单调性,反之,如果函数的导数量一直小于0,则函数具有下降的单调性。

此外,利用导数来解决含参函数单调性的另一个方面就是,可以根据该函数的导数表达式,计算其函数值的变化与自变量的变化。

当自变量变化时,就可以求取函数的导数值,从而归结出函数某个确定点处的单调性。

总之,利用导数来解决含参函数单调性,总结起来就是这样:首先,计算函数导数,然后根据函数的导数表达式近似计算函数某一确定点处的单调性;最后,根据函数的导数大小,可以判断该函数的单调性,并利用不断更新函数参数的过程来最大程度地实现单调性。

利用导数研究含参函数单调性

利用导数研究含参函数单调性

利用导数研究含参函数单调性导数是研究函数的一个重要工具,可以用来研究函数的单调性。

含参函数即包含一个或多个参数的函数,我们可以通过对导数的研究来研究含参函数的单调性,下面我们就来详细介绍。

首先,我们先回顾一下导数的定义。

对于含有一个自变量的函数y=f(x),我们可以通过求导来得到函数在其中一点的斜率。

导数的定义为:f'(x) = lim(h->0) {f(x+h)-f(x)} / h其中,f'(x)表示函数f(x)在点x处的导数。

如果函数在其中一点的导数大于0,我们可以认为该点函数是递增的;如果导数小于0,则是递减的。

如果导数恒大于0,则函数是严格递增的;如果导数恒小于0,则函数是严格递减的。

对于含参函数y=f(x,a,b,c...),其中a,b,c...为参数,我们也可以研究其单调性。

我们可以首先将含参函数看作一个关于自变量x的函数,然后求导。

求导后的函数中不再含有参数,其导数的正负号和零点即可以用来研究函数在不同参数取值情况下的单调性。

接下来,我们通过一个具体的例子来说明。

考虑函数y=f(x,a)=ax^2,其中a为参数。

我们可以先固定a的值,然后研究函数关于x的变化情况,再通过参数a的取值来研究函数的单调性。

首先,我们分别求导得到函数关于自变量x的导数:f'(x,a) = 2ax现在我们可以根据导数的正负号来研究函数的单调性。

当a>0时,f'(x,a)恒大于0,即导数恒大于0,说明函数递增;当a<0时,f'(x,a)恒小于0,即导数恒小于0,说明函数递减。

接下来,我们可以通过研究参数a的取值来研究函数的单调性。

当a>0时,函数为开口向上的抛物线,随着a的增大,函数的正值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强;当a<0时,函数为开口向下的抛物线,随着a的减小,函数的负值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强。

利用导数研究含参函数的单调性

利用导数研究含参函数的单调性

1 f ( x )在 ( , 2) 上 为 减 函 数 。 a
综上:
(1)当a 0时 , f ( x)在 (0,2) 上 递 增 , 在 (
2, ) 上 递 减 。
1 (2)当a 时 , f ( x )在 (0, ) 上 为 增 函 数 。 2 1 1 (3)当0 a 时 , f ( x )在 (0, 2) 和 ( ,)上 为 增 函 数 ; 2 a 1 f ( x )在 (2, ) 上 为 减 函 数 。 a 1 1 (4)当a 时 , f ( x )在 (0, ) 和 ( 2,)上 为 增 函 数 ; 2 a
1、能利用导数法判断含参函数的单调性
2、掌握讨论含参函数单调性的几种常见 分类标准
独立自学
1 用导数判断函数单调性的法则 、 :
如果在(a,b)内, f ( x)>0, 则f ( x)在此区间是增函数;
则f ( x)在此区间是减函数。 如果在(a,b)内,f ( x)<0,
2、求函数单调区间的一般步骤是 1、求定义域 2、求导f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0,求出减区间。
课题导入 安徽高考真题展示:
2 (09年)已知函数 f ( x) x a(2 ln x), a 0.讨论 f ( x)的单调性 x
含参数函数的单调性问题是历年高考中的一个重要 考点,同时也是学习中的一个难点。那么我们该如 何应对这一类问题呢?
利用导数研究含参函数的单调性
目标引领
探究: 1、在求导计算前应注意什么问题? 2、导函数中影响符号变化的部分是什么函数? 3、在利用导函数判别单调性时,应如何讨论? 无法确定导函数中二次结构的判别式符号,故应对判别式进行 分类讨论。 归纳总结: 对于二次函数取值正负,当根的情况 不能确定时,要对判别式进行讨论。

导数应用-含参函数的单调性讨论

导数应用-含参函数的单调性讨论

导数应用:含参函数的单调性讨论(一)一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。

二、典例讲解例1 讨论xax x f +=)(的单调性,求其单调区间步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。

变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间例2.讨论x ax x f ln )(+=的单调性 小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。

即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号。

一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。

变式练习2. 讨论x ax x f ln 21)(2+=的单调性小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。

对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。

用导数研究含参函数的单调性

用导数研究含参函数的单调性

用导数研究含参函数的单调性导数是研究函数在各个点上的斜率或变化率的工具,可以用来研究含参函数的单调性。

含参函数是指函数中包含一个或多个参数的函数。

研究含参函数的单调性,既可以固定参数的值,将其视为常数,研究含参函数的单调性;也可以将参数值作为变量,研究函数在不同参数取值下的单调性。

一、固定参数的值,研究含参函数的单调性:对于含参函数$f(x,\theta)$,其中$\theta$为参数,固定参数$\theta$的值,将其视为常数。

此时,可将含参函数简化为仅含有变量$x$的函数$f(x)$。

然后利用导数的概念和性质来研究这个简化后的函数$f(x)$的单调性。

具体步骤如下:1.求出函数$f(x)$的导函数$f'(x)$,即计算$f(x)$关于$x$的导数。

这一步可以直接用导数的定义来计算,或者应用常见函数的导数公式,例如幂函数、指数函数、对数函数等的导数公式。

2.求出函数$f'(x)$的零点,即求出方程$f'(x)=0$的解。

这些零点对应于函数$f(x)$的驻点,它们是函数在一些点上的斜率为0的点。

3.利用导数的符号来研究函数$f(x)$的单调性。

若$f'(x)>0$,表示函数$f(x)$在该点处的斜率为正,则函数$f(x)$单调递增;若$f'(x)<0$,表示函数$f(x)$在该点处的斜率为负,则函数$f(x)$单调递减。

4.将求出的零点和函数的特殊点(如端点、奇点等)放在数轴上,根据导数的符号,划分函数$f(x)$的单调区间。

通过以上步骤,可以得到函数$f(x,\theta)$在固定参数$\theta$的取值下,函数$f(x)$的单调性。

二、将参数值作为变量,研究函数在不同参数取值下的单调性:对于含参函数$f(x,\theta)$,其中$\theta$为参数,可以将参数值$\theta$看作是一个变量,通过改变参数值来研究函数的单调性。

这种情况下,可以使用偏导数来研究含参函数的单调性。

导数应用之含参函数单调性的讨论(含答案)

导数应用之含参函数单调性的讨论(含答案)

1
导数应用之含参函数单调性的讨论
一.预备知识:
(一)二次方程根的分布:
1.已知方程4x 2+2(m-1)x+(2m+3)=0(m ∈R )有两个正根,求实数m 的取值范围。

2.已知方程2x 2-(m+1)x+m=0有一正根和一负根,求实数m 的取值范围。

(二)穿根法拓展:
1.
02
2
2>--+x x x 2.(e x -1)(x-1)>0 3.(e x -1)(x-1)2>0
4.(e -x -1)(x-1)>0 5.(1-lnx)(x-1)>0
二.导后“一次”型:
1.已知函数f(x)=ax-(a+1)·ln(x+1),a ≥-1,求函数f(x)的单调区间。

2.已知函数f(x)=e x -ax ,讨论函数f(x)的单调性。

三.导后“二次型”:
3.已知函数f(x)=lnx+x 2-ax(a ∈R),求函数f(x)的单调区间。

2
4.已知函数f(x)=m ·ln(x+2)+2
1x 2
+1,讨论函数f(x)的单调性。

5.求函数f(x)=(1-a)lnx-x+2
2
ax 的单调区间。

6.已知函数f(x)=(ax 2-x)·lnx-2
1ax 2
+x ,讨论f(x)的单调性。

四.导后求导型
7.已知函数f(x)=e x -x 2,求函数f(x)的单调区间。

8.已知函数f(x)=
x
e
x 1
ln ,求函数f(x)的单调区间。

9.已知函数f(x)=e mx +x 2-mx ,讨论函数f(x)的单调性。

3
4。

利用导数研究含参函数单调性

利用导数研究含参函数单调性

利用导数研究含参函数单调性在数学中,单调性是指函数随着自变量的变化而变化的趋势。

如果函数在区间上递增,那么我们称函数在该区间上是单调递增的;如果函数在区间上递减,那么我们称函数在该区间上是单调递减的。

利用导数研究含参函数的单调性,是一种非常常用且有效的方法。

对于含参函数,其导数是关于自变量的函数,通过研究导数的符号来判断函数的单调性。

具体来说,如果导数在区间上恒大于0,那么函数在该区间上是递增的;如果导数在区间上恒小于0,那么函数在该区间上是递减的。

这可以通过导数的定义和性质来证明。

下面以一个简单的例子来说明如何利用导数研究含参函数的单调性。

假设我们要研究含参函数 f(x;a) = ax^2 的单调性,其中 a 是参数。

首先,我们计算函数f的导数。

由于a是参数,我们将其视为常数。

根据导数的定义,有:f'(x;a) = lim[h->0] (f(x+h;a) - f(x;a)) / h= lim[h->0] (a(x+h)^2 - ax^2) / h= lim[h->0] (2axh + ah^2) / h= lim[h->0] (2ax + ah)= 2ax因此,函数 f 的导数是 f'(x;a) = 2ax。

接下来,我们通过研究导数的符号来判断函数f的单调性。

当 a > 0 时,当 x1 < x2 时,有 2ax1 < 2ax2,即 f'(x1;a) <f'(x2;a)。

因此,函数 f 在区间上是递增的。

当 a < 0 时,当 x1 < x2 时,有 2ax1 > 2ax2,即 f'(x1;a) >f'(x2;a)。

因此,函数 f 在区间上是递减的。

当a=0时,函数f(x;a)=0,因此函数f在任意区间上是常数,既不递增也不递减。

综上所述,当 a > 0 时,函数 f(x;a) = ax^2 在任意区间上都是递增的;当 a < 0 时,函数 f(x;a) = ax^2 在任意区间上都是递减的;当a = 0 时,函数 f(x;a) = ax^2 是常数。

利用导数讨论函数的单调性

利用导数讨论函数的单调性

利用导数讨论函数的单调性广西南宁市第二十六中学(530201)许莉[摘要]导数是研究函数性质的一个重要工具,利用求导研究含参函数的单调性是高考的热点,也是学生感到棘手的一个问题.文章结合实例,分类讨论研究导数与函数的单调性之间的关系.[关键词]导数;函数;单调性[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2021)14-0030-02一、利用导数求函数的单调区间利用导数研究函数单调性的依据:若函数y=f(x)在某个区间内可导:若f′(x)>0,则f(x)在这个区间内单调递增;若f′(x)<0,则f(x)在这个区间内单调递减;若f′(x)=0,则f(x)在这个区间内是常数函数[1].[例1](2013年高考天津卷节选)已知函数f(x)=x2ln x.求函数f(x)的单调区间.分析:在对f(x)进行求导之前,应先考虑函数的定义域(因为单调区间必须是在定义域的限定范围内,而这个也是学生容易忽略的问题),再进行求导判断符号.解:函数f(x)的定义域为(0,+∞),f'(x)=2x ln x+x=x()2ln x+1,令f'(x)>0,得x>1e;令f'(x)<0,得0<x<1e,所以函数f(x)的单调递减区间是()0,1e,单调递增区间是()1e,+∞.小结:利用导数判断函数单调性的一般步骤:第一步,求函数的定义域;第二步,求导数f′(x),其中求导后若有分母就考虑通分,若能因式分解就要因式分解,不能因式分解再考虑求根公式或者其他化简;第三步,在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;第四步,写出函数f(x)的单调区间.二、利用导数讨论含参数函数的单调性[例2](2015年高考新课标卷2节选)已知函数f(x)=ln x+a(1-x),讨论函数f(x)的单调性.分析:在对f(x)进行求导后,发现求导后的函数不能直接判断符号,而是当a不为0时分子为一个含参的一次函数,这类问题就转化为求解含参的一次函数问题.解:f(x)的定义域为(0,+∞),f'(x)=1x-a=1-axx,若a≤0,则f′(x)>0,所以f(x)在(0,+∞)单调递增.若a>0,则当x∈()0,1a时,f′(x)>0;当x∈()1a,+∞时,f′(x)<0.所以f(x)在()0,1a单调递增,在()1a,+∞单调递减.小结:求导后导函数为含参的一次函数,求解不等式ax+b>0(<0)的步骤:(1)将不等式化为ax>-b;(2)a=0时,不等式不是一元一次不等式,单独讨论;(3)若a>0,则x>-ba;若a<0,则x<-ba,还要注意单调区间必须包含在定义域内.[例3](2016年高考四川卷节选)已知函数f(x)=ax2-a-ln x,其中a∈R,讨论f(x)的单调性.分析:在对f(x)进行求导后,发现求导后的函数不能直接判断符号,而当a不为0时分子为一个含参的二次函数,这类问题就转化为求解含参的二次函数问题.对于含参的二次函数,首先考虑的是二次函数图像的开口方向,其次是是否有根,是否能直接求零点,而这也正是分类讨论的标准.对于学生来说,不重不漏地进行分类是答题的关键点.解:定义域{x|x>}0,f′()x=2ax-1x=2ax2-1x,x>0,当a≤0时,2ax2-1≤0,f′()x≤0,f()x在(0,+∞)上单调递减.当a>0时,令f'(x)=0,得x=当x∈(时,f'(x)<0;当x∈)∞时,f′(x)>0.故f(x)在(上单调递减,在)+∞上单调递增.小结:求导后导函数为含参的二次函数,求解不等式ax2+bx+c>0(<0)的步骤:(1)讨论二次项系数;(2)判断是否有零点;(3)根据对应一元二次方程数学·解题研究根的情况,得到一元二次不等式的解集,从而得到函数的单调性.[例4](2019年高考全国卷Ⅲ理20节选)已知函数f (x )=2x 3-ax 2+b .讨论f (x )的单调性.分析:在对f (x )进行求导后,发现求导后可以因式分解,从而得到二次含参函数的零点,这时二次函数的开口方向已经确定,只需要对得到的两个两点进行分类讨论即可.解:(1)f '(x )=6x 2-2ax =2x (3x -a ),令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈()-∞,0∪()a3,+∞时,f '(x )>0;当x ∈()0,a3时,f '(x )<0.故f (x )在()-∞,0和()a3,+∞上单调递增,在()0,a3上单调递减;若a =0,f (x )在(-∞,+∞)上单调递增;若a <0,则当x ∈()-∞,a3∪()0,+∞时,f ′(x )>0;当x ∈()a3,0时,f ′(x )<0;故f (x )在()-∞,a3∪()0,+∞上单调递增,在()a3,0上单调递减.综上所述,若a =0,f (x )在()-∞,+∞上单调递增;若a <0,f (x )在()-∞,a3和()0,+∞上单调递增,在()a3,0上单调递减.若a >0时,f (x )在()-∞,0和()a3,+∞上单调递增,在()0,a3上单调递减.小结:求导后导函数为含参的二次函数,但是可以直接求出导函数的零点,只需要判断两根的大小,再根据“大于取两边,小于取中间”,得到f ′(x )>0,则f (x )在这个区间内单调递增;若f ′(x )<0,则f (x )在这个区间内单调递减即可.[例5](2018年高考全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x .讨论f (x )的单调性.分析:在对f (x )进行求导后,发现求导后的二次函数的开口方向已经确定,但是是否有零点还不能判断,因此分类的标准应该是对判别式进行讨论,进而再对可能存在的零点进行讨论,做到不重不漏.解:f (x )的定义域为()0,+∞,f '(x )=-1x2-1+a x =-x 2-ax +1x 2.(1)若a ≤2,则f '(x )≤0,所以f (x )在()0,+∞单调递减.(2)若a >2,令f '(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈()0,a -a 2-42∪()a +a 2-42,+∞时,f '(x )<0;当x ∈()0,a -a 2-42,a +a 2-42时,f ′(x )<0.所以f (x )在()0,a -a 2-42,()a +a 2-42,+∞单调递减,在()0,a -a 2-42,a +a 2-42单调递增.小结:求导后导函数为含参的二次函数,但是不能判断导函数是否有零点,则需要根据判别式的正负从而得到“存在零点”和“不存在零点”的分类标准,当判别式大于零时,还要判断是否可以比较两零点的大小,以及零点与定义域的关系,做到分类有序、不重不漏[2].通过以上例题发现,利用导数研究函数的单调性是一个有效的工具.利用导数求含参函数单调性的分类标准为:(1)求导后若导函数为含参数的一次函数,可以根据含参数的一次函数进行分类讨论.(2)求导后若导函数为含参数的二次函数,若求导后不能判断开口方向的,分类的标准是先讨论二次函数的开口方向,再讨论是否存在零点;若求导后导函数可以直接因式分解得到零点,则分类标准是直接对零点进行分类讨论;若求导后导函数确定了开口方向,但是不能判断是否有零点,则分类标准是直接对判别式进行分类讨论[3].而在分类时要做到不重不漏.[参考文献][1]祝敏芝.利用导数研究函数的单调性问题[J ].中学数学教学参考,2020(Z1):130-133.[2]王历权,范美卿,金雷.利用导数研究函数的单调性问题[J ].中学数学教学参考,2019(7):36-39.[3]陈达辉.利用导数研究函数单调性的几种类型[J ].数学学习与研究,2019(8):97.(责任编辑陈昕)数学·解题研究。

利用导数研究含参函数的单调性

利用导数研究含参函数的单调性

利用导数研究含参函数的单调性导数是研究函数的重要工具之一,通过对函数的导数进行研究,可以得到函数的单调性信息。

含参函数是指函数中包含一个或多个参数,通过改变参数的取值可以得到一组函数。

接下来,我们将讨论如何利用导数研究含参函数的单调性。

首先,我们先来回顾一下单调性的概念。

若函数在其定义域上单调递增,则函数的值随自变量的增加而增加;若函数在其定义域上单调递减,则函数的值随自变量的增加而减小。

简而言之,单调性描述了函数随自变量变化的趋势。

对于含参函数,我们首先可以将参数视为常数,通过对函数关于自变量的导数进行研究,来探究函数的单调性。

然后,我们再考虑参数的变化对函数单调性的影响。

以一元含参函数为例,设函数为f(x;a),其中x为自变量,a为参数。

我们首先对自变量x求导,得到导函数f'(x;a)。

然后,通过研究导函数的单调性来推导出原函数f(x;a)的单调性。

在研究导函数的单调性时,我们可以采用以下几种方法:1.部分导数法:对于多元含参函数,我们可以先固定参数a,然后对自变量中的一些变量求导,得到该变量的偏导数。

通过研究偏导数的单调性,可以推导出原函数的部分单调性。

然后,再逐个固定其他变量,对其他变量求导,从而得到更完整的原函数的单调性。

2.极值点法:对于导函数f'(x;a),我们可以求出其零点,即f'(x;a)=0的解,也就是导函数的临界点。

通过研究导函数在临界点附近的变化情况,可以推导出原函数的单调性。

具体而言,如果导函数在临界点附近从正变负,那么原函数在临界点左边单调递增,在临界点右边单调递减;反之,如果导函数在临界点附近从负变正,那么原函数在临界点左边单调递减,在临界点右边单调递增。

3.导数符号法:对于导函数f'(x;a),如果在整个定义域上恒大于0或者恒小于0,则可以推导出原函数在整个定义域上单调递增或者单调递减。

具体而言,如果f'(x;a)>0,那么原函数单调递增;如果f'(x;a)<0,那么原函数单调递减。

用导数研究含参函数的单调性(解析版)

用导数研究含参函数的单调性(解析版)

用导数研究含参函数的单调性一、考情分析函数是高中数学主干知识,单调性是函数的重要性质,用导数研究函数单调性是导数的一个主要应用,可以说在高考导数解答题中单调性问题是绕不开的一个问题,这是因为单调性是解决后续问题的关键,单调性在研究函数图像、比较函数值大小、确定函数的极值与零点、解不等式及证明不等式中都起着至关重要的作用.函数单调性的讨论与应用一直是高考考查的热点、而含有参数的函数单调性的讨论与应用更是高考中的难点.二、解题秘籍连续函数单调区间的分界点就是函数的极值点,也就是导函数的零点,即方程f x =0的根,所以求解含参函数的单调性问题,一般要根据f x =0的根的情况进行分类,分类时先确定导函数是一次型还是二次型1.若导函数是一次型,分类步骤是:①判断是否有根,若没有根,会出现恒成立的情况;②若有根,求出f x =0导的根,并判断根是否在定义域内;若根不在定义域内会出现恒成立的情况;③若根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;2.若导函数是二次型,分类步骤是:①先判断二次型函数是否有根,若没有根,会出现恒成立的情况;②判断根是否在定义域内,若仅有一个根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;③若两个根都在定义域内,需要根据两个根的大小进行讨论,当根的大小确定后,再讨论每个单调区间上的单调性.下面我们根据f x =0的根的情况总结出10类题型及解法,帮助同学们掌握这类问题的求解方法.类型一:f x 定义域不是R,f x =0可化为单根型一次方程思路:根据根是否在定义域内进行分类例1.讨论f x =x-1-a ln x的单调性分析:f x =x-ax x>0,f x =0根的情况转化为x-a=0x>0根的情况根据a是否在定义域0,+∞内进行分类答案:(1)a≤0,f x >0,f x 在0,+∞上是增函数;(2)a>0,f x 在0,a上是减函数,在a,+∞上是增函数.类型二:f x 定义域不是R,f x =0可化为单根型类一次方程思路:根据方程是否有根及根是否在定义域内进行分类例2.讨论f x =ax-1-aln x+1的单调性分析:f x =ax-1-ax x>0,f x =0根的情况转化为ax-1-a=0在0,+∞上根的情况.步骤一:讨论a=0(无实根);步骤二:讨论a<0,由ax-1-a=0得x=1-aa(不在定义域内);步骤三:讨论a >0,根据1-a a是否在定义域内再分0<a <1,a ≥1.答案:(1)a =0,f x <0,f x 在0,+∞ 上是减函数;(2)a <0,f x <0,f x 在0,+∞ 上是减函数;(3)a >0(i )a ≥1, f x >0,f x 在0,+∞ 上是增函数;(ii )0<a <1,f x 在0,1-a a 上是减函数,在1-a a,+∞ 上是增函数.类型三:f x 定义域为R , f x =0可化为单根型类二次(或高次)方程思路:根据x 的系数符号进行分类例3.讨论f x =14ax 4-13x 3+12ax 2-x +1的单调性分析:f x =x 2+1 ax -1 ,因为x 2+1>0,f x =0根的情况转化为ax -1=0根的情况,步骤一:讨论a >0;步骤二:讨论a =0,注意此时ax -1=-1<0 ;步骤三:讨论a <0,注意不等式两边除以a ,不等式要改变方向.答案:(1)a >0时f x 在1a ,+∞ 上递增,在-∞,1a上递减;(2)a =0时f x 在-∞,+∞ 上递减;(3)a <0时f x 在1a ,+∞ 上递减,在-∞,1a上递增.类型四:f x 定义域不是R ,f x =0可化为单根型二次方程思路:根据方程的根是否在定义域内进行分类例4.讨论f x =x +(1-a )ln x +a x +1的单调性分析:f x =x +1 x -a x 2x >0 ,因为x +1>0,f x =0根的情况转化为x -a =0在0,+∞ 上根的情况.步骤一:讨论a ≤0(x -a =0无实根);步骤二:讨论a >0,由x -a =0得x =a ;答案:(1)a ≤0,f x >0,f x 在0,+∞ 上是增函数;(2)a >0,x >a , f x >0,f x 在a ,+∞ 上是增函数;x <a ,f x <0,f x 在0,a 上是减函数.类型五:f x 定义域为R, f x =0可化为双根型二次方程思路:根据根的大小进行分类例5.讨论f x =x 2+ax +a e x 的单调性分析:f x =x +2 x +a e x ,f x =0根的情况转化为x +2 x +a =0的根的情况,根据-a 与-2的大小进行讨论.步骤一:讨论a <2;步骤二:讨论a =2,注意此时x +2 x +a =x +2 2≥0;步骤三:讨论a >2.答案:(1)a <2,f x 在-∞,-2 ,-a ,+∞ 上是增函数,在-2,-a 上是减函数;(2)a =2,f x 在-∞,+∞ 上是增函数;(3)a >2, f x 在-∞,-a ,-2,+∞ 上是增函数,在-a ,-2 上是减函数.类型六:f x 定义域不是R ,f x =0可化为双根型二次方程思路:根据根是否在定义域内及根的大小进行分类例6.讨论f x =12x 2-a 2+1a x +ln x 的单调性分析:f x =x -a x -1a x x >0 ,f x =0根的情况转化为x -a x -1a=0在0,+∞ 上根的情况.步骤一:讨论a <0(根不在定义域内).步骤二:讨论a >0(根据a ,1a的大小再分0<a <1,a =1,a >1)答案:(1)a <0,f x 在0,+∞ 上是增函数;(2)0<a <1,f x 在0,a ,1a ,+∞ 上是增函数,在a ,1a上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1a ,a ,+∞ 上是增函数,在1a,a 上是减函数.类型七:f x 定义域是R ,f x =0可化为双根型类二次方程思路:根据根的个数及根的大小进行分类例7.讨论f x =ax 3-a +32x 2+x -1的单调性分析:f x =3x -1 ax -1 ,f x =0根的情况转化为3x -1 ax -1 =0根的情况.步骤一:讨论a =0(ax -1=0无实根);步骤二:讨论a <0,此时13>1a ;步骤三:讨论a >0(根据13,1a的大小再分0<a <3,a =3,a >3)答案:(1)a =0,f x 在0,13 上是增函数,在13,+∞ 上是减函数;(2)a <0, f x 在0,1a ,13,+∞ 上是减函数,在1a ,13 上是增函数;(3)0<a <3,f x 在0,13 ,1a ,+∞ 上是增函数,在13,1a上是减函数;(4)a =3,f x 在-∞,+∞ 上是增函数;(5)a >3, f x 在0,1a ,13,+∞ 上是增函数,在1a ,13上是减函数.提醒:对于类二次方程,不要忽略对x 2项的系数为零的讨论类型八:f x 定义域不是R ,f x =0可化为双根型类二次方程思路:根据根是否在定义域内、根的个数及根的大小进行分类例8.讨论f x =12ax 2-a +1 x +ln x 的单调性分析:f x =x -1 ax -1 xx >0 ,f x =0根的情况转化为x -1 ax -1 =0x >0 根的情况.步骤一:讨论a =0(有1个根).步骤二:讨论a <0(1a 不在定义域内)步骤三:讨论a >0(1,1a 均在定义域内,根据1,1a的大小再分0<a <1,a =1,a >1)答案:(1)a ≤0,f x 在0,1 上是增函数,在1,+∞ 上是减函数;(步骤一二合并)(2)0<a <1,f x 在0,1 ,1a ,+∞ 上是增函数,在1,1a 上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1a ,1,+∞ 上是增函数,在1a,1 上是减函数.类型九:f x =0先化为指数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例9.讨论f x =a x -2 e x -12x -1 2的单调性分析:f x =x -1 ae x -1 ,f x =0根的情况转化为x -1 ae x -1 =0根的情况.步骤一:讨论a ≤0(有1个根).步骤二:讨论a >0,f x =x -1 ae x -1 的拟合函数为y =x -1 x +ln a (根据1,-ln a 的大小再分0<a <1e ,a =1e ,a >1e)答案:(1)a ≤0,f x 在-∞,1 上是增函数,在1,+∞ 上是减函数;(2)0<a <1e ,f x 在-∞,1 ,-ln a ,+∞ 上是增函数,在1,-ln a 上是减函数;(3)a =1e ,f x 在-∞,+∞ 上是增函数;(4)a >1e , f x 在-∞,-ln a ,1,+∞ 上是增函数,在-ln a ,1 上是减函数.类型十:f x =0先化为对数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例10.讨论f x =x 2-2ax ln x -12x 2+2ax +1的单调性分析:f x =x -a ln x x >0 的拟合函数为x -a x -1 (根据a 与0,1大小分类)步骤一:讨论a ≤0(x -a >0).步骤二:讨论a >0, (再分0<a <1,a =1,a >1)答案:(1)a ≤0,f x 在0,1 上是减函数,在1,+∞ 上是增函数;(2)0<a <1,f x 在0,a ,1,+∞ 上是增函数,在a ,1 上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1 ,a ,+∞ 上是增函数,在1,a 上是减函数.三、典例展示例1.(2023届四川省内江市高三零模考试)已知函数f (x )=x +a ln x ,a ∈R(1)讨论f x 的单调性;(2)若不等式f x ≤x 2+x 对任意x ∈(1,+∞)恒成立,求a 的最大值.【解析】 (1)f '(x )=1+a x =x +a xx >0 ,当a ≥0时,f '(x )>0恒成立,∴f (x )在(0,+∞)上单调递增;当a <0时,令f '(x )>0得x >-a ,令f '(x )<0得0<x <-a ,∴f (x )在(-a ,+∞)上单调递增,在0,-a 上单调递减;综上所述:当a ≥0时, f (x )在(0,+∞)上单调递增;当a <0时, f (x )在(-a ,+∞)上单调递增,在0,-a 上单调递减;(2)依题意得:f x ≤x 2+x 对任意x ∈(1,+∞)恒成立,等价于a ≤x 2ln x x >1 恒成立.令g x =x 2ln x x >1 ,则g 'x =2x ln x -x ln x 2=x 2ln x -1 ln x2,则当x >e 时,g 'x >0,当1<x <e 时,g 'x <0,又g 'e =0,∴g x 在1,e 上单调递减,在e ,+∞ 上单调递增,∴g x min =g e =2e ,∴a ≤2e ,即a 的最大值为2e .例2.(2022届湖北省部分学校高三下学期5月适应性考试)已知函数f x =x +1 e x -ax 2-4ax a ∈R (e 为自然对数的底数).(1)若a >0时,求函数f x 的单调区间.(2)是否存在实数a ,使得x ≥0时,f x ≥xe x +1-a x 2+cos x -2ax 恒成立?若存在,求出实数a 的取值范围;若不存在,说明理由.【解析】 (1)由题知f (x )=(x +2)e x -2ax -4a =(x +2)e x -2a ,①若0<a <12e2,则ln2a <-2,当x <ln2a 或x >-2时,f (x )>0,当ln2a <x <-2时,f (x )<0,∴f (x )在(-∞,ln2a ),(-2,+∞)上单调递增,在(ln2a ,-2)上单调递减;②若a =12e 2,则ln2a =-2,f (x )≥0,∴f (x )在(-∞,+∞)上单调递增;③若a >12e2,则ln2a >-2,当x <-2或x >ln2a 时,f (x )>0,当-2<x <ln2a 时,f (x )<0,∴f (x )在(-∞,-2),(ln2a ,+∞)上单调递增,在(-2,ln2a )上单调递减.综上所述,当0<a <12e 2时,f (x )的单调增区间为(-∞,ln2a ),(-2,+∞),单调减区间为(ln2a ,-2);当a =12e 2时,f (x )的单调增区间为(-∞,+∞);当a >12e2时,f (x )的单调增区间为(-∞,-2),(ln2a ,+∞),单调减区间为(-2,ln2a ).(2)设g (x )=f (x )-xe x -(1-a )x 2-cos x +2ax =e x -x 2-2ax -cos x (x ≥0),则g (x )=e x -2x -2a +sin x ,设h (x )=e x -2x -2a +sin x (x ≥0),则h (x )=e x +cos x -2,设m (x )=e x +cos x -2(x ≥0),则m (x )=e x -sin x >0,∴m (x )在[0,+∞)上单调递增,∴h (x )=m (x )≥m (0)=0,∴h (x )在[0,+∞)上单调递增,∴g (x )=h (x )≥h (0)=1-2a ,当a ≤12时,g (x )≥0,∴g (x )在[0,+∞)上单调递增,∴g (x )≥g (0)=0;当a >12时,g (0)=1-2a <0,令t (x )=e x -x 2(x >0),则t (x )=e x -2x >0(x >0),所以t (x )在(0,+∞)上单调递增,所以t (x )>t (0)=1,所以e x >x 2(x >0),所以g (6a )=e 6a -14a +sin6a >36a 2-14a -1,设φ(a )=36a 2-14a -1a >12 ,易知φ(a )在12,+∞ 上单调递增,∴φ(a )>36×14-14×12-1=1>0,即g (6a )>0,∴存在x 0∈(0,6a ),使g x 0 =0,当0<x <x 0时,g (x )<0,∴g (x )在0,x 0 上单调递减,此时,g (x )<g (0)=0,不符合题意;综上,存在实数a ,使得当x ≥0时,f (x )≥xe x +(1-a )x 2+cos x -2ax 恒成立,且实数a 的取值范围为-∞,12 .例3.(2023届湖北省新高三摸底联考)已知a ≥0,函数f x =ax +1+a x-ln x .(1)讨论函数f x 的单调性;(2)如果我们用n -m 表示区间m ,n 的长度,试证明:对任意实数a ≥1,关于x 的不等式f x <2a +1的解集的区间长度小于2a +1.【解析】 (1)f x =ax +a +1x-ln x ,定义域为0,+∞ ,f x =a -a +1x 2-1x =ax 2-x -a +1 x 2=x +1 ax -a -1 x 2.若a =0,f x =-x +1 x 2<0恒成立,所以f x 在0,+∞ 上单调递减;若a >0,f x =a x +1 x -1-1a x 2,1+1a >0,当x ∈0,1+1a 时,f x <0;当x ∈1+1a ,+∞ 时,f x >0,所以f x 在0,1+1a 上单调递减,在1+1a ,+∞ 上单调递增.综上,a =0时,f x 在0,+∞ 上单调递减;a >0时,f x 在0,1+1a 上单调递减,在1+1a,+∞ 上单调递增.(2)令g x =f x -2a +1 =ax +a +1x -ln x -2a -1,则g 1 =0,因为a ≥1,由(1)知,g x 在0,1+1a 上单调递减,在1+1a ,+∞ 上单调递增,又1+1a >1,所以g 1+1a <0,令h a =g 2a +2 =2a 2-12-ln 2a +2 ,a ∈1,+∞ ,由h a =4a -22a +2=4a 2+4a -1a +1>0恒成立,所以h a 在1,+∞ 上单调递增.又e 3>16,所以e 316>1,即e 324>1.从而h 1 =32-ln4=ln e 324>0,所以h a >h 1 >0,即g 2a +2 >0.因为2a +2>2,1+1a <2,所以2a +2>1+1a ,所以存在唯一x 1∈1+1a ,2a +2 ,使得g x 1 =0,所以g x <0的解集为1,x 1 ,即f x <2a +1的解集为1,x 1 ,又1,x 1 的区间长度为x 1-1<2a +2 -1=2a +1,原命题得证.例4.(2022届青海省西宁市高三下学期第三次模拟)已知函数f x =x ln x -a 2x 2-x +a a ∈R .(1)讨论函数f x 在0,+∞ 上的单调性;(2)已知x 1,x 2是函数f x 的两个不同的极值点,且x 1<x 2,若不等式e 1+λ<x 1x 2λ恒成立,求正数λ的范围.【解析】 (1)f x =x ln x -a 2x 2-x +a ,所以f x =ln x -ax ,令g x =ln x -ax ,故g x =1x -a =1-ax xx >0 .当a ≤0时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,即f x 在0,+∞ 上单调递增;当a >0时,令g x >0,得0<x <1a ,令g x <0,得x >1a ,所以g x 在0,1a 上单调递增,在1a ,+∞ 上单调递减,即f x 在0,1a 上单调递增,在1a,+∞ 上单调递减.综上所述:当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,1a 上单调递增,在1a,+∞ 上单调递减.(2)e 1+λ<x 1x 2λ等价于1+λ<ln x 1+λln x 2,由题意可知x 1,x 2分别是方程f x =0的两个根,即ln x -ax =0的两个根,即ln x 1=ax 1,ln x 2=ax 2,原式等价于1+λ<ax 1+λax 2=a x 1+λx 2 .因为λ>0,0<x 1<x 2,所以原式等价于a >1+λx 1+λx 2,又ln x 1=ax 1,ln x 2=ax 2,作差得,ln x 1x 2=a x 1-x 2 ,即a =ln x 1x 2x 1-x 2,所以原式等价于ln x 1x 2x 1-x 2>1+λx 1+λx 2,因为0<x 1<x 2,所以ln x 1x 2<1+λ x 1-x 2 x 1+λx 2恒成立.令t =x 1x 2,t ∈0,1 ,则不等式ln t <1+λ t -1 t +λ在t ∈0,1 上恒成立,令m t =ln t -1+λ t -1 t +λ,又因为m t =1t -1+λ 2t +λ2=t -1 t -λ2 t t +λ 2,当λ2≥1时,可得t ∈0,1 时,m t >0,所以m t 在0,1 上单调递增,又因为m 1 =0,m t <0在0,1 上恒成立,符合题意;当λ2<1时,可得t ∈0,λ2 时,m t >0,t ∈λ2,1 时,m t <0,所以m t 在0,λ2 上单调递增,在λ2,1 上单调递减,又因为m 1 =0,所以m t 在0,1 上不能恒小于0,不符合题意,舍去.综上所述,若不等式e 1+λ<x 1x 2λ恒成立,只需满足λ2≥1,由于λ>0,所以λ≥1,即实数λ的取值范围为:1,+∞ .四、跟踪检测1.(2023届河南省安阳市高三上学期名校调研摸底考试)已知函数f x =e x -ax +b .(1)当b =0时,讨论f x 的单调性;(2)当a >0时,若f x ≥0,求b 的最小值.【解析】 (1)当b =0时,f x =e x -ax ,f x =e x -a ,当a ≤0时,f x =e x -a >0,f x 在R 上单调递增;当a >0时,令f x =0有x =ln a ,当x ∈-∞,ln a 时,f x <0,f x 单调递减,当x ∈ln a ,+∞ 时,f x >0,f x 单调递增.(2)当a >0时,由(1)若f x ≥0,则f ln a ≥0有解即可,即a -a ln a +b ≥0有解,即b ≥a ln a -a 有解,设g a =a ln a -a ,则g a =ln a ,故当0<a <1时,g a <0,g a 单调递减;当a >1时,g a >0,g a 单调递增.故g min a =ln1-1=-1,故当b ≥a ln a -a min =-1.故b 的最小值为-12.(2023届三省三校高三第一次联考)已知函数f (x )=(1-m )x -ln x .(1)讨论f (x )的单调性;(2)若m =0,设g x =f x +2-x e x 在12,1上的最小值为n ,求证:(n -3)(n -4)<0 .【解析】 (1)f (x )=1-m -1x =(1-m )x -1xx >0 .①当1-m ≤0,即m ≥1时:f (x )<0恒成立.故f (x )在(0,+∞)上单调递减.②当1-m >0,即m <1时:令f (x )<0,即(1-m )x -1x <0,解得:0<x <11-m ;所以f (x )在0,11-m上单调递减,在11-m ,+∞ 上单调递增.综上所述:当m ≥1时:f (x )在(0,+∞)上单调递减;当m <1时:f (x )在0,11-m 上单调递减,在11-m ,+∞ 上单调递增.(2)当m =0时,g x =x -ln x +2-x e x ,x ∈12,1 .g x =1-1x -e x +2-x e x =x -1x +1-x e x =1-x e x -1x .因为m x =e x -1x 在12,1 上单调递增,且m 12 =e -2<0,m 1 =e -1>0.所以必存在点x 0∈12,1 ,使g (x 0)=0,即e x 0=1x 0⇒x 0=-ln x 0且当x ∈12,x 0 时g (x )<0,当x ∈x 0,1 时g (x )>0,所以g (x )在区间12,x 0 上单调递减,在区间x 0,1 上单调递减.所以n =g x min =g x 0 =x 0-ln x 0+2-x 0 e x 0=2x 0+2-x 0x 0=2x 0+2x 0-1.x 0∈12,1 .又因n =2x 0+2x 0-1在12,1 上单调递减.所以2+2-1<n <2×12+2×2-1⇒3<n <4.故(n -3)(n -4)<0恒成立.3.(2022届四川省内江市第六中学高三下学期仿真考试)已知函数f x =x -a -1 e x -x 2+2ax a ∈R .(1)讨论f x 的单调性;(2)从下面两个条件中选一个,判断f m 的符号,并说明理由.①0<a <12,0<m <ln2;②1<a <2,1<m <2.【解析】 (1)f x =(x -a )e x -2x +2a =(x -a )e x -2 ,令f x =0,则x =a 或ln2,若a =ln2,f x ≥0,所以函数f x 在R 上为增函数;若a >ln2,当x >a 或x <ln2时,f x >0,当ln2<x <a 时,f x <0,所以函数f x 在(-∞,ln2)和(a ,+∞)上递增,在(ln2,a )上递减;若a <ln2,当x >ln2或x <a 时,f x >0,当a <x <ln2时,f x <0,所以函数f x 在(-∞,a )和(ln2,+∞)上递增,在(a ,ln2)上递减;综上所述,当a =ln2时,函数f x 在R 上为增函数;当a >ln2时,函数f x 在(-∞,ln2)和(a ,+∞)上递增,在(ln2,a )上递减;当a <ln2时,函数f x 在(-∞,a )和(ln2,+∞)上递增,在(a ,ln2)上递减;(2)选①,当0<a <12,0<m <ln2时,由(1)知f x 在(0,a )上递增,在(a ,ln2)上递减,所以f (m )≤f (a )=-e a +a 2,令g (a )=e a -a -10<a <12 ,则g (a )=e a -1,当0<a <12时,g (a )>0,得函数g (a )在0,12上单调递增,所以g (a )>g (0)=0,即e a -a -1>0,则-e a <-a -1,所以f (a )=-e a +a 2<a 2-a -1=a -12 2-54<-1<0,所以f m <0.选②,当1<a <2,1<m <2时.由(1)得1<a <2时,f x 在1,a 上递减,在a ,2 上递增,又f 1 =-ae -1+2a =2-e a -1<0,f 2 =1-a e 2-4+4a <41-a -4+4a =0,所以当1<x <2时,f x <0,所以f m <0.4.(2022届华大新高考联盟名校高考押题卷)设函数f x =1+a ln x x ,其中a ∈R .(1)当a ≥0时,求函数f x 的单调区间;(2)若f x ≤x 2,求实数a 的取值范围.【解析】 (1)f (x )=1+a ln x x(x >0),f (x )=a -(1+a ln x )x 2=a -1-a ln x x 2.当a =0时,f (x )=a -(1+a ln x )x 2=-1x2<0恒成立,则f x 在0,+∞ 上为减函数,当a >0时,令f (x )>0,可得a -1-a ln x >0,则ln x <a -1a,解得0<x <e a -1a ,令f (x )<0,解得x >e a -1a ,综上,当a =0时,f x 的减区间为0,+∞ ;当a >0时,f x 的单调递增区间为0,ea -1a ,单调递减区间为e a -1a ,+∞ .(2)由f (x )≤x 2,可得x 3-a ln x -1≥0设g (x )=x 3-a ln x -1(x >0),则g (x )=3x 2-a x =3x 3-a x.①当a ≤0时,g x >0,g x 单调递增,而g 12=18-a ln 12-1=-78+a ln2<0,所以不满足题意,②当a >0时,令g (x )=3x 3-a x=0,解得x =3a 3,当x ∈0,3a 3 时,g x <0,g x 为减函数,当x ∈3a 3,+∞ 时,g x >0,g x 为增函数,所以g(x)≥g3a3=13+13ln3a-13a ln a-1.令h(a)=13+13ln3a-13a ln a-1(a>0),h (a)=13+13ln3-13(ln a+1)=13(ln3-ln a),当a∈0,3时,h a >0,h a 为增函数,当a∈3,+∞时,h a <0,g x 为减函数,所以h a ≤h3 =0,又g x ≥h a ≥0.则h a =0,解得a=3,所以实数a的取值范围是3 .5.(2022届湖北省卓越高中千校联盟高三高考终极押题卷)已知f x =a-1ln x+x+a x(1)若a<0,讨论函数f x 的单调性;(2)g x =f x +ln x-a x有两个不同的零点x1,x20<x1<x2,若g2x1+λx22+λ>0恒成立,求λ的范围.【解析】(1)f x 定义域为0,+∞f x =a-11x+1-ax2=x2+a-1x-ax2=x+ax-1x2ⅰ)0<-a<1即-1<a<0时,f x <0⇒-a<x<1,f x >0⇒0<x<-a或x>1ⅱ)-a=1即a=-1时,x∈0,+∞,f x ≥0恒成立ⅲ)-a>1即a<-1,f x <0⇒1<x<-a,f x >0⇒0<x<1或x>-a综上:-1<a<0时,x∈-a,1,f x 单调递减;0,-a、1,+∞,f x 单调递增a=-1时,x∈0,+∞,f x 单调递增a<-1时,x∈1,-a,f x 单调递减;0,1、-a,+∞,f x 单调递增(2)g x =a ln x+x,由题a ln x1+x1=0a ln x2+x2=0,0<x1<x2则a ln x1-ln x2=x2-x1,设t=x1x2∈0,1∴a=x2-x1ln x1-ln x2=x2-x1ln tg x =a x+1∴g2x1+λx22+λ=a2+λ2x1+λx2+1=x2-x1ln t⋅2+λ2x1+λx2+1=2+λ1-t2t+λln t+1>0恒成立t∈0,1,∴ln t<0∴2+λ1-t2t+λ+ln t<0恒成立设h t =2+λ1-t2t+λ+ln t,∴h t <0恒成立h t =1t -2+λ 22t +λ2=2t +λ 2-t 2+λ 2t 2t +λ 2=4t -1 t -λ24 t 2t +λ 2ⅰ)λ2≥4时,t -λ24<0,∴h t >0,∴h t 在0,1 上单调递增∴h t <h 1 =0恒成立,∴λ∈-∞,-2 ∪2,+∞ 合题ⅱ)λ2<4,t ∈0,λ24,∴h t >0,∴h t 在0,λ24上单调递增t ∈λ24,1 时,h t <0,∴h t 在λ24,1 上单调递减∴t ∈λ24,1 ,h t >h 1 =0,不满足h t <0恒成立综上:λ∈-∞,-2 ∪2,+∞6.(2022届河南省许平汝联盟高三下学期核心模拟卷)已知函数f x =ln x -ax 2+2a ∈R .(1)讨论f x 的单调性;(2)若f x -2-a x ≥0在x ∈1,e 上恒成立,求实数a 的取值范围.【解析】 (1)f x 的定义域是0,+∞ ,f x =-2ax 2+1x.①当a ≤0时,f x >0恒成立,所以f x 在0,+∞ 上单调递增;②当a >0时,令f x =0,解得x =2a 2a 或-2a 2a (舍),令f x >0,解得0<x <2a 2a,令f x <0,解得x >2a 2a,所以f x 在0,2a 2a上单调递增,在2a 2a ,+∞ 上单调递减.(2)若f x -2-a x ≥0在x ∈1,e 上恒成立,即ln x -ax 2-2-a x +2≥0在x ∈1,e 上恒成立.令g x =ln x -ax 2-2-a x +2,x ∈1,e ,则g x =1x -2ax -2-a =-2ax 2-2-a x +1x =-ax +1 2x -1 x.当a =0时,g x =ln x -2x +2,g e =ln e -2e +2=3-2e <0,不符合题意;当a >0时,g x <0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递减,又g 1 =0,所以g e <g 1 =0,不符合题意;当a <0时,若-1a≤1,即a ≤-1,g x ≥0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递增,又g 1 =0,所以g x ≥0在x ∈1,e 上恒成立,符合题意.若1<-1a <e ,即-1<a <-1e ,令g x >0,解得-1a <x <e ,令g x <0,解得1<x <-1a ,所以g x 在1,-1a 上单调递减,在-1a ,e 上单调递增,所以g x min =g -1a<g 1 =0,不符合题意;若-1a ≥e ,即-1e≤a <0,g x ≤0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递减,又g 1 =0,所以g e <g 1 =0,不符合题意.综上所述,实数a 的取值范围是-∞,-1 .7.(2022届广东省潮州市瓷都中学高三下学期第三次模拟)已知函数f x =2x 3+31+m x 2+6mx x ∈R .(1)讨论函数f x 的单调性;(2)若f 1 =5,函数g x =a ln x +1 -f x x 2≤0在1,+∞ 上恒成立,求整数a 的最大值.【解析】 (1)f x =6x 2+61+m x +6m =6x 2+1+m x +m =6(x +1)(x +m )若m =1时,f (x )≥0,f (x )在R 上单调递增;若m >1时,-m <-1,当x <-m 或x >-1时,f (x )>0,f (x )为增函数,当-m <x <-1时,f (x )<0,f (x )为减函数,若m <1时,-m >-1,当x <-1或x >-m 时,f (x )>0,f (x )为增函数,当-1<x <-m 时,f (x )<0,f (x )为减函数.综上,m =1时,f (x )在R 上单调递增;当m >1时,f (x )在(-∞,-m )和(-1,+∞)上单调递增,在(-m ,-1)上单调递减;当m <1时,f (x )在(-∞,-1)和(-m ,+∞)上单调递增,在(-1,-m )上单调递减.(2)由f (1)=2+3(1+m )+6m =5,解得 m =0,所以f (x )=2x 3+3x 2,由x ∈(1,+∞)时,ln x +1>0,可知g (x )=a (ln x +1)-2x -3≤0在(1,+∞)上恒成立可化为a ≤2x +3ln x +1在x ∈(1,+∞)上恒成立,设h (x )=2x +3ln x +1(x >1),则h (x )=2(ln x +1)-(2x +3)×1x (ln x +1)2=2ln x -3x (ln x +1)2,设φ(x )=2ln x -3x (x >1),则 φ (x )=2x +3x2>0,所以φ(x )在(1,+∞)上单调递增,又φ(2)=2ln2-32=ln16-32<0,φ52 =2ln 52-65=25ln 52-3 5>0,所以方程h (x )=0有且只有一个实根x 0,且 2<x 0<52,2ln x 0=3x 0,所以在(1,x 0)上,h (x )<0, h (x )单调递减,在x 0,+∞ 上,h (x )>0,h (x )单调递增,所以函数h (x )的最小值为h x 0 =2x 0+3ln x 0+1=2x 0+332x 0+1=2x 0∈4,5 ,从而a ≤2x 0,又a 为整数,所以a 的最大值为4.8.(2022四川省资阳市高三第一次质量检测)已知函数f (x )=(x -a -1)e x -12ax 2+a 2x .(1)讨论f (x )的单调性;(2)若f (x )在(-∞,0)上只有一个极值,且该极值小于-e a -1,求a 的取值范围.【解析】(1)由题意,函数f (x )=(x -a -1)e x -12ax 2+a 2x ,可得f (x )=(x -a )e x -ax +a 2=(x -a )e x -a ,当a ≤0时,e x -a >0,令f (x )<0,解得x <a ;令f (x )>0,解得x >a ,故f (x )在(-∞,a )递减,在(a ,+∞)递增,当a >0时,令f (x )=0,解得x 1=a 或x 2=ln a ,设g (a )=a -ln a ,可得g (a )=a -1a,当a >1时,g (a )>0;当0<a <1时,g (a )<0,故g (x )min =g (1)=1>0,故a >ln a ,由f (x )>0,解得x >a 或x <ln a ,由f (x )<0,解得ln a <x <a ,故f (x )在(-∞,ln a )递增,在(ln a ,a )递减,在(a ,+∞)递增,综上可得:当a ≤0时,f (x )在(-∞,a )递减,在(a ,+∞)递增,a >0时,f (x )在(-∞,ln a )递增,在(ln a ,a )递减,在(a ,+∞)递增;(2)当a <0时,由(1)知,f (x )在(-∞,a )递减,在(a ,+∞)递增,故f x 极小值=f (a )=-e a +12a 3<-e a -1,解得a <-32,当0<a <1时,ln a <0,由(1)知f (x )在x =ln a 处取极大值,设h (a )=f (ln a )=(ln a -a -1)a -12a ln 2a +a 2ln a =a ln a 1-12ln a +a -a 2-a ,则h (a )=-12ln 2a +2a ln a -a ,因为0<a <1,可得ln a <0,所以h (a )<0,h (a )在(0,1)递减,所以h (a )>h (1)=-2>-e a -1,所以0<a <1不合题意,当a ≥1时,ln a ≥0,由(1)知f (x )在(-∞,0)递增,此时f (x )在(-∞,0)无极值,不符合题意,综上可得,实数a 的取值范围是(-∞,-32).9.(2021重庆市第八中学高三下学期高考适应性考试)已知函数f x =x +ln x -a x,g x =a -2x ln x +x .(1)讨论f x 的单调性;(2)若a ∈1,4 ,记f x 的零点为x 1,g x 的极大值点为x 2,求证:x 1<x 2·【解析】(1)f x 的定义域为0,+∞ ,f ′x =1+1x +a x 2=x 2+x +a x 2,当a ≥0时,f ′x >0,f x 在0,+∞ 上单调递增:当a <0时,Δ=1-4a >0,f ′x =0在0,+∞ 上有唯一正根-1+1-4a 2,当x ∈0,-1+1-4a 2时,f ′x <0,单调递减;当x ∈-1+1-4a 2,+∞ 时,f ′x >0,f x 单调递增;综上,当a ≥0时,f x 在0,+∞ 上单调递增;当a <0时,f x 在0,-1+1-4a 2 上单调递减;在-1+1-4a 2,+∞ 上单调递增.(2)由(1)知,当a ∈1,4 时,f x 在0,+∞ 上单调递增,且f 1 =1-a <0,f 2 =2+ln2-a 2>0,所以f x 在0,+∞ 上有唯一零点x 1∈1,2 .又g ′x =-2ln x +a x -1,又a ∈1,4 ,由单调性运算性质可知,g ′x 在0,+∞ 上单调递减,且g ′1 =a -1>0,g ′4 =-2ln4+a 4-1<0,故存在x 0∈1,4 ,使得g ′x 0 =0,即a x 0=2ln x 0+1,当x ∈0,x 0 时,g ′x >0,g x 单调递减;当x ∈x 0,+∞ 时,g ′x <0,g x 单调递增;所以x 0是g x 唯一极大值点,所以x 0=x 2,故a x 2=2ln x 2+1,因此f x 2 =x 2+ln x 2-a x 2=x 2+ln x 2-2ln x 2-1=x 2-ln x 2-1.设h x =x -ln x -1,因为x ∈1,4 ,h ′x =1-1x >0,所以h ′x 在1,4 上单调递增,所以h x >h 1 =0.故有f x 2 >0=f x 1 ,又f x 在0,+∞ 上单调递增,所以x 1<x 2.10.(2021山东省烟台市高三高考适应性练习)已知函数f x =a x 2-x -ln x a ∈R .(1)讨论函数f x 的单调性;(2)证明:当x >1时,2e x -1ln x ≥x 2+1x 2-x.【解析】(1)函数f x 的定义域为0,+∞ ,f x =a 2x -1 -1x =2ax 2-ax -1x.令g x =2ax 2-ax -1.①当a =0时,g x =-1<0,f x =g x x<0,故f x 在0,+∞ 单调递减;②当a ≠0时,g x 为二次函数,Δ=a 2+8a .若Δ≤0,即-8≤a <0,则g x 的图象为开口向下的抛物线且g x ≤0,所以f x ≤0,故f x 在0,+∞ 单调递减;若Δ>0,即a <-8或a >0,令g x =0,得x 1=a -a 2+8a 4a ,x 2=a +a 2+8a 4a.当a <-8时,g x 图象为开口向下的抛物线,0<x 2<x 1,所以当x ∈0,x 2 或x ∈x 1,+∞ 时,g x <0,所以f x <0,f x 单调递减;当x ∈x 2,x 1 时,g x >0,所以f x >0,f x 单调递增;当a >0时,g x 图象为开口向上的抛物线,x 1<0<x 2,所以当x ∈0,x 2 ,g x ≤0,所以f x <0,故f x 单调递减;当x ∈x 2,+∞ 时,g x >0,所以f x >0,f x 单调递增.综上,当a <-8时,f x 在0,a +a 2+8a 4a 和a -a 2+8a 4a ,+∞上单调递减,在a +a 2+8a 4a ,a -a 2+8a 4a上单调递增;当a >0时,f x 在0,a +a 2+8a 4a 单调递减,在a +a 2+8a 4a ,+∞上单调递增;当-8≤a ≤0,f x 在0,+∞ 单调递减;(2)由(1)知,当a =1时,f x 在0,1 单调递减,在1,+∞ 单调递增,因此对∀x >1恒有f x >f 1 ,即x 2-x >ln x .因为0<ln x <x 2-x ,若2e x -1≥x 2+1成立,则2e x -1ln x ≥x 2+1x 2-x 成立.令φx =e x -1-12x 2+1 x ≥1 ,则φ x =e x -1-x ,φ x =e x -1-1.因为x ≥1,所以φ x ≥0,所以φ x 在1,+∞ 单调递增,又φ 1 =0,所以当x ≥1时,φ x ≥0,所以φx 在1,+∞ 单调递增,又φ1 =0,所以对∀x >1恒有φx >φ1 =0,即2e x -1≥x 2+1.1ln x>1x2-x>0,由不等式的基本性质可得2e x-1ln x≥x2+1x2-x.当x>1时,0<ln x<x2-x,则。

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。

讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。

三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。

利用导数讨论含参函数的单调性

利用导数讨论含参函数的单调性

利用导数讨论含参函数的单调性讨论函数的单调性是研究函数问题的基础,对于函数的最值、极值、零点等性质的研究,都是以函数的单调性为基础展开的。

在此,主要讨论含参函数单调性的讨论方法。

函数的单调性由导函数的正负决定,讨论函数的单调性关键在于研究导函数的正负。

含参函数导函数正负的确定最大的困难在于参数的影响,如何对参数进行分类讨论是问题的关键。

在此,我们将提出三种方法。

一.分离参数、数形结合函数求导后,导函数中的参数可以分离,形如:m x g x f -=)()('的形式,若)(x g 有最小值,则分min )(x g m ≤,min )(x g m >两种情况进行分类讨论。

(1)当min )(x g m ≤时,0)()('≥-=m x g x f ;(2)当min )(x g m >时,若0)()('=-=m x g x f 有一个解,且)(x g 单调,设解为0x ,则0x 将定义域分为两个区间,讨论函数的单调性。

若)(x g 有最大值,则分max )(x g m ≥,max )(x g m <两种情况进行分类讨论。

1.(2012年全国卷文科21题) 设函数2)(--=ax e x f x . (1)求)(x f 的单调区间;解:函数)(x f 的定义域为()+∞∞-,,a e x f x -=)(',①若0≤a ,则0)('>x f ,)(x f 在()+∞∞-,单调递增; ②若0>a ,则由0)('=x f 得a x ln =,当()a x ln ,∞-∈时,0)('<x f ,当()+∞∈,ln a x 时,0)('>x f ; 所以)(x f 的单调减区间是()a ln ,∞-,单调增区间是()+∞,ln a ; 2.(2016年山东文科20题)设x a ax x x x f )12(ln )(2-+-=,R a ∈. (1)令)()('x f x g =,求)(x g 的单调区间. 解:函数)(x f 的定义域为()+∞,0,1221ln )()('-+-+==a ax x x f x g ,a xx g 21)('-=(1)若0≤a ,则0)('>x g ,)(x g 在()+∞,0单调递增;(2)若0>a ,则由0)('=x g 得ax 21=,当⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('>x g ,当⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('<x g ,所以)(x f 在⎪⎭⎫ ⎝⎛a 21,0单调递增,在⎪⎭⎫ ⎝⎛+∞,21a 单调递减.3.(2015年北京卷文科19题)设函数x k x x f ln 2)(2-=.(1)求)(x f 的单调区间和极值;解:函数)(x f 的定义域为()+∞,0,xkx x k x x f -=-=2')(,①若0≤k ,则0)('>x f ,)(x f 在()+∞,0单调递增; ②若0>k ,则由0)('=x f 得k x =,当()k x ,0∈时,0)('<x f ,当()+∞∈,k x 时,0)('>x f所以)(x f 的单调减区间是()k ,0,单调增区间是()+∞,k .4.(2015年全国二卷文科21题) 已知函数)1(ln )(x a x x f -+=. (1)讨论)(x f 的单调性;解:函数)(x f 的定义域为()+∞,0,xaxa x x f -=-=11)(', ①若0≤a ,则0)('>x f ,)(x f 在()+∞,0单调递增;②若0>a ,则由0)('=x f 得ax 1=,当⎪⎭⎫ ⎝⎛∈a x 1,0时,0)('>x f ,当⎪⎭⎫ ⎝⎛∈0,1a x 时,0)('<x f ;所以)(x f 在⎪⎭⎫ ⎝⎛a 1,0单调递增,在⎪⎭⎫ ⎝⎛0,1a单调递减; 5.(2016年四川卷文科21题) 设函数x a ax x f ln )(2--=. (1)讨论)(x f 的单调性; 解:函数)(x f 的定义域为()+∞,0,⎪⎭⎫⎝⎛-=-=-=22'121212)(x a x x ax x ax x f ,①若0≤a ,则0)('<x f ,)(x f 在()+∞,0单调递减;②若0>a ,则由0)('=x f 得ax 21=,当⎪⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('<x f ,当⎪⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('>x f ;所以)(x f 在⎪⎪⎭⎫ ⎝⎛a 21,0单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,21a 单调递增; 若0)()('=-=m x g x f 有两个解,则可以将定义域分为三个区域进行讨论。

含参函数的单调性

含参函数的单调性
当 a=1 时,f(x) 的单调增区间为 (0,+∞); 当 0<a<1 时,由 f′(x)>0 得 x>1 或 0<x<a,此时 f(x) 的单调增区 间为(1,+∞),(0,a) .
例题:已知 f(x)=ex-ax-1,求 f(x) 的单调增区间. 解: ∵f(x)=ex-ax-1,∴ f′(x)=ex-a. 当 a=0 时,f′(x)>0 在R上恒成立;
当 a<0 时,f′(x)>0 在R上恒成立;
当 a>0 时,令 f′(x)=0,得 ex=a,x=ln a, 当 x≥ln a 时,f′(x)≥0,f(x) 单调增.
综上:当 a≤0 时,f(x) 的单调增区间为 (-∞,+∞);
当 a>0 时,f(x) 的单调增区间为 [ln a,+∞).
例题:已知函数 f(x)=x2-(a+1)x+aln x,其中 a∈R,求函数 f(x) 的单调增区间
解 f ( x ) x (a 1) x :
a
( x a )( x 1) 令f′(x)=0,得 x=a 或 x=1 x
含参函数的单调性
单调性求法
1、函数的单调性: 函数f(x)在某个区间(a,b)内,若f′(x)>0,则f(x)为增函数;若f′(x)<0,
则f(x)为减函数,若f′(x)=0,则f(x)为常函数.
2、利用导数判断函数单调性的一般步骤: (1)求 f′(x);(注意:一般有分式则通分,注意定义域范围) (2)在定义域内解方程 f′(x)=0,再在根的左右判断 f′(x) 的符号; (3)根据(2)的结果确定 f(x) 的单调区间.
当 a= 0 时,由 f′(x)>0 得 x>1 ,此时 f(x) 的单调增区间为 (1,+∞). 当 a<0 时,由 ′(x)>0 得 x>1 ,此时 f(x) 的单调增区间为 (1,+∞).

用导数法判断含参函数单调性的步骤

用导数法判断含参函数单调性的步骤

对于简单的函数单调性问题,通常可直接根据函数单调性的定义进行求解,而对于较为复杂的含参函数的单调性问题,如函数式中含有指数式、对数式、根式、高次幂,就需运用导数法来判断函数的单调性.用导数法判断含参函数的单调性的步骤为:1.根据题意和函数的解析式确定函数的定义域;2.对函数求导,并将其化简,通常需将其分解为几个因式的积;3.令导函数为0,求得其零点.若零点中含有参数,需讨论参数是否为0;4.由导函数大于0,求得函数的单调递增区间,即可确定函数在该区间上为增函数;由导函数小于0,求得函数的单调递减区间,即可确定函数在该区间上为减函数.若导函数中含有参数,则需分别讨论参数大于0、小于0、等于0,以及零点之间的大小情况,以确定导函数的符号,进而根据导函数与函数单调性之间的关系判断出函数的单调性.下面举例加以说明.例1.判断f (x )=ax -3ln x +1的单调性.解:由函数f (x )=ax -3ln x +1可知函数的定义域为(0,+∞),可得f ′(x )=a -3x =ax -3x (x >0),当a ≤0时,f ′(x )<0恒成立,则f (x )在(0,+∞)上单调递减.若a >0,由f ′(x )=0,可得x =3a ,当x ∈æèöø0,3a 时,f ′(x )<0,则f (x )在æèöø0,3a 上单调递减;当x ∈æèöø3a ,+∞时,f ′(x )>0,则f (x )在æèöø3a ,+∞上单调递增.我们需首先根据对数函数的定义确定函数的定义域;然后对函数求导,并将导函数分解因式;再令导函数为0,求得函数的零点;再用零点将函数的定义域划分为两个区间æèöø0,3a 、æèöø3a ,+∞,在每个区间上讨论导函数的符号,即可根据导函数与函数单调性之间的关系判断出函数的单调性.例2.判断函数f (x )=ln 2x +a 2x 2-2x -1的单调性.解:由题意可知函数的定义域为(0,+∞),对函数求导可得f ′(x )=1x +ax 2-2=ax 2-2x +1x ,令f ′(x )=0,由x ≠0可得ax 2-2x +1=0,(1)当a =0时,-2x +1=0,得x =12,则当x ∈æèöø0,12时,f ′(x )>0,则f (x )在区间(0,12)上单调递增;当x ∈æèöø12,+∞时,f ′(x )<0,则f (x )在区间æèöø12,+∞上单调递减.(2)当a ≠0时,方程ax 2-2x +1=0根的判别式为Δ=4-4a ,x 1·x 2=1a ,x 1+x 2=2a ,其中x 1、x 2为方程的两根.当a <0时,Δ=4-4a >0,因为x 1·21a ,所以两根异号,可得x 1=<0,x 2=0,由图1可知,当x ∈æèçø时,f ′(x )>0,则f (x )在æèçø上单调递增.图2图1当a >0时,若Δ=4-4a ≤0,即a ≥1,f ′(x )>0,f (x )在区间()0,+∞上单调递增.若Δ=4-4a >0,即a <1,所以x 1,x 2.由图2可知,f (x )在æèçøèöø÷+∞上单调递增;在èø上单调递减.本题中导函数为含参二次函数,且二次项的系数中含有参数,需在参数大于、小于、等于0三种情况下讨论二次函数的根的分布情况,以判定二次函数值的正负,运用导数法判断出函数的单调性.在二次函数的二次项系数不为0时,需讨论二次函数的开口方向,根据根的判别式和韦达定理讨论零点的正负、大小关系,以确定导函数的正负.总之,运用导数法解答含参函数的单调性问题,不仅需熟练掌握导数运算公式、求根公式,明确函数与方程之间的关系,还需灵活运用分类讨论、方程思想、数形结合思想来辅助解题.(作者单位:江苏省盐城市大丰区新丰中学)王爱春O O 46Copyright ©博看网. All Rights Reserved.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单调性是描述函数的变化趋势的重要概念,其中,用导数讨论含参函数的单调性尤为重要。

首先,我们来解释“含参函数”一词的意思。

含参函数是指具有参数的函数,也叫带参数函数,它们可以用参数来控制函数的变化趋势。

其次,让我们来看看如何用导数讨论含参函数的单调性。

在微积分中,导数是用来表示函
数变化率的重要概念,它可以帮助我们确定函数的单调性。

通常情况下,当函数的导数大于0时,函数在此处是单调递增的;当函数的导数小于0时,函数在此处是单调递减的。

例如,考虑函数$y=ax^2+bx+c$,其中a,b,c均为常数。

该函数的导数为$y'=2ax+b$。

因此,当$2a>0$时,函数是单调递增的;当$2a<0$时,函数是单调递减的。

更一般地,如果函数$f(x)$的导数$f'(x)$满足$f'(x)>0$,则函数$f(x)$在$[a, b]$内是单调递
增的;如果$f'(x)<0$,则函数$f(x)$在$[a, b]$内是单调递减的。

再比如,考虑函数$y=sin(x)$,其导数为$y'=cos(x)$,当$cos(x)>0$时,函数$y=sin(x)$是单调递增的;当$cos(x)<0$时,函数$y=sin(x)$是单调递减的。

总之,用导数讨论含参函数的单调性是很有用的,我们可以用它来判断函数是单调递增还是单调递减。

正如著名数学家高斯所说:“数学是一种分析、综合和抽象的技术,它既是
一种艺术,也是一种科学。

”。

相关文档
最新文档