微积分(刘迎东)第十章习题答案
(微积分)第十章课后习题全解
5 B0 = − 72 , 12 B0 + 2 B1 = 0, ⇒ ⇒ B = 5, 12 B1 = 5, 1 12
2. 选择题. (1)下列微分方程中是一阶线性微分方程的是(
A
).
A. xy ′ = y + x 2 B. xy ′ ⋅ e y = 1 C. y ′′ = x D. ( xy − x 2 ) y ′ = y 2
∴ 特解为 y = (1 − 3 x ) e3 x .
( 5) 求微分方程y′′ − 3 y′ +
9 y = e x的通解; 4
解 属于二阶常系数非齐次微分方程, 通解形式为 y = y (齐次通解) + y* ( 非齐次一个特解 ) ,
一个特解的形式为 y* = Ae x ,
x
9 9 3 ′′ − 3 y′ + y = 0, 特征方程为r 2 − 3r + = 0, r − = 0, 对于齐次方程 y 4 2 4 3 3 x 特征根为r1 = r2 = , 齐次方程通解 y = ( c + c x ) e 2 , 1 2 2 9 对于y′′ − 3 y′ + y = e x ,由于λ =1 ≠ r1,2 , 4
1 1 d ( u 2 − 2u − 1) = − ln x + ln C1 , 2 ∫ u 2 − 2u − 1 y 2 2 y 2 2 − − 1 ⋅ x = C12 , ln ( u − 2u − 1) + 2 ln x = 2 ln C1 , x x
*
5 5 ( 5 ) 差分方程2 yt +1 + 10 yt − 5t = 0的通解为 y = A ( −5) − 72 + 12 t
交大刘迎东微积分九习题答案
解:
(16) 其中 由 和 围成。
解:
(17) 其中 由 和 围成。
解:
(18)
解:
(19) 其中 由 围成。
解:
(20)
解:
(21) 其中 由 围成。
解:
(22)
解:
(23)
解:
(24)
解:
(25)
解:做变换 则
(26)
解:做变换 则
3.设函数 连续且恒大于零,
其中
(1)讨论 在区间 内的单调性;
解:
7.计算 ,其中 为由平面 以及抛物柱面 所围成的闭区域。
解:因为积分区域关于 平面对称,被积函数关于 是奇函数,所以
8.计算 其中 为由锥面 与平面 所围成的闭区域。
解:
9.利用球面坐标计算下列三重积分:
(1) 其中 为由球面 所围成的闭区域;
解:
(2) 其中闭区域 由不等式 所确定;
解:
10.选用适当的坐标计算下列三重积分:
解:由 得 所以
(2) ,其中 为由球面 所围成的闭区域。
解:由于 关于 面对称,被积函数关于 为奇函数,所以
(3) ,其中 为由 平面上曲线 绕 轴旋转而成的曲面与平面 所围成的闭区域。
解:旋转面方程为 。易得 在 面上的投影区域 ,所以
(4) ,其中 为 所围。
解:
(5) ,其中 为由 所围成的闭区域。
解:
(6) ,其中 为由 所围成的闭区域。
解:
(7) ,其中 为 所围成的闭区域。
解:
(8) ,其中 为 所围成的闭区域。
解:
(9) ,其中 为由 所围成的闭区域 为常数)。
解:由轮换对称性,
(完整word版)高等数学第10章课后习题答案(科学出版社)
于是所求的曲面积分为
.
(2) ,其中 为旋转抛物面 介于 之间部分的下侧。
解由两类曲面积分之间的联系,可得
,
在曲面 上,有
。
故
。
再依对坐标的曲面积分的计算方法,得
。
注意到
,
故
。
(3) ,其中 为 , 的上侧;
解 在 面上的投影为半圆域 , ,
=
= =
由对称性 = , =
∴原式= =
(4) ,其中 是由平面 , , , 所围成的四面体的表面的外侧。
,
其中 为上半球面 , , ,故
,
其中 是 在 坐标面上的投影区域,利用极坐标计算此二重积分,于是得
= ,
是一个无界函数的反常积分,按反常积分的计算方法可得
,
故
。
解法2设球面方程为 ,定直径在 轴上,依题意得球面上点 的密度为 ,从而得球面的质量为 ,由轮换对称性可知: ,故有
.
2设某流体的流速为 ,求单位时间内从圆柱 : ( )的内部流向外侧的流量(通量)。
,其中 从 变到 ,
故
。
解法2作有向线段 ,其方程为
,其中 从 变到 ,
则有向曲线 与有向线段 构成一条分段光滑的有向闭曲线,设它所围成的闭区域为 ,由格林公式,有
,
即
,
而
,
故
。
3.计算 ,其中 为平面 在第一卦限中的部分;
解 将曲面 投影到 面上,得投影区域为 ,此时曲面方程可表示为
,
于是
,
。
4. 计算 ,其中 是球面 的上半部分并取外侧;
解如右图所示,因为闭曲面取外侧,所以 取下侧, 取后侧, 取左侧, 取上侧。于是
交大刘迎东微积分习题答案
交⼤刘迎东微积分习题答案8.6 多元函数微分学的⼏何应⽤习题8.61. 求曲线sin ,1cos ,4sin 2t x t t y t z =-=-=在02t π=相应的点处的切线及法平⾯⽅程。
解:点为1,1,2π?-,切向量为{21cos ,sin ,2cos .2t t t t π=??-=所以切线为112x y π??--=-=法平⾯⽅程为1102x y z π??--+-+-=,即4.2x y π+=+2. 求曲线21,,1t tx y z t t t+===+在对应于01t =的点处的切线及法平⾯⽅程。
解:点为1,2,12?? ???,切向量为()22 1111,,2,1,2.41t t t t =-=-+????所以切线为1212.1124--==-法平⾯⽅程为()()11221042x y z ??---+-= ,即2816 1.x y z -+=3. 求曲线222,y mx z m x ==-在点()000,,x y z 处的切线及法平⾯⽅程。
解:22,2,ydy mdx zdz dx =??=-?,在点()000,,x y z 处,0022,2,y dy mdx z dz dx =??=-?所以切向量为0 011,,.2m y z ??-所以切线为00000.112x x y y z z m y z ---==-法平⾯⽅程为()()()00000102m x x y y z z y z -+---=。
4. 求曲线22230,23540x y z x x y z ?++-=?-+-=?在点()1,1,1处的切线及法平⾯⽅程。
解:22230,2350,xdx ydy zdz dx dx dy dz ++-=??-+=?,在点()1,1,1处,22230,2350,dx dy dz dx dx dy dz ++-=??-+=?所以切向量为{}16,9,1.-所以切线为111.1691x y z ---==-法平⾯⽅程为()()()1619110x y z -+---=。
微积分第十章习题答案
C1
C2 C3 C1 0
2
解得:CC21
0 1
C1 C2 1
C3 1
故特解:y (x 1)ex 1
6.解:特征方程r2 4r 8 0, 解得r1,2 2 2i, 故原方程通解为y e2x (C1 cos 2x C2 sin 2x)
7.解:特征方程r2 25 0, 解得r1,2 5i, 故原方程通解为y C1 cos 5x C2 sin 5x
C 2;故y 2(x 1) 2ex
2.解:依题意,得: dQ P P ln 3 dP Q
分离变量得:dQ ln 3dP Q
两边积分得:Q
C 3P
又当P 0,Q 1200
C
1200,故Q
1200 3P
3.解:依题意得:d (D x) kx dt
dx kx,从而x Cekt dt
又当t 0时,x D
C Dx Dekt
4.解:依题意,得:dy ky(1000 y), dt
dy kdt y(1000 y)
1 ( 1 1 )dy kdt 1000 y 1000 y
两边积分得: y Ce1000kt 1000 y
又 y 100, y 250,
t0
两边对x求导整理得:f (x) cos x
x
f (t)dt
0
上式两边对x求导得:f (x) f (x) sin x
即y y sin x
对应的齐次方程的特征方程为 2 1 0, i
故对应其次方程的通解为:Y C1 cos x C2 sin x
设原方程特解为y* x( Acos x B sin x)
3.解:令y p(x),则y p, 代入得:
xp p 0,
微积分刘迎东习题答案
(2)连接 的折线段。
解:
6.计算 其中 分别为下列两种情形:
(1)连接 的直线段。
解:
(2)连接 的折线段。
解:
7.计算 其中 为以 为顶点的正方形闭路。
解:
8.计算 其中 为星形线 在第一象限中自点 到 的一段。
解:
9.计算 其中 为依参数 增加方向进行的曲线:
解:
10.计算 其中, 分别为下列两种情形:(1)自 到 的直线段;(2)由 直到 的折线段。
(3)圆
(4)椭圆
(5)双纽线
3.计算曲线积分 其中 为圆周 的方向为逆时针方向。
解: ,所以取 则有
4.计算下列曲线积分:
(1) 其中 为摆线 上对应 从 到 的一段弧。
解:设直线段 ,则
(2) 其中 为上半圆周 沿逆时针方向。
解:设直线段 ,则
5.证明下列曲线积分在整个 面内与路径无关,并计算积分值:
解:
(12) 其中 为用平面 截球面 所得的截痕,从 轴的正向看去,沿逆时针方向;
解:
(13) 其中 为曲线 上由 到 的一段弧;
解:
4.计算 其中 为由点 到点 的下列四条不同路径:
(1)直线
解:
(2)抛物线
解:
(3)抛物线
解:
(4)立方抛物线
解:
5.计算 其中 分别为下列两种情形:
(1)连接 的直线段。
10.1第一型曲线积分
习题10.1
1.设在 面内有一分布着质量的曲线弧 ,在点 处它的线密度为 。用第一型曲线积分分别表达
(1)这曲线弧对 轴、对 轴的转动惯量
解:
(2)这曲线弧的质心坐标
解:
2.计算下列第一型曲线积分:
微积分课后题答案
微 积 分 课 后 习 题 答 案习 题 一 (A )1.解下列不等式,并用区间表示不等式的解集:(1)74<-x ; (2)321<-≤x ;(3))0(><-εεa x ; (4))0,(0><-δδa x ax ;(5)062>--x x ;(6)022≤-+x x .解:1)由题意去掉绝对值符号可得:747<-<-x ,可解得j .113.x <<-即)11,3(-. 2)由题意去掉绝对值符号可得123-≤-<-x 或321<-≤x ,可解得11≤<-x ,53<≤x .即]5,3[)1,1(⋃-3)由题意去掉绝对值符号可得εε<-<-x ,解得εε+<<-a x a .即)a , (εε+-a ;4)由题意去掉绝对值符号可得δδ<-<-0x ax ,解得ax x ax δδ+<<-00,即ax a x δδ+-00 , () 5)由题意原不等式可化为0)2)(3(>+-x x ,3>x 或2-<x 即)(3, 2) , (∞+⋃--∞. 6)由题意原不等式可化为0)1)(2(≤-+x x ,解得12≤≤-x .既1] , 2[-.2.判断下列各对函数是否相同,说明理由: (1)x y =与x y lg 10=; (2)xy 2cos 1+=与x cos 2;(3))sin (arcsin x y =与x y =;(4))arctan (tan x y =与x y =;(5))1lg(2-=x y 与)1lg()1lg(-++=x x y ; (6)xxy +-=11lg 与)1lg()1lg(x x x +--=.解:1)不同,因前者的定义域为) , (∞+-∞,后者的定义域为) , 0(∞+; 2)不同,因为当))(2 , )212((ππ23k k x k ++∈+∞-∞- 时,02cos 1 >+x ,而0cos 2<x ;3)不同,因为只有在]2, 2[ππ-上成立; 4)相同;5)不同,因前者的定义域为) , (11) , (∞+⋃--∞),后者的定义域为) , 1(∞+; 6)相同3.求下列函数的定义域(用区间表示): (1)1)4lg(--=x x y ; (2)45lg 2x x y -=;(3)xx y +-=11; (4))5lg(312x x x y -+-+-=; (5)342+-=x x y ;(6)xy xlg 1131--=;(7)xy x-+=1 lg arccos 21; (8)6712arccos2---=x x x y .解:1)原函数若想有意义必须满足01>-x 和04>-x 可解得 ⎩⎨⎧<<-<41 1x x ,即)4 , 1()1 , (⋃--∞.2)原函数若想有意义必须满足0452>-x x ,可解得 50<<x ,即)5 , 0(.3)原函数若想有意义必须满足011≥+-xx,可解得 11≤<-x ,即)1 , 1(-. 4)原函数若想有意义必须满足⎪⎩⎪⎨⎧>-≠-≥-050302x x x ,可解得 ⎩⎨⎧<<<≤5332x x ,即) 5 , 3 (] 3 , 2 [⋃,3]. 5)原函数若想有意义必须满足⎪⎩⎪⎨⎧≥--≥+-0)1)(3(0342x x x x ,可解得 ⎩⎨⎧≥-≤31x x ,即(][) , 3 1 , ∞+⋃-∞.6)原函数若想有意义必须满足⎪⎩⎪⎨⎧≠-≠>0lg 100x x x ,可解得⎩⎨⎧><<10100x x ,即) , 10()10 , 0(∞+⋃. 7)原函数若想有意义必须满足01012≤≤-x 可解得21010--≤<x 即]101 , 0()0 , 101[22--⋃- 8)原函数若想有意义必须满足062>--x x ,1712≤-x 可解得) 4 , 3 (] 2 , 3 [⋃--.4.求下列分段函数的定义域及指定的函数值,并画出它们的图形: (1)⎪⎩⎪⎨⎧<≤-<-=43,13,922x x x x y ,求)3( , )0(y y ;(2)⎪⎪⎩⎪⎪⎨⎧∞<<+-≤≤-<=x x x x x x y 1, 1210,30,1,求)5( , )0( , )3(y y y -.解:1)原函数定义域为:)4 , 4(-3)0(==y 8)3(==y .图略2)原函数定义域为:) , (∞+-∞31)3(-=-y 3)0(-==y 9)5(-=y y(5)=-9.图略5.利用x y sin =的图形,画出下列函数的图形:(1)1sin +=x y ; (2)x y sin 2=; (3)⎪⎭⎫⎝⎛+=6sin πx y .解:x y sin =的图形如下(1)1sin +=x y 的图形是将x y sin =的图形沿沿y 轴向上平移1个单位(2)x y sin 2=是将x y sin =的值域扩大2倍。
微积分习题答案
习题1-11.(1) [-3,3];(2)(-∞,0)∪(2,+∞);(3)(-2,1);(4)(-1.01,-1)∪(-1,0.99)2.(1)[-1,0)∪(0,1);(2)(1,2];(3)[-6,1).3.(1)(-∞,1)∪(1,2],f(0)=0,f(2)=1.当a<0时,f(a)=1a,当0≤a≤1时,f(a)=2a,当1<a≤2时,f(a)=1.(2) (-2,2),f(0)=1,f((-a)2,当1<a<2时,f(a)=a2-1.4.1.5.(1)偶函数;(2) 非奇非偶函数;(3) 奇函数.8.(1) y=13arcsinx2;(2) y=log2x1-x(3) f-1(x)=12(x+1),-1≤x≤1,2-2-x,1<x≤2.9.(1)y=101+x2(-∞,+∞);(2)y=sinxln2,(-∞,+∞);(3)y=arctana2+x2(-∞,+∞).习题1-21.(1) y=3u,u=arcsinv,v=ax;(2)y=u3,u=sinv,v=lnx;(3)y=au,u=tanv,v=x2;(4)y=lnu,u=v2,v=lnw,w=t32.(1)[-1,1],(2)[2kπ,(2k+1)π],k∈Z;(3) [-a,1-a];(4)(-∞,-1].3.(1) φ(x)=6+x-x2;(2)g(x)=(1+x)2+(1+x)+1;(3)f(x)=x2-2.习题1-31.R(x)=4x-12x2.2.R(x)≈130x,117x+9100,0≤x≤700,700<x≤1000.3.L=L(Q)=-15Q2+8Q-50,=-Q5+8-50Q.习题2-1略.习题2-22.f(x)=-1,1,x≤0x>0,则limx→0f(x)=1,但limx→0-f(x)=-1,limx→0+f(x)=1,故limx→0f(x)不存在.3.limx→0(x2+a)=a,limx→0-e1x=0,a=0.2. , , , , , , , .3.(1)无穷大量.(2) x→0+时为无穷大量,x→1时为无穷小量.x→+∞时为无穷大量.(3)x→0+时为无穷大量,x→0-时为无穷小量.(4) 无穷小量.(5)无穷小量.(6) 无穷小量.习题2-45.(1)3/5;(2)0;(3)∞;(4) 1/3;(5) 4/36.(1)16;(2) ∞;(3)3;(4)-22;(5)3x2.(6)43;(7)n(n+1)2;(8)1;(9)1;(10)-1;(11)0.习题2-51.53;2.25;3.1;4.22;5.212;6.e-1;7.e3;8.lna;9.2lna;10.0;11.e-12;12.1;13.1;14.1;15.e1e;16.e-1.习题2-63.tanx-sinx=O(x3)4.(1) ab;(2) k22;(3) 2;(4) 24;(5) 1;(6) 1;(7) 49;(8) 3.习题2-74.(1) x=1(可去),定义f(1)=2;x=2(第二类);(2) x=0(可去),定义f(0)=1;x=kπ,k≠0,为整数(第二类);(3) x=0(第一类;(4) x=2(第二类);x=-2(可去),定义f(-2)=0;(5) x=0(可去),定义f(0)=0.6.f(x)=sgnx,x=0(第一类),f(x)∈C[(-∞,0)∪(0,+∞)]7.(1)12;(2)3;(3)0;(4)π3;(5) 1.习题3-11.29.2.-1x20.3.4x-y-4=0,8x-y-16=04.(1)-f′(x0);(2) -f′(x0);(3) 2f′(x0)5.(1)12x;(2)-23x-53;(3)16x-56.6.连续但不可导.8.(1)f′(2) f′12,f′9.f′(x)=cosx,1,x<0,x≥0.10.a=2,b=-1.11.(1)在x=0处连续,不可导;(2) 在x=0处连续且可导;(3) 在x=1必连续,不可导.13.(1) -0.78m/s;(2) 10-gt;(3) 10g(s).14.dQdtt=t0.15.(1)limΔT→0Q(T+ΔT)-Q(T)ΔT;(2)a+2bT.习题3-21.(1) 3t;(2) xx+12xlnx;(3) 2xsin2x-2xsinx+cosx-x2cosx-sin2x+x2sin2x.(4)1-sinx-cosx(1-cosx)2;(5)sec2x;(6)xsecxtanx-secxx2-3secx²tanx;(7)1x1-2ln10+3ln2;(8)-1+2x(1+x+x2)2.2.(1)241+π2;(2)f′(0)=325,f′(2)=1715;(3)f′(1)=5.3.略.4.(1) 3e3x;(2) 2x1+x4;(3) 12x+1e2x+1;(4) 2xln(x+1+x2)+1+x2;(5)2x²sin1x2-2xcos1x2;(6)-3ax2sin2ax3;(7)xx2²x2-1;(8)2arcsinx24-x2;(9)lnxx²1+ln2x;(10)nsinn-1x²cos(n+1)x;(11)11-x2+1-x2;(12)-1(1+x)2x(1-x);(13)-thx;(14)a2-x2.5.13.6.2x+3y-3=0; 3x-2y+2=0; x=-1; y=0.7.(1) 2xf′(x2);(2) sin2x[f′(sin2x)-f′(cos2x)].8.(1)-x2-ayy2-ax;(2) 1-yx(lnx+lny+1);(3) -ey+yexxey+ex;(4)x+yx-y;(5)ex+y-yx-ex+y.9.(1)x+2(3-x)4(x+1)512(x+2)-43-x-5x+1;(2) sinxcosxcos2xsinx-sinxln sinx;(3) e2x(x+3)(x+5)(x-4)2+1x+1-12(x+5)-12(x-4).10.(1)sinat+cosbtcosat-sinbt;(2)cosθ-θsinθ1-sinθ-θcosθ.11.3-2.习题3-31.f(n)(x)=(-1)n-1(n-1)!(1+x)n.2.y(n)=(-1)n²an²n!²(ax+b)-(n+1).f(n)(x)=(-1)n2·n!·1(x-1)n+1-1(x+1)n+13.(1)0;(2)4e,8e;(3)7200,720.4.(1) -b4a2y3;(2) e2y(3-y)(2-y)3;(3) -2csc2(x+y)cot3(x+y);(4)2x2y[3(y2+1)2+2x4(1-y2)](y2+1)3.5.(1) -1a(1-cost)2;(2) 1f″(t).6.(1) 4x2f″(x2)+2f′(x2);(2) f″(x)f(x)-[f′(x)]2f.习题3-41.(1) sint;(2)-1ωcosωt;(3)ln(1+x);(4) -12e-2x;(5)2x;(6)13tanx;(7) ln2x2;(8)-1-x2.2.(1)0.21,0.2,0.01;(2)0.0201,0.02,0.0001.3.(1)(x+1)exdx;(2)1-lnx〖〗x2dx;(3)-12xsinxdx;(4)2ln5²5ln tanx²1sin2xdx;(5)-12cscx2dx;(6)8[xx(1+lnx)-12e2x]dx;(7) 121-x2arcsinx+2arctanx1+x2dx.4.(1) ey1-xeydx;(2)-b2xa2ydx;(3) 22-cosyds;(4)1-y21+2y²1-y2dx.5.(1)2.0083;(2)-0.01;(3)0.7954.习题3-51.(1)1.1;(2)650;(3)650-50129.2.(1)96.56;(2)是,提高2.3.(1)a,axax+b,aax+b;(2)abebx,bx,b;(3) axa-1,a,ax.4.提高8%;提高16%.5.5.9.习题4-11.ξ=π2.2.(1)满足,有ξ=0;(2)不满足第二个条件,没有;(3) 不满足第一和第三个条件,有ξ=π2.3.有分别位于区间(1,2),(2,3),(3,4)内的三个根.4.ξ=33.习题4-21.(1)-35;(2)12;(3)mnam-n;(4)1a(5)0;(6)0;(7)1;(8) 32;(9) e;(10)e-2π;(11)1e;(12)∞(13)13;(14)e-12.2.m=-4,n=34.f″(x);习题4-31.xex=x+x2+x32!+…+xn(n-1)!+1(n+1)!(n+1+θx)eθxxn+1(0<θ<1).2.1x=-1-(x+1)-(x+1)2-…-(x+1)n+(-1)n+1(x+1)n+1[-1+θ(x+1)]n+2(0<θ<1).3.f(x)=-56+21(x-4)+37(x-4)2+11(x-4)3+(x-4)4.4.(1) 16(提示:只要将sinx展开成三次多项式即可).(2) 12(提示:令u=1x,再将ln(1+u)展开成二次多项式).习题4-41.(1)(-∞,-1)和(3,+∞)为增区间,(-1,3)为减区间,f(-1)=3为极大值,f(3)=-61为极小值.(2) (1,+∞)为增区间,(0,1)为减区间,f(1)=1为极小值.(3)(-∞,2)为增区间,(2,+∞)为减区间,f(2)=1为极大值.(4)(-∞,0)和(0,2)为增区间,(2,+∞)为减区间,f(2)=-4为极大值.5.当a=2时,f(x)在x=π3取极大值3.习题4-51.15元2.x=αcPQ11-α3.(1)Q=3;(2)MC==64.(1) 1000件;(2) 6000件5.(1) 431.325吨(2) 12次(3) 30.452天(4) 136643.9元6.α=23(3-6)π.7.t=14r2.8.v=320000≈27.14(km/h)习题4-61.(1)在-∞,13下凸,13,+∞上凸,拐点13,227;(2) 在(-∞,-1)上凸,(-1,1)下凸,(1,+∞)上凸,拐点(-1,ln2)及(1,ln 2);(3)在(-∞,-2)上凸,(-2,+∞)下凸,拐点(-2,-2e-2);(4)在(-∞,+∞)下凸,无拐点;(5) 在(-∞,-3)上凸,(-3,6)上凸,(6,+∞)下凸,拐点6,227;(6) 在-∞,12上凸,12,+∞下凸,拐点12,earctan12.3.a=-32,b=92.4.(1)垂直渐近线x=0;(2) 水平渐近线y=0;(3) 水平渐近线y=0,垂直渐近线x=3;(4) 垂直渐近线x=12,斜渐近线y=12x+1〖〗4.5.(1)定义域(-∞,+∞),极大值f(1)=12,极小值f(-1)=-12,拐点3,34,-3,-34,渐近线y=0;(2) 定义域(-∞,+∞),极大值f(-1)=π2-1,极小值f(1)=1-π2,拐点(0,0),渐近线y=x+π,y=x-π;(3) 定义域(0,+∞),极大值f(1)=2e,拐点,2,4e2,渐近线y=0.习题5-11.(1)27x7〖〗2-103x32+C;(2) 2x-43x32+25x52+C;(3) 3xex1+ln3+C;(4)x+sinx2+C;(5)2x-523xln2-ln3+C;(6)-(cotx+tanx)+C.2.(1)y=x2-2x+1;(2) cosx+C;(3)x-sinx;(4)Q=100013P习题5-21.(1) 1a;(2) 17;(3)110;(4) -12;(5) 112;(6) 12;(7) -2;(8) 15;(9) -1;(10) -1;(11) 13;(12) 12;(13) -1;(14) 32.2.(1)15e5t+C;(2)-18(3-2x)4+C;(3)-12ln1-2x+C;(4)-12(2-3x)23+C;(5)-2cost+C;(6)lnlnlnx+C;(7)111tan11x+C;(8)-12e-x2+C;(9)lntanx+C;(10)-lncos1+x2+C;(11)arctanex+C;(12)-13(2-3x2)12+C;(13)-34ln1-x4+C;(14)12cos2x+C;(15)12arcsin2x3+149-4x2+C;(16)x22-92ln(x2+9)+C;(17)122ln2x-12x+1+C;(18) 13lnx-2x+1+C;(19) t2+14ωsin2(ωt+φ)+C;(20)-13ωcos3(ωt+φ)+C;(21)12cosx-110cos5x+C;(22)13sin3x2+sinx2+C;(23)14sin2x-124sin12x+C;(24)13sec3x-secx+C;(25)(arctanx)2+C;(26)-1arcsinx+C;(27)12(lntanx)2+C;(28)-1xlnx+C;(29)a22(arcsinxa-xa2a2-x2)+C;(30)x1+x2+C;(31)x9-9-3arccos3x+C;(32)12(arcsinx+lnx+1-x2)+C;(33)arcsinx-x1+1-x2+C;(34)arcsinxa-a2-x2+C;(35)-4-x2x-arcsinx2+C;(36)ln1+x+x2+2x-2xx2+2x+C;(37)-11+tanx+C;(38)x+lnx1+xex+C.习题5-31.(1)-xcosx+sinx+C;(2) -(x+1)e-x +C;(3) xarcsinx+1-x2+C;(4) sinx-cosx2e-x+C;(5)-217e-2xx2+4sinx2+C;(6) -12x2+xtanx+lncosx+C;(7) -t2+14e-2t+C;(8)x(arcsinx)2+21-x2arcsinx-2x+C;(9) 12-15sin2x-110cos2x)ex+C;(10) 3e3x(3x2-23x+2+C;(11)x2(coslnx+sinlnx)+C;(12) -12x2-32cos2x+x2sin2x+C;(13) 12(x2-1)ln(x-1)-14x2-12x+C;(14) x36+12x2sinx+xcosx-sinx+C;(15) -1x(ln3x+3ln2x+6lnx+6)+C;(16) -14xcos2x+18sin2x+C;(17) -12xcot2x-12x-12cotx+C;(18) 12x2ex2+C;(19)xlnlnx+C;(20) (1+ex)ln(1+ex)-ex+C;(21) 12tanxsecx-12lnsecx+tanx+C;(22) -ln(x+1+x22(1+x2)+x22+x2+C;(23) ex1+x+C;(24) x-121+x2earctanx+C.习题5-4(1) lnx+1x2-x+1+3arctan2x-13+C;(2) x33+x22+x+8lnx-3lnx-1-4lnx+1+C;(3)x-tanx+secx+C;(4)14lntanx2-18tan2x2+C.习题6-11.13(b3-a3)+b-a.2.(1)1;(2)14πa2.3.(1)∫10x2dx较大;(2) ∫10exdx较大.4.(1)6≤∫41(x2+1)dx≤51;(2)π9≤∫313xarctanxdx≤23π;(3)2ae-a2<∫a-ae-x2dx<2a;(4)-2e2≤∫02ex2-xdx≤-2e-1〖〗4.习题6-21.(1)2x1+x4;(2)x5e-3x;(3)(sinx-cosx)cos(πsin2x);(4) sinx-xcosxx2.2.(1)-12;(2) 6;(3) 2.3.cosxsinx-1.4.当x=0时.5.(1)23(8-33);(2) 16;(3) 1+π8;(4) 203.6.-32.习题6-31.(1)0;(2)51512;(3)16;(4)14;(5)π6-38;(6)2(3-1);(7)2-233;(8)π2;(9)12ln32;(10)ln2-13ln5;(11)7ln2-6ln(62+1);(12)43.2.(1)0;(2)0;(3)32π.习题6-42.(1)1-2e;(2)14(e2+1);(3) 4(2ln2-1);(4) 14-133π+12ln32;(5)15(eπ-2);(6)2-34ln2;(7) π36-π4;(8) 12(esin1-ecos1+1);(9) ln2-12;(10)12-38ln3.3.0.习题6-51.(1)1;(2)2;(3)43;(4)76;(5)12+ln2;(6)16;(7)e+1e-2;(8)b-a.2.(1)Vy=2π;(2) Vx=1287π,Vy=12.8π;(3) Vy=310π;(4) Vx=pa2π;(5)Vy=4π2.3.(1)a=1e,(x0,y0)=(e2,1);(2)S=16e2-12.4.12ln2提示:f(x)=0,x1+x2,x≥0x<0.5.a=-4,b=6,c=0.6.50;100.7.(1) Q=2.5,L=6.25;(2) 0.25.8.96.73习题6-61.(1)13;(2)发散;(3) 1a;(4)发散;(5) 发散;(6) π;(7)83;(8)1;(9)π2;(10)-1;(11)发散;(12) 1.2.当k>1时收敛于1(k-1)(ln2)12-1;当k≤1时发散;当k=1-1lnln2时取得最小值.3.n!.4.(1)π4;(2) π25.In=-(2n)!!(2n+1)!!=22n(n!)2〖〗(2n+1)!(n=0,1,2,…).6.(1)1nΓ1n;(2) Γ(α+1);(3)1nΓm+1n;(4)12Γn+12.习题7-11.略.2.(1) (a,b,-c),(-a,b,c),(a,-b,c);(2) (a,-b,-c),(-a,b,-c),(-a,-b,c);(3) (-a,-b,-c).3.坐标面:(x0,y0,0),(0,y0,z0),(x0,0,z0);坐标轴:(x0,0,0),(0,y0,0),(0,0,z0).4.x轴:34,y轴:41,z轴:5.5.(0,1,-2).6.略.习题7-21.MA→=-12(a+b);MB→=12(a-b);MC→=12(a+b);MD →=12(b-a).2.略.3.(2,1,1).4.(16,0,-20).5.M1M2→=(1,-2,-2),M1M2→=3.13,-23,-23或-13,23,23.习题7-31.(1)1;(2)4;(3)28.2.(1)3,5i+j+7k;(2) -18,10i+2j+14k;(3) -10i-2j-14k.3.-32.4.±(62,82,0).5.14.6.略.7.45j-35k或-45j+35k.8.∠A=76°22′,∠B=79°2′,∠C=24°36′.习题7-41.3x-2y+5z-22=0.2.2x+9y-6z=121.3.略.4.x+z-1=0.5.x+y+z-2=0.6.2x+3y+z-6=0.7.(1)x=2;(2)x+3y=0;(3)x-y=0.8.13,23,-23.9.(1)互相垂直;(2) 互相平行;(3) 斜交(相交但不垂直).习题7-51.(1)x-23=y-31=z-11;(2)x-31=y-42=z+4-1;(3)x-21=y-20=z+1〖〗0;(4)x2=y-31=z+23.2.x+3-5=y=z-25,[JB({〗x=-3-5t,y=t,z=2+5t.3.x-2=y-23=z-4〖〗1.4.x-21=y+22=z3.5.x-10=y+37=z+2〖〗16.6.461,661,-361.7.B=1,D=-9.8.x-3-1=y-31=z1.9.φ=arcsin1310.10.4x-y-2z-1=0.11.y-z+3=0,x-y-z+1=0.12.5.13.(1)垂直,(2) 平行,(3) 重合.习题7-61.(x+1)2+(y+3)2+(z-2)2=32.2.以点(1,-2,-1)为球心,半径等于6的球面.3.(1) x23+y24+z24=1;x23+y24+z23=1;(2)x2-y2-z2=1;x2+y2-z2=1.4.(1)母线平行于z轴的椭圆柱面;(2) 母线平行于x轴的抛物柱面;(3) 椭圆锥面;(4) 旋转椭球面;(5) 双叶双曲面;(6) 圆锥面.5.3y2-z2=16,3x2+2z2=166.x2+y2+(1-x)2=9,z=0;(1-z)2+y2+z2=9,x=0;x+z=1,y=0.7.(1)椭圆;(2) 双曲线;(3) 抛物线.8.略.习题8-11.(1)(x,y)x2a2+y2b2≤1;(2){(x,y)x>y,且x-y≠1};(3)(x,y)-1≤yx≤1,且x≠0={x>0,-x≤y≤x;x<0,x≤y≤-x};(4){(x,y)x≥y,x2+y2≤1,y≥0}.2.(1)31;(2)1x3-4xy+12y2;(3)(x+y)3-2(x2-y2)+3(x-y)2.3.f(x)=(x+2)x,F(x,y)=y+x-1.4.略习题8-21.(1)不存在,(2) 存在.2.(1)0,(2)1,(3)2,(4)0.3.{(x,y)y2=2x,x∈R}.习题8-31.(1)z′x=y(1+x)y-1,z′y=(1+x)yln(1+x);(2) z′x=-yx2cotyx²sec2yx,z′y=1xcotyx²sec2yx;(3)z′x=-yx2+y2,z′y=xx2+y2;(4)u′x=-zlnyx2²yzx,u′y=zx²yzx-1,u′z=1xyzx²lny.2.-1,2.3.1,1+π6.4.略.5.偏导数存在.6.α=π4.7.Δz=-0.12,dz=-0.1.8.(1)du=dx-dy;(2)dz=-xy(x2+y2)3/2dx+xy(x2+y2)3/2dy.习题8-41.(1)2e2cost+3t2[3t-sint];(2)3-4t-3+32t12sec23t+2t2+t32.2.(1)z′u=(2xy-y2)cosv+(x2-2xy)sinv;(2)z′v=-(2xy-y2)usinv,z′y=euvx2+y2(ux+vy).3.(1) u x=1yf′1, u y=-xy2f′1+1zf′2, u z=-yz2f′2;(2) z x=2xf′, zy=2yf′;(3) u x=f′1+yf′2+yzf′3, u y=xf′2+xzf′3, u z=xyf′2.4.略.5.(1)dz=(x2+y2)sin(2x+y)2sin(2x+y)x2+y2(xdx+yd y)+cos(2x+y)ln(x2+y2)(2dx+dy);(2)du=1f(x2+y2-z2)dy-yf′(x2+y2-z2)f(x2+y2-z2)(2xd x+2ydy-2zdz).6.(1)z′x=ex+y+yzez-xy,z′y=ex+y+xzez-xy;(2) z x=zx+z,z y=z2y(x+z).7.略.8. z x=(vcosv-usinv)e-u, z y=(ucosv+vsinv)e-u.9.dudx=f′x+y2f′y1-xy+zf′zxz-x.习题8-51.(1) 2z x2=12x2-8y2, 2z y2=12y2-8x2, 2z x y=-16xy;(2) 2z x2=2xy(x2+y2)2, 2z y2=-xy(x2+y2)2, 2z xy=y2-x2(x2+y2)2;(3) 2z x2=yxln2y,2zy2=x(x-1)yx-2; 2z xy=yx-1(1+xlny);(4) 2z x=1x, 2z y2=-xy2, 2z x y=1y.2.(1) 2z x2=4xf″(x2+y2)+2f′(x2+y2),2z y2=4yf″(x2+y2)+2f′(x2+y2);(2) 2z x2=y2f″11+2yf″12+f″22, 2z y2=x2f″11+4xf″12+4f″22,2z x y=xyf″11+2yf′12+f′1+xf″21+2f″22.3. 2z x2=z(2x-2-z2)x2(z-1)3, 2z y2=z(2z-2-z2)y2(z-1)3, 2z x y=-zxy(z-1)3.习题8-61.1+23.2.23.3.α=π4时取得最大值2;α=5π4时取得最小值-2;α=7π4时,方向导数为零.习题8-71.(1)极大值f(0,0)=3;(2) 极小值f12,-1=-e2;(3)极大值fa3,a3=a327(a>0),极小值fa3,a3=a327(a<0).2.极大值z(4,1)=7,最小值z43+223,-1≈-11.67.3.极小值z(2,2)=4.4.a≥12,最小距离为a-14;a≤12,最小距离为a.5.a的分法是三等分时,乘积最大为a327.6.x=100,y=25,f(100,25)=1250.7.x=70,y=30,λ=-72,L=145(万元).习题8-81.(1)∫1-1dx∫3-3f(x,y)dy, ∫3-3dy∫1-1f(x,y)dx;(2)∫40dx∫2xxf(x,y)dy,∫40dy∫y14y2f(x,y)dx;(3)∫r-rdx∫r2-x20f(x,y)dy,∫r0dy∫r2-y2-r2-y2f(x,y)dx.2.(1)∫10dx∫xx2f(x,y)dy;(2)∫a0dy∫a+a2-y2a-a2-y2f (x,y)dx;(3)∫10dy∫2-yyf(x,y)dx.3.(1)e-1e2;(2)2915;(3)-12;(4)23;(5)1-2π;(6)2πR22+R3;(7)364π2;(8)2-π2.4.5144.5.π.6.8π.7.SD=12e-1,VD=12e2-e-12.习题9-11.(1)a>1收敛;0<a≤1发散;(2) 发散;(3) 发散;(4) 收敛;(5) 发散;(6) 发散;(7) 发散;(8) 发散.2.(1)收敛,s=32;(2)收敛,s=14;(3)发散;(4) 发散.习题9-21.(1)收敛;(2) 发散;(3) 发散;(4) 收敛;(5) a>1,收敛;0<a≤1发散;(6) 发散;(7) 发散;(8) 收敛;(9) 发散;(10) 发散;(11) 收敛;(12) 收敛;(13) 收敛;(14) 收敛;(15) 收敛;(16) 收敛.习题9-31.(1)条件收敛;(2) 绝对收敛;(3) 绝对收敛;(4) 绝对收敛;(5) 绝对收敛;(6) 条件收敛;(7) 绝对收敛;(8) 条件收敛.习题9-41.(1)(-∞,+∞);(2) (-e,e);(3) (-2,2);(4) (-1,1);(5) (-4,0);(6) 12,3〖〗2.2.(1)-ln(1+x);x<1;(2)2x(1-x2)2,x<1;(3)当x≠0且x<1时,s(x)=1+1x-1ln(1-x);当x=0时,s(x)=0;(4)1+x(1-x)2,x<1.3.(1)1532;(2)12ln(1+2);(3)109;(4)4.习题9-51.(1)1-x22²2!+x42²4!-…+(-1)nx2n2²(2n)!+…(-∞<x<+∞);(2)∑∞n=1(-1)n-1(2n-1)!x22n-1(-∞<x<+∞);(3)∑∞n=1(-1)n-1x2n-1〖〗(n-1)!(-∞<x<+∞);(4)∑∞n=0x2n,x<1;(5)22∑∞n=0(-1)nx2n(2n)!+x2n+1(2n+1)!(-∞<x<+∞).2.(1)∑∞n=012n+1(x-1)n(-1<x<3);(2)∑∞n=0[JB((〗(-1)n2²x-π32n(2n)!+(-1)n+132x-π22n+1(2n+1)!(-∞<x<+∞);(3)∑∞n=0(-1)n12n+2-122n+3(x-1)n(-1<x<3);(4)∑∞n=0(-1)n3n+1(x-3)n(0<x<6).3.(1)2.71828;(2)0.25049.习题10-11.(1)一阶,(2) 二阶,(3) 三阶,(4) 一阶.2.略.3.y′=y-xx.4.y′=y-x+1.习题10-21.(1)(1-x)(1+y)=C(C为任意常数,以下C,C1,C2…均为任意常数);(2) 1-x2=lny+C;(3)y2=C(1-x2)-1;(4)secx+tany=C;(5)2y3+3y2-2x3-3x2=5;(6)(y+1)e-y=12(1+x2);(7)ey=12(e2x+1).2.T=T0e-kt+α(1-e-kt),k为比例系数.3.(1)y+x2+y2=Cx2;(2) y=2xarctan(Cx);(3) x3+y3=Cx2;(4) y=2x1+x2;(5) y=xe1-x;(6) (x+3)2+(y+1)2=Ce-arctanyx;(7)x+3y+2ln2-x-y=C.4.(1)y=Cex-12(sinx+cosx);(2) y=xn(C+ex);(3) x=2(y-1)+Ce-y;(4) x=y+Ccosy;(5) y=(x+1)ex;(6) y=2(1+x3)3(1+x2);(7) y=2lnx-x+2;(8) y=(1+sinx-xcosx)²e-x2;(9) y3=Cx3+3x4;(10)1x2=1-y2+Ce-y2.5.y′=3yx2-2²yx,y-x=-x3y.6.x=ab+x0-abe-bt.7.f(x)=-2e-3x-1.8.C(x)=(x+1)[C0+ln(x+1)].9.x=ab(C0x0-a)1b+1²x0.习题10-31.(1)y=(x-3)ex+12C1x2+C2x+C3;(2) y=xarctanx-12ln(1+x2)+C1x+C2;(3) y=C1arctanx+C2;(4) y=-lnx+c1+c2;(5) 1+C1x2=(C2t+C2)2;(6)lny=C1(y-x)+C2.2.(1)y=16x3lnx-1136(x3-1);(2)y=lnx+12ln2x;(3) y=x.3.C1+C2ex+x.4.(1)y=(C1+C2x)e2x;(2)y=C1e-x+C2e2x;(3)y=9e-2x-8e-3x;(4)y=-13exxcos3x.5.(1)y=(1-12x)e-2x+C1e-5x+C2e2x;(2)y=(x+1)2+C1e2x+C2e4x;(3)y=118cosx+4sinx-18cos3x;(4)y=x+12x2e4x.6.f(x)=2(ex-x).7.a=-3,b=2,α=-1;y=C1ex+C2e2x+xex.8.φ(x)=12(sinx+cosx+ex).9.y=23e2x-23e-x-xe-x.10.y=-7e-2x+8e-x+(3x2-6x)e-x11.s=mgkt-m2gk2(1-e-kmt).习题10-41.C(x)=3ex(1+2e3x)-1.2.R=abs0(ebt-1),S(t)=s0e-bt.3.Y(t)=Y0eγt,D(t)=αY0γeγt+βt+D0-αY0γ,limt→+∞D(t)Y(t)=α〖〗γ.4.(1)Y(t)=(Y0-Ye)eμt+Ye,Ye=b1-a,μ=1-aka,C(t)=a(Y0-Ye)eμt+Ye,I(t)=(1-a)(Y0-Ye)eμt;(2) limt→+∞Y(t)I(t)=11-a.5.y(6)=50001+11.5e-3(ln11.5-ln8).习题11-11.(3),(4).2.(1)一阶;(2) 五阶;(3) 三阶;(4) 六阶;(5) 二阶.3.(1)Δ2yt=2;(2)Δyt=(e-1)2et;(3)Δ2yt=6(t+1),Δ3yt=6;(4)Δ2yt=lnt2+4t+3t2+4t+4.4.略.习题11-21.yA(t)=A1+A2t+1(A1,A2为任意常数.以下A,A1,A2…均为任意常数).2.a(t)=-1+15,f(t)=1-1t²2t.3.略.4.(1)yt=A-13t+1;(2)yt=A-12t+79+13t ;(3)yt=A(-1)t+13²2t;(4)yt=A-13²2tcosπt.5.(1)yt=0.1³38t+0.1;(2)yt=12t-2+t;(3)yt=2t-t+4;(4)yt=(-4)t+sinπt.6.yt=A(-a)t+b1+a.7.(1)略;(2) yt=1y0-bC-aaCt+bC-a)-1,1y0+bat-1,当C≠a时,当C=a时.(3)yt=12t+1+32-1.习题11-31.(1)yA(t)=A1(-1)t+A212t;(2)yA(t)=(3)t(A1cosωt+A2sinωt),tanω=-2;(3)yA(t)=(A1+A2t)²4t;(4)yA(t)=A1cosπ3t+A2sinπ3t;(5)yA(t)=A1(1.8)t+A2(2.1)t;(6)yA(t)=A1[2(a+1)+2a+1)]t+A2[2(a+1)-2a+1]t.2.(1)yt=A15+172t+A25-172t-1;(2)yt=2tA1cosπ3t+A2sinπ3t+13(a+bt);(3)yt=A1+A2²2t+14³5t;(6)yt=A1(-2)tt+A2²3t²t115t-225.3.(1)t=25t2+125t+64125+186125(-4)t;(2)t=4t+43(-2)t-43;(3)t=195130-20〖〗130(-4)t-92613t;(4)t=4+3212t+12-72t.习题11-41.Yt=(Y0-Ye)αt+Ye,Ye=1+β1-α;Ct=(Y0-Ye)αt+αI+β1-α.2.Yt=(Y0-Ye)²λt+Ye,其中λ=1+r(1-α),Ye=β1-α;Ct=α(Y0-Ye)λt+Ye;It=(1-α)(Y0-Ye)λt.3.Yt=Y0+βα²λt-βα,其中λ=δrδr-α;St=(αY0+β)²λt;It=1δ(αY0+β)²λt.4.Dn(t)=A1λt1+A2λt2,其中λ1,2=2[(ab+1)±1+2ab].。
实用文档之《微积分》各章习题及详细答案
实用文档之"第一章 函数极限与连续"一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题 1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
微积分各章习题及详细答案
《微积分》各章习题及详细答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 函数极限与连续一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx k x 成立的k 为 。
5、=-∞→x e x x arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数x xx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
高等数学课后习题及参考答案(第十章)
高等数学课后习题及参考答案(第十章)习题10-11.设在xOy面内有一分布着质量的曲线弧L,在点(x,y)处它的线密度为μ(x,y),用对弧长的曲线积分分别表达:(1)这曲线弧对x轴、对y轴的转动惯量I x,I y;(2)这曲线弧的重心坐标,.解在曲线弧L上任取一长度很短的小弧段ds(它的长度也记做ds),设(x,y)为小弧段ds上任一点.曲线L对于x轴和y轴的转动惯量元素分别为dI x=y2μ(x,y)ds,dI y=x2μ(x,y)ds.曲线L对于x轴和y轴的转动惯量分别为,.曲线L对于x轴和y轴的静矩元素分别为dM x=yμ(x,y)ds,dM y=xμ(x,y)ds.曲线L的重心坐标为,.2.利用对弧长的曲线积分的定义证明:如果曲线弧L分为两段光滑曲线L1和L2,则.证明划分L,使得L1和L2的连接点永远作为一个分点,则.令λ=max{∆s i}→0,上式两边同时取极限,即得.3.计算下列对弧长的曲线积分:(1),其中L为圆周x=a cos t,y=a sin t (0≤t≤2π);解=.(2),其中L为连接(1, 0)及(0, 1)两点的直线段;解L的方程为y=1-x (0≤x≤1);.(3), 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) ..(4), 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界;解 L =L 1+L 2+L 3, 其中L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t ,L 3: x =x , y =x ,因而 ,.(5)⎰Γ++ds zy x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解,.(6), 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、(0, 0, 2)、(1, 0, 2)、(1, 3, 2);解 Γ=AB +BC +CD , 其中AB : x =0, y =0, z =t (0≤t ≤1),BC : x =t , y =0, z =2(0≤t ≤3),CD : x =1, y =t , z =2(0≤t ≤3),故.(7), 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解.(8), 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解.4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心.解 建立坐标系如图10-4所示, 由对称性可知, 又ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa 5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心.解 .(1).(2),,,,故重心坐标为.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明: .证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段,则L : x =a , y =t , t 从b 1变到b 2. 于是.2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线,证明.证明L : x =x , y =0, t 从a 变到b , 所以.3. 计算下列对坐标的曲线积分:(1), 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以.(2), 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π,L 2: x =x , y =0, x 从0变到2a ,因此.(3), 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到的一段弧;解.(4)⎰+--+L yx dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行); 解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L y x dy y x dx y x 22)()(.(5), 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧;解 ⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x .(6), 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1..(7), 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1);解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0,BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1,故.(8), 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故4. 计算, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧;解 L : x =y 2, y =y , y 从1变到2, 故.(2)从点(1, 1)到点(4, 2)的直线段;解 L : x =3y -2, y =y , y 从1变到2, 故(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线;解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2,L 2: x =x , y =2, x 从1变到4,故dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰ .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧.解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故.5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为x =R cos θ, y =R sin θ,θ从0变到, 于是场力所作的功为.6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1)沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线,则重力所作的功为7.把对坐标的曲线积分化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0, 0)到(1, 1);解L的方向余弦,故.(2)沿抛物线y=x2从点(0, 0)到(1, 1);解曲线L上点(x,y)处的切向量为τ=(1, 2x),单位切向量为,故.(3)沿上半圆周x2+y2=2x从点(0, 0)到(1, 1).解L的方程为,其上任一点的切向量为,单位切向量为,故.8.设Γ为曲线x=t,y=t2,z=t3上相应于t从0变到1的曲线弧,把对坐标的曲线积分化成对弧长的曲线积分.解曲线Γ上任一点的切向量为τ=(1, 2t, 3t2)=(1, 2x, 3y),单位切向量为,.习题10-31.计算下列曲线积分,并验证格林公式的正确性:(1),其中L是由抛物线y=x2及y2=x所围成的区域的正向边界曲线;解L=L1+L2,故,而 dxdy x dxdy y P x Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰ ,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. (2), 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x ,而,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故.(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故.3. 计算曲线积分,其中L为圆周(x-1)2+y2=2,L的方向为逆时针方向.解,.当x2+y2≠0时.在L内作逆时针方向的ε小圆周l:x=εcosθ,y=εsinθ(0≤θ≤2π),在以L和l为边界的闭区域Dε上利用格林公式得,即.因此.4.证明下列曲线积分在整个xOy面内与路径无关,并计算积分值:(1);解P=x+y,Q=x-y,显然P、Q在整个xOy面内具有一阶连续偏导数,而且,故在整个xOy面内,积分与路径无关.取L为点(1, 1)到(2, 3)的直线y=2x-1,x从1变到2,则.(2);解P=6xy2-y3,Q=6x2y-3xy2,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,故积分与路径无关,取路径(1, 2)→(1, 4)→(3, 4)的折线,则.(3).解P=2xy-y4+3,Q=x2-4xy3,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,所以在整个xOy面内积分与路径无关,选取路径为从(1, 0)→(1, 2)→(2, 1)的折线,则.5. 利用格林公式, 计算下列曲线积分:(1), 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线(a >0);解 , ,,由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222.(3), 其中L 为在抛物线2x =πy 2上由点(0, 0)到的一段弧;解 , ,,所以由格林公式,其中L 、OA 、OB 、及D 如图所示.故.(4), 其中L 是在圆周上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂yP x Q , 由格林公式有,其中L 、AB 、BO 及D 如图所示.故.6.验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求这样的一个u(x,y):(1)(x+2y)dx+(2x+y)dy;证明因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y )的全微分..(2)2xydx+x2dy;解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y)的全微分..(3)4sin x sin3y cos xdx–3cos3y cos2xdy解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(4)解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(5)解因为,所以P(x,y)dx+Q(x,y)dy是某个函数u(x,y)的全微分.7.设有一变力在坐标轴上的投影为X=x+y2,Y=2xy-8,这变力确定了一个力场,证明质点在此场内移动时,场力所做的功与路径无关.解场力所作的功为.由于,故以上曲线积分与路径无关,即场力所作的功与路径无关.习题10-41.设有一分布着质量的曲面∑,在点(x,y,z)处它的面密度为μ(x,y,z),用对面积的曲面积分表达这曲面对于x轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为.2. 按对面积的曲面积分的定义证明公式,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且.令, , , 则当λ→0时, 有.3. 当∑是xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,,故 .4. 计算曲面积分, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此⎰⎰+=πθ2020241rdr r d .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x 22224411++=++=.因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d.(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰.5. 计算, 其中∑是:(1)锥面及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:, D 2: x 2+y 2≤1, .+.提示: .(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:, D xy : x 2+y 2≤3,,因而 .提示: .6. 计算下面对面积的曲面积分:(1), 其中∑为平面在第一象限中的部分;解 , ,,.(2), 其中∑为平面2x +2y +z =6在第一象限中的部分; 解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,,⎰⎰--+--=x dy y xy x x dx 30230)22236(3.(3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:, D xy : x 2+y 2≤a 2-h 2,,(根据区域的对称性及函数的奇偶性).提示:,(4), 其中∑为锥面被x 2+y 2=2ax 所截得的有限部分. 解 ∑: , D xy : x 2+y 2≤2ax ,,dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑421564a =. 提示: .7. 求抛物面壳的质量, 此壳的面密度为μ=z .解 ∑: , D xy : x 2+y 2≤2,.故.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量.解 ∑: , D xy : x 2+y 2≤a 2,,.提示:.习题10-51. 按对坐标的曲面积分的定义证明公式:.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则.2. 当∑为xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为, D xy : x 2+y 2≤R , 于是zdxdyy x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰.(2), 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故.∑可表示为, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 .解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰.提示: 表示曲面的面积.(3), 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧;解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为,由两类曲面积分之间的了解可得dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰.(4), 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 xzdxdy 4000∑⎰⎰+++=由积分变元的轮换对称性可知.因此 .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块;∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是yzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰.4. 把对坐标的曲面积分化成对面积的曲面积分:(1)∑为平面在第一卦限的部分的上侧;解 令, ∑上侧的法向量为:,单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰10-61.利用高斯公式计算曲面积分:(1),其中∑为平面x=0,y=0,z=0,x=a,y=a,z=a所围成的立体的表面的外侧;解由高斯公式原式(这里用了对称性).(2),其中∑为球面x2+y2+z2=a2的外侧;解由高斯公式原式.(3),其中∑为上半球体x2+y2≤a2,的表面外侧;解由高斯公式原式.(4)其中∑界于z=0和z=3之间的圆柱体x2+y2≤9的整个表面的外侧;解由高斯公式原式.(5),其中∑为平面x=0,y=0,z=0,x=1,y=1,z=1所围成的立体的全表面的外侧.解由高斯公式原式.2.求下列向量A穿过曲面∑流向指定侧的通量:(1)A=yz i+xz j+xy k,∑为圆柱x+y2≤a2(0≤z≤h )的全表面,流向外侧;解P=yz,Q=xz,R=xy,⎰⎰⎰dv.=0=Ω(2)A=(2x-z)i+x2y j-xz2k,∑为立方体0≤x≤a, 0≤y≤a, 0≤z≤a,的全表面,流向外侧;解P=2x-z,Q=x2y,R=-xz2,.(3)A=(2x+3z)i-(xz+y)j+(y2+2z)k,∑是以点(3,-1, 2)为球心,半径R=3的球面,流向外侧.解P=2x+3z,Q=-(xz+y),R=y2+2z,⎰⎰⎰dv.π=3=108Ω3.求下列向量A的散度:(1)A=(x2+yz)i+(y2+xz)j+(z2+xy)k;解P=x2+yz,Q=y2+xz,R=-z2+xy,.(2)A=e xy i+cos(xy)j+cos(xz2)k;解P=e xy,Q=cos(xy),R=cos(xz2),.(3)A=y2z i+xy j+xz k;解P=y2,Q=xy,R=xz,.4.设u (x,y,z)、v (x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,,依次表示u (x,y,z)、v (x,y,z)沿∑的外法线方向的方向导数.证明,其中∑是空间闭区间Ω的整个边界曲面,这个公式叫作林第二公式.证明由第一格林公式(见书中例3)知,.将上面两个式子相减,即得.5.利用高斯公式推证阿基米德原理:浸没在液体中所受液体的压力的合力(即浮力)的方向铅直向上,大小等于这物体所排开的液体的重力.证明取液面为xOy面,z轴沿铅直向下,设液体的密度为ρ,在物体表面∑上取元素dS上一点,并设∑在点(x,y,z)处的外法线的方向余弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得,,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1), 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: 表示∑的面积, ∑是半径为a 的圆.(2), 其中Γ为椭圆x 2+y 2=a 2,(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: ∑(即)的面积元素为.(3), 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则.(4), 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则.2. 求下列向量场A 的旋度:(1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 .(2)A =(sin y )i -(z -x cos y )k ;解 .(3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分化为曲线积分, 并计算积分值, 其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面, 的上侧, n 是∑的单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为x =cos θ, y =sin θ, z =0(0≤θ≤2π,由托斯公式.(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量.解.4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量:(1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0;解.(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周, z =0.解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++L L dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(.5.证明rot(a+b)=rot a+rot b.解令a=P1(x,y,z)i+Q1(x,y,z)j+R1(x,y,z)k,b=P2(x,y,z)i+Q2(x,y,z)j+R2(x,y,z)k,由行列式的性质,有.6.设u=u(x,y,z)具有二阶连续偏导数,求rot(grad u)解因为grad u=u x i+u y j+u z k,故=(u zy-u yz)i+(u zx-u xz)j+(u yx-u xy)k=0.*7.证明:(1)∇(uv)=u∇v+v∇u解=u∇v+v∇u.(2)解==u∆v+v∆u+2∇u⋅∇u.(3) ∇⋅(A⨯B )=B⋅(∇⨯A )-A⋅(∇⨯B )解B=P2i+Q2j+R2k,而所以∇⨯(A⨯B)=B⨯(∇⨯A)-A⨯( ∇⨯B )(4) ∇⨯(∇⨯A )=∇(∇⋅A )-∇2a解令A=Pi+Q j++R k,则从而命题地证总习题十1. 填空:(1)第二类曲线积分化成第一类曲线积分是____________, 其中α、β、γ为有向曲线弧Γ上点(x , y , z )处的_____________的方向角.解 , 切向量.(2)第二类曲面积分Rdxdy Qdzdx Pdydz ++∑⎰⎰化成第一类曲面积分是_______, 其中α、β、γ为有向曲面∑上点(x , y , z )处的________的方向角.解 , 法向量.2. 选择下述题中给出的四个结论中一个正确的结论:设曲面∑是上半球面: x 2+y 2+z 2=R 2(z ≥0), 曲面∑1是曲面∑在第一卦限中的部分, 则有________.(A )xdS xdS 14∑∑⎰⎰⎰⎰=; (B );(C )xdS zdS 14∑∑⎰⎰⎰⎰=; (D )xyzdS xyzdS 14∑∑⎰⎰⎰⎰=.解 (C ).3. 计算下列曲线积分:(1), 其中L 为圆周x 2+y 2=ax ;解 L 的参数方程为, (0≤θ≤2π), 故θθθθπd y x ax ds ax ds y x L L )()()(222022'+'⋅==+⎰⎰⎰().(2), 其中Γ为曲线x =t cos t , y =t sin t , z =t (0≤t ≤t 0);解.(3), 其中L 为摆线x =a (t -sin t ), y =a (1-cos t )上对应t 从0到2π的一段弧;解 ⎰⎰⋅-+-⋅+-=+-π20]sin )sin ()cos 1()cos 2[()2(dt t a t t a t a t a a a xdy dx y a L.(4), 其中Γ是曲线x =t , y =t 2, z =t 3上由听t 1=0到t 2=1的一段弧;解.(5), 其中L 为上半圆周(x -a )2+y 2=a 2, y ≥0, 沿逆时针方向;解 这里P =e x sin y -2y , Q =e x cos y -2, .令L 1为x 轴上由原点到(2a , 0)点的有向直线段, D 为L 和L 1所围成的区域, 则由格林公式,.(6), 其中Γ是用平面y =z 截球面x 2+y 2+z 2=1所得的截痕, 从z 轴的正向看去, 沿逆时针方向.解 曲线Γ的一般方程为, 其参数方程为, t 从0变到2π.于是.4. 计算下列曲面积分:(1), 其中∑是界于平面z =0及z =H 之间的圆柱面x 2+y 2=R 2;解 ∑=∑1+∑2, 其中, D xy : -R ≤y ≤R , 0≤z ≤H , ;, D xy : -R ≤y ≤R , 0≤z ≤H , ,于是.(2), 其中∑为锥面(0≤z ≤h ) 的外侧;解 这里P =y 2-z , Q =z 2-x , R =x 2-y , 0=∂∂+∂∂+∂∂zR y Q x P . 设∑1为z =h (x 2+y 2≤h 2)的上侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式,而40222024)sin cos ()(1h d r r d dxdy y x h πθθθθπ=-=-⎰⎰⎰⎰∑, 所以 .(3)zdxdy ydzdx xdydz ++∑⎰⎰, 其中∑为半球面的上侧;解 设∑1为xOy 面上圆域x 2+y 2≤R 2的下侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式得,而 ,所以 33202R R zdxdy ydzdx xdydz ππ=-=++∑⎰⎰.(4), 其中∑为曲面(z ≥0)的上侧;解 这里, , , 其中., , ,.设∑1为z =0的下侧, Ω是由∑和∑1所围成的空间区域, 则由高斯公式,32223222)()(1z y x zdxdy ydzdx xdydz z y x zdxdy ydzdx xdydz ++++-=++++∑∑⎰⎰⎰⎰. (5)xyzdxdy∑⎰⎰, 其中∑为球面x 2+y 2+z 2=1(x ≥0, y ≥0)的外侧. 解 ∑=∑1+∑2, 其中∑1是(x 2+y 2≤1, x ≥0, y ≥0)的上侧;∑2是(x 2+y 2≤1, x ≥0, y ≥0)的下侧,xyzdxdy xyzdxdy xyzdxdy 21∑∑∑⎰⎰⎰⎰⎰⎰+=dxdy y x xy dxdy y x xy xyxy D D )1(12222------=⎰⎰⎰⎰ ⎰⎰⎰⎰-⋅⋅=--=103220221sin cos 212ρρρθθθπd d dxdy y x xy xy D .5. 证明22y x ydy xdx ++在整个xOy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分, 并求出一个这样的二元函数.解 这里, . 显然, 区域G 是单连通的, P 和Q 在G 内具有一阶连续偏导数, 并且 , 所以22y x ydy xdx ++在开区域G 内是某个二元函数u (x , y )的全微分. .6. 设在半平面x >0内有力构成力场, 其中k 为常数, . 证明在此力场中场力所作的功与所取的路径无关.解 场力沿路径L 所作的功为.令, . 因为P 和Q 在单连通区域x >0内具有一阶连续的偏导数, 并且,所以上述曲线积分所路径无关, 即力场所作的功与路径无关.7. 求均匀曲面的质心的坐标.解 这里∑:, (x , y )∈D xy ={(x , y )|x 2+y 2≤a 2}.设曲面∑的面密度为ρ=1, 由曲面的对称性可知, . 因为,222421a a dS ππ=⋅=∑⎰⎰, 所以 .因此该曲面的质心为.8. 设u (x , y )、v (x , y )在闭区域D 上都具有二阶连续偏导数, 分段光滑的曲线L 为D 的正向边界曲线. 证明:(1);(2),其中、分别是u 、v 沿L 的外法线向量n 的方向导数, 符号称为二维拉普拉斯算子. 证明 设L 上的单位切向量为T =(cos α, sin α), 则n =(sin α, -cos α).(1),所以 .(2)dxdy u v v u dxdy y u x u v y v x v u DD )()]()([22222222∆-∆=∂∂+∂∂-∂∂+∂∂=⎰⎰⎰⎰. 9. 求向量A =x i +y j +z k 通过闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}的边界曲面流向外侧的通量.解 设∑为区域Ω的边界曲面的外侧, 则通量为33==Ω⎰⎰⎰dv .10. 求力F =y i +z j +x k 沿有向闭曲线Γ所作的功, 其中Γ为平面x +y +z =1被三个坐标面所截成的三角形的整个边界, 从z 轴正向看去, 沿顺时针方向.解 设∑为平面x +y +z =1在第一卦部分的下侧, 则力场沿其边界L (顺时针方向)所作的功为.曲面∑的的单位法向量为, 由斯托克斯公式有.温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。
高等数学第十章习题详细解答答案
习题10.11. 写出下列级数的前五项:(1)∑∞=+12)2(n n n; (2)∑∞=⋅-⋅1)2(42)12(31n n n ; (3)∑∞=--1110)1(n n n; (4)∑∞=+1)1(!n nn n . 解 (1) +++++222227564534231(2) +⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+1086429753186427531642531423121 (3)-+-+-501401********* (4) +++++543216!55!44!33!22!1.2. 写出下列级数的一般项: (1)+++614121; (2)+⋅+⋅+⋅+⋅117957351132a a a ; (3) -+-+-+-36132511169974513; (4) +⋅⋅⋅+⋅⋅+⋅+86426424222x x x x x (0x >). 解(1)因为21121⋅=,22141⋅=, 23161⋅=,因此一般项nu n 21= (2) 因为 )312()112(5110+⋅⋅-⋅=⋅a ,)322()122(731+⋅⋅-⋅=⋅a a )332()132(9522+⋅⋅-⋅=⋅a a 因此一般项)32)(12(1+-=-n n a u n n (3) 因为11)112()1(131⋅+⋅-=-,222)122()1(45+⋅-=, 233)132()1(97+⋅-=- 因此一般项2)12()1(n n u n n +-=(4)因为21221⋅=xx ,424222⋅=⋅x x ,64264223⋅⋅=⋅⋅x x x ,因此一般项!2)321(2)2(642222n xn x n x u n n n n n n =⋅⋅=⋅⋅=.3. 判定下列级数的敛散性:(1)∑∞=-+1)1(n n n ; (2)∑∞=+-1)12)(12(1n n n ;(3)++++⋅+⋅)1(1321211n n ; (4) ++++6πsin 6π2sin6πsin n ; (5)∑∞=++-+1)122(n n n n ; (6)++++4331313131; (7)22111111()()()323232n n -+-++-+ ;(8) ++-+++++121297755331n n ; (9))(12112-∞=+-∑n n n a a (0a >);(10)+++++++++n n)11(1)311(1)211(1111132. 解(1)因为11)1()34()23()12(-+=-+++-+-+-=n n n S n 当∞→n 时,∞→n S ,故级数发散. (2)因为)121121(21)12)(12(1+--=+-n n n n)12)(12(1751531311+-++⋅+⋅+⋅=n n S n )]121121()5131()311[(21+--+-+-=n n ]1211[21+-=n , 当∞→n 时,21→n S ,故级数收敛.(3) 因为111)1(1+-=+n n n n , )1(1431321211+++⋅+⋅+⋅=n n S n 111)111()3121()211(+-=+-+-+-=n n n当∞→n 时,1→n S ,故级数收敛.(4)因为 6sin 63sin 62sin 6sin π++π+π+π=n S n )6sin 12sin 263sin 12sin 262sin 12sin 26sin 12sin 2(12sin21ππ++ππ+ππ+πππ=n )]1212cos 1212(cos )125cos 123(cos )123cos 12[(cos 12sin21π+-π-++π-π+π-ππ=n n ]12)12(cos 12[cos 12sin21π+-ππ=n由于 π+∞→1212coslim n n 不存在,所以n n S ∞→lim 不存在,因而级数发散. (5)因为)1()12(122n n n n n n n -+-+-+=++-++---+---+---=)34()45()23()34()12()23[(n S )]1()12(n n n n -+-+-++)12(121)12()12(--+++=--+-+=n n n n当∞→n 时,21-→n S ,故级数收敛. (6) 该级数的一般项)(013311∞→≠→==-n u nnn ,故由级数收敛的必要条件可知,该级数发散.(7) ∑∑∞=∞=-=-++-+-+-1133222131)2131()2131()2131()2131(n n n n n n∑∞=131n n 该级数为公比131<=q 的等比级数,该级数收敛,而∑∞=121n n该级数为公比121<=q 的等比级数,该级数也收敛,故∑∑∞=∞=-112131n n n n 也为收敛级数.(8) 该级数的一般项)(0112211212∞→≠→+-=+-=n n n n u n ,故由级数收敛的必要条件可知,该级数发散.(9) 因为 a a a a a a a a S n n n n -=-++-+-=+-+121212353)()()( 当∞→n 时,a S n -→1,故该级数收敛. (10) 该级数的一般项)(01])11[()11(11∞→≠→+=+=-n e n nu n nn ,故由级数收敛的必要条件可知,该级数发散. 4. 证明下列级数收敛,并求其和:++-++⋅+⋅+⋅)13)(23(11071741411n n . 证 )13()23(11071741411+⋅-++⋅+⋅+⋅=n n S n )1311(31)]131231()7141()411[(31+-=+--++-+-=n n n 当∞→n 时,31→n S ,故该级数收敛,且 31)13()23(11=+⋅-∑∞=n n n . 5.若级数∑∞=1n nu与∑∞=1n nv都发散时,级数∑∞=±1)(n n nv u的收敛性如何?若其中一个收敛,一个发散,那么,级数∑∞=±1)(n n nv u收敛性又如何?解 若级数分别为+-+-+-=-∞=∑11)1(111n n nu;(发散)+-++-+-=∑∞=n n nv)1(1111;(发散) 则级数∑∞=+1)(n n nv u显然收敛;但是如果另外有级数∑∑∞=∞==11n n n n u w ,则级数∑∞=+1)(n n nw u显然发散。
微积分课后习题答案
微积分课后习题答案微积分课后习题答案微积分是数学中的一门重要学科,它研究的是函数的变化和极限。
在学习微积分的过程中,课后习题是非常重要的一环。
通过做习题,我们可以巩固课堂上所学的知识,提高自己的解题能力。
然而,有时候我们可能会遇到一些难题,无法找到正确的解答。
因此,本文将为大家提供一些微积分课后习题的答案,希望能够帮助大家更好地理解微积分的知识。
一、函数的极限1. 求函数f(x) = (3x^2 + 2x + 1)/(2x^2 + x - 3)当x趋近于2时的极限。
解答:将x代入函数f(x)的表达式中,得到f(2) = (3(2)^2 + 2(2) + 1)/(2(2)^2 +2 - 3) = 13/9。
因此,当x趋近于2时,函数f(x)的极限为13/9。
2. 求函数f(x) = (x^2 - 4)/(x - 2)当x趋近于2时的极限。
解答:将x代入函数f(x)的表达式中,得到f(2) = (2^2 - 4)/(2 - 2) = 0/0。
此时,函数f(x)的极限不存在。
二、导数与微分1. 求函数f(x) = 3x^2 - 4x的导数。
解答:根据导数的定义,导数f'(x) = lim(h→0) [(f(x + h) - f(x))/h]。
将函数f(x)代入该定义中,得到f'(x) = lim(h→0) [(3(x + h)^2 - 4(x + h) - (3x^2 - 4x))/h]。
化简后可得f'(x) = 6x - 4。
2. 求函数f(x) = x^3 - 2x^2 + 3x - 4的微分。
解答:微分df(x) = f'(x)dx。
将函数f(x)的导数f'(x)代入该定义中,得到df(x) =(3x^2 - 4x)dx。
三、定积分1. 求函数f(x) = 2x在区间[1, 3]上的定积分。
解答:根据定积分的定义,定积分∫[1, 3] f(x)dx = lim(n→∞) Σ[i=1到n] f(xi)Δx,其中Δx = (b - a)/n,xi为区间[a, b]上的任意一点。
微积分(刘迎东编)上1.1参考答案
第一章 函数1.1 集合与函数 习题1。
11. 求下列函数的自然定义域: (1)23+=x y由023≥+x ,得定义域为32-≥x 。
(2)211xy -=由012≠-x ,得定义域为1±≠x 。
(3)241xy -=由042>-x ,得定义域为()2,2-。
(4)()1tan +=x y 由Z k k x ∈+≠+,21ππ得定义域为.,12Z k k x ∈-+≠ππ(5)()3arcsin -=x y由[]1,13-∈-x ,得定义域为[]4,2∈x 。
(6)()1ln +=x y 2由01>+x ,得定义域为1->x 。
(7)xx y πsin 1+=由⎩⎨⎧∈≠≥+Z k k x x ,,01ππ,得定义域为1->x 且Z x ∉。
2. 求下列函数的值域: (1)[]0,10,2-∈=x x y由010≤≤-x ,得.10002≤≤x(2)(]10,0,lg ∈=x x y 由,100≤<x 得1lg ≤x 。
(3)[]1,0,2∈-=x x x y由10≤≤x ,得4102≤-≤x x ,所以2102≤-≤x x 。
(4)()1,0,11∈-=x xy 由10<<x ,得110<-<x ,所以.111>-x3. 把半径为R 的一圆形铁皮,自中心处剪去中心角为α的一扇形后围成一无底圆锥。
试将这圆锥的体积表示为α的函数。
解:圆锥的底圆周长为铁皮被剪后所剩扇形的弧长,即()απ-2R ,所以圆锥的底圆半径为()παπ22-R ,圆锥的母线长显然为R ,所以圆锥的高为()παπαπαπ244222222-=--R R R ,由此得圆锥体积为:()()222322222442244231παπααππαπαπαππ--=--=R R R V ,其中πα20<<。
4. 下列各题中,函数()x f 和()x g 是否相同?为什么? (1)()();lg 2,lg 2x x g x x f ==()x f 的定义域为0≠x ,而()x g 的定义域为0>x ,所以两函数不同。
大学高等数学课后习题第十章第二次作业答案
第十章 第二次作业1.设L 为曲线x ysin =上从)0,0(O 到)0,(πA 的一段弧,则曲线积分⎰-L ydx xdy =解 填4- ()4sin cos 0-=-=-⎰⎰πdx x x x ydx xdy L 2. 平面力场j xy i y x F 2232+=将一质点沿着圆周222ay x =+从点),0(a 移动到点)0,(a 时所做的功=W 解 填416a π-⎰+=Ldy xy ydx x W 2232,L :{t a y t a x sin cos ==⎰+-=02224224]sin cos 3sin cos 2[πdt t t a t t a W⎰-=20224cos sin πtdt t a416a π-=3.设L 是抛物线x y =2上从点)1,1(-A 到点)1,1(B 的弧段,),(y x P 是二元连续函数,则曲线积分⎰Ldx y x P ),(化成定积分为( )A .⎰⎰+-1010),(),(dx x x P dx x x P B .⎰10),(2dx x x P C .⎰⎰+-1001),(),(dx x x P dx x x PD .⎰-01),(2dx x x P解:选C⎰⎰⎰+=OB AOL dx y x P dx y x P dx y x P ),(),(),( ⎰⎰+-=1001),(),(dx x x P dx x x P 4.设Γ是螺旋线bt z t a yt a x ===,sin ,cos 上从0=t 到π2=t 的弧段,则⎰Γ++ydz xdy zdx 之值为( ).A .)2(b a a +πB .)2(b a a +πC .)2(b a b +πD .)2(b a b +π解:选A⎰Γ++ydz xdy zdx ⎰++-=π202]sin )cos ()sin ([dt t ab t a t a bt ⎰⎰+-=ππ202220cos sin tdta tdt t ab )2(22b a a a ab +=+=πππ 5.计算曲线积分()⎰-+L xdy dx y x 22,其中L 为曲线22x a y -=上从点()0,a A -到点()0,a C 的一段弧.解 令 (),0 t sin ,cos π∈==t a y t a x ()⎰-+Lxdy dx y x 22 ⎰--=0223]cos sin [πdt t a t a 2322a a π+= 6.计算曲线积分dy y x dx y x L )()(2222-++⎰,其中L 是曲线x y --=11与x 轴所围平面图形的整个边界,按逆时针方向.解 由于L 可用方程⎪⎩⎪⎨⎧≤≤-≤≤≤≤=21,210,20,0x x x x x y 表示,故有, ⎰-++Ldy y x dx y x )()(2222 ⎰=202dx x⎰---+-++122222]})2()[1()2({dx x x x x ⎰+0122dx x 0132)2(202332123x dx x x ---=⎰ 32123)2(2383--+=x 34= 7.计算曲线积分⎰Γ+--++++zy x z y x zdz ydy xdx 222222,其中Γ是从点)1,1,1(到点)4,3,2(的直线段.解 Γ的参数方程为:⎪⎩⎪⎨⎧+=+=+=tz t y tx 31211,)10(≤≤t所以⎰Γ+--++++zy x z y x zdz ydy xdx 222222 ⎰+++=10214121146dt tt t 13301141212-=++=t t。
微积分(刘迎东)第十章习题答案
10.1 第一型曲线积分 习题10.11. 设在xOy 面内有一分布着质量的曲线弧L ,在点(),x y 处它的线密度为(),x y μ。
用第一型曲线积分分别表达(1) 这曲线弧对x 轴、对y 轴的转动惯量,.x y J J 解:()()22,;,.x y LLJ y x y ds J x x y ds μμ==⎰⎰(2) 这曲线弧的质心坐标,.x y解:()()()(),,,.,,LLLLx x y ds y x y ds x y x y ds x y dsμμμμ==⎰⎰⎰⎰ 2. 计算下列第一型曲线积分: (1)()22,nLx y ds +⎰其中L 为圆周()cos ,sin 02;x a t y a t t π==≤≤解:()22222102.nn Lxyds a a ππ++==⎰⎰(2)(),Lx y ds +⎰其中L 为连接()1,0及()0,1两点的直线段。
解:1;:,0 1.x t L t y t=-⎧≤≤⎨=⎩()(11Lx y ds t t +=-+=⎰⎰(3),Lxds ⎰其中L 为由直线y x =及抛物线2y x =所围成的区域的整个边界。
解:1111.12Lxds x =++=-⎰⎰⎰ (4)22,x y Leds +⎰其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界。
解:224022.4ax y Laa eds eaee πθπ+=++=-+⎰⎰⎰(5)2221,ds x y z Γ++⎰其中Γ为曲线cos ,sin ,t t tx e t y e t z e ===上相应于t 从0变到2的这段弧。
解:2222111.tdsx y zdteΓ++=⎫==-⎪⎝⎭⎰⎰⎰(6)2,x yzdsΓ⎰其中Γ为折线ABCD,此处,,,A B C D依次为点()()()()0,0,0,0,0,2,1,0,2,1,3,2;解:0;;1;:0;,01;:0;,01;:3;,01;222x x t xAB y t BC y t CD y t tz t z z===⎧⎧⎧⎪⎪⎪=≤≤=≤≤=≤≤⎨⎨⎨⎪⎪⎪===⎩⎩⎩所以11120000069.x yzds dt dtΓ=++=⎰⎰⎰⎰(7) 2,Ly ds⎰其中L为摆线的一拱()()()sin,1cos02;x a t t y a t tπ=-=-≤≤解:()222232561cos.15Ly ds a t aπ=-=⎰⎰(8)()22,Lx y ds+⎰其中L为曲线()()cos sin,sin cos,02;x a t t t y a t t t tπ=+=-≤≤解:()()()()()2222222232324cos sin sin cos124.Lx y dsa t t t a tt ta t tdt aππππ+=⎡++-⎣=+=+⎰⎰⎰(9) ,Lzds⎰其中Γ为曲线()0cos,sin,0;x t t y t t z t t t===≤≤解:(()3221cos23tLzds t t==+⎰⎰(10) 22,Lx y ds+⎰其中L为圆周22;x y ax+=解:2cos;:,.22cos sinx aLy aθππθθθ⎧=-≤≤⎨=⎩22222cos2.Lx y ds a aππθ-+==⎰⎰(11)(),Lx y ds +⎰其中L 为由()()()0,0,1,0,0,1三点所连接的闭折线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.1 第一型曲线积分 习题10.11. 设在xOy 面有一分布着质量的曲线弧L ,在点(),x y 处它的线密度为(),x y μ。
用第一型曲线积分分别表达(1) 这曲线弧对x 轴、对y 轴的转动惯量,.x y J J 解:()()22,;,.x y LLJ y x y ds J x x y ds μμ==⎰⎰(2) 这曲线弧的质心坐标,.x y解:()()()(),,,.,,LLLLx x y ds y x y ds x y x y ds x y dsμμμμ==⎰⎰⎰⎰ 2. 计算下列第一型曲线积分: (1)()22,n Lx y ds +⎰其中L 为圆周()cos ,sin 02;x a t y a t t π==≤≤解:()22222102.nn Lx y ds a a ππ++==⎰⎰(2)(),Lx y ds +⎰其中L 为连接()1,0及()0,1两点的直线段。
解:1;:,0 1.x t L t y t=-⎧≤≤⎨=⎩()(101L x y ds t t +=-+=⎰⎰(3),Lxds ⎰其中L 为由直线y x =及抛物线2y x =所围成的区域的整个边界。
解:1111.12212Lxds x =++=+-⎰⎰⎰ (4)22,x y Leds +⎰其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限所围成的扇形的整个边界。
解:224022.4ax y Laa eds eaee πθπ+=++=-+⎰⎰⎰(5)2221,ds x y z Γ++⎰其中Γ为曲线cos ,sin ,t t tx e t y e t z e ===上相应于t 从0变到2的这段弧。
解:2222111.2tdsx y zdteΓ++=⎛⎫==-⎪⎝⎭⎰⎰⎰(6)2,x yzdsΓ⎰其中Γ为折线ABCD,此处,,,A B C D依次为点()()()()0,0,0,0,0,2,1,0,2,1,3,2;解:0;;1;:0;,01;:0;,01;:3;,01;222x x t xAB y t BC y t CD y t tz t z z===⎧⎧⎧⎪⎪⎪=≤≤=≤≤=≤≤⎨⎨⎨⎪⎪⎪===⎩⎩⎩所以11120000069.x yzds dt dtΓ=++=⎰⎰⎰⎰(7) 2,Ly ds⎰其中L为摆线的一拱()()()sin,1cos02;x a t t y a t tπ=-=-≤≤解:()222232561cos.15Ly ds a t aπ=-=⎰⎰(8)()22,Lx y ds+⎰其中L为曲线()()cos sin,sin cos,02;x a t t t y a t t t tπ=+=-≤≤解:()()()()()2222222232324cos sin sin cos124.Lx y dsa t t t at t ta t tdt aππππ+=⎡++-⎣=+=+⎰⎰⎰(9) ,Lzds⎰其中Γ为曲线()0cos,sin,0;x t t y t t z t t t===≤≤解:(()3221cos233tLzds t t==+-⎰⎰(10) 22,Lx y ds+⎰其中L为圆周22;x y ax+=解:2cos;:,.22cos sinx aLy aθππθθθ⎧=-≤≤⎨=⎩22222cos2.Lx y ds a aππθ-+==⎰⎰(11) (),Lx y ds +⎰其中L 为由()()()0,0,1,0,0,1三点所连接的闭折线。
解:()()()()()();0;0,01,0:,01;0,00,1:,01;01;1,00,1:,01;x t x t t y y t x t t y t ==⎧⎧→≤≤→≤≤⎨⎨==⎩⎩=-⎧→≤≤⎨=⎩()11001L x y ds +=++=⎰⎰⎰⎰(12)()222,Lxy z ds ++⎰其中L 为螺旋线cos ,sin ,,02;x a t y a t z bt t π===≤≤解:()(2222222023282.3Lx y z ds a b t b a πππ++=+⎫=+⎪⎭⎰⎰(13),Lyds ⎰其中L 为抛物线24y x =自点()0,0到点()1,2的一段;解:()214.3Lyds ==⎰⎰(14)4433,L x y ds ⎛⎫+ ⎪⎝⎭⎰其中L 为摆线222333x y a +=的弧;解:33cos ;:sin x a L y a θθ⎧=⎪⎨=⎪⎩(()4444433320775533204cos sin 12cos sin sincos 4.L x y ds a ad a ππθθθθθθθθ⎛⎫+=+ ⎪⎝⎭=+=⎰⎰⎰(15)2,Lx ds ⎰其中L 为圆周2222,0.x y z a x y z ++=++=解:()322222112.333L L L a x ds x y z ds a ds π=++==⎰⎰⎰ 3. 求半径为R 的半圆形金属丝(设线密度为常数μ)对位于圆心的质点(设质量为0m )的引力F 。
解:设圆心为原点,金属丝占据上半圆周。
则0.x F =000330sin 2.y L Gm y Gm R Gm F ds Rd R R Rπμμθμθ===⎰⎰ 4. 求物质曲线()23,,0123a ax at y t z t t ===≤≤的质量,其线密度ρ=解:033ln 88163La a m ds ρ+===-+⎰⎰5. 求半径为a ,中心角为2ϕ的均匀圆弧(线密度1μ=)的质心。
解:设圆心在原点,关于y轴对称,则x =;222222sin 2sin sin .2L La d yds a a y a dsad πϕπϕπϕπϕθθϕϕϕϕθ+-+-====⎰⎰⎰⎰6. 设螺旋形弹簧一圈的方程为cos ,sin ,,x a t y a t z kt ===其中02t π≤≤,它的线密度()222,,x y z x y z ρ=++。
求(1) 它关于z 轴的转动惯量;z J (2) 它的质心。
解:(1)()(2222222032282.3z J x y ds a a k t k aa πρππΓ=+=+⎫=+⎪⎭⎰⎰(2)22222222cos 6.34a t a k t x dsak x a k dsπρπρΓΓ+===+⎰⎰22222222sin 6.34a t a k t y ds ak y a k ds πρππρΓΓ+-===+⎰⎰222223322236.34kt a k t z dsa k k x a k dsπρπππρΓΓ++===+⎰⎰10.2 第二型曲线积分 习题10.21. 设L 为xOy 面直线x a =上的一段。
证明:(),0.LP x y dx =⎰证明:设12,:,,x a L y y y y =⎧→⎨=⎩则()()2211,,000.y y L y y P x y dx P a y dy dy =⋅==⎰⎰⎰2. 设L 为xOy 面x 轴上从点(),0a 到点(),0b 的一段直线。
证明:()(),,0.bLaP x y dx P x dx =⎰⎰证明:,:,,0x x L a b y =⎧→⎨=⎩则()(),,0.b L aP x y dx P x dx =⎰⎰ 3. 计算下列第二型曲线积分: (1)()22,Lxy dx -⎰其中L 为抛物线2y x =上从点()0,0到点()2,4的一段弧;解:()()22224056.15Lx y dx x x dx -=-=-⎰⎰ (2),Lxydx ⎰其中L 为圆周()()2220x a y aa -+=>及x 轴所围成的在第一象限的区域的整个边界(按逆时针方向绕行);解:圆周的参数方程为22cos ;2cos sin ,x a y a θθθ⎧=⎨=⎩所以()3223234222004cos sin 2cos 16cos sin .2aLa xydx x dx a d a a d πππθθθθθθ=⋅+=-=-⎰⎰⎰⎰(3),Lydx xdy +⎰其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到2π的一段弧; 解:()()20sin cos cos sin 0.Lydx xdy R td R t R td R t π+=+=⎰⎰(4)()()22,Lx y dx x y dy x y +--+⎰其中L 为圆周222x y a +=(按逆时针方向绕行);解:()()()()()()2222cos sin cos cos sin sin 2.Lx y dx x y dyx y a a d a a a d a a πθθθθθθπ+--++--==-⎰⎰(5)2,x dx zdy ydz Γ+-⎰其中Γ为曲线,cos ,sin x k y a z a θθθ===上对应θ从0到π的一段弧; 解:()()()3322220sin cos cos sin .3k x dx zdy ydz k d k a d a a d a a ππθθθθθθπΓ+-=+-=-⎰⎰(6)()1,xdx ydy x y dz Γ+++-⎰其中Γ为从点()1,1,1到点()2,3,4的一段直线;解:1;:12;:0 1.13x t y t t z t =+⎧⎪Γ=+→⎨⎪=+⎩()()()()()()()1111121*********.xdx ydy x y dzt d t t d t t t d t Γ+++-=+++++++++-+=⎰⎰(7),dx dy ydz Γ-+⎰其中Γ为有向闭折线ABCA ,此处,,A B C 依次为点()()()1,0,0,0,1,0,0,0,1;解:1;0;;:;,:01;:1;,:01;:0;,:01;11x t x x t AB y t t BC y t t CA y t z z t z t =-==⎧⎧⎧⎪⎪⎪=→=-→=→⎨⎨⎨⎪⎪⎪===-⎩⎩⎩()()()()()()()1110110111001.2dx dy ydz d t dt td d d t t dtdt d d t Γ-+=--++--+-+-+-=⎰⎰⎰⎰(8)()()2222,Lxxy dx y xy dy -+-⎰其中L 为抛物线2y x =上从点()1,1-到点()1,1的一段弧; 解:()()()()()()122234321123541222214224.15L xxy dx y xy dy xx dx x x d x x x x x dx ---+-=-+-=-+-=-⎰⎰⎰(9),L F dr ⋅⎰其中{},,F x y x y L =+-为22221x y a b+=沿逆时针一周;解:()()()()20cos sin cos cos sin sin 0.LF dr a b d a a b d b πθθθθθθ⋅=++-=⎰⎰(10),LF dr ⋅⎰其中{},,y F xe y L =为如图10.8由点()0,0到点()1,1的四条不同的路径;解:1111.L F dr xe dx ydy ⋅=+=⎰⎰⎰()()22211223002.2x x L e F dr xe dx x d x xe x dx ⋅=+=+=⎰⎰⎰ 3103.2xL F dr xe dx xdx ⋅=+=⎰⎰ 411001.2L e F dr ydy xedx +⋅=+=⎰⎰⎰ (11)cos cos ,Lydx xdy +⎰其中L 为如图10.9的三角形;解:cos cos cos 0cos cos cos 0.Lydx xdy dx dy xdx xdx ππππ+=+++=⎰⎰⎰⎰(12),xyzdz Γ⎰其中Γ为用平面y z =截球面2221x y z ++=所得的截痕,从z 轴的正向看去,沿逆时针方向;解:cos ;::02.x y z θθπ⎧⎪=⎪⎪Γ=→⎨⎪⎪=⎪⎩220cos sin .216xyzdz d πθθΓ==⎰⎰(13)()2222,yz dx yzdy x dz Γ-+-⎰其中Γ为曲线23,,x t y t z t ===上由10t =到21t =的一段弧; 解:()()()()12224652230122.35y z dx yzdy x dz t t dt t d t t d t Γ-+-=-+-=⎰⎰ 4. 计算(),Lxydx y x dy +-⎰其中L 为由点()0,0到点()1,1的下列四条不同路径:(1) 直线1;L y x =解:()11210.3L xydx y x dy x dx dx +-=+=⎰⎰ (2) 抛物线22;L y x =解:()()()2132201.12L xydx y x dy x dx x x d x +-=+-=⎰⎰ (3) 抛物线23;L x y =解:()()()31322017.30L xydx y x dy y d y y y dy +-=+-=⎰⎰ (4) 立方抛物线34;L y x =解:()()()3143301.20L xydx y x dy x dx x x d x +-=+-=-⎰⎰ 5. 计算()22,Lx y dx xydy -+⎰其中L 分别为下列两种情形:(1) 连接()()0,0,1,1O A 的直线段。