调制电路与解调电路详解
射频通信电路- 调制与解调电路
乘法器输出为:
vo Kvivr KVimVrm cos Wt coswct cos[(wc w )t ]
1 2
KVimVrm
cos Wt{cos(wt
)cos[(2wc来自w )t]}经滤波器后得到:
vo
1 2
KVimVrm
cos Wt
cos(wt
)
从上式可以看出,若要从输出中得到调制信号cosWt,就必 须要求w0,0 =>参考信号必须与发端载波同频同相。若接收信号为单边带 信号,也可以得出完全相同的结论。
第九章 调制与解调电路
调幅-平衡调制与相干解调、包络检波 调频-直接调频与间接调频、鉴频电路
其他-载波提取、正交信号形成
第九章 内容目录
9·1 调制与解调器
平衡调制器、相干解调器
9·2 载波提取 9·3 正交信号形成电路 9·4 调幅波的包络检波电路
包络检波电路、同步检波
9·5 调频电路
相干解调适用于所有的调幅信号;非相干解调 则只能用于AM信号。
2020/7/28
Information&Communication Engineering Dept. XJTU
9
9·2 包络检波电路
对检波器的要求通常有:
检波效率: 无源检波器Kd小于1,越大越好。 检波失真:用解调输出中的高次谐波分量之和
5
9·1 调制与解调器
2、双平衡调制器
vD1 vc vW , iD1 gD (vc vW )s(wct) vD2 vc vW , iD2 gD (vc vW )s(wct) vD3 vc vW , iD3 gD (vc vW )s(wct ) vD4 vc vW , iD4 gD (vc vW )s(wct )
信号电路调制解调原理
信号电路调制解调原理一、引言在通信系统中,信号的传输必须经过调制和解调两个过程。
调制是将要传输的信息信号转换成适合传输的调制信号,解调则是将调制信号还原成原始信息信号。
调制解调技术在现代通信系统中起着至关重要的作用,本文将重点介绍信号电路调制解调原理。
二、调制原理调制是指将原始信息信号与高频载波信号相结合,通过改变载波信号的某些特性,将信息信号转移到载波信号上。
常用的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
不同的调制方式适用于不同的通信场景,下面以幅度调制为例进行介绍。
幅度调制(AM)是将原始信息信号的幅度变化与载波信号的幅度进行相应变化的调制方式。
具体原理如下:首先,将原始信息信号通过调制器进行调制处理,将其转换成与信息信号幅度相对应的调制信号。
然后,将调制信号与高频载波信号相乘,得到幅度调制信号。
最后,通过天线将幅度调制信号发射出去。
三、解调原理解调是将调制信号还原成原始信息信号的过程。
解调过程与调制过程相反,常用的解调方式有包络检波、相干解调和同步解调。
下面以包络检波为例进行介绍。
包络检波是一种简单且常用的解调方式。
具体原理如下:首先,将接收到的幅度调制信号经过放大器放大后,通过包络检波器进行解调处理,得到包络信号。
然后,将包络信号通过滤波器进行滤波处理,去除高频噪声。
最后,得到的信号即为原始信息信号。
四、应用场景调制解调技术广泛应用于各种通信系统中。
以广播系统为例,调制解调技术可以将声音信号转换成适合广播传输的调制信号,然后通过天线发射出去;接收端通过解调技术将接收到的调制信号还原成原始声音信号,实现广播内容的传输。
调制解调技术还应用于无线电通信、电视传输、移动通信等领域。
例如,在移动通信系统中,调制解调技术可以将语音、视频等信息信号转换成适合无线传输的调制信号,然后通过天线发射出去;接收端通过解调技术将接收到的调制信号还原成原始信息信号,实现通信内容的传输。
五、总结信号电路调制解调原理是现代通信系统中不可或缺的一部分。
射频通信电路- 调制与解调电路
2020/7/28
Information&Communication Engineering Dept. XJTU
4
9·1 调制与解调器
1、平衡调制器电路
vD1 vc vW , iD1 gD (vc vW )s(wct)
R
C
vo
设输入信号(普通调幅波AM信号)
vi (t) Vim (1 ma cos Wt) coswct
RC滤波器的取值原则一般为:
➢ RC>>1/wc,以保证电容C对高频载波近似短路,
滤除输出信号的高频部分; ➢ RC<1/Wmax,保证低频调制信号可以通过RC低通 滤波器。
2020/7/28
Information&Communication Engineering Dept. XJTU
2020/7/28
Information&Communication Engineering Dept. XJTU
14
9·2 包络检波电路
把二极管用折线特性逼近,并考虑到平均直流偏压Vo对 二极管构成的负偏压,可以得到:
i
gD 0
(vD
VD
)
vD VD vD 0
vD vi Vo Vim coswct Vo i gD (Vim coswct Vo VD )
2020/7/28
Information&Communication Engineering Dept. XJTU
12
9·2 包络检波电路
输入信号vi(t)是一普通调幅波AM信号:
vi (t) Vim (1 ma cos Wt) coswct iD (t) a0 a1Vim (1 ma cos Wt) coswct
电路基础原理数字信号的调制与解调
电路基础原理数字信号的调制与解调数字信号的调制与解调是电路基础原理中的重要概念。
调制是将数字信号转化为模拟信号的过程,解调则是将模拟信号还原为数字信号的过程。
本文将介绍数字信号的调制与解调原理及其应用。
一、调制的基本原理调制是为了将数字信号传输到远距离时,能够克服传输噪声、提高信号质量而进行的一种技术。
数字信号经过调制后,会转化为模拟信号,其特点是连续的波形。
1.频移键控调制(FSK)FSK是一种基本的数字信号调制方式,它通过改变信号的频率来表示不同的数字。
在FSK中,使用两个频率来分别代表二进制的0和1。
2.相移键控调制(PSK)PSK是一种通过改变信号的相位来表示不同的数字的调制方式。
在PSK中,使用不同的相位来表示二进制的0和1。
3.正交幅度调制(QAM)QAM是一种通过改变信号的振幅和相位来表示不同的数字的调制方式。
在QAM中,通过改变信号的振幅和相位的组合来表示多个二进制数字。
二、解调的基本原理解调是将模拟信号还原为数字信号的过程,其目的是还原接收到的信号,以便后续的数字信号处理。
1.频移解调频移解调是将经过FSK调制的信号还原回数字信号的过程。
解调器需要检测接收到的信号的频率,并根据频率的不同判断出二进制的0和1。
2.相移解调相移解调是将经过PSK调制的信号还原为数字信号的过程。
解调器需要检测接收到信号的相位,并根据相位的变化来判断出二进制的0和1。
3.幅度解调幅度解调是将经过QAM调制的信号还原为数字信号的过程。
解调器需要测量接收到信号的振幅和相位,并根据这些信息来判断出二进制的0和1。
三、调制与解调的应用调制与解调技术广泛应用于通信领域,特别是在无线通信中。
1.无线电广播无线电广播使用调制技术将音频信号转化为无线电信号,并通过无线电波传输到接收器中,然后通过解调技术将无线电信号还原为音频信号。
2.移动通信移动通信中的调制与解调技术被用于将数字信号通过无线电信道传输,以实现声音、图像和数据的无线传输。
振幅调制和解调电路
02
振幅调制原理
振幅调制定义
01
振幅调制是指将低频信号调制到 高频载波上,改变载波的幅度大 小的过程。
02
振幅调制是一种线性调制方式, 其原理是将输入信号的幅度变化 ,通过改变高频载波的幅度来实 现信号的传输。
01
03
同时,随着物联网、云计算、大数据等新兴技术的发 展,振幅调制和解调电路的应用领域也将不断拓展,
为人们的生活和工作带来更多的便利和价值。
04
未来发展方向包括采用新型的调制方式、提高调制效 率、降低解调误差率、增强抗干扰能力等。
THANKS
感谢观看
振幅调制优点与缺点
振幅调制的优点包括实现简单、抗干扰能力强、信道利用率 高等。
振幅调制的缺点包括对非线性失真敏感、对信道特性变化敏 感等。
03
振幅调制电路
模拟振幅调制电路
01
模拟振幅调制电路主要 由调制信号、载波信号 和调制器组成。
02
03
04
调制信号通常是音频信 号或低频信号,载波信 号是高频信号。
移动通信
在移动通信系统中,振幅调制用于传 输语音和数据信号。解调电路在接收 端将调制的信号还原为原始信号,以 便用户接收。
有线通信系统中的应用
有线电视
在有线电视系统中,振幅调制用于传 输多路电视信号。解调电路用于将各 个电视频道还原为原始信号,以便用 户选择观看。
DSL宽带接入
在DSL宽带接入中,振幅调制用于传 输高速数据信号。解调电路在接收端 将调制信号还原为原始数据信号,提 供互联网接入服务。
电路中的信号调制与解调
电路中的信号调制与解调信号调制与解调是现代通信技术中不可或缺的一环。
它们负责将信息转换为适合传输的信号,并在接收端将信号恢复为原始的信息。
在电路中,调制和解调有着多种形式,每种形式都有其独特的特点和应用场景。
调制是指将原始信息信号与一定的载波信号相结合,形成适合传输的调制信号。
通过调制,原始信息信号的频率、振幅、相位等特性被转换成与载波信号相关的参数。
常见的调制方式包括幅度调制(AM)、频率调制(FM)、相位调制(PM)等。
幅度调制是最简单的调制方式之一。
它通过改变载波信号的幅度,来表示原始信息信号的变化。
当原始信号为高电平时,载波信号的幅度较大;当原始信号为低电平时,载波信号的幅度较小。
幅度调制广泛应用在调幅广播、电视和手机通信等领域。
频率调制是将原始信息信号的变化通过改变载波信号的频率来表示的一种调制方式。
当原始信号为高电平时,载波信号的频率较高;当原始信号为低电平时,载波信号的频率较低。
频率调制被广泛应用在调频广播、无线通信和音频传输等领域。
相位调制则是通过改变载波信号的相位,来表示原始信息信号的变化。
当原始信号为高电平时,载波信号的相位发生改变;当原始信号为低电平时,载波信号的相位保持不变。
相位调制常用于调相广播和数字通信系统中。
解调是将调制信号还原为原始信息信号的过程。
它在接收端起着至关重要的作用,能够使接收端正确地解读和解析接收到的信号。
常见的解调方式包括包络检测、鉴相解调、锁相环等。
包络检测是一种常用的解调方式,适用于幅度调制。
它通过提取调制信号的包络(即调制信号的振幅)来还原原始信息信号。
包络检测被广泛应用在调幅广播接收机中。
鉴相解调是一种用于解调相位调制信号的方法。
它通过比较接收信号与参考信号的相位差,来推测原始信息信号的变化。
鉴相解调在数字通信系统中得到广泛应用。
锁相环是一种复杂且高效的解调方法,通常用于频率调制。
它通过将接收信号的相位与本地参考信号的相位进行比较,通过调整本地振荡信号的频率和相位,使其与接收信号保持同步。
2ASK调制及相干解调电路设计
2ASK调制及相干解调电路设计引言:本文将详细介绍2ASK调制及相干解调电路的设计。
首先,将介绍2ASK调制电路的设计过程,然后,将介绍相干解调电路的设计过程。
最后,将给出整体的电路设计。
一、2ASK调制电路设计1.载波信号发生器设计2.信息信号源设计信息信号源可以是一个音频信号源或者其他信号源。
该信号需要经过一个低通滤波器,以去除高频噪声。
3.幅度调制器设计幅度调制器将信息信号与载波信号进行调制。
可以使用一个乘法器或者一个调制电路(例如带通滤波器)实现2ASK调制。
1.相干解调原理相干解调是将调制后的信号恢复为原始信号的过程。
其原理是将调制信号与一个相干载波信号进行相乘,并通过滤波器将非基带信号去除。
2.相干载波发生器设计相干解调需要一个与调制信号相干的载波信号。
该载波信号的频率应与调制信号的频率相同,其相位应与调制信号的相位保持一致。
3.相干解调器设计相干解调器将调制信号与相干载波信号相乘,并通过低通滤波器将非基带信号去除。
可以使用乘法器和低通滤波器来实现相干解调。
三、整体电路设计```+---------++---------+Info -->,,--> Modulation --> Demodulation --> RecoveredSignal ,, + Signal --> Info SignalGenerator, 2ASK+---------+VCarrier Signal Generator```其中,Info Signal Generator是信息信号源,Carrier Signal Generator是载波信号源,Modulation是2ASK调制电路,Demodulation 是相干解调电路,Recovered Signal是解调后的信号。
设计步骤如下:1.设计信息信号源,生成所需信号的波形。
2.设计载波信号源,生成所需频率和相位的信号。
3.设计2ASK调制电路,将信息信号与载波信号进行调制。
第4章幅度调制与解调电路
4. 3幅度解调电路
4.负峰切割失真 为把检波器的输出电压藕合到下一级电路.需要有一个容量较大
的电容C与下级电路相连。下级电路的输入电阻作为检波器的负载.电 路如图4-23(a)所示。负峰切割失真指藕合电容公通过电阻R放电.对二 极管引入一个附加偏置电压.导致二极管截止而引入的失真。失真波 形如图4-23(b)、图4-23(c)所示。
可得实现普通调幅的电路模型如图4-4所示.关键在于用模拟乘法 器实现调制信号与载波的相乘。
上一页 下一页 返回
4.1概述
2.双边带调幅(DSB) 1)双边带调幅信号数学表达式
上一页 下一页 返回
4.1概述
2)双边带调幅信号波形与频谱 图4-5所示为双边带调幅信号的波形与频谱图。双边带信号的包
络仍然是随调制信号变化的.但它的包络已不能完全准确地反映低频 调制信号的变化规律。双边带信号在调制信号的负半周.已调波高频 与原载频反相;调制信号的正半周.已调波高频与原载频同相。也就是 双边带信号的高频相位在调制电压零交点处要突变180°
混频后.产生近似中频的组合频率.进入中放通带内形成干扰。 减小互调干扰的方法与抑制交叉调制干扰的措施相同。
上一页 返回
4. 5幅度调制和解调电路的制作、 调试及检测
4. 5. 1低电平振幅调制器(利用乘法器)
幅度调制就是载波的振幅受调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同.即振幅变化与调制信号的振幅成正 比。通常称高频信号为载波信号.低频信号为调制信号.调幅器即为产 生调幅信号的装置。
上一页 下一页 返回
4.1概述
3)调幅信号的功率分配 由式(4-3)知.普通调幅信号uAM(t)<C)在负载电阻RL上产生的功率
振幅调制与解调电路
vO
Vm
t
≥
t t1
t tt1
(a)
(b)
图 4-4-9 惰性失真
(a)不产生惰性失真
(b)产生惰性失真
单音调制时不产生惰性失真的充要条件:
(3) 分析
RLC ≤
1 - Ma2 ΩMa
Ma和 越大,包络的下降速度越快,不产生惰性失真
所要求的 RLC 值必须越小。
多音调制时,作为工程估算, 和 Ma 应取其中的最大 值。一般按 maxRLC ≤ 1.5 计算 。
若
Vrm
V>rmV(m10,VVmrMm0 aco<s
t)cosct
1,合成了不失真的调幅信号,可
通过包络检波器检波。
4.同步检波的关键:产生与载波同频同相的同步信号
① 对双边带,可从已调波信号取出 例:双边带调制信号
vS (t) kav (t)cosct
取平方,vS2 (t ) ka2v2 (t ) cos 2 ct ,取角频率为 2c 的分量
(2)小信号检波 ① 条件:vS 振幅 Vm 足够小(几至十几毫伏),此时,二 极管应设有很小的偏置电流。
五、二极管包络检波电路中的失真
设: vS(t) =Vm0(1+Macos t)cosct,要求:
(1)
Vm0(1 - Ma) ≥ 500 mV
(2)RLC 的低通滤波器带宽应大于 Fmax。
1.惰性失真
RLC C 向 RL的放电速度 C 的泄放电荷量 D 导通时间 锯齿波动 vAV 增大。
为提高检波性能,RLC
取值应足够大。当满足
RL
1
cC
和 RL>> RD 的条件时,可以认为,VAV Vm,即检波电压传
振幅调制、解调电路概要
2.负载效应 检波器作为中频放大器的 输出负载,可以用检波输入电 阻 Ri 来表示这种负载效应。 (1) Ri 定义:输入高频电 压振幅对二极管电流 i 中基波 分量振幅的比值。 (2) Ri 的求法:可近似从能量守恒原理求得。 设输入高频等幅电压 vS(t) = Vm cosct,相应的输出 为直流电压 VAV,则检波器从输入信号源获得的高频功 2 率为 Pi = Vm / 2Ri ,经过二极管的变换作用,一部分转
② 载频减小为 50 kHz,上、下边频间隔仍为0.2 kHz,则两边频的相对间隔为(0.2/50.1) × 100% = 0.4%。
相对间隔越大,滤波器就越容易实现。故单边带发 射机在低载波频率上产生单边带信号,而后用混频器将 载波频率提升到所需的载波频率上。 (2) 组成
本振频率(kHz) 边带最小频率间隔 相对频率间隔 (kHz) 0.2 0.2% 平衡调制器 100(载波) 2000 第一混频器 200.2 9.4% 第二混频器 26000 4200.2 14.9%
且其值与输入调幅信号包络 Vm0(1 + Macost) 成正比:
VAV = dVm0,Vm=d),恒小于1。
3.讨论 (1) D的作用 原理上,D起着受载波电压控制的开关作用 实际上,受 RLC 电压反作用,D 仅在载波一个周 期中接近正峰值的一段时间(vS > vC)内导通(开关闭合), 而在大部分时间内截止(开关断开)。导通与截止时间与 RLC 大小有关。 例: RLC ↑→C向RL的放电速度↓→C的泄放电荷量 ↓→D 导通时间↓→锯齿波动↓→vAV 增大。
二、低电平调制电路——单边带发射机 1.用途:主要用来实现双边带和单边带调制 2.要求:调制线性好,载波抑制能力强,功率和 效率的要求是次要的。 载波抑制能力的强弱可用载漏(输出泄漏的载波分 量低于边带分量的分贝数)表示,分贝数越大,载漏就 越小。 3.种类:前面介绍的各种乘法器均可构成性能优良 的平衡调制器,例1596、AD630 平衡调制器等。 实用的低电平调制电路这里不再作讨论。下面仅 讨论——
ASK调制与解调电路设计
ASK调制与解调电路设计调制与解调电路是无线通信中的重要组成部分,用于将信息信号转换为适合传输的高频信号,并在接收端将高频信号还原为原始信息信号。
接下来将详细介绍调制与解调电路的设计。
一、调制电路设计:调制电路主要用于将低频信息信号调制到高频载波上进行传输,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
1.AM调制电路设计:AM调制主要包括信号放大、频率变换、调幅和输出滤波等环节。
具体设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,一般使用运放进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调幅:将频率变换后的高频信号经过调幅电路进行调幅,常用的调幅电路有晶体二极管调制器和集成电路调制器等。
(4)输出滤波:将调幅后的信号通过低通滤波器进行滤波,去除高频噪声和杂波。
2.FM调制电路设计:FM调制是将信息信号的频率变化转换为载波频率的变化,并将其用于传输。
FM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调频:将频率变换后的高频信号进行调频,一般采用三角调制电路进行调频。
(4)输出滤波:将调频后的信号经过低通滤波器进行滤波,去除高频噪声和杂波。
3.PM调制电路设计:PM调制是将信息信号的相位变化转换为载波相位的变化,并将其用于传输。
PM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调相:将频率变换后的高频信号进行调相,一般采用集成电路调相器进行调相。
FSK调制与解调电路
第二讲FSK调制解调一、实验目的1、理解FSK调制工作原理及电路组成2、理解利用锁相环解调FSK的原理和实现方法二、预习要求1、实验前预习《通信原理》关于二进制频率键控FSK及解调的有关章节。
2、了解本实验所用芯片功能。
三、实验电路及工作原理(一)FSK调制电路的工作原理1、FSK调制电路原理图2、FSK工作原理输入的基带信号分成两路,一路控制f1=32kHz的载频,另一路经倒相去控制f2=16kHz的载频。
当基带信号为“1”时,上一路模拟开关打开,下路模拟开关关闭,此时输出f1=32kHz:当基带信号为“0”时,上路模拟开关关闭,下路模拟开关打开,此时输出f2=16kHz。
最终在输出端得到已调的FSK信号。
电路中的两路载频(f1、f2)由内时钟信号发生器产生。
两路信号分别经过射随、选频网络、射随,再送至模拟开关U901:A和U901:B。
(二)FSK解调电路的工作原理1、F SK解调电路原理图2、F SK解调工作原理FSK集成电路模拟锁相环解调器的工作原理十分简单,只要在设计锁相环时,使它锁定在FSK的一个载频f1上,对应输出高电平,而对另一个载频f2失锁,对应输出低电平。
那么在锁相环滤波器输出端就可以得到解调的基带信号序列。
FSK锁相环解调器中的集成锁相环选用了CD4046。
其内部有两个数字式鉴相器、一个压控振荡器,还有输入放大器等电路。
压控振荡器频率设计在32kHz。
图中C908、C907、U903、U904用来确定压控振荡器的振荡频率。
R916和C903构成外接低通滤波器。
当锁相环锁定时,环路对输入FSK信号中的32kHz载波处于跟踪状态,32kHz载波(正弦波)经过输入整形电路后变成矩形载波。
此时鉴相器2输出端(引脚13)为低电平,锁定指示输出(引脚1)为高电平,鉴相器1(引脚2)输出为低电平,鉴相器1输出和锁定指示输出经过或非门U903:D和U904:A后输出为低电平,再经积分电路和非门U904:B后输出为高电平。
电路中的信号调制与解调技术
电路中的信号调制与解调技术现代通信系统中,信号调制与解调技术起着至关重要的作用。
它们被广泛应用于广播、电视、移动通信等领域,实现了信号的传输和解析。
本文将介绍信号调制与解调技术的基本原理和常见应用。
一、信号调制技术信号调制技术是将待传输的模拟信号通过调制器转换成适合传输的调制信号的过程。
主要包括模拟调制和数字调制两种方式。
1. 模拟调制模拟调制是将模拟信号与载波进行运算得到调制信号的过程。
常见的模拟调制方式有调幅调制(AM)、调频调制(FM)和相位调制(PM)。
(这里可以详细介绍每种调制方式的原理和特点)2. 数字调制数字调制是将数字信号转换成模拟调制信号的过程。
它应用于数字通信系统中,可以提高传输效率和抗干扰能力。
常见的数字调制方式有脉冲编码调制(PCM)、正交频分复用(OFDM)和相移键控调制(PSK)等。
(这里可以详细介绍每种调制方式的原理和应用场景)二、信号解调技术信号解调技术是将调制信号还原成原始信号的过程。
它根据调制信号的特点,通过解调器将信号恢复为可读取的信息。
1. 模拟解调技术模拟解调技术主要应用于模拟信号的还原。
其中,调幅解调器可以提取调制信号中的幅度信息,调频解调器可以获取调制信号中的频率信息,相位解调器可以提取调制信号中的相位信息。
2. 数字解调技术数字解调技术主要应用于数字信号的还原。
其中,解调技术根据数字信号的调制方式,进行相应的解调操作,从而还原出原始的数字信息。
(这里可以介绍常见的数字解调技术和应用场景)三、信号调制与解调的应用信号调制与解调技术广泛应用于各个领域,以下是几个常见的应用案例:1. 无线通信无线通信系统中,信号调制与解调技术被用于将音频、视频等信号传输到接收端。
通过合理的调制方式和解调器设计,可以实现高质量的音视频传输。
2. 广播与电视广播与电视系统中,信号调制与解调技术被应用于信号的传输和接收。
通过调制将节目信号转换成适合传输的载波信号,再通过解调将载波信号还原成原始的节目信号。
4.2 频率调制与相位调制及解调电路
图4.2.3 调频波的解调
鉴频器的输出电压uΩ与输入调频信号瞬时频偏∆f的关 系,可用图4.2.4所示的鉴频特性曲线表示。由于曲线 形状近似S,一般称为S曲线。 所谓鉴频跨导gd是指在S曲线的中心频率f0附近,输出 电压u Ω与频偏∆f的比值,gd又叫鉴频灵敏度,它表示 单位频偏所产生输出电压的大小。鉴频曲线越陡,鉴 频灵敏度越高,说明在较小的频偏下就能得到较大的 电压输出。 鉴频频带宽度B是指鉴频特性接近于直线的频率范围, 如图4.2.4所示。一般要求B大于输入调频波频偏的两 倍。 在频带宽度B内,鉴频特性只是近似线性,因此鉴频器 也存在着非线性失真。
显然,调制电压愈大,则失真愈大。为了减小失真, 调制电压不宜过大,但也不宜太小,因为太小则频移 太小。应兼顾二者,一般取调制电压比偏压小一半多, 即
U Ωm U 偏 ≤0.5
(4.2.11)
4.调频波的解调 从调频波中取出原来的调制信号,称为频率检波,又 称鉴频。完成鉴频功能的电路,称为鉴频器。 在调频波中,调制信号包含在高频振荡载波信号的频 率变化量中,所以要求鉴频器的输出信号与输入调频 波的瞬时频移为线性关系。 鉴频器包含两部分,一是借助于谐振电路将等幅的调 频波转换成幅度随瞬时频率变化的调幅调频波;二是 用二极管检波器进行幅度检波,以还原出调制信号。 由于调制信号的最后检出是利用高频振幅的变化,这 就要求输入的调频波本身“干净”,不带有寄生调幅。 否则,这些寄生调幅将混在转换后的调幅调频波中, 使最后检出的信号受到干扰。为此,在输入到鉴频器 前的信号要经过限幅,使其幅度恒定。
图4.2.5 调相波形随调制信号的变化情况
2.调相波的解调 从调相波中取出原来的调制信号,称为相位检波,又 称鉴相。 完成鉴相功能的电路,称为鉴相器。 在调相波中,调制信号包含在高频振荡载波信号的相 位变化量中,所以调相波的解调任务就是要求鉴相器 输出信号与输入调相波的瞬时相位变化为线性关系。 电路结构方框图与调频波的解调类似。
2DPSK调制与解调电路设计解析
2DPSK调制与解调电路设计解析2DPSK(2-Differential Phase Shift Keying)是一种数字调制和解调技术,通过改变相位来传输数字信号。
在2DPSK中,每个数字符号代表两个相邻相位之间的相位差。
设计2DPSK调制和解调电路需要考虑多个因素,包括相位调制器、相位解调器、时钟恢复电路等。
相位调制器是2DPSK调制电路的核心组件。
它负责将输入的数字信号转换成相应的相位变化。
一种常见的实现方式是使用两个电压控制振荡器(VCO)来控制相位变化。
其中一个VCO负责产生参考相位,另一个VCO负责产生相位差。
通过将两个VCO的输出相位差与输入数字信号进行乘积运算,就可以实现2DPSK的相位调制。
相位解调器是2DPSK解调电路的核心组件。
它负责将接收到的2DPSK信号解调成原始的数字信号。
相位解调器通常包含相位鉴别器、低通滤波器和时钟恢复电路。
相位鉴别器用于测量接收到的信号相位与参考相位之间的相位差,从而恢复原始的相位变化。
低通滤波器用于去除高频噪声,以便提取出原始的数字信号。
时钟恢复电路用于恢复原始信号的时钟信息,以确保解调的准确性。
在设计2DPSK调制和解调电路时,还需要考虑相位差的灵敏度、相位误差的补偿、功耗和带宽等因素。
相位差的灵敏度表示相位差的变化对数字信号的影响程度,通过选择合适的VCO参数可以实现合适的灵敏度。
相位误差补偿可以通过引入相位预取偏来实现,从而提高系统的可靠性。
功耗和带宽也是设计中需要考虑的因素,可以通过选择适当的电路结构和参数来平衡功耗和带宽之间的关系。
总结起来,2DPSK调制和解调电路设计需要考虑相位调制器、相位解调器、时钟恢复电路等多个组件。
合理选择电路结构和参数,可以实现高灵敏度、低功耗和较宽的带宽。
相位误差补偿和时钟恢复等技术可以提高系统的可靠性和抗干扰能力。
对于2DPSK调制和解调电路的设计,需要综合考虑以上因素,以满足具体的应用需求。
什么是电路的数字信号调制和解调
什么是电路的数字信号调制和解调数字信号调制和解调是电路中常用的技术,用于在数字通信系统中传输和接收数据。
本文将详细介绍数字信号调制和解调的概念及其在电路中的应用。
一、数字信号调制的概念和原理在数字信号调制过程中,将原始的数字信号转换为模拟信号,以便在模拟信号传输中进行传输和处理。
这个过程包括三个主要的步骤:采样、量化和编码。
1. 采样:采样是将连续的模拟信号转换为离散的数字信号的过程。
采样定理告诉我们,要保证采样后的数字信号能够准确还原原始信号,采样频率必须满足一定的条件。
通常,采样频率应大于信号频率的两倍,即满足奈奎斯特采样定理。
2. 量化:量化是将采样后的信号转换为有限的离散值的过程。
量化过程中,通过将连续的幅度范围划分为若干个离散的量化级别,将每个采样值映射到最接近的量化级别上。
3. 编码:编码是将量化后的信号转换为数字编码的过程。
常用的编码方式有脉冲编码调制(PCM)、差分脉冲编码调制(DPCM)和三进制编码等。
数字信号调制的目的是将数字信号转换为模拟信号,以便通过传输介质传输。
其中最常见的调制方式是脉冲编码调制(PCM),在PCM中,二进制的信息通过脉冲的幅度进行表示,这些脉冲的幅度随着模拟信号的幅度变化而变化。
二、数字信号解调的概念和原理数字信号解调是将调制后的信号恢复为原始的数字信号的过程。
数字信号解调可以分为两个主要的步骤:解码和重构。
1. 解码:解码是将编码后的信号转换回量化后的信号的过程。
使用逆编码器,解码器将编码后的脉冲恢复为量化级别,得到量化后的信号。
2. 重构:重构是将量化后的信号恢复为原始的数字信号的过程。
通过对量化级别的插值进行逆量化,可以获得原始的数字信号。
数字信号解调的目的是将模拟信号转换回数字信号,以便在接收端进行进一步的处理和解析。
常见的数字信号解调技术包括差分解码调制(DPCM)和解压缩等。
三、数字信号调制和解调在电路中的应用数字信号调制和解调技术在现代电路中广泛应用于通信系统、数据传输、音频和视频编码等领域。
调制和解调电路识读
1.3 分立元器件组成的调制电路识读
1、变容二极管调频电路 变容二极管调频电路如图所示,图中BT1是陶瓷谐振器, 型号ZTA13.0MT,Cj为变容二极管,型号1SV147,VT1 为高频三极管,各电阻和电容的数值如下:R1=2.2kΩ、 R2=33kΩ 、 R3=33kΩ 、 R4=100kΩ 、 C1=47p 、 C2=68p。
经低通滤波器滤除角频
率为ωc载波高频成分,
解调即告完成。
1.3 集成乘法器调制解调电路识读
使用集成乘法器电路MC1596B等组成调制解调电路的缺 点是它还不是一个完整的无线发射或接收系统,要实现无 线信号的发射或接收,还需要与振荡电路、功放电路、天 线、射频放大电路等整合在一起,如果其他电路也选用集 成芯片,还不如直接选用无线发射或接收芯片(或无线收 发芯片),因此,上述用集成乘法器电路组成调制解调器 的方案并不普及。
作为例子,仅介绍由该电路组成的DSB调制电路和SSB解 调电路。
1、MC1596组成的DSB调制电路
载波信号uc(t) =ACosωct和基带信号uΩ(t)分别从10脚和1
脚输入,电路MC1596B完成乘法运算后从6脚输出运算结 果,输出信号是两个输入信号的乘积.
uDSB ( t ) uc ( t ) u ( t ) Au ( t )Cosct
1.3 集成乘法器调制解调电路识读
1、MC1596组成的DSB调制电路 MC1596B是集成平衡式调制/解调器电路,实际上是一个
乘法器电路,用这个乘法器电路可以构成调制器、解调器, 而且既可以双端输出,也可以单端输出,因此称平衡式调制 /解调器电路。
调制电路与解调电路
调制电路与解调电路一、调幅电路调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。
通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。
在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。
1、基极调幅电路图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。
其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。
2、发射极调幅电路图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。
3、集电极调幅电路图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。
第四章调制解调电路
第四章调制解调电路第四章信号调制解调电路第⼀节调制解调的功⽤与类型1、什么是信号调制?调制就是⽤⼀个信号(称为调制信号)去控制另⼀个做为载体的信号(称为载波信号),让后者的某⼀特征参数按前者变化。
2、什么是解调?在将测量信号调制,并将它和噪声分离,放⼤等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这⼀过程称为解调。
3、在测控系统中为什么要采⽤信号调制?在测控系统中,进⼊测控电路的除了传感器输出的测量信号外,还往往有各种噪声。
⽽传感器的输出信号⼀般⼜很微弱,将测量信号从含有噪声的信号中分离出来是测控电路的⼀项重要任务。
为了便于区别信号与噪声,往往给测量信号赋予⼀定特征,这就是调制的主要功⽤。
4、在测控系统中常⽤的调制⽅法有哪⼏种?在信号调制中常以⼀个⾼频正弦信号作为载波信号。
⼀个正弦信号有幅值、频率、相位三个参数,可以对这三个参数进⾏调制,分别称为调幅、调频和调相。
也可以⽤脉冲信号作载波信号。
可以对脉冲信号的不同特征参数作调制,最常⽤的是对脉冲的宽度进⾏调制,称为脉冲调宽。
5、什么是调制信号、载波信号、已调信号?调制是给测量信号赋予⼀定特征,这个特征由作为载体的信号提供。
常以⼀个⾼频正弦信号或脉冲信号作为载体,这个载体称为载波信号。
⽤来改变载波信号的某⼀参数,如幅值、频率、相位的信号称为调制信号。
在测控系统中,通常就⽤测量信号作调制信号。
经过调制的载波信号叫已调信号。
第⼆节调幅式测量电路⼀、调幅原理与⽅法(⼀)1、什么是调幅?写出调幅信号的数学表达式,画出其波形。
调幅就是⽤调制信号x去控制⾼频载波信号的幅值。
常⽤的是线性调幅,即让调幅信号的幅值按调制信号x的线性函数变化。
调幅信号的⼀般表达式可写为:u s=(U m+mx)cos wcta)调制信号b)载波信号c)双边带调幅信号2、何谓双边带调幅?写出其数学表达式,画出波形假设调制信号x是⾓频率为Ω的余弦信号x=X mcosΩt,由式(3-1)调幅信号可写为:u s=U mcosωc t+ [mX mcos(ωc+Ω)t + mX mcos(ωc-Ω)t]/2它包含三个不同频率的信号: ⾓频率为ωc的载波信号和⾓频率分别为ωc±Ω的上下边频信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调制电路与解调电路详解
一、调幅电路
调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。
通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。
在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。
1、基极调幅电路
图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。
其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。
2、发射极调幅电路
图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。
3、集电极调幅电路
图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。
采用图4的集电极、发射极双重调幅电路也可以改善调制特性。
注意变压器的同名端,在调制信号正半波时,虽然集电极电源电压提高,但同时基极偏压也随之变正,这就防止了进入欠压工作状态;在调制信号负半波时,虽然集电极电压降低,但基极度偏压也随之变负,不致进入强过压区,从而保持在临界、弱过压状态下工作。
图一、基极调幅电路
图二、发射极调幅电路
图三、集电极调幅电路
图四、双重调幅电路
二、幅度检波电路
从调幅波中取出调制信号的过程,称为幅度检波,常用的检波电路有三种:小信号平方律检波,大信号包络全波和乘积检波,对检波器的要求有以下三点:
(1)检波效率(电压传输系数)
若检波器输入等幅高频电压峰值为Uc,检波后的输出电压为Uo,则检波效率K定义为:K=Uo/Uc
若检波器输入为包络调幅波,则检波效率寂静义为输出低频电压幅度UΩ与输入
高频电压包络幅度 mUc之比:
K=UΩ/mUc
式中:m是调幅系数。
K越大说明同样的输入情况下可以得到较大的低频输出信号,即检波效率高。
(2)检波失真
它反映输出低频电压波形和输入已调波包括形状的符合程度。
(3)输入电阻Ri
由检波器输入端看进去的等效电阻称为输入电阻Rio,通常检波器接于中频放大
器的输出端,Ri看作是它的负载。
因此,Ri越大对中频放大器的影响就会越小, 1、小信号平方律检波器
图5(a)是小信号检波电路。
其特点是:(1)输入高频信号ui(t)的幅度为几十毫伏量级;(2)选择适当的偏置电压使工作点Q处于伏安特性的弯曲段上[见图5(b)],在整个高频信号周期内均有电流通过二极管。
经理论分析得该检波器的输出电压
u2与输入电压U c成正比,平方律检波正是由此得名,其参数如下:
(1)检波效率K=UΩ/mUc=Ra2Uc/(1+a1R [考题输出电压反作用]
式中:R为检波器负载电阻,Uc为高频调幅波的载波幅度,a1、a2为与工作点电流有关的系数,在室温情况下其值近似为:
a1=38Io 及a2=0.74×10Io (Io的单位为安培)
若检波器的工作点电流选定为Io=20微安,R=4.7千欧, Uc=50毫伏则检波效率为: K=Ra2Uc/(1+a1R)=(4.7×10×0.47×10×20×10
×50×10)/(1+38×20×10×4.7×10)=0.76
(2)非线性失真,由于二次谐波与基波相距很近,不易清除干净,故常用二次谐波
失真系数y来估计失真的大小。
其值为:
y=m/4
由式可见,调幅系数m越大则y越大,失真越严重,一般情况下m≈30%,则y≈7.5% (3)输入阻抗Ri,指数波频率为ωc的交流阻抗。
从图5(a)中可见,对ωc而言,C 看作短路,所以Ri等于二极管的交流电阻rd,在室温情况下其值为:
Ri=rd=26×10/Io
若Io=20微安,则Ri=(26×10)/20×10 =1.3千欧
小信号检波的缺点是:输入阻抗低,非线性失真严重,
2、大信叼峰值包络检波
如图6(a)是大信号检波电路,由于输出电压交流部分与调制信号最大值成正比,
故又称为直线性检波,其特点是:(1)输入电压幅度一般500毫伏以上;(2)没有偏置电压E,由于输出电压的反作用,实际上工作点处于u<0的区段[见图6(b)]。
因此,大信号检波二极管,在载波一周期内,只有一段时间寻通,而另一段时间截止。
大信号峰值二极管检波器的主要参数计算如下:
K=cosθ
图5
图6
式中:θ为半导通角,它取决于rd/R值,两者关系为
rd/R=(tgθ-θ)/π
可根据rd/R值,通过表一直接查出K值
(2)输入阻抗Ri
Ri/R=(tgθ-θ)/(θ-sinθcosθ)
可见,输入阻抗Ri决定于θ角,即决定于rd/R值,因此,可以根据rd/R值,通过表一直接查出输入阻抗Rio
(3)检波失真
常有两类失真:一类对角切割失真,二是底边切割失真,
图7示出对角切割失真情况,产生该失真的原因是滤波时间常数RC选得过大,以致滤波电容的放电速率跟不上包络变化速率所造成的,要防止对角切割失真现象,时间常数RC应满足下式关系:RC<(/m)×(TΩ/2π)式中:m为调幅系
数,TΩ=2π/Ω,若m=0.3时,则得RC<0.5TΩ
图 7
另一种切割失真是由于检波器的低频交流负载与直流负载电阻不同而引起的,通常检波被输出的低频电压经耦合电路[图7(a)中的R1C1]再送至低频放大器中去由于C1数值很大,(约为10微法)它的两端降有直流电压为载波幅度的平均值Uco若R1<R时,该电压大部分落在R两端上,以致在音频包络负半波时,输入电压可能低于R两端的直流电压,于是二极管截止,输出信号不再随输入信号包络的下降而改变,产生如图7-b的底边切割失真,要避免此失真,应满足下式
m<R1/(R1+R)
式中:R为直流电阻,交流电阻R-=R//R1。
不失真条件可写为m<R-/Ro、图8(a)是晶体管收音机的滤波电路,R1R2滤除464千赫载波信号的滤波器,电源-Ec经R3、R4供给二极管几十微安的偏置电流,接入偏置电流的目的是提高检波效率,M 点电压经C3、C4滤波后送至前级产生自动增益控制。
图8(b)是电视接收机的滤波电路,由于调制信号为高达6兆赫的图象信号,为防止对角切割失真,电容C1只选10皮法,但只靠它滤除载波还不够,还要接入LC2滤波器,二极管串接小电阻200欧使信号增大,补偿二极管内阻的减小,从而使传输系数相对稳事实上,检波线性也得到改善。
图8 收音机和电视机的检波电路。