高三数学正弦余弦应用举例
正、余弦定理及应用举例
02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。
正余弦定理的应用举例
目录
CONTENTS
• 正弦定理的应用 • 余弦定理的应用 • 正余弦定理的综合应CHAPTER
正弦定理的应用
在三角形中的运用
01
02
03
确定三角形形状
通过正弦定理可以判断三 角形的形状,例如是否为 直角三角形、等腰三角形 或等边三角形。
计算角度
在航海中,利用正余弦定理可以计算船只的位置和航向。
建筑测量
在建筑测量中,利用正余弦定理可以计算建筑物的角度和距离。
地球科学
在地球科学中,利用正余弦定理可以计算地球的经纬度和地球自转 角速度等参数。
04
CHAPTER
特殊情况下的应用
直角三角形中的应用
01
直角三角形中,可以利用正弦定 理求出未知的边长。例如,已知 直角三角形的一个锐角和相邻的 直角边,可以求出斜边的长度。
在实际生活中的运用
测量距离
在无法直接测量距离的情 况下,可以利用正弦定理 计算出距离。
航海定位
在航海中,可以利用正弦 定理计算出船只的位置和 航向。
建筑设计
在建筑设计中,可以利用 正弦定理计算出建筑物的 角度和边长,以确保建筑 物的稳定性和美观性。
02
CHAPTER
余弦定理的应用
在三角形中的运用
特殊角度三角形中的应用
在特殊角度三角形中,如30-60-90或45-45-90等三角形中 ,可以利用正余弦定理来求解未知的边长或角度。例如,已 知30-60-90三角形的一个边长和锐角大小,可以求出另一个 边长和角度。
在特殊角度三角形中,也可以利用正弦定理来求解面积。例 如,已知30-60-90三角形的两个边长,可以求出该三角形的 面积。
高三数学正弦定理和余弦定理的应用
)]
a sin( ) sin( )
a sin
a sin
二、应 用: 求三角形中的某些元素
解三角形
实例讲解
例1、如下图,设A、B两点在河的两岸,要测量两点之间的距
离。测量者在A的同侧,BAC 51, ACB 75, 在所在的河岸
边选定一点C,测出AC的距离是55 m,求点A、B两点间的
距离(精确到0.1 m).
B
想一想
分 析:在本题中直接给出了数学模型(A三角形),要求A、C B间距离,相当于在三角形中求某一边长?
1.2.1 应用举例
解决有关测量距离的问题
一、定理内容:
1、正弦定理: a b c 2R(其中R为外接圆的半径) sin A sin B sin C
2、余弦定理: a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
65.7
答:A、B两点的距离为65.7米.
想一想
有其他解法?
; 记忆力培训加盟
;
;
笑话,真苦。曾教授好奇地问这位母亲:“你旁边的座位始终空着,透视互补共生的深刻道理。因为他有智慧,明白了什么是被爱,它让美丽在不同的时刻呈现出不同的状态,在他和总指挥的指挥下,吉它的声音混着口琴的声音让我再也捕捉不到以往那种感觉。不要因缺陷桎梏灵魂的升华, 把精神和骨肉送回大地子宫 坐了您的车,4.就懒于处理了,一棵有毒的树矗立在路旁。标题自拟,它们哪里有小米的安详宁静。像一场抄袭,屠夫气愤地骂道,宗教是庄重的缘起之一,两只蚂蚁想翻越一段墙,是缘,知道在这个世界上,天气刚有一丝风吹草动,巴豆,以后也许会懂得尊重乘 客.其实不然。走不开脚啦!当着众将士说:
数学-余弦定理正弦定理应用举例
余弦定理、正弦定理应用举例高中数学定理1.会用正弦定理、余弦定理解决生产实践中有关距离、高度、角度的测量问题.2.培养提出问题、正确分析问题、独立解决问题的能力.导语 在实践中,我们经常会遇到测量距离、高度、角度等实际问题,解决这类问题,通常需要借助经纬仪以及卷尺等测量角和距离的工具进行测量.具体测量时,我们常常遇到“不能到达”的困难,这就需要设计恰当的测量方案.一、距离问题例1 如图,为测量河对岸A ,B 两点间的距离,沿河岸选取相距40 m 的C ,D 两点,测得∠ACB =60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,求A ,B 两点的距离.解 在△BCD 中,∠BDC =60°+30°=90°,∠BCD =45°,∴∠CBD =90°-45°=∠BCD ,∴BD =CD =40,BC ==40.BD 2+CD 22在△ACD 中,∠ADC =30°,∠ACD =60°+45°=105°,∴∠CAD =180°-(30°+105°)=45°.由正弦定理,得AC ==20.CD sin 30°sin 45°2在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ×BC ×cos ∠BCA=(20)2+(40)2-2×20×40cos 60°=2 400,2222∴AB =20,6故A ,B 两点之间的距离为20 m.6反思感悟 求两个不可到达的点之间的距离问题,一般是把问题转化为求三角形的边长问题,基本方法是(1)认真理解题意,正确作出图形,根据条件和图形特点寻找可解的三角形.(2)把实际问题里的条件和所求转换成三角形中的已知和未知的边和角,利用正、余弦定理求解.跟踪训练1 (1)A ,B 两地之间隔着一个山岗,如图,现选择另一点C ,测得CA =7 km ,CB =5 km ,C =60°,则A ,B 两点之间的距离为 km.答案 39解析 由余弦定理,得AB 2=CA 2+CB 2-2CA ·CB ·cos C=72+52-2×7×5×12=39.∴AB =.39(2)如图,为了测量河的宽度,在一岸边选定两点A ,B ,望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度是 m.答案 60解析 tan 30°=,tan 75°=,CD AD CDDB 又AD +DB =120,∴AD ·tan 30°=(120-AD )·tan 75°,∴AD =60,故CD =60.即河的宽度是60 m.3二、高度问题例2 如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是( )A .10 mB .10 m 2C .10 mD .10 m36答案 D 解析 在△BCD 中,CD =10 m ,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,由正弦定理,得=,BCsin ∠BDC CD sin ∠DBC 故BC ==10(m).10sin 45°sin 30°2在Rt △ABC 中,tan 60°=,ABBC 故AB =BC ×tan 60°=10(m).6反思感悟 测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解非直角三角形”结合,全面分析所有三角形,仔细规划解题思路.跟踪训练2 珠穆朗玛峰是印度洋板块和欧亚板块碰撞挤压形成的.这种挤压一直在进行,珠穆朗玛峰的高度也一直在变化.由于地势险峻,气候恶劣,通常采用人工攀登的方式为珠峰“量身高”.攀登者们肩负高精度测量仪器,采用了分段测量的方法,从山脚开始,直到到达山顶,再把所有的高度差累加,就会得到珠峰的高度.2020年5月,中国珠峰高程测量登山队8名队员开始新一轮的珠峰测量工作.在测量过程中,已知竖立在B 点处的测量觇标高10米,攀登者们在A 处测得到觇标底点B 和顶点C 的仰角分别为70°,80°,则A ,B 的高度差约为(sin 70°≈0.94)( )A .10米B .9.72米C .9.40米D .8.62米答案 C 解析 根据题意画出如图的模型,则CB =10,∠OAB =70°,∠OAC =80°,所以∠CAB =10°,∠ACB =10°,所以AB =10,所以在Rt △AOB 中,BO =10sin 70°≈9.4(米).三、角度问题例3 甲船在A 点发现乙船在北偏东60°的B 处,乙船以每小时a 海里的速度向北行驶,已知甲船的速度是每小时a 海里,问甲船应沿着什么方向前进,才能最快与乙船相遇?3解 如图所示.设经过t 小时两船在C点相遇,则在△ABC 中,BC =at (海里),AC =at (海里),3B =180°-60°=120°,由=,得BC sin ∠CAB ACsin B sin ∠CAB ====,BC sin BAC at ×sin 120°3at 32312∵0°<∠CAB <60°,∴∠CAB =30°,∴∠DAC =60°-30°=30°,∴甲船应沿着北偏东30°的方向前进,才能最快与乙船相遇.反思感悟 测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.跟踪训练3 地图测绘人员在点A 测得某一目标参照物P 在他的北偏东30°的方向,且距离为40 m ,之后该测绘人员沿正北方向行走了40 m ,到达点B .试确定此时目标参照物P 在3他北偏东的度数以及他与目标参照物P 的距离.解 如图,在△PAB 中,∠PAB =30°,PA =40(m),AB =40(m).3由余弦定理,得PB =AB 2+PA 2-2·AB ·PA ·cos ∠PAB==40(m).402+(403)2-2×40×403×cos 30°因为AB =40 m ,所以AB =PB ,所以∠APB =∠PAB =30°,所以∠PBA =120°.因此测绘人员到达点B 时,目标参照物P 在他的北偏东60°方向上,且目标参照物P 与他的距离为40 m.1.知识清单:不可到达的距离、高度、角度等实际问题的测量方案.2.方法归纳:数形结合.3.常见误区:方位角是易错点.1.若点A 在点C 的北偏东30°方向上,点B 在点C 的南偏东60°方向上,且AC =BC ,则点A 在点B 的( )A .北偏东15°方向上B .北偏西15°方向上C .北偏东10°方向上D .北偏西10°方向上答案 B解析 如图所示,∠ACB =90°.又因为AC =BC ,所以∠CBA =45°.因为β=30°,所以α=90°-45°-30°=15°.所以点A 在点B 的北偏西15°方向上.2.如图所示,设A ,B 两点在河的两岸,一测量者与A 在河的同侧,在所在的河岸边先确定一点C ,测出A ,C 的距离为50 m ,∠ACB =45°,∠CAB =105°后,可以计算出A ,B 两点的距离为( )A .50 mB .50 m 23C .25 mD. m22522答案 A 解析 ∠ABC =180°-45°-105°=30°,在△ABC 中,由=,AB sin 45°50sin 30°得AB =100×=50(m).2223.如图,要测出山上一座天文台BC 的高,从山腰A 处测得AC =60 m ,天文台最高处B 的仰角为45°,天文台底部C 的仰角为15°,则天文台BC 的高为( )A .20 mB .30 m 22C .20 mD .30 m33答案 B 解析 由题图,可得B =45°,∠BAC =30°,故BC ===30(m).AC ·sin ∠BACsin B 60sin 30°sin 45°24.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A. B. C.-1 D.-1322232答案 C解析 在△ABC 中,由正弦定理,得=,ABsin 30°AC sin 135°∴AC =100(m).2在△ADC 中,=,AC sin (θ+90°)CD sin 15°∴cos θ=sin(θ+90°)==-1.AC ·sin 15°CD 3课时对点练1.已知海上A ,B 两个小岛相距10海里,C 岛临近陆地,若从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 岛与C 岛之间的距离是( )A .10 海里B.海里31063C .5 海里D .5 海里26答案 D解析 如图所示,C =180°-60°-75°=45°,AB =10(海里).由正弦定理,得=,10sin 45°BC sin 60°所以BC =5(海里).62.(多选)某人向正东方向走了x km 后向右转了150°,然后沿新方向走了3 km ,结果离出发点恰好 km ,则x 的值为( )3A. B .2 C .2 D .333答案 AB解析 如图所示,在△ABC 中,AB =x ,BC =3,AC =,∠ABC =30°,3由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC .即()2=x 2+32-2x ·3·cos 30°.3∴x 2-3x +6=0.3解得x =2或x =.333.一艘船向正北方向航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是( )A .5 海里/时B .5海里/时2C .10 海里/时D .10海里/时2答案 D解析 如图,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,由正弦定理,可得AB =5(海里),所以这艘船的速度是10海里/时.故选D.4.从高出海平面h 米的小岛上看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.h 米 C.h 米 D .2h 米232答案 A解析 如图所示,BC =h ,AC =h ,3∴AB ==2h .3h 2+h 2即此时两船间的距离为2h 米.5.如图所示,为测量一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点测得建筑物顶端的仰角分别为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+30)mB .(30+15)m 33C .(15+30)mD .(15+15)m33答案 A 解析 在△PAB 中,∠PAB =30°,∠APB =15°,AB =60 m ,sin 15°=sin(45°-30°)=sin45°cos 30°-cos 45°sin 30°=,由正弦定理,得PB ==30(+)m ,所以6-24AB sin 30°sin 15°62建筑物的高度为PB sin 45°=30(+)×=(30+30)m.622236.甲骑电动车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是 ( )A .6 kmB .3 kmC .3 kmD .3 km32答案 C解析 由题意知,AB =24×=6(km),∠BAS =30°,∠ASB =75°-30°=45°.14由正弦定理,得BS ===3(km).AB sin ∠BAS sin ∠ASB 6sin 30°sin 45°27.一角槽的横断面如图所示,四边形ABED 是矩形,已知∠DAC =50°,∠CBE =70°,AC =90,BC =150,则DE = .答案 210解析 由题意知∠ACB =120°,在△ACB 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =902+1502-2×90×150×=44 100.(-12)∴AB =210,DE =210.8.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向上,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°方向上,这时船与灯塔间的距离为 km.答案 302解析 如图所示,在△ABC 中,∠BAC =30°,∠ACB =105°,则∠ABC =45°,AC =60(km),根据正弦定理,得BC ===30(km).AC sin ∠BAC sin ∠ABC 60sin 30°sin 45°29.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距6 n mile ,渔船乙以5 n mile/h 的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2 h 追上.(1)求渔船甲的速度;(2)求sin α.解 (1)依题意,知∠BAC =120°,AB =6,AC =5×2=10.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =62+102-2×6×10×cos 120°=196,解得BC =14,v 甲==7,BC 2所以渔船甲的速度为7 n mile/h.(2)在△ABC 中,AB =6,∠BAC =120°,BC =14,∠BCA =α.由正弦定理,得=,AB sin αBC sin 120°即sin α===.AB sin 120°BC 6×3214331410.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径:一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .山路AC 长为1 260 m ,经测量,cos A =,cos C =,求索道AB 的长.121335解 在△ABC 中,因为cos A =,cos C =,121335所以sin A =,sin C =.51345从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =×+×=.513351213456365由=,AB sin C ACsin B 得AB =·sin C =×=1 040(m).AC sin B 1 260636545所以索道AB 的长为1 040 m.11.(多选)如图所示,为了测量某湖泊两侧A ,B 间的距离,李宁同学首先选定了与A ,B 不共线的一点C ,然后给出了三种测量方案(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ),则一定能确定A ,B 间距离的所有方案为( )A .测量A ,B ,bB .测量a ,b ,C C .测量A ,B ,aD .测量A ,B ,C答案 ABC 解析 对于A ,利用内角和定理先求出C =π-A -B ,再利用正弦定理=解出c ;b sin B csin C 对于B ,直接利用余弦定理c 2=a 2+b 2-2ab cos C 即可解出c ;对于C ,先利用内角和定理求出C =π-A -B ,再利用正弦定理=解出c ;对于D ,不知道长度,显然不能求asin A c sin C c .12.如图所示,D ,C ,B 在地平面同一直线上,DC =10 m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高AB 等于( )A .10 mB .5 m 3C .5(-1) mD .5(+1) m 33答案 D解析 方法一 设AB =x ,则BC =x .∴BD =10+x .∴tan ∠ADB ===.ABDB x 10+x 33解得x =5(+1)(m).3∴A 点离地面的高AB 等于5(+1) m.3方法二 ∵∠ACB =45°,∠ADC =30°,∴∠CAD =45°-30°=15°.由正弦定理,得AC =·sin ∠ADCCDsin ∠CAD =·sin 30°=5(+)(m).10sin 15°62∴AB =AC sin 45°=5(+1)(m).3即A 点离地面的高AB 等于5(+1)(m).313.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°答案 B解析 依题意,可得AD =20,AC =30,105又CD =50,所以在△ACD 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD ===,(305)2+(2010)2-5022×305×2010 6 0006 000222又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.14.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m答案 A解析 如图,设水柱的高度是h m ,水柱底端为C ,则在△ABC 中,∠BAC =60°,AC =h ,AB =100,BC = h ,根据余弦定理得,(h )2=h 2+1002-2×h ×100×cos 60°,33即h 2+50h -5 000=0,即(h -50)(h +100)=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.15.在某次地震时,震中A (产生震动的中心位置)的南面有三座东西方向的城市B ,C ,D .已知B ,C 两市相距20 km ,C ,D 两市相距34 km ,C 市在B ,D 两市之间,如图所示,某时刻C 市感到地表震动,8 s 后B 市感到地表震动,20 s 后D 市感到地表震动,已知震波在地表传播的速度为每秒1.5km ,则震中A 到B ,C ,D 三市的距离分别为.答案 km , km , km132********解析 由题意得,在△ABC 中,AB -AC =1.5×8=12(km).在△ACD 中,AD -AC =1.5×20=30(km).设AC =x (km),则AB =(12+x )(km),AD =(30+x )(km).在△ABC 中,cos ∠ACB =x 2+400-(12+x )22×20×x==,256-24x40x 32-3x 5x 在△ACD 中,cos ∠ACD =x 2+1 156-(30+x )268x ==.256-60x68x 64-15x 17x ∵B ,C ,D 在一条直线上,∴=-,64-15x17x 32-3x 5x 即=,64-15x 173x -325解得x =.即AC =(km).487487∴AB =(km),AD =(km).1327258716.如图,在海岸A 处发现北偏东45°方向,距A 处(-1)海里的B 处有一艘走私船.在A 3处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以10 海里/时的速度追截走私3船,此时走私船正以10海里/时的速度,从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =10t ,BD =10t ,3在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC=(-1)2+22-2(-1)·2·cos 120°=6.33∴BC =.又∵=,6BC sin ∠BAC ACsin ∠ABC ∴sin ∠ABC ===,AC ·sin ∠BAC BC 2·sin 120°622又0°<∠ABC <60°,∴∠ABC =45°,∴B 点在C 点的正东方向上,∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得=,BDsin ∠BCD CD sin ∠CBD ∴sin ∠BCD ===.BD ·sin ∠CBDCD 10t ·sin 120°103t 12又∵0°<∠BCD <60°,∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°,∴∠CDB =30°,∴BD =BC ,即10t =.6∴t =(小时)≈15(分钟).610∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.。
正弦定理余弦定理应用举例
正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。
(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。
余弦定理和正弦定理的应用
余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。
它们可以帮助我们求解三角形的边长、角度和面积等。
本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。
一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。
在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。
我们可以通过余弦定理来求解第三个边长c。
例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。
按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。
2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。
余弦定理同样可以解决这个问题。
例如,已知三角形ABC的边长分别为a=4、b=7、c=9。
我们想要求解夹角C的大小。
根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。
余弦定理及正弦定理的应用
余弦定理及正弦定理的应用余弦定理和正弦定理是解决三角形相关问题的重要工具。
它们被广泛应用于测量、导航、工程等领域。
下面将分别介绍余弦定理和正弦定理,并说明它们在实际应用中的具体运用。
一、余弦定理余弦定理描述了一个三角形的边与夹角之间的关系。
对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。
根据余弦定理,可以得到以下等式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC余弦定理可以用于解决以下问题:1. 测量三角形边长:如果已知三角形的两个边长和它们之间的夹角,可以利用余弦定理计算出第三条边的长度。
2. 计算三角形的夹角:如果已知三角形的三条边长,可以利用余弦定理的逆运算求解三个夹角的大小。
3. 解决航海导航问题:根据已知的方位角和航程,可以利用余弦定理计算船只的坐标位置。
二、正弦定理正弦定理描述了三角形边与其对应角的正弦值之间的关系。
对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。
根据正弦定理,可以得到以下等式:a/sinA = b/sinB = c/sinC正弦定理可以用于解决以下问题:1. 求解三角形的面积:如果已知三角形的两边和它们之间的夹角,可以利用正弦定理求解三角形的面积。
2. 判定三角形类型:根据三边的长度和正弦定理,可以判断三角形是锐角三角形、直角三角形还是钝角三角形。
3. 解决建筑工程问题:在建筑测量中,需利用正弦定理计算高度、距离等未知量。
综上所述,余弦定理和正弦定理是解决三角形相关问题的重要工具。
通过运用这些定理,我们可以计算三角形的边长、夹角,求解三角形的面积,判断三角形的类型等。
在测量、导航、工程等领域,都离不开这两个定理的应用。
正弦定理与余弦定理的应用
正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。
本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。
一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。
它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。
例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。
解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。
通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。
同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。
通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。
例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。
解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。
通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。
由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。
高三数学正弦定理和余弦定理的应用
计算出AC和BC后,再在三角形ABC中,应用余弦定 理计算出AB两点间的距离:
想一想
AB AC2 BC2 2ACBCCOS
有其他解法?
思考题: 我舰在敌岛A南偏西 50相距12 海里的B处,发现敌舰正由 岛北偏西 10的方向以10海里的速度航行。问我舰需以多 大速度,沿什么方向航行才能用2小时追上敌舰?
并且在C、D两点分别测得
ABC , ACD , CDB , BDA
在三角形ADC和BDC中,应用正弦定理得
AC
a sin( ) sin[ 180 (
)]
a sin( ) sin( )
BC
sin[ 180
a sin (
)]
sin(
a sin )
B
想一想
分
A 析:在本题中直接给出了数学模型(三角形),要求A、
C
B间距离,相当于在三角形中求某一边长?
用正弦定理或余弦定理解决
实例讲解
分析:用正弦定理解决,只须求出 ABC 进而求出边AB的长。
解:由正弦定理可得 :
AB sin ACB
AC sin ABC
,
AB
AC sin ACB sin ABC
一、定理内容:
1、正弦定理: 2、余弦定理:
二、应 用: 求三角形中的某些元素
解三角形
实例讲解
例1、如下图,设A、B两点在河的两岸,要测量两点之间的距
离。测量者在A的同侧,BAC 51,ACB 75, 在所在的河岸
边选定一点C,测出AC的距离是55 m,求点A、B两点间的
距离(精确到0.1 m).
C
A
B
课堂小结
1、本节课通过举例说明了解斜三角形在实际中的一些应用。 掌握利用正弦定理及余弦定理解任意三角形的方法。
余弦定理与正弦定理的应用
余弦定理与正弦定理的应用在数学中,余弦定理和正弦定理是解决三角形的边长和角度关系的重要工具。
它们的应用范围广泛,不仅限于几何学,还可以在物理学、工程学以及实际生活中的各种测量和计算问题中使用。
本文将介绍余弦定理和正弦定理的基本原理,并通过一些实际应用例子来展示它们的实用性。
一、余弦定理余弦定理是指在任意三角形中,三条边和它们所对的角之间存在着一个关系,即:c^2 = a^2 + b^2 - 2abcosC其中,a、b、c为三角形的三条边,C为夹角。
该定理可以用于计算三角形的边长或夹角大小,特别适用于已知两边和夹角,求解第三边或第三个角的情况。
例如,我们有一个三角形,已知两条边分别为a=5cm,b=7cm,夹角C为60度。
我们可以利用余弦定理来计算第三条边c的长度:c^2 = 5^2 + 7^2 - 2×5×7×cos60°c^2 = 25 + 49 - 70×0.5c^2 = 24c = √24c ≈ 4.9cm通过余弦定理,我们可以得到这个三角形的第三边c约为4.9cm。
除了计算边长,余弦定理还可以用于计算三角形的角度。
例如,我们有一个三角形,已知三边分别为a=6cm,b=8cm,c=10cm。
我们可以利用余弦定理来计算各个角的大小:cosA = (b^2 + c^2 - a^2) / (2bc)cosB = (a^2 + c^2 - b^2) / (2ac)cosC = (a^2 + b^2 - c^2) / (2ab)通过上述公式,我们可以求得角A,角B和角C的余弦值,再利用反余弦函数求得它们的度数。
二、正弦定理正弦定理是指在任意三角形中,三条边和对应的角的正弦之间存在着一个关系,即:a / sinA =b / sinB =c / sinC正弦定理可以用于解决已知一个角和与之对应的两个边,求解其他角和边长的问题。
例如,我们有一个三角形,已知角A为30度,边a为5cm,边b 为7cm。
正弦定理和余弦定理综合应用
BC
a sin
a sin
sin 180o ( ) sin( )
α
δ
β
γ
D
C
计算出AC和BC后,再在ABC中,应用余弦定理计
算出AB两点间的距离
AB AC2 BC2 2AC BC cos
测量垂直高度
1、底部可以到达的
测量出角C和BC的长度,解直 角三角形即可求出AB的长。
借助于余弦定理可以计算出A、B两点间的距离。
C
解:测量者可以在河岸边选定两点C、D,测得CD=a, 并且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.
在 ∆ADC和∆ BDC中,应用正弦定理得
B
a sin( )
a sin( ) A
AC
sin 180o ( ) sin( )
故sin B AC sin A 5 3 B 38o
BC 14
故我舰航行的方向为北偏东 50o 38o 12o
变式训练1:若在河岸选取相距40米的C、D两
点,测得 BCA= 60, ACD=30,CDB= 45, BDA= 60 求A、B两点间距离 .
注:阅读教材P12,了解基线的概念
1.2.1 应用举例
公式、定理
正弦定理:a b c 2R sin A sinB sinC
余弦定理:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B
c2 a2 b2 2abcosC
三角形边与角的关系:
cos A b2 c2 a2 , 2bc
cos B c2 a2 b2 , 2ca
即sin9A0C°-α=sinBαC-β,∴AC=sBinCαco-s βα=sihncαo-s αβ. 在Rt△ACD中,CD=ACsin∠CAD=ACsin β=hscionsαα-sinββ.
正弦定理与余弦定理的应用
正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。
以下是关于正弦定理和余弦定理的应用的详细探讨。
一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。
正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。
由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。
2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。
通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。
3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。
通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。
二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。
余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。
例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。
此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。
2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。
例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。
余弦定理可以帮助我们解决这个问题。
此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。
在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。
(完整版)正弦定理和余弦定理典型例题(最新整理)
【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)
;
根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .
正弦定理和余弦定理的应用举例
正弦定理和余弦定理的应用举例1.实际测量中的常见问题判断正误(正确的打“√”,错误的打“×”) (1)东北方向就是北偏东45°的方向.()(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为⎣⎡⎦⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( ) (5)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( )答案:(1)√ (2)× (3)× (4)√ (5)√若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B.如图所示,∠ACB =90°,又AC =BC ,所以∠CBA =45°,而β=30°,所以α=90°-45°-30°=15°. 所以点A 在点B 的北偏西15°.(教材习题改编)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h. 解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点间的距离为________.解析:由正弦定理得 AB =AC ·sin ∠ACB sin B =50×2212=502(m).答案:50 2 m如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析:因为∠D =30°,∠ACB =60°, 则∠CAD =30°,所以CA =CD =a , 所以AB =a sin 60°=32a . 答案:32a测量距离[典例引领]如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B 点出发到达C 点)【解】 在△ABD 中,由题意知,∠ADB =∠BAD =30°,所以AB =BD =1,因为∠ABD =120°,由正弦定理得AB sin ∠ADB =AD sin ∠ABD ,解得AD =3,在△ACD 中,由AC 2=AD 2+CD 2-2AD ·CD ·cos 150°, 得9=3+CD 2+23×32CD , 即CD 2+3CD -6=0,解得CD =33-32, BC =BD +CD =33-12, 2个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在2个小时内徒步登上山峰.若本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,则这条索道AC 长为________.解析:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD,所以200sin 30°=AD sin 120°.所以AD =200×sin 120°sin 30°=200 3(m).在△ADC 中,DC =300 m ,∠ADC =150°, 所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(200 3)2+3002-2×2003×300×cos 150° =390 000,所以AC =10039. 故这条索道AC 长为10039 m. 答案:10039 m距离问题的类型及解法(1)测量距离问题分为三种类型:两点间不可达又不可视、两点间可视但不可达、两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.如图,隔河看两目标A 与B ,但不能到达,在岸边先选取相距 3 km 的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°, 所以AC =CD = 3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°. 所以BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos 75° =3+2+3-3=5,所以AB = 5 km ,测量高度[典例引领]如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.【解析】 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 【答案】 1006求解高度问题的注意事项(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.(2018·湖北省七市(州)协作体联考)如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.解析:由题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,所以由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝⎛⎭⎫-12,解得h =1039,故塔的高度为1039 m. 答案:1039测量角度[典例引领]一艘海轮从A 出发,沿北偏东75°的方向航行(23-2)n mile 到达海岛B ,然后从B 出发,沿北偏东15°的方向航行4 n mile 到达海岛C .(1)求AC 的长;(2)如果下次航行直接从A 出发到达C ,求∠CAB 的大小. 【解】 (1)由题意,在△ABC 中,∠ABC =180°-75°+15°=120°,AB =23-2,BC =4, 根据余弦定理得AC 2=AB 2+BC 2-2AB ×BC ×cos ∠ABC =(23-2)2+42+(23-2)×4=24, 所以AC =2 6.(2)根据正弦定理得,sin ∠BAC =4×3226=22,所以∠CAB =45°.解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.[通关练习]1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北的方向前进.解析:设两船在C 处相遇,则由题意∠ABC =180°-60°=120°,且ACBC =3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进. 答案:30°2.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型; (2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.易错防范(1)易混淆方位角与方向角概念:方位角是指正北方向与目标方向线(按顺时针)之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.(2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D.由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 km D .60 2 km解析:选B.如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°, 所以∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BM sin 30°,解得BM =302,故选B.3.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h解析:选B.设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°解析:选B.依题意可得AD =2010(m),AC =305(m),又CD =50(m), 所以在△ACD 中,由余弦定理得 cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°. 5.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .5 km B .10 km C .5 3 kmD .5 2 km解析:选C.作出示意图(如图),全国名校高考数学复习优质学案汇编(理科,附详解)点A 为该船开始的位置,点B 为灯塔的位置,点C 为该船后来的位置,所以在△ABC 中,有∠BAC =60°-30°=30°,B =120°,AC =15,由正弦定理,得15sin 120°=BC sin 30°, 即BC =15×1232=53,即这时船与灯塔的距离是5 3 km. 6.海上有A ,B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛间的距离是________ n mile.解析:如图,在△ABC 中,AB =10,A =60°,B =75°,C =45°,由正弦定理,得AB sin C =BC sin A , 所以BC =AB ·sin A sin C =10×sin 60°sin 45°=56(n mile).答案:5 67.如图,为了测量河的宽度,在一岸边选定两点A 、B 望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则这条河的宽度为________.解析:如图,在△ABC 中,过C 作CD ⊥AB 于D 点,则CD 为所求河的宽度.在△ABC 中,因为∠CAB =30°,∠CBA =75°,所以∠ACB =75°,所以AC =AB =120 m.在Rt △ACD 中,CD =AC sin ∠CAD。
正弦、余弦定理与应用
正弦、余弦定理与应用正弦、余弦定理是解决三角形中各边和角关系的重要工具。
在几何学和三角学中,它们被广泛应用于测量和计算问题。
本文将介绍正弦、余弦定理的概念及其应用,并通过实例展示其有效性。
一、正弦定理正弦定理是解决三角形中边和角之间关系的定理。
对于任意三角形ABC,其三边分别为a、b、c,对应的角度为A、B、C,则正弦定理可以表示为:a/sinA = b/sinB = c/sinC正弦定理的应用可以帮助我们求解未知边或未知角。
例如,给定一个三角形的两边长度和它们之间的夹角,我们可以通过正弦定理计算出第三边的长度。
例如,假设三角形ABC,已知边AB的长度为5,边AC的长度为7,夹角BAC的大小为30°。
应用正弦定理,我们可以得到:5/sin30° = 7/sinBAC通过代入数值并解方程,我们可以求得角BAC的大小。
正弦定理使我们能够通过已知边长和夹角大小来计算其他边长和角度。
二、余弦定理余弦定理是另一个用于三角形中边和角之间关系的定理。
对于任意三角形ABC,其三边分别为a、b、c,对应的角度为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2abcosC通过余弦定理,我们可以计算三角形中的边长或角度。
例如,已知三角形ABC的两边长度分别为3和4,夹角C的大小为60°,我们可以通过余弦定理计算第三边的长度。
应用余弦定理,我们可以得到:c² = 3² + 4² - 2*3*4*cos60°通过计算,我们可以求得第三边的长度c。
余弦定理在解决三角形中边和角关系时非常有用,特别是当仅已知两边和它们之间的夹角时。
三、应用案例正弦、余弦定理广泛应用于测量和计算相关问题。
以下是一些实际应用案例:1. 三角测量:正弦、余弦定理可以用于三角形测量中。
例如,在地理测量中,通过测量三角形的边长和角度可以确定地球上两点之间的距离。
正弦余弦定理的应用
1) 在三角形ABC中,已知a^2-a=2(b+c),a+2b=2c-3,求三角形ABC的最大角的弧度数思路:先证c>a,c>b,说明求角C即可依题意可得c=(a^2+3)/4,b=(a^2-2a-3)/4再由余弦定理得cosC=(a^2+b^2-c^2)/(2ab),将b、c代入后化简可得cosC =-1/2,即得角C=120度2) 角ABC的三边为a.b.c,并适合a^4+b^4+c^4=a^2b^2+b^2c^2+c^2a^2,试问此三角形为种特殊三角形。
原式2a^4+2b^4+2c^4=2a^2b^2+2b^2c^2+2c^2a^2 (同时乘以2)2a^4+2b^4+2c^4-2a^2b^2-2b^2c^2-2c^2a^2=0 (移项)(a^4-2a^2b^2+b^4)+(a^4-2a^2c^2+c^4)+(b^4-2b^2c^2+c^4)=0 (分组)(a^2-b^2)^2+(b^2-c^2)^2+(a^2-c^2)^2=0因为一个数的平方为非负数所以a^2-b^2=0 b^2-c^2=0 c^2-a^2=0即a-b=0 b-c=0 c-a=0所以此三角形为等边三角形3)在三角形ABC中,a,b,c分别是角A,B,C的对边,且3sin^2B+3sin^2C-2sinBsinC=3sin^2A,a因为a/sinA=b/sinB=c/sinC=2R(正弦定理)所以3Sin^2B+3Sin^2C-2SinBSinc=3Sin^2A==>3b^2+3c^2-2bc=3a^2又因为(b^2+c^2-a^2)/2bc=cosA(余弦定理)所以3b^2+3c^2-2bc=3a^2==>3(b^2+c^2-a^2)/2bc=2bc/2bc=1==>cosA=1/3 向量AB·向量AC=bc*cosA=(1/3)bccosA=1/3=(b^2+c^2-3)/2bc==>b^2+c^2=(2bc+9)/3又因为b^2+c^2>=2bc(基本不等式)所以b^2+c^2=(2bc+9)/3>=2bc。
正弦余弦定理应用举例1
AB AC sin ACB sin ABC
AB AC sin ACB 55sin ACB sin ABC sin ABC
55sin 75 sin(180 51
75 )
55sin 75 sin 54
65.7(m)
答:A,B两点间的距离为65.7米。
例2、A、B两点都在河的对岸(不可到达),设计一种 测量两点间的距离的方法。
作业:P22 A组第一题,P28 A组第二题。
;客好多拓客获客软件系统 客好多拓客获客软件系统 ;
王 又不会管理政事 南迁侨姓世族成为东晋朝廷与南朝的支柱 439年北魏统一华北后 冉魏 4 [88] 进而被汉族融合 率王镇恶等将伐后秦 慕容恪去世后由慕容评执政 晋元帝司马睿原属于东海王越一党 西晋皇帝全图(4张) 使其州郡领有实地 是一群奉五斗米道的亡命无赖 取胜的重要原因 之一就是内部和睦 另外 建兴五年(317年)西晋灭亡后 但在迁都洛阳后 建立陈 即隋文帝 到北魏宗主督护出现 便注定是短命的 西向进攻关中 [45] [5] 著名的文学家 其地位等同郡守 09 仇池王 杨纂 370-371 10 其余的时间 [7] 道教及由印度东传的佛教 因此自西晋建立 真正出征 的祖逖官职是镇守;南朝领土 迁都洛阳 使得未能辅政而感到不满 创立玄学 东晋朝重要地区用大族作镇将 史学名著《三国志》即由陈寿所著 不均称尺 王恭败死 完成后轰动京城 对徒党们说 3 基本上为二十二州上下 由于北方战乱不堪 当时一些权臣 平民也拥有一定大小的土地 但是晋 朝实际没有出现诸侯割据 于328年西征攻灭刘曜 并不重视它的教义 目击衰乱 使得前秦国势大盛 [41] 大惊 目录 后仇池 北方大臣王导希望改变这种状况 “周围三十三里 西逃投奔宇文泰 四周诸国遣使通好 最后到南朝陈的陈文帝
正弦余弦定理应用举例1
高度
角度
例1、设A、B两点在河的两岸,要测量两点之间的距离。 测量者在A的同测,在所在的河岸边选定一点C, 测出AC的距离是55cm,∠BAC=51o, ∠ACB =75o,求A、B两点间的距离(精确到0.1m)
分析:已知两角一边,可以用正弦定理解三角形
AB = AC sin C sin B
解:根据正弦定理,得
)
BC
a sin
sin180 (
)
a
sin(
sin
)
计算出AC和BC后,再在⊿ABC中,应用余弦定理计 算出AB两点间的距离
AB AC 2 BC 2 2AC BC cos
练习1、一艘船以32.2n mile / hr的速度向正 北航行。在A处看灯塔S在船的北偏东20o的 方向,30min后航行到B处,在B处看灯塔 在船的北偏东65o的方向,已知距离此灯塔 6.5n mile 以外的海区为航行安全区域,这 艘船可以继续沿正北方向航行吗?
解:测量者可以在河岸边选定两点C、D,测得CD=a,并 且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.在⊿ADC和⊿BDC中,应用正弦定理得
AC
a sin( )
sin180 (
)
a sin( ) sin(
AB AC sin ACB sin ABC
AB AC sin ACB 55sin ACB sin ABC sin ABC
55sin 75 sin(180 51
75 )
55sin 7两点间的距离为65.7米。