用待定系数法求二次函数的解析式(作课).ppt

合集下载

人教版九年级数学上册《用待定系数法求二次函数的解析式》课件

人教版九年级数学上册《用待定系数法求二次函数的解析式》课件

第2课时 用待定系数法二次函数的解析式
[归纳总结] 待定系数法求二次函数解析式的一般步骤: (1)设:根据条件设函数解析式; (2)列:把已知点的坐标代入解析式,得到方程或方程 组; (3)解:解方程或方程组,求出未知系数; (4)答:写出函数解析式,注意最后结果一般要化成一 般式 y=ax2+bx+c.
第2课时 用待定系数法二次函数的解析式
新知梳理
► 知识点 用待定系数法求二次函数的解析式 求二次函数 y=ax2+bx+c 的条件(如二次函数图象上三个点的坐标) 列出关于 a,b,c 的方程组,并求出 a,b,c,就可以写出二 次函数的解析式.
第2课时 用待定系数法二次函数的解析式
重难互动探究
探究问题一 利用一般式 y=ax2+bx+c(a≠0)求二次 函数的解析式 例1 [教材探究变式题] 已知二次函数的图象经过点(-1 ,-6),(1,-2)和(2,3),求这个二次函数的解析式 ,并求它的开口方向、对称轴和顶点坐标.
[解析] 设二次函数的解析式为 y=ax2+bx+c,把已 知三点坐标代入得关于 a,b,c 的三元一次方程组,求出 a, b,c 的值,再运用配方法或顶点坐标公式求其对称轴和顶点 坐标.
又∵图象经过点 M(2,0), ∴a=3, ∴函数解析式为 y=3(x-1)2-3, 即 y=3x2-6x.
第2课时 用待定系数法二次函数的解析式
解法四:设二次函数解析式为 y=a(x-x1)(x-x2),x1, x2 是抛物线与 x 轴两交点的横坐标.
∵抛物线与 x 轴的一个交点是(2,0),对称轴是 x=1, ∴抛物线与 x 轴的另一个交点为(0,0), ∴x1=2,x2=0, ∴y=a(x-0)(x-2)=ax(x-2). 又∵抛物线的顶点为(1,-3), ∴-3=a×1×(1-2),∴a=3, ∴所求的函数解析式为 y=3x(x-2), 即 y=3x2-6x.

用待定系数法求二次函数解析式PPT课件

用待定系数法求二次函数解析式PPT课件
人教版 九年级上
第22章 二次函数
22.1 二次函数的图象和性质 *第7课时 用待定系数法求二次函数
解析式
提示:点击 进入习题
1 一般式 2 见习题 3 见习题 4 顶点式 5 见习题
6 见习题 7 交点式 8 见习题 9 见习题
答案显示
1.已知函数图象上的三个点的坐标求函数解析式时,设出 二次函数的__一__般__式__,即y=ax2+bx+c(a≠0),然后将三 个点的坐标分别代入解析式,求出待定的系数a,b,c即 可.
2.(2020·陕西)如图,抛物线y=x2+bx+c经过点(3,12)和 (-2,-3),与两坐标轴的交点分别为A,B,C,它的对 称轴为直线l.
(1)求该抛物线的解析式. 解:将点(3,12)和(-2,-3)的坐标代入抛物线的解析式, 得1-2=3=9+4-3b2+b+c,c,解得bc==-2,3. 故抛物线的解析式为 y=x2+2x-3.
解:如图所示.该曲线 是一条抛物线.
(4)设直线y=m(m>-2)与抛物线及(3)中的点P′所在曲线都有
两个交点,交点从左到右依次为A1,A2,A3,A4,请根 据图象直接写出线段A1A2,A3A4之间的数量关系: __A_3_A_4_-__A_1_A_2_=__1____.
4.若已知顶点坐标或对称轴或函数的最值,用待定系数法 求解析式时,一般设___顶__点__式_____,即y=a(x-h)2+k.
课堂导练
11.(2020·吉林)如图是人们常用的插线板。可以用_试__电__笔___ 来判断插孔接的是火线还是零线;当把三线插头插入三 孔插座中时,用电器的金属外壳就会与___大__地___相连, 以防止触电事故的发生。
8.(2020·攀枝花)如图,开口向下的抛物线与x轴交于点A(-1, 0),B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物 线上的一点.

用待定系数法求二次函数的解析式(新人教版)课件

用待定系数法求二次函数的解析式(新人教版)课件
$ax_3^2+bx_3+c=y_3$
设立待定系数并建立方程组
• 同样,若已知抛物线的对称轴为直线$x=h$,则可设立如 下方程组
设立待定系数并建立方程组
$-frac{b}{2a}=h$
$y=ax^2+bx+c$
解方程组求得待定系数
解方程组求得$a, b, c$的值。
解方程组的方法有多种,如代入消元法、加减消元法等。
提高解决问题能力
在学习过程中,学生将学会如何根据问题条件设立未知数 、建立方程组,从而提高解决实际问题的能力。
为后续课程做准备
本节课所介绍的待定系数法将在后续课程中得到广泛应用 ,如求解二次方程、二次曲线等,因此本节课的学习将为 后续课程打下基础。
THANKS
感谢观看
用待定系数法求二 次函数的解析式(新 人教版)
目录
• 引言 • 二次函数的基本概念 • 待定系数法介绍 • 用待定系数法求二次函数的解析式 • 实例分析 • 课程总结与展望
01
CATALOGUE
引言
课程背景
01
二次函数是初中数学的重要内容 ,是中考的重点和难点之一。
02
通过学习待定系数法求二次函数 的解析式,学生可以更好地理解 二次函数的性质和图像,提高解 决实际问题的能力。
实际应用举例
通过具体的例题演示如何使用待定系数法求解二次函数解析式,包括如何设立未知数、建 立方程组以及求解过程。
课程对未来的影响和意义
深化对二次函数的理解
通过本节课的学习,学生对二次函数的理解将更加深入, 能够掌握其解析式的求解方法,为后续学习打下基础。
培养数学思维能力
待定系数法是一种重要的数学思维方法,通过本节课的学 习,学生将培养出灵活运用数学思维解决问题的能力。

初中数学人教版九年级上册 第二十二章22.1.4用待定系数法求二次函数的解析式(共21张PPT)

初中数学人教版九年级上册 第二十二章22.1.4用待定系数法求二次函数的解析式(共21张PPT)

知识应用
有一个抛物线形的立交桥拱,这个 桥拱的最大高度为16m,跨度为40m. 现把它的图形放在坐标系里(如图所示), 求抛物线的解析式. 解: 设抛物线为y=ax(x-40 )
根据题意可知 ∵ 点(20,16)在抛物线上,
4、已知二次函数y=ax2+bx+c的最大值 是2,图象顶点在直线y=x+1上,并且图 象经过点(3,-6)。求aቤተ መጻሕፍቲ ባይዱb、c。
用待定系数法求二次函数的解析式
说一说
说出下列函数的开口方向、对称轴和顶点坐标:
y=3x2
y= -2x2+3
y= - 4(x+3)2
y=
1 2
(x-2)2+1
y=x2+2x+1
温故而知新
二次函数解析式有哪几种表达式?
• 一般式:y=ax2+bx+c (a≠0) • 顶点式:y=a(x-h)2+k (a≠0) 特殊形式 • 交点式:y=a(x-x1)(x-x2) (a≠0)
25 5 ∴ 所求抛物线解析式为 y
1
x2 8 x
25 5
知识应用
有一个抛物线形的立交桥拱,这个
桥拱的最大高度为16m,跨度为40m.
现把它的图形放在坐标系里(如图所示),
求抛物线的解析式.
解 设抛物线为y=a(x-20)2+16
法 二
根据题意可知 ∵ 点(0,0)在抛物线上,
∴ 所求抛物线解析式为
通常选择一般式 y
▪ 已知图象的顶点坐标(对称轴和最值)
通常选择顶点式
o
▪ 已知图象与x轴的两个交点的横坐标x1、x2,
x 通常选择交点式
确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达式,

《用待定系数法求二次函数的解析式》PPT课件(甘肃省市级优课)

《用待定系数法求二次函数的解析式》PPT课件(甘肃省市级优课)
一设:指先设出二次函数的解析式
二代:指根据题中所给条件,代入二次函数的 解析式,得到关于a、b、c的方程组
三解:指解此方程或方程组
四还原:指将求出的a、b、c还原回原解析式中
做一做
1、若抛物线y=ax2+bx+c的对称轴为x=2,
且经过点(1,4)和点(5,0),求此抛物线解析式?
解:设抛物线的解析式为:
课堂练习
1. 一个二次函数,当自变量x=0时,函数值 y=-1,当x=-2与0.5时,y=0.求这个二次函数 的解析式.
y x2 3 x 1 2
2. 一个二次函数的图象经过(0,0),(-1, -1),(1,9)三点.求这个二次函数的解析 式.
y 4x2 5x
课堂小结
1. 已知图象上三点或三对的对应值, 通常选择一般式
(1,4),(2,7)三点,得关于a,b,c的 三元一次方程组
a b c 10, a b c 4, 4a 2b c 7. 解这个方程组,得
a=2,b=-3,c=5
∴所求二次函数是y=2x2-3x+5
方法小结
用待定系数法确定二次函数解析的 基本方法分四步完成:一设、二代、
三解、四还原
y a(x 2)2 k 代入(1, 4),(5, 0)得
a k 4 9a k 0
解得:a=- 1 , k 9
2
2
所以抛物线的解析式为:
y 1 ( x 2)2 9
2
2
2、已知二次函数的图像过点A(-1,0)、 B(3,0),与y轴交于点C2,3且BC= ,求二
次函数关系式?
解:设抛物线的解析式为: y a(x 3)(x 1) 由题得C点坐标为(0, 3) 代入解析式得 a 1 所以抛物线的解析式为 y x2 2x 3

人教版九年级上册用待定系数法求二次函数的解析式课件

人教版九年级上册用待定系数法求二次函数的解析式课件

一个二次函数,当自变量x=0时,函数值y=-1,当
x=-2与
1 2
时,y=0,求这个二次函数的解析式.
方法1:设y a( x 2)( x 1 ),再把x 0,y 1代入其中,
2
求出a的值.
两种方法的结果一
方法2:设y ax2 bx c,由“x 0时,y样一吗个1?更,两简x 种捷方?2与法12哪时,
那有什么难的?不就和 求一次函数表达式一样 的吗?
新知探究
我们知道,由两点(两点的连线不与坐标轴平行)的坐标可以确定一 次函数,即可以求出这个一次函数的解析式.对于二次函数,由几个点 的坐标可以确定二次函数?
已知一个二次函数的图象过点(-1,10)、(1,4),求这个函 数的解析式.
解: 设所求的二次函数为y=ax2+bx+c.
由③-①可得:3a+3b=-3
a+b=-1
将a=2,b=-3代入①可得:2+3+c=10
∴解方程组得:a=2, b=-3, c=5.
a=2. c=5.
新知探究
例1 已知一个二次函数的图象过点(-1,10)、(1,4) 、(2,7), 求这个函数的解析式.
解:设所求的二次函数为y=ax2+bx+c.
y 0”,列方程组求出a,b,c的值.
新知bx+c的图象与x轴交于A(1,0), B(3,0)两点(两点的纵坐标都为0),与y轴交于点C(0,3), 求这个二次函数的解析式.
解: ∵图象与x轴交于A(1,0),B(3,0) ∴设函数解析式为y=a(x-1)(x-3) ∵图象过点C(0,3) ∴3=a(0-1)(0-3),解得a=1. ∴二次函数解析式为y=(x-1)(x-3)=x2-4x+3

用待定系数法求二次函数的解析式(共33张PPT)

用待定系数法求二次函数的解析式(共33张PPT)

a 3, 2
b 3. 2
∴所求的二次函数的表达式是 y 3 x2 3 x 1.
22
二 顶点法求二次函数的表达式
3.选取顶点(-2,1)和点(1,-8),试求出这个 二次函数的表达式. 解:设这个二次函数的表达式是y=a(x-h)2+k,把顶点 (-2,1)代入y=a(x-h)2+k得
y=a(x-8)2+9.
又由于它的图象经过点(0 ,1),可得 0=a(0-8)2+9. 解得 a 9 .
64
∴所求的二次函数的解析式是 y 9 (x 8)2 9.
64
三 交点法求二次函数的表达式
5.选取(-3,0),(-1,0),(0,-3),试出这个二次函数
的表达式.
解:∵(-3,0)(-1,0)是抛物线y=ax2+bx+c与x
二,例题讲解:
1,若抛物线y=x2-4x+c (1)过点A(1,3)求c (2)顶点在X轴上求c (1)点在抛物线上,将A(1,3)代入解析式
求得 c=6 (2)X轴上的点的特点 (x,0)
根据顶点的纵坐标为0求得:c=4
2,若抛物线 y=ax2+2x+c 的对称轴是直线 x=2 且函数的最大值是 -3,求 a,c
解: 设这个二次函数的表达式是 y=ax2+bx+c,把(-3,0),(-1,0),
2.代:
(0,-3)代入y=ax2+bx+c得
(坐标代入)
3.解: 方程(组) 4.还原: (写解析式)
9a-3b+c=0, a-b+c=0, 解得 c=-3,
a=-1, b=-4, c=-3.

用待定系数法求二次函数的解析式公开课PPT通用课件

用待定系数法求二次函数的解析式公开课PPT通用课件
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2
又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1。 故顶点坐标为( 1 , 2) 所以可设二次函数的解析式为y=a(x-1)2+2
又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 得a=-2 故所求二次函数的解析式为:y=-2(x-1)2+2 即: y=-2x2+4x
4 图象顶点是M(1,16)且与x轴交于两点,已知 两交点相距8个单位.
解:设抛物线与x轴交于点A、点B y
∵顶点M坐标为(1,16),对称轴为 16
x=1,又交点A、B关于直线x=1对
称,AB=8
∴A(-3,0)、B(5,0) ∴此函数解析式可设为
A -3 o 1
B
5
x
y=a(x-1)2+16
或y=a(+3)(x-5)
解:设抛物线为y=ax(x-40 )
根据题意可知,点(20,16)在抛物线上
∴16=20a(20 – 40), a = - —1
25
评价
选用两根式求解 ,方法灵活巧妙 ,过程也较简捷
3、已知二次函数y=ax2+bx+c的最大值是2, 图象顶点在直线y=x+1上,并且图象经过点 (3,-6),求此二次函数的解析式。
由条件得:点M( 0,1 )在抛物线上 所以:a(0+1)(0-1)=1 得 : a=-1
y
x o
故所求的抛物线为 y=- (x+1)(x-1) 即:y=-x2+1
思考: 用一般式怎么解?
1、已知抛物线上的三点,通常设解析式为
___y_=_a_x__2+__b_x_+_c__(_a≠0)

用待定系数法求二次函数解析式ppt(共32张PPT)

用待定系数法求二次函数解析式ppt(共32张PPT)
(1)试确定此二次函数的解析式.
返回
解:设解析式为y=ax2+bx+c,把(0,3),(-3,0),
(2,-5)代入解析式得 解得
c= 3,
9
a-
3
b+
c=
0,
解得
4 a+ 2 b+ c= - 5,
∴y=-x2-2x+3.
a= - 1,
b


2,
c = 3 .
(2)判断点P(-2,3)是否在这个二次函数的图象上.如果在, 请求出△PAB的面积;如果不在,试说明理由.
返回
5.根据下列条件求解析式:
(1)已知抛物线的顶点在原点,且过点(3,-27),求抛物线
对应的函数解析式;
解:(1)设解析式为y=ax2. 将点(3,-27)的坐标代入,得a=-3, ∴解析式为y=-3x2.
(2)已知抛物线的顶点在y轴上,且经过(2,2)和(1,1)两点, 求它的函数解析式;
个点.
(1)求证:C,E两点不可能同时在抛物线y=a(x-1)2+
k(a>0)上.
证明:由题意可知,抛物线的对称轴为直线x=1. 若C(-1,2)在此抛物线上, 则C点关于直线x=1的对称点(3,2)也在此抛物线上. ∴点E(4,2)不在此抛物线上. ∴C,E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上.
1
(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?
解得x=-a或x=a+1,
2
大,所以由m<n,得
1 2
<x0<1.综上所述,x0的取返值回
范围为0<x0<1.
11.(中考•菏泽)如图,在平面直角坐标系xOy中,抛物线y=ax2
+bx+2过B(-2,6),C(2,2)两点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。







求二次函数解析式的一般方法:
已知图象上三点或三组对应值,
通常选择一般式 已知图象的顶点坐标、对称轴、最值和另一个点的坐标 通常选择顶点式 已知图象与x轴的两个交点的横x1、x2和另一个点的坐标
通常选择交点式
确定二次函数的解析式时,应该根据条件的特点,恰当地 选用一种函数表达式,
作业:
二次函数y=ax2+bx+c的解析式中有几个待定系数? 需要图象上的几个点才能求出来?
• 求二次函数y=ax2+bx+c的解析式,关键是求出待 定系数a,b,c的值。 • 由已知条件(如二次函数图像上三个点的坐标) 列出关于a,b,c的方程组,并求出a,b,c,就 可以写出二次函数的解析式。
例1 已知一个二次函数的图象过点(-1,10)、(1,4)、
思考: 二次函数y=a(x-h)2+k的解析式中有几个待定系数?需要知 道图象上的几个点才能求出来?如果知道图象上的顶点坐 标为A(1,-1)和点B(2,1),两个点能求出它的解析式吗? • 若已知抛物线的顶点坐标和抛物线上的另一个点的坐 标时,通过设函数的解析式为顶点式y=a(x-h)2+k. 特别地,当抛物线的顶点为原点时,h=0,k=0,可设 函数的解析式为 y=ax2. 当抛物线的对称轴为y轴时,h=0,可设函数的解析 式为 y=ax2+k. 当抛物线的顶点在x轴上时,k=0,可设函数的解 析式为 y=a(x-h)2.
已知抛物线与x轴的交点 或交点横坐标时,通常 设为交点式(两根式)
练习:已知二次函数y=ax2+bx+c的图象过A(0,-5),B(5, 0)两点,它的对称轴为直线x=2,那么这个二次函数的解析式 y=(x-5)(x+1),即y=x2-4x-5 是____________ ___。
分析:因为抛物线与x轴的两个交点关于抛物线的对称轴对称, 又B(5,0)关于直线x=2的对称点坐标为(-1,0),所以可以设为交 点式,类似例3求解,当然也可以按一般式求解。
2 y (x 1) 4即y x2 2x 3
3、已知抛物线与x轴的两个交点为A(-3,0)、B(1,0),又经 过点C(2,5),求其解析式。 交点式: y a( x x1 )( x x2 )
y (x 3)(x 1) 即y x2 2x 3
应 用
应 用
例4 有一个抛物线形的立交桥拱,这个桥拱的最大 高度为16m,跨度为40m.现把它的图形放在坐标系 里(如图所示),求抛物线的解析式. 解:设抛物线为y=ax(x-40 )
根据题意可知 ∵ 点(20,16)在抛物线上, 评价
选用两根式求解, 方法灵活巧妙,过 程也较简捷

堂 练 习
1、一个二次函数,当自 变量x 0时,函数值y 1, 1 当x 2与 时,y 0.求这个二次函数的解析 式。 2 2、一个二次函数的图象 经过(0, 0),( 1, 1 ), ( 1, 9)三点,求这个二次函 数的解析式。
解此方程或方程组,求待定系数
一次函数的解析式为y=3x-6.
将求出的待定系数还 原到解析式中
二次函数解析式有哪几种表达式? • 一般式:y=ax2+bx+c • 顶点式:y=a(x-h)2+k • 交点式:y=a(x-x1)(x-x2)
一般式y=ax2+bx+c(a,b,c为常数,a≠0)
思考:

y
堂 小 结
已知图象上三点或三组对应值, 通常选择 一般式y=ax2+bx+c; 已知图象的顶点坐标或对称轴或最值 通常选择 顶点式y=a(x-h)2+k,
求二次函数解析式的一般方法:
x
o
已知图象与x轴的两个交点的横坐标x1、x2, 或与X轴的一交点坐标与对称轴 通常选择 交点式(两根式)y=a(x-x1)(x-x2) 。
(2,7)三点,求这个函数的解析式 解:设所求的二次函数为 y=ax2+bx+c(a≠0)
设 代 解
还原 变式1:已知关于x的二次函数,当x=-1时,函数值为10,当x=1时 ,函数值为4,当x=2时,函数值为7,求这个二次函数的解析试.
a-b+c=10 由条件得: a+b+c=4 4a+2b+c=7 解方程组得: a=2, b=-3, c=5 因此:所求二次函数是: y=2x2-3x+5
变式2:已知二次函数的图象经过点(4,-3),并且当x=3 时有最大值4,求出对应的二次函数解析式;
y=-7(x-3)2+4 即y=-7x2+42x-59
已知条件中的当x=3时有最大值4 也就是抛物线的顶点坐标为(3,4), 所以设为顶点式较方便
已知一个二次函数的图象过点(0,-3) (4,5) 对称轴为直线x=1,求这个函数的解析式? 思考:怎样设二次函数关系式
例3:已知抛物线与x轴两交点横坐标为1,3且图像过(0, -3),求出对应的二次函数解析式。
解:设所求的二次函数为y=a(x-x1)(x-x2) 由抛物线与x轴两交点横坐标为1,3, ∴y=a(x-1)(x-3), 又过(0,-3), ∴ a(0-1)(0-3)=-3, ∴a=-1 ∴ y=-(x-1)(x-3),即y=-x2+4x-3
例4 有一个抛物线形的立交桥拱,这个桥拱的最大 高度为16m,跨度为40m.现把它的图形放在坐标系 里(如图所示),求抛物线的解析式.
解:设抛物线的解析式为y=ax2+bx+c, 根据题意可知 抛物线经过(0,0),(20,16)和(40,0)三点 可得方程组 评价 通过利用给定的条件
列出a、b、c的三元 一次方程组,求出a、 b、c的值,从而确定 函数的解析式. 过程较繁杂,
• 已知一次函数经过点(1,3)和(-2,-12),求 这个一次函数的解析式。 设出函数的解析式 解:设这个一次函数的解析式为y=kx+b(k≠0), 因为一次函数经过点(1,3)和(-2,-12), k+b=3 所以 根据所给条件,将已知点坐标代入 -2k+b=-12 解得 k=3,b=-6
函数解析式中,得到关于解析式中 待定系数的方程(组)
• 课本P15 习题26.1 第9题(1)、第10题。
确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达式,
反馈练习
1、求经过有三点A(-2,-3),B(1,0),C(2,5)的二次 函数的解析式. 2 y=ax +bx+c 一般式:
y x2 2x 3
2、已知抛物线的顶点为D(-1,-4),又经过点C(2,5),求其 解析式。 顶点式: y a( x h) 2 k
应 用
例4 有一个抛物线形的立交桥拱,这个桥拱的最大 高度为16m,跨度为40m.现把它的图形放在坐标系 里(如图所示),求抛物线的解析式. 解:设抛物线为y=a(x-20)2+16
根据题意可知 ∵ 点(0,0)在抛物线上, 评价
通过利用条件中的顶 点和过原点选用顶点 式求解, 方法比较灵活
∴ 所求抛物线解析式为
解: 设所求的二次函数为 y=a(x-1)2+k
y ( x 1)2 4即y x2 2x 3
交点式y=a(x-x1)(x-x2).(a、x1、x2为常数a≠0) • 当抛物线与x轴有两个交点为(x1,0),(x2,0)时, 二次函数y=ax2+bx+c可以转化为交点式y=a(xx1)(x-x2).因此当抛物线与x轴有两个交点为 (x1,0),(x2,0)时,可设函数的解析式为y=a(xx1)(x-x2),再把另一个点的坐标代入其中,即 可解得a,求出抛物线的解析式。
解:设所求的二次函数 为y ax2 bx c,由题意得:

解得,a 2, b 3, c 5 所求的二次函数是 y 2x 2 3x 5
a b c 10 abc 4 4a 2b c 7
顶点式y=a(x-h)2+k(a、h、k为常数,a≠0).
例2:已知抛物线的顶点是(1,2)且过点(2,3),求 出对应的二次函数解析式 解:设所求的二次函数为y=a(x-h)2+k(a≠0) 已知抛物线的顶点与 抛物线上另一点时, ∵顶点是(1,2) 通常设为顶点式 2 ∴y=a(x-1) +2, 又过点(2,3) ∴a(2-1)2+2=3,∴a=1 ∴ y=(x-1)2+2,即y=x2-2x+3
22.1.4 用待定系数法求二次函数的解析式
学习目标:
1、通过对用待定系数法求二次函数解析式的探究, 掌握求解析式的方法。
2、能灵活地根据条件恰当地选取解析式,体会二次 函数解析式之解析式。 学习难点:灵活地根据条件恰当地选取解析式。
回顾:用待定系数法求解析式
相关文档
最新文档