有限元基本概念-PPT课件
合集下载
有限元基本理论

第1章 预备知识
2、虚应力原理
第1章 预备知识
1.4.4 线弹性力学的变分原理
1、最小位能原理
第1章 预备知识
设:
第1章 预备知识
2、最小余能原理
第1章 预备知识
第1章 预备知识
第2章 弹性力学有限元
2.1 平面问题3结点三角形单元
第2章 弹性力学有限元
2.1.1 单元位移模式及插值函数
第2章 弹性力学有限元
取:
则:
2.3.3 3结点环状单元的等效结点荷载
第2章 弹性力学有限元
例:计算3结点环状单元自重荷载
由面积坐标
第2章 弹性力学有限元
积分
则:
2.4 空间问题有限元
2.4.1 4结点四面体单元
第2章 弹性力学有限元
1、位移函数
第2章 弹性力学有限元
其中:
代入结点坐标得:
有限元基本理论
目 录
第1章 预备知识 第2章 弹性力学有限元 第3章 单元插值函数的构造 第4章 杆件结构力学问题 第5章 平板弯曲问题 第6章 应用中的若干问题 第7章 材料非线性问题
第1章 预备知识
1.1 引言
数值分析方法
有限差分法
微分方程近似解法
有限单元法
几何形状规则
几何形状规则
则两项近似解为:
力矩法
一项近似解,取W1=1(0≤x≤1)
则一项近似解为:
由
第1章 预备知识
两项近似解,取W1=1,W2=x
由
则两项近似解为:
伽辽金法
第1章 预备知识
一项近似解,取W1= N1 = x(1-x)
由
则一项近似解为:
两项近似解,取W1= N1= x(1-x) ,W2= N2 = x2(1-x)
2、虚应力原理
第1章 预备知识
1.4.4 线弹性力学的变分原理
1、最小位能原理
第1章 预备知识
设:
第1章 预备知识
2、最小余能原理
第1章 预备知识
第1章 预备知识
第2章 弹性力学有限元
2.1 平面问题3结点三角形单元
第2章 弹性力学有限元
2.1.1 单元位移模式及插值函数
第2章 弹性力学有限元
取:
则:
2.3.3 3结点环状单元的等效结点荷载
第2章 弹性力学有限元
例:计算3结点环状单元自重荷载
由面积坐标
第2章 弹性力学有限元
积分
则:
2.4 空间问题有限元
2.4.1 4结点四面体单元
第2章 弹性力学有限元
1、位移函数
第2章 弹性力学有限元
其中:
代入结点坐标得:
有限元基本理论
目 录
第1章 预备知识 第2章 弹性力学有限元 第3章 单元插值函数的构造 第4章 杆件结构力学问题 第5章 平板弯曲问题 第6章 应用中的若干问题 第7章 材料非线性问题
第1章 预备知识
1.1 引言
数值分析方法
有限差分法
微分方程近似解法
有限单元法
几何形状规则
几何形状规则
则两项近似解为:
力矩法
一项近似解,取W1=1(0≤x≤1)
则一项近似解为:
由
第1章 预备知识
两项近似解,取W1=1,W2=x
由
则两项近似解为:
伽辽金法
第1章 预备知识
一项近似解,取W1= N1 = x(1-x)
由
则一项近似解为:
两项近似解,取W1= N1= x(1-x) ,W2= N2 = x2(1-x)
有限元法基础ppt课件

有限单元法
一、数值模拟方法概述 二、有限单元法简介 三、有限单元法分析步骤 四、利用有限元软件进行工程分析
一、数值模拟方法概述
工程技术领域中的许多力学问题和场问题,如固 体力学中的位移场、应力场分析、电磁学中的电磁 分析、振动特性分析、热力学中的温度场分析,流 体力学中的流场分析等,都可以归结为在给定边界 条件下求解其控制方程的问题。
结构矩阵分析方法认为:整体结构可以看作是由有限 个力学小单元相互连接而组成的集合体,每个单元的 力学特征可以看作建筑物的砖瓦,装配在一起就能提 供整体结构的力学特性。
结构矩阵分析方法分析的结构本身都明显地由杆件组 成,杆件的特征可通过经典的位移法分析建立。
虽然矩阵位移法整个分析方法和步骤都与有限单元法 相似,也是用矩阵来表达、用计算机来求解,但是它 与目前广泛应用的有限单元法是有本质区别的。
❖ 国际上早在20世纪50年代末、60年代初就投入大量的人力和 物力开发具有强大功能的有限元分析程序。其中最为著名的是 由美国国家宇航局(NASA)在1965年委托美国计算科学公司 和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系 统发展至今已有几十个版本,是目前世界上规模最大、功能最 强的有限元分析系统。
有限元法
既可以分析杆系结构,又分析非杆系的连续 体结构。
三、有限单元法简介
有限单元法的常用术语:
有限元模型 是真实系统理想化的数学抽象。
定义
真实系统
有限元模型
自由度(DOFs- degree of freedoms)
自由度(DOFs) 用于描述一个物理场的响应特性。
UY ROTY
ROTZ UZ
UX ROTX
目前在工程技术领域内常用的数值模拟方法有: 1、有限单元法FEM( Finite Element Method) 2、边界元法BEM(Boundary Element Method ) 3、有限差分法FDM( Finite Difference Method 4、离散单元法DEM(Discrete Element Method) 其中有限单元法是最具实用性和应用最广泛的。
有限元法PPT课件

和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
有限元课件ppt

整体刚度矩阵
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等
。
线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等
。
线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
有限元基础及应用PPT.

设想一下该工作需要的知识水平和技能,看是否可能通过本次招聘为单位注入新知识、新技能?还要考虑该工作是否需要较强的沟通
传热学; 技巧,比如是否需要与客户或其他部门密切联系?
做到专业
电磁场; 1 请学生说说遇到地震时我们该如何自护自救。
师:那么今天我们就一起来研究食物的变质!然后师生大声齐读课题
流体力学 ; (5)乘车时不要看书,否则会损害眼睛。
(二)应用实例
3.1.1记录下你的直觉
2.5.7技能测有试 限元法已经成功地应用在以下一些领域:
(7)参加篮球、足球等项目的训练时,要学会保护自己,也不要在争抢中蛮干而伤及他人。
固体力学:包括强度、稳定性、振动和瞬态问 1、先用清水将伤口周围的泥土、污物、血块彻底冲洗干净,再用淡盐水冲洗(消毒药水)冲洗伤口。 题的分析; 我们常用的一节电池的电压为1.5伏;民用电压为220伏;工业用电为380伏;高压输电电压在万伏以上。
预算紧张迫使重新评估
写回绝信:不能给未被录取的应聘者尽快寄回绝信,会让人感觉到你的公司没有礼貌,管理混乱。
1.1.4搜集信息
神经毒者,血循毒者,混和毒者。
临床表现:三种毒素致病的局部和全身的表现特征。
请您回答下面的问题。
教学难点:
两个雇员齐心协力共同完成主管指定的任务。
(4)利用结构力的平衡条件和边界条件把各个 单元按原来的结构重新连接起来,集合成整体 的有限元方程,求解出节点位移。
重点:对于不同的结构,要采用不同的单元,但 各种单元的分析方法又是一致的。
四、有限元法的学习路线
从最简单的杆、梁及平面结构入 手,由浅入深,介绍有限元理论以 及应用。利用ANSYS软件分析问题。
这两个问题非常具有普遍性和代表性,是我们在汽车销售的过程中经常遇到的问题。
传热学; 技巧,比如是否需要与客户或其他部门密切联系?
做到专业
电磁场; 1 请学生说说遇到地震时我们该如何自护自救。
师:那么今天我们就一起来研究食物的变质!然后师生大声齐读课题
流体力学 ; (5)乘车时不要看书,否则会损害眼睛。
(二)应用实例
3.1.1记录下你的直觉
2.5.7技能测有试 限元法已经成功地应用在以下一些领域:
(7)参加篮球、足球等项目的训练时,要学会保护自己,也不要在争抢中蛮干而伤及他人。
固体力学:包括强度、稳定性、振动和瞬态问 1、先用清水将伤口周围的泥土、污物、血块彻底冲洗干净,再用淡盐水冲洗(消毒药水)冲洗伤口。 题的分析; 我们常用的一节电池的电压为1.5伏;民用电压为220伏;工业用电为380伏;高压输电电压在万伏以上。
预算紧张迫使重新评估
写回绝信:不能给未被录取的应聘者尽快寄回绝信,会让人感觉到你的公司没有礼貌,管理混乱。
1.1.4搜集信息
神经毒者,血循毒者,混和毒者。
临床表现:三种毒素致病的局部和全身的表现特征。
请您回答下面的问题。
教学难点:
两个雇员齐心协力共同完成主管指定的任务。
(4)利用结构力的平衡条件和边界条件把各个 单元按原来的结构重新连接起来,集合成整体 的有限元方程,求解出节点位移。
重点:对于不同的结构,要采用不同的单元,但 各种单元的分析方法又是一致的。
四、有限元法的学习路线
从最简单的杆、梁及平面结构入 手,由浅入深,介绍有限元理论以 及应用。利用ANSYS软件分析问题。
这两个问题非常具有普遍性和代表性,是我们在汽车销售的过程中经常遇到的问题。
《有限元基本原理》课件

这些有限元在节点处相互连接,形成 一个离散化的模型,用于模拟真实结 构的力学行为、热传导、电磁场分布 等。
有限元法的历史与发展
01
有限元法的思想起源于20世纪40年代,但直到1960年 才由美国科学家克拉夫(Clough)正式提出“有限元 法”这一术语。
02
随着计算机技术的发展,有限元法得到了广泛应用和推 广,成为工程领域中解决复杂问题的有力工具。
03
近年来,随着计算能力的提升和算法优化,有限元法的 应用范围不断扩大,涉及的领域也更加广泛。
有限元法的基本思想
01
将连续体离散化为有限个单元,每个单元具 有简单的几何形状和物理属性。
03
02
通过在节点处设置位移约束,将各个单元相 互连接,形成一个整体模型。
通过在各个单元上设置方程,建立整个离散 化模型的平衡方程组。
高阶有限元方法
与其他方法的结合
研究高阶有限元方法,以提高计算的精度 和稳定性。
研究有限元方法与其他数值方法的结合, 如有限差分法、有限体积法等,以拓展其 应用范围。
谢谢聆听
04 有限元法的应用实例
静力分析实例
总结词
静力分析是有限元法最常用的领域之一,主要用于分析结构在恒定载荷下的响应。
详细描述
静力分析用于评估结构在恒定载荷下的应力、应变和位移。例如,桥梁、高层建筑和飞机机身等结构 的稳定性分析。通过有限元法,可以模拟复杂结构的整体行为,并预测其在各种载荷条件下的性能。
动力分析实例
总结词
动力分析涉及结构在动态载荷下的响应 ,如地震、风载和冲击载荷等。
VS
详细描述
动力分析用于评估结构在动态载荷作用下 的振动、冲击和响应。例如,地震工程中 建筑物和桥梁的抗震性能分析。通过有限 元法,可以模拟结构的动态行为,预测其 在地震或其他动态载荷下的破坏模式和倒 塌过程。
有限元法的历史与发展
01
有限元法的思想起源于20世纪40年代,但直到1960年 才由美国科学家克拉夫(Clough)正式提出“有限元 法”这一术语。
02
随着计算机技术的发展,有限元法得到了广泛应用和推 广,成为工程领域中解决复杂问题的有力工具。
03
近年来,随着计算能力的提升和算法优化,有限元法的 应用范围不断扩大,涉及的领域也更加广泛。
有限元法的基本思想
01
将连续体离散化为有限个单元,每个单元具 有简单的几何形状和物理属性。
03
02
通过在节点处设置位移约束,将各个单元相 互连接,形成一个整体模型。
通过在各个单元上设置方程,建立整个离散 化模型的平衡方程组。
高阶有限元方法
与其他方法的结合
研究高阶有限元方法,以提高计算的精度 和稳定性。
研究有限元方法与其他数值方法的结合, 如有限差分法、有限体积法等,以拓展其 应用范围。
谢谢聆听
04 有限元法的应用实例
静力分析实例
总结词
静力分析是有限元法最常用的领域之一,主要用于分析结构在恒定载荷下的响应。
详细描述
静力分析用于评估结构在恒定载荷下的应力、应变和位移。例如,桥梁、高层建筑和飞机机身等结构 的稳定性分析。通过有限元法,可以模拟复杂结构的整体行为,并预测其在各种载荷条件下的性能。
动力分析实例
总结词
动力分析涉及结构在动态载荷下的响应 ,如地震、风载和冲击载荷等。
VS
详细描述
动力分析用于评估结构在动态载荷作用下 的振动、冲击和响应。例如,地震工程中 建筑物和桥梁的抗震性能分析。通过有限 元法,可以模拟结构的动态行为,预测其 在地震或其他动态载荷下的破坏模式和倒 塌过程。
有限元课件第1讲有限元方法概述-PPT精品文档

ui 1 ui u ( x ) ui ( x xi ) Li ui 第i结点的位移 xi 第i结点的坐标
第i个单元的应变 应力 内力
du ui 1 ui i dx Li
E (ui 1 ui ) i E i Li
EA(ui 1 ui ) N i A i Li
基本思路:分割-组合
将连续系统分割成有限个分区或单元(离散化) 用标准方法对每个单元提出一个近似解(单元分 析) 将所有单元按标准方法组合成一个与原有系统近 似的系统(整体分析)
这种分割-组合思想古而有之,如求圆面积。
圆面积
自重作用下等截面直杆的解
受自重作用的等截面直杆 如图所示,杆的长度为L, 截面积为A,弹性模量为E, 单位长度的重量为q,杆的 内力为N。
这一时期的理论研究是比较超前的。
我国力学工作者的贡献
陈伯屏(结构矩阵方法) 钱伟长、胡海昌(广义变分原理) 冯康(有限单元法理论)
20世纪60年代初期,冯康等人在大型水坝 应力计算的基础上,独立于西方创造了有 限元方法并最早奠定其理论基础。--《数 学辞海》第四卷
1.2 有限元分析的基本原理和思路
试求:杆的位移分布,杆 的应变和应力。
材料力学解答
N ( x) q ( L x)
N ( x) q x ( L x) A A
q x ( L x) E EA du ( x) q x ( L x) dx EA
q x2 u ( x) ( Lx ) EA 2
2等参北京航空航天大学34进度安排?第1讲有限元方法概述?第2讲矩阵分析及弹性力学基础?第3讲弹性问题有限元方法?第4讲等参元和高斯积分?第4讲等参元和高斯积分?第5讲结构单元?第6讲材料非线性?第7讲几何非线性?第8讲有限元应用专题北京航空航天大学课程评估?出勤率10?课堂作业40?期末考试50北京航空航天大学主要参考书籍1
有限元ppt课件

17
因此有 y(x) (x)
试探函数中所取的项数越多,逼近的精度越高。
将试探函数代入式(1-9),可以得到关于n个待定系数
的泛函表达式,简记为 I y(x) I(1,2,3, ,n)
根据多元函数有极值的必要条件,有
1
I (1,2 ,3,
2
I (1,2 ,3,
力,它反映了内力在截面上的分布密度。
z
y
o
zx
xz
z zy
yz
切应力互等定律 xy yx , xz zx , yz zy
y
应力矩阵
x xy
yx
T
x y z xy yz zx
y
x
z
微分体的应力分量
v y w z u v
0
0
yz
zx
y x y
v
w
0
y
0
x
0
z
u v
0
w
39
厚度为1的微分体,在水平方向拉
力F的作用下发生了位移 xdx
拉力表达式:
F xdy 1
x
x dy
拉力做的功:
dx
xdx
dW
1 2
F xdx
将F代入:
dW
1 2
x
x
dxdy
40
储存在微分体内的应变能:
因此有 y(x) (x)
试探函数中所取的项数越多,逼近的精度越高。
将试探函数代入式(1-9),可以得到关于n个待定系数
的泛函表达式,简记为 I y(x) I(1,2,3, ,n)
根据多元函数有极值的必要条件,有
1
I (1,2 ,3,
2
I (1,2 ,3,
力,它反映了内力在截面上的分布密度。
z
y
o
zx
xz
z zy
yz
切应力互等定律 xy yx , xz zx , yz zy
y
应力矩阵
x xy
yx
T
x y z xy yz zx
y
x
z
微分体的应力分量
v y w z u v
0
0
yz
zx
y x y
v
w
0
y
0
x
0
z
u v
0
w
39
厚度为1的微分体,在水平方向拉
力F的作用下发生了位移 xdx
拉力表达式:
F xdy 1
x
x dy
拉力做的功:
dx
xdx
dW
1 2
F xdx
将F代入:
dW
1 2
x
x
dxdy
40
储存在微分体内的应变能:
有限元基本概念

m
ui vi
u u
j j
um
um
y
vm
m
um
vj
vi uj
j
i
ui
o
x
❖ 位移函数 式中:
广义坐标系
将单元内部位移用节点位移表示之 — 将三节点i,j,m坐标代入(1)式:
ui vi
分割子矩阵
Ke
对称、奇异、稀疏矩阵
§8-5 结构刚度矩阵
本节通过单元节点的力的平衡关系来建立结构的平 衡式,包括结构刚度矩阵的建立。
j
j
(1)பைடு நூலகம்
m
i
(2)
n
(1)
i m
i
m (2)
n
取出节点i,列出x,y方向力 的平衡方程式:
该结构共有两个单元,外力只作用于i节点之上。 对于其它节点同样可列出相应的方程式。将这些方程式 合并一齐用矩阵表达,形成整个结构的节点力平衡方程。 其形式如下:
1 0
xi 0
yi 0 0 0 1 xi
0 yi
1 2
u v
j j
1 0
xj 0
yj 0 0 0 1 xj
0 xj
3 4
um
1
xm
ym 0
0
0
5
vm 0 0 0 1 xm ym 6
F P
其中:
P 外力列阵,每一个节点有2行。
有限元的核心思想和基本概念课件

➢ 国际上有限元分析方法的发展趋势:
➢ 1、与CAD软件的无缝集成
➢ 许多商业化有限元分析软件都开发了和 著名的CAD软件(例如Pro/ENGINEER、 Unigraphics、SolidEdge、SolidWorks、 IDEAS、Bentley和AutoCAD等)的接口。 有些CAE软件为了实现和CAD软件的无缝 集成而采用了CAD的建模技术,如ADINA 软件由于采用了基于Parasolid内核的实体 建模技术,能和以Parasolid为核心的CAD 软件(如Unigraphics、SolidEdge、 SolidWorks)实现真正无缝的双向数据交 换。
➢ 4、由单一结构场求解发展到耦合场问题的 求解
➢ 现在用于求解结构线性问题的有限元方法 和软件已经比较成熟,发展方向是结构非 线性、流体动力学和耦合场问题的求解。 例如当流体在弯管中流动时,流体压力会 使弯管产生变形,而管的变形又反过来影 响到流体的流动……这就需要对结构场和 流场的有限元分析结果交叉迭代求解,即 所谓\"流固耦合\"的问题。
➢ 2、更为强大的网格处理能力 (技术难题, 关键步骤)
➢ 有限元法求解问题的基本过程主要包括: 分析对象的离散化、有限元求解、计算结 果的后处理三部分。结构离散后的网格质 量直接影响到求解时间及求解结果的正确 性与否,在有些方面一直没有得到改进, 如对三维实体模型进行自动六面体网格划 分和根据求解结果对模型进行自适应网格 划分。
➢ 目的:在工程设计阶段时期分析应力和应 变是否满足工程的要求。
➢ 关键词: 外力(荷载) 内力 位移 杆件 结构力学 应力 应变 弹性力学 强度 刚 度 重力等)
➢ 内力:在外力作用下,物体内部不同部分 之间的相互作用力。物体横截面上的合力。