集合论I 集合的基本概念50页PPT

合集下载

集合的概念ppt课件

集合的概念ppt课件
反之,如果X是一个奇数,那么X除以2的余数为1,它能表示为 X=2k+1(k∈Z)的形式。所以,X=2k+1(k∈Z)是所有奇 数的一个共同特征,于是奇数集可以表为 {X∈Z|X=2k+1, k∈Z}.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.

集合课件ppt课件

集合课件ppt课件

函数与映射
集合在函数和映射的概念中起着关键 作用。函数可以看作是一种特殊的集 合关系,其中每个输入元素都与输出 元素相关联。
在计算机科学中的应用
数据结构
在计算机科学中,集合常被用作实现各种数据结构的基础 ,如哈希表、队列和栈等。集合提供了快速插入、删除和 查找等操作的方法。
算法设计与分析
在Hale Waihona Puke 法设计和分析中,集合用于表示问题实例、状态和转 换等。通过集合运算,我们可以实现各种算法逻辑,如排 序、搜索和图算法等。
统计学与社会学
在统计学和社会学中,集合用于描述人口分布、市场调查和民意调查 等。通过集合运算,我们可以分析数据并得出有意义的结论。
05 集合的扩展知识
无限集
无限集定义
无限集是包含无穷多个元素的集 合,无法完全列举其所有元素。
无穷大与无穷小
无限集中的元素可以按其数量大小 分为无穷大和无穷小,分别表示集 合中元素的数量趋于无穷和趋于零 。
A⊆B。
02
超集定义
如果集合A中的所有元素都是集合B中的元素,并且B中至少有一个元素
不属于A,则称B是A的超集,记作B⊇A。
03
子集与超集的性质
子集和超集之间存在互补关系,即对于任意集合A,存在一个与之对应
的超集A',使得A和A'的并集等于全集。
THANKS FOR WATCHING
感谢您的观看
数据库与信息检索
在数据库和信息检索中,集合用于表示数据记录、查询条 件和结果等。通过集合运算,可以实现高效的数据检索和 管理。
在日常生活中的应用
分类与分组
在日常生活中,集合的概念用于分类和分组事物。例如,将一组物 品分成几组、将人群分为不同年龄段或职业类别等。

集合的概念ppt课件

集合的概念ppt课件

(1) 1
N
(3) -12
Z (5) √2
R
(2) 0
N* (4) √3
Q (6) π
R
解析: (1) ∈ (3) ∈
(5) ∈
(2) ∉ (4) ∉ (6) ∈
03
集合的表示
一、合作探究
小组讨论:
1、小于5的自然数集合A,有哪些元素? 2、小于5的实数集合B,包括哪些元素?
1、集合A,包括元素:0,1,2,3,4。 集合A中的元素可以一 一列举。
③ 集合中元素的特征:确定性、无序性、互异性 ④ 集合的分类:有限集、无限集、空集 ⑤ 数集:N , N* , Z , Q , R ⑥ 集合的表示方法:列举法、描述法
06
课后作业
课后作业1
1、用符号“∈”或“∉”填空:
(1) -3
N, 0.5
N, 0.3
N
(2) 1.5
Z, -5
Z,
3
Z
(3)-0.2
第一章 集合与常用逻辑用语
1.1 集合的概念
目录
01 集合的概念
0 元素与集合 2
0 集合的表示 3
04 集合的分类
01
集合的概念
一、导入生活情景
情景1-上架商品:
如右图,“美汇”生活超市新进了一批果蔬:苹果, 葡萄,黄桃,柠檬,石榴,西瓜,土豆。茄子,西蓝 花等。
作为陈列员,你该如何分类摆放这些商品呢?
四、集合中元素的性质
集合中元素的性质
确定性
1 集合中的元素 必须是确定的
无序性
2 集合中的元素
无顺序之分 {a, b, c} = {a, c, d}
互异性
3 集合中的元素 是互不相同的

集合的概念ppt

集合的概念ppt

例子
若A = {1, 2, 3, 4},B = {3, 4, 5, 6},则A ∪ B = {1, 2, 3, 4, 5, 6}

差集
定义
差集是指在一个集合中去掉另 一个集合中的所有元素后得到
的集合。
记号
对于集合A和集合B,它们的差集 记为A — B。
例子
若A = {1, 2, 3, 4},B = {3, 4, 5, 6} ,则A — B = {1, 2}。
方面。
THANKS
谢谢您的观看
集合的概念
xx年xx月xx日
目 录
• 集合的基本定义 • 集合的分类 • 集合的基本运算 • 集合的关系 • 集合在数学中的应用 • 集合在计算机科学中的应用
01
集合的基本定义
集合是什么
1
集合是一种数学结构,用于表示具有某种共同 属性或特征的一组对象。
2
集合中的元素可以是任何类型,如整数、实数 、字符串等。
用途
有限集在数学和实际生活中广 泛存在,例如一个班级的学生 数量、一天中的小时数等。
记号
用花体字母表示有限集,如 A={1,2,3,4,5}。
无限集
定义
包含无限个元素的集合称为无限集。
用途
无限集在数学中有着特殊的作用,例如实数集、自然数集等。
记号
用斜体字母表示无限集,如Q表示有理数集。
03
集合的基本运算
空间关系
空间中的点、线、面之间的位置关系可以用集合 运算进行表示,如包含、相交、平行等。
在统计中的应用
要点一
数据集合
要点二
样本集合
在统计中,常常需要将一组数据看作 是一个集合,对这组数据进行各种统 计分析。

集合论完整课件PPT

集合论完整课件PPT

对称差 AB = (AB)(BA)
绝对补 A = EA
2021/3/10
7
2.文氏图表示
A
B
A
B
AB
AB
A
B
2021/3/10
AB
图2
A
B
A–B
B A
~A
8
3.几点说明: 并和交运算可以推广到有穷个集合上,即 A1A2…An = {x|xA1xA2…xAn} A1A2…An = {x|xA1xA2…xAn} AB A A B AB = (后面证明) AB = AB = A
第二部分 集合论
一、本部分的主要内容 集合代数----集合的概念和基本运算 关系----二元关系的表示、运算、性质、特殊的关系 函数----函数定义、性质、运算
二、本部分的基本要求 掌握集合及其相关的基本概念 熟练掌握集合以及关系、函数的基本运算 了解和使用基本的证明方法
2021/3/10
1
第六章 集合代数
| ABC |
= 1000(200+166+125)+(33+25+41)8 = 600
2021/3/10
12
第三节 集合恒等式
一、集合算律 1.只涉及一个运算的算律
交换 结合 幂等
AB=BA (AB)C=A(BC)
AA=A
AB=BA (AB)C=A(BC)
AA=A
AB=BA (AB)C=A(BC)
2021/3/10
15
命题演算证明法的书写规范 (以下的 X 和 Y 代表集合公式) (1)证 XY
1in
1i jn
|
A i
Aj
Ak
|

集合的概念ppt课件

集合的概念ppt课件
04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质

集合的概念与表示方法ppt课件

集合的概念与表示方法ppt课件

③互异性,即同一集合中的元素是互不相同的.
能够确定的不同的对象所构成的整体叫做集合(简称集)。
练习1
1、下列说法中,正确的有______.(填序号)
2
①单词 book 的所有字母组成的集合的元素共有 4 个;
②集合 M 中有 3 个元素 a,b,c,其中 a,b,c 是△ABC 的三
边长,则△ABC不可能是等腰三角形;
5

A
集合与元素的关系
集合与元素的关系:
①属于,如果 a 是集合 A 的元素,就说 a 属于集合 A,记作a∈A

②不属于,如果 a 不是集合 A 中的元素,就说 a 不属于集合 A,记
作 a∉A.
0

Ф
集合的三大特性
集合三要素:
①确定性,即同一集合中的元素必须是确定的;
②无序性,即同一集合中的元素之间不考虑顺序;
4
6
习题:
能正确表示集合 M={x∈R|0≤x≤2}和集合 N={x∈R|x2-x=0}
关系的Venn 图是(B)。
总结
集合
THANK YOU
习题:
1、被 3 除余 2 的正整数集合;
解:(1)
{x|x=3n+2,n∈N}
2、平面直角坐标系中坐标轴上的点组成的集合.
(2)
{(x,y)|xy=0}
三、韦恩图:用平面上封闭曲线的内部代表集合,这种图称
为韦恩图,一般画成椭圆或矩形.
问题3 使用韦恩图表示中0-10之间的偶数集合。
0
10
2
8ቤተ መጻሕፍቲ ባይዱ
集合
集合的概念与表示方法
你眼中的
集合
你眼中的
集合

集合的概念及其基本运算PPT教学课件

集合的概念及其基本运算PPT教学课件

在描述法表示集合时,描 述不清或描述错误导致集 合不确定。应该准确描述 元素的性质,确保集合的 确定性。
在进行集合运算时,忽略 空集的情况。空集是任何 集合的子集,因此在进行 交集、并集等运算时需要 考虑空集的情况。
在表示集合时,要确保元 素的互异性,即同一个元 素在一个集合中只能出现 一次。
在进行集合运算时,要遵 循运算规则,确保结果的 准确性。例如,在求交集 时要找两个集合中共有的 元素;在求并集时要将两 个集合中的所有元素合并 在一起并去掉重复元素。
偏序关系与等价关系
等价关系定义
设R是集合A上的一个二元关系 ,如果R满足自反性、对称性和 传递性,则称R是A上的一个等 价关系。
区别
偏序关系不满足对称性而等价关 系满足对称性;偏序关系具有方 向性而等价关系不具有方向性。
01
偏序关系定义
设R是集合A上的一个二元关系 ,如果R满足自反性、反对称性 和传递性,则称R是A上的一个 偏序关系。
说明。
感谢您的观看
THANKS
04
集合的应用举例
在数学领域的应用
数的分类
自然数集、整数集、有理数集、实数集等都 是数学中常见的集合,通过对这些集合的研 究,可以深入了解数的性质和分类。
函数定义域和值域
函数中的定义域和值域都是集合,通过对这 些集合的运算和研究,可以了解函数的性质 和特点。
方程和不等式的解集
方程和不等式的解集也是集合,通过对这些 集合的运算和研究,可以了解方程和不等式 的解的性质和特点。
02
03
联系
偏序关系和等价关系都是集合上 的二元关系,都满足自反性和传 递性。
04
序偶与笛卡尔积
序偶定义:由两个元素a和b按一定顺序排列成的二元 组称为序偶,记作(a,b)。序偶中的元素具有顺序性,即 (a,b)和(b,a)表示不同的序偶。 笛卡尔积的性质

集合的概念ppt课件

集合的概念ppt课件
A.中央电视台著名节目主持人
B.我市跑得快的汽车
C.上海市所有的中学生
D.香港的高楼
(
)
C
)
3.若以方程x2-3x+2=0和x2-5x+6=0的所有解为元素组成集合A,则A中元素的
个数为
(
A.1
B.2
C.3
D.4
C )
解析: 方程x2 - 3x +2=0的解为1,2,方程x2 -5x+6=0的解为2,3由于两方程有相
借助判别式的符号求解.
素养形成
典例 已知集合A是由方程ax2+2x+1=0(a∈R)的实数解作为元素构成的集合.
(1)1是A中的一个元素,求集合A中的其他元素;
(2)若A中有且仅有一个元素,求a的值组成的集合B中元素的个数;
(3)若A中至多有一个元素,试求a的值.
【规范答题】
解 (1)若1是A中的一个元素,则只需a+2+1=0,
于不确定的概念,因此“2020年高考数学难题”不能构成集合;由于任意给一
个数都能判断是否为有理数,故能构成集合;小于π的正整数分别为1,2,3,能
够组成集合.故选B.
探究二
元素与集合的关系
例2. (1)已知不等式2x-5<0的解集为M,则以下表示方法正确的是(
A.0∈M,3∈M
B.0∉M,3∈M

可能只含有一个元素.
素养形成
利用分类讨论思想求解一类关于x的方程ax2+bx+c=0的解集
一般地,形如ax2+bx+c=0是关于x的方程,当a≠0时,该方程是关于x的一元
二次方程,当a=0,b≠0时是关于x的一元一次方程,求解此类方程的解集问题,

集合的概念ppt课件

集合的概念ppt课件

(2) 设x B, 则x是整数,则x Z,且10 x 20. 因此, 用描述法表示为: B { x Z | 10 x 20}
因此,用列举法表示为 B {11, 12, 13, 14, 15, 16, 17, 18, 19}.
学习新知
我们约定, 如果从上下文的关系看, x R, x Z 是明确的, 那么, x R, x Z 可以省略, 只写其元素x.
学习新知
在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?如:
自然数的集合
有理数的集合
不等式的解的集合
到一个定点的距离 等于定长的点的集合
到一条线段的两个端点 距离相等的点的集合
......
学习新知
观察下列实例:
1 1~10以内的所有奇数 2 方程x2-9=0的实数根 3 小于8的素数
集合
设A是一个集合,我们把集合A中,所有具有共同特征P(x)的元素x所组成的
集合表示为:
x A P(x)
我们称这种方法为描述法。
x为该集合的代表元素
P(x)表示该集合中的元素x所具有的性质
学习新知
例如,实数集R 中,有限小数和无限循环小数都具有 q ( p, q Z, p 0) 的 p
形式,这些数组成有理数集,我们将它表示为:
{0}.
(4) b
{a,b,c}.
【总结提升】求解此类问题必须要做到以下两点: ①熟记常见的数集的符号; ②正确理解元素与集合之间的“属于”关系。
总结新知 判断元素与集合关系的两种方法
直接法:
如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否 出现即可,此时应先明确集合是由哪些元素构成的。
总结新知 思考:除字母表示法和自然语言之外,还能用什么方法表示集合?

11集合的概念ppt

11集合的概念ppt

交集
总结词
表示两个或多个集合中共有的元素
详细描述
交集是指两个或多个集合中共有的元素组成的集合,即同时属于这些集合的元素 。
பைடு நூலகம்
差集
总结词
表示从一个集合中去除另一个集合中 的元素后剩余的元素
详细描述
差集是指从一个集合中去除另一个集 合中的元素后剩余的元素组成的集合 。
补集
总结词
表示属于某个集合但不属于另一个集合的元素组成的集合
互异性
总结词
集合中的元素是互不相同的,没有重 复。
详细描述
集合中的每一个元素都是独一无二的 ,没有重复。例如,在集合{1, 2, 3}中 ,数字1、2和3都是唯一的,没有重 复。
无序性
总结词
集合中的元素没有固定的顺序。
详细描述
集合中的元素是无序的,即元素的排列顺序不影响集合的性质。例如,集合{1, 2, 3}和集合{2, 3, 1}是同一个集合 ,因为它们的元素相同,只是排列顺序不同。
11集合的概念
汇报人:可编辑 2023-12-23
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用
目录
01
集合的基本概念
集合的定义
01
集合是由确定的、不同的元素所 组成的总体。这些元素之间有明 确的界限,并且互不重叠。
02
集合通常用大括号{}、尖括号<> 或方括号[]来表示。
详细描述
补集是指属于某个集合但不属于另一个集合的元素组成的集 合,也称为差集。
03
集合的性质
确定性
总结词
集合中的元素是明确的,不存在模糊的边界。
详细描述
在确定一个集合时,每个元素是否属于该集合都有明确的判断标准。例如,对于自然数集合,任何一 个确定的自然数都属于该集合,任何一个确定的非自然数都不属于该集合,不存在模棱两可的情况。

集合的基本概念PPT教学课件

集合的基本概念PPT教学课件

二、关于《虎丘记》
• 虎丘,山名,又名海涌山,在苏州西北 七里。相传春秋时吴王阖闾曾埋葬于此 地,三日后有虎踞其上,因而得名。此 地有“吴中第一名胜”之称。
• 本文记述了中秋之夜虎丘游人如织的盛 况,既有对虎丘月夜景色的生动描绘, 也有对聚饮欢歌场面的描写。作品刻画 细腻,情致盎然;语言浅显,清新流畅。
A B,B A,那么就说这两个集合相等。
记作 A = B.
11
例1写出集合{a}的所 有的子集及真子集 •解:集合{a}的所有 的子集是φ,{a}, 其中φ是真子集.
12
例2 写出集合{a,b}的 所有的子集及真子集 •解:集合{a,b}的所 有的子集是φ,{a}, {b},{a,b},其中φ, {a},{b}是真子集.
三、齐读课文:注意下列红色字的注音:
倾城阖户( hē ) 下迨蔀屋( dài bù ) 雷辊电霍( gǔn ) 姸媸自别( yānchī ) 属而和者( zhǔ hè ) 荇藻凌乱( xīngzǎo ) 尚识余言( zhì )
兴阑( lān )
交衢( qú )
觞客( Shāng )
瓦釜(

)
皂隶( zào )
堂废已久,余与江进之谋所以复之,欲 祠韦苏州、白乐天诸公于其中,而病寻作, 余既乞归,恐进之亦兴阑矣。山川兴废,信
有时哉!
平远堂荒废已久,我和江进之商量用 什么办法修复它,想在这里建一个祠堂来祭 祀韦应物、白居易等先贤。但不久我就生病 了,我已经请求辞官归去,恐怕江进之(修 复平远堂)的兴致也大减了。(可见)山川 景物的兴盛荒废,确实是有时运啊!
兴盛荒废 确实 时运
剑泉深不可测,飞岩如削。千顷云得天 池诸山作案,峦壑竞秀,最可觞客,但过午 则日光射人,不堪久坐耳。文昌阁亦佳,晚 树尤可观,面北为平远堂旧址,空旷无际,

1集合的概念(PPT)3-3

1集合的概念(PPT)3-3
1.集合
①定义:某些指定的对象集在一起就成为一个集合, 每个ห้องสมุดไป่ตู้象叫做集合的元素。
②表示 列举法:将集合中的元素一一列举出来,用大括号括 起来,如{a,b,c} 描述法:将集合中的元素的共同属性表示出来,形式 为:P={x∣P(x)}. 如:{x︱x≥1}与{y ︱y=x2-2x+2} 如:{x y x 1},{y y x 1},{(x, y) y x 1} 图示法:用文氏图表示题中不同的集合。
③分类:有限集、无限集、空集。
④性质 :确定性:a A或a A必居其一,
互异性:不写{1,1,2,3}而是{1,2,3}, 集合中元素互不相同,
无序性:{1,2,3}={3,2,1}
宜在~℃条件下生长,幼苗可耐℃以上的高温;直根膨大期的适宜温度是~8℃。胡萝卜对光照有较高的要求,特别在肉质根肥大期间,一定要保证其充足的 光照,否则就会降低产量、影响质量。种植期间要保证土壤湿润,特别是发芽期更是不能缺水,植株形成期若土壤过干,会造成肉质根细小、粗糙,外形不 正,质地粗硬。胡萝卜适宜生长;十四五规划 产业园区规划 / 十四五规划 产业园区规划 ; 在土层深厚肥沃、排水良好的壤土或沙 壤土中。为让根部有充裕的生长空间,栽培容器至少要cm宽,高度至少要~cm。 [] 分布范围 胡萝卜是全球性十大蔬菜作物之一,适应性强,易栽培,种植 十分普遍。胡萝卜在亚洲、欧洲和美洲地区分布最多。根据联合国粮食与农业组织(FAO)统计,年全世界胡萝卜的栽培总面积为.万公顷,其中亚洲为.万公 顷,欧洲为8.万公顷,北美洲为.万公顷,南美洲为.万公顷,非洲为.万公顷,大洋洲为.万公顷。近几年,除了亚洲栽培面积増幅较快之外,其他洲变化较小。 年中国胡萝卜栽培面积达到.万公顷,约占全世界栽培面积的.%,已成为世界第一胡萝卜生产国。 [] 主要品种 根据肉质根的形状特征,一般可分为以下三种 类型: ⑴短圆锥类型。一般根长~cm,最短的根近圆形,长仅~cm。早熟、耐热、产量低,春季栽培抽薹迟。如烟台三寸胡萝卜,外皮及内部均为橘红色, 单根重~g,肉厚、心柱细、质嫩、味甜,宜生食。 [] ⑵长圆柱类型。晚熟,根细长,肩部粗大,根前端钝圆,一般根长8~cm。如南京、的长红胡萝卜, 湖北麻城棒槌胡萝卜,安徽肥东黄胡萝卜,西安齐头红,岐山透心红,凤翔透心红,广东麦村胡萝卜,日本五寸参等。 [] ⑶长圆锥类型。一般根长~cm, 多为中、晚熟品种,味甜,耐贮藏。如宝鸡新透心红,鞭杆红,济南蜡烛台,内蒙古黄萝卜,烟台五寸胡萝卜,汕头红胡萝卜,红芯~号等。 [] 红森 属杂 交品种,芯细,根色、芯色不仅着色好,而且有甜味,口感好;根形呈长圆筒形。中熟品种,吸肥性强,耐寒性优,青肩的发生极少;即使在~月晚收品质 也很好。须根少,表面非常光滑。 [] 日本杂交胡萝卜 根形好,直筒形,收尾好,春季不易抽薹,耐裂根,田间保 红森和日本杂交胡萝卜 红森和日本杂交胡 萝卜(张) 持力好;根色浓,红心,表皮光滑,品质非常优秀;播种后天可采收,根长8~cm,肩宽cm,单果重g左右;株型直立,长势强,耐寒性强,高抗 黑枯病;适应性强,可春夏秋播种。 [] 植株长势强,生育前期适度控制水肥,密植易造成徒长,根部肥大期应注意生长管理;生育期中等,待根部稳
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档