工程力学 拉压杆的变形与叠加原理.

合集下载

杆件与结构的内力计算

杆件与结构的内力计算

FS F Fl
| FS |max F | M |max Fl
M
例题 图示简支梁受均布荷载q的作用,作该梁的剪 力图和弯矩图。
q
A
解: 1、求支反力
B
x
FA
由对称性知: FA FB ql 2
l
FB
ql / 2
2、建立剪力方程和弯矩方程
ql FS ( x) FA qx 2 qx qx2 qLx qx2 M ( x) F x A 2 2 2
M /l
FS
Mb/ l
M
Ma / l
试确定截面C及截面D上的剪力和弯矩
FA
A
2Fl
C D
F
B
FCs F
FCs F
MC Fl
MC Fl
l
l
FCs
MA FA
A
MC 2Fl Fl 0
l
C
MC
MA
FCs
2Fl
MC
C D
FDs F
F
B
MD 0
l
FDs
MD
F
D

B
弯曲内力
FS ( x) FS ( x) dFS ( x) q( x) dx 0
dFS ( x ) q( x ) dx
d2 M ( x) dx
2
q( x )
目录
这些式子的几何意义是: 1、剪力图上某点处切线斜率等于该点处的横向荷载集度, 但符号相反; 2、弯矩图上某点处切线斜率等于该点处的剪力。
A
x
M
a
C
B b
FA
M M ; FB l l

材料力学第3章 轴向拉压变形

材料力学第3章 轴向拉压变形
Fy 0 :FN1 sin 30 FN3 sin 30 F
(2) 变形协调方程
Δl2 Δl1 Δl3 Δl2 tan30 sin 30 sin 30 tan30
秦飞 编著《材料力学》 第3章 轴向拉压变形
31
3.4 拉压杆静不定问题的解法
例题3-5
(3) 利用物性关系,用力表示变形协调方程

B点水平位移:
线 代

Fa

Bx BB1 l1 EA ()
B点铅垂位移:
By

BB'

l2 sin 45

l1
tan
45

(1
2
2) Fa EA
()
秦飞 编著《材料力学》 第3章 轴向拉压变形
19
3.3 桁架的节点位移
例题3-3
图示托架,由横梁AB与斜撑杆CD所组成,并承受集中载荷
2
3.1拉压杆的轴向变形与横向变形
轴向应变: l 胡克定律: FN
l
E EA
所以得到: l FNl EA
(拉压杆胡克定律)
l FNl EA
EA为拉压刚度,只与材料和横截面面积有关。
秦飞 编著《材料力学》 第3章 轴向拉压变形
3
3.1拉压杆的轴向变形与横向变形
(2)补充方程-变形协调方程(compatibility equation)
l1
tan

l2
sin

l3
秦飞 编著《材料力学》 第3章 轴向拉压变形
25
3.4 拉压杆静不定问题 解法
(3)物性(物理)关系
l1

FN1l1 E1 A1

《工程力学》第五章 杆件的变形与刚度计算

《工程力学》第五章  杆件的变形与刚度计算

根据杆所受外力,作出其轴力图如 图 b所示。
(2)计算杆的轴向变形 因轴力FN和横截面面积A沿杆轴线变
化,杆的变形应分段计算,各段变形的 代数和即为杆的轴向变形。
l
FNili FN1l1 FN 2l2 FN 2l3
EAi
EA1
EA1
EA2
1 200 103
( 20 103 100 500
10 103 100 500
10 103 100 )mm 200
0.015mm
例5-2 钢制阶梯杆如图,已知
轴向外力F1=50kN,F2=20kN,
各段杆长为l1=150mm,
l2=l3=120mm,横截面面积为:
1
A1=A2=600mm2,A3=300mm2,
钢的弹性模量E=200GPa。求各
x
l 3
,ym
ax
9
Ml2 3E
I
xMl2 16EI
A
M 6EIl
(l 2
3b2 )
B
M 6EIl
(l 2
3a2 )
三、叠加法计算梁的变形
➢叠加法前提条件:弹性、小变形。 ➢叠加原理:梁在几个载荷共同作用下任一截面的挠度或转角, 等于各个载荷单独作用下该截面挠度或转角的代数和。
F1=2kN,齿轮传动力F2=1kN。主轴的许可变形为:卡盘 C处的挠度不超过两轴承间距的 1/104 ;轴承B处的转角
不超过 1/103 rad。试校核轴的刚度。
解(1)计算截面对中 性轴的惯性矩
Iz
D4
64
(1 4 )
804 (1 0.54 )mm4
64
188104 mm4
(2)计算梁的变形

拉压杆的变形

拉压杆的变形

EA称为杆的拉压刚度,它是单位长度的杆产生单位长度的变形 所需的力。所以拉压刚度EA代表了杆件抵抗拉伸(压缩)变形 的能力。
因σ=FN/A、ε=Δl/l,故式(2-5)变为 σ=Eε (2-6
上式是胡克定律的另一表达式。它表明:在弹性限度内,正应力 与线应变成正比。
1.2横向变形
设图2-12所示拉、压杆在变形前、后的横向尺寸分别为d与d1, 则其横向变形Δd为
【例2-6】如图2-14(a)所示等截面直杆,已知 其原长l、横截 面积A、材料的容重γ、弹性模量E、受杆件自重和下端处集中力 F作用。求该杆下端面的位移ΔB。
【解】如图2-14(b)所示。距B端为x的横截面上的轴力为 FN(x)=F+γAx
微段dx如图2-14(c)所示。 略去两端内力的微小差值,则微段的变形为
=-0.975×10-3m=-0.975mm
各段柱的纵向线应变为
εBC=ΔlBC/lBC=-0.5mm/2000mm=2.5×10-4
εAB=ΔlAB/lAB=-0.975mm/1500mm=-6.5×10-4 全柱的总变形为两段柱的变形之和,即
Δl=ΔlBC+ΔlAB=-0.5mm-0.975mm=-1.475 mm
【解】由于上下两段柱的轴力不等,故两段柱 的变形要分别计算。各段柱的轴力为
FNBC=-100 kN 各段柱的纵向变形为
FNAB=-260 kN
ΔlBC=FNBC/EA = -100×103N×2m/10×109Pa× (0.2m)2 =-0.5×10-3m=-0.5mm
图2-13
ΔlAB=FNAB/EA= 260×103N×1.5m/10×109Pa×(0.2m)2
大量的实验表明,当杆的变形为弹性变形时,杆的纵向变形Δl与 外力F及杆的原长l成正比,而与杆的横截面面积A成反比,即

工程力学(材料力学)6拉压杆件的强度与变形问题

工程力学(材料力学)6拉压杆件的强度与变形问题

机械制造中的拉压杆件
机械制造中的拉压杆件主要用于 实现运动传递、力的传递和变形 等,如连杆、活塞杆、传动轴等。
这些杆件需要在高速、高温、重 载等极端条件下工作,因此需要 具备优异的力学性能和耐久性。
在机械制造中,拉压杆件的设计 和制造需要精确控制尺寸、形状 和材料,以确保其工作性能和可
靠பைடு நூலகம்。
其他工程领域中的拉压杆件
总结词
新型材料如碳纤维复合材料、钛合金等具有高强度、轻质等优点,在拉压杆件中得到广 泛应用。
详细描述
随着科技的不断发展,新型材料如碳纤维复合材料、钛合金等逐渐应用于拉压杆件的制 作。这些新型材料具有高强度、轻质、耐腐蚀等优点,能够提高杆件的力学性能和使用
寿命。
高性能的拉压杆件设计
总结词
通过优化设计,可以显著提高拉压杆件的性能。
刚度分析
对杆件的刚度进行分析, 可以确定其变形程度和承 载能力,为结构设计提供 依据。
拉压杆件的稳定性问题
稳定性定义
01
稳定性是指杆件在受到载荷作用时,保持其平衡状态的能力。
稳定性分析
02
通过稳定性分析,可以确定杆件在受到载荷作用时是否会发生
失稳现象,以及失稳的临界载荷。
稳定性要求
03
在工程应用中,杆件的稳定性需要满足一定的要求,以保证结
强度失效准则
当拉压杆件内部的应力达到或超过材料的屈服极限时,杆件会发生屈服失效, 丧失承载能力。
拉压杆件的强度计算
静力分析
根据外力的大小和方向,以及杆件的几何尺寸和材料属性,计算杆件内部的应力 分布。
动力分析
考虑动载荷的影响,分析杆件在振动、冲击等动态过程中的应力变化。
拉压杆件的强度校核

材料力学ch3-拉压变形

材料力学ch3-拉压变形

FN2 F2
F2 ( l1 l2 ) F1l1 ( l )分段 EA EA
2. 分解载荷法
F2 ( l1 l2F ) ( lF1 l1 l ) F l 1 1 )分段 l 2 1 2 lF1( l F2 EA EA EA EA
( l )分解载荷 lF1 lF2
FN2 F ( 压缩)
FN1 l1 2F 2l 2Fl ( 伸长) l1 EA E1 A1 EA
FN2 l2 Fl l 2 (缩短) E2 A2 EA
2. 作图法求节点位移 圆弧法 作圆弧A1A’、A2A’ 切线代圆弧法 将圆弧A1A’用 其切线A1A3代替 3. 节点位移计算
l
A1
B
A
l f A l cos a l tg a sin a AA cos a
(l l ) A1 B A1 A
切线代圆弧
节点位移分析
图示桁架,试求节点 A 的水平与铅垂位移, 已知 :E1A1= E2A2=EA,l2=l
1. 轴力与变形分析
FN1 2F ( 拉伸)
横截面内任一点, 任意面内方向上的应变
横向变形与泊松比 泊松比
'
试验表明:在比例极限内,’ ,并异号
-泊松比 (横向变形系数)
Poisson’s Ratio
0 0.5
• 对于绝大多数各向同性材料
• 弹性理论证明: 等温下各向同性线弹性材料 1 0.5
线弹性杆的拉压应变能V来自ε WF l V ε 2 EA
2 N
拉压与剪切应变能密度
拉压应变能密度
dV ε
dxdz dy
2

拉压杆应力、变形分析

拉压杆应力、变形分析

通过这些数学模型,可以计算出在给定外力作用下物体的应 力和变形,从而对物体的力学性能进行评估。
应力与变形的实验验证
为了验证应力与变形的数学模型的正确性和可靠性,需要 进行实验验证。
实验中,可以通过测量物体的应力和变形数据,与数学模 型计算结果进行对比,以评估模型的准确性和适用范围。
05 拉压杆的优化设计
实验结果表明,拉压杆的应力分布不均匀,呈现 中间大、两端小的趋势。变形则表现为杆件中部 向下弯曲,两端向上翘起。
本研究采用有限元分析方法对拉压杆进行应力、 变形分析,得到了与实验结果较为一致的分析结 果,验证了有限元方法的可行性和有效性。
研究展望
虽然本研究取得了一定的成 果,但仍有许多问题需要进 一步探讨。例如,可以考虑 研究不同材料属性、不同截 面形状和不同边界条件等因 素对拉压杆应力、变形的影 响。
基于应力的优化设计
总结词
在基于应力的优化设计中,主要目标 是减小拉压杆的最大应力值,使其不 超过材料的许用应力。
详细描述
通过调整拉压杆的截面尺寸、长度、 材料等参数,可以改变其应力分布和 大小。常用的方法包括有限元分析和 数学优化算法。
基于变形的优化设计
总结词
基于变形的优化设计旨在减小拉压杆 的最大变形量,以确保其在工作过程 中具有良好的性能和精度。
根据应力的性质,可分为 拉应力和压应力;根据应 力的分布,可分为均匀应 力和非均匀应力。
应力状态
描述杆件内部各点的应力 状态,包括正应力和剪应 力。
拉压杆应力计算
轴向拉压杆
通过材料力学中的胡克定律计算拉压 杆的应力。
弯曲梁
扭转变形
利用扭矩和剪切模量计算扭转变形的 应力。
利用弯矩和剪力计算弯曲梁的应力。

工程力学—简单超静定问题

工程力学—简单超静定问题

杆件的变形 简单超静定问题一 、基本要求1.熟练掌握拉(压)杆变形计算2.熟练掌握圆轴扭转变形计算与刚度条件 3.掌握积分法求梁的弯曲变形4.熟练掌握叠加法求弯曲变形与梁的刚度计算5.理解超静定概念,熟练掌握简单超静定问题的求解方法 6.了解弹性体的功能原理,掌握杆件基本变形的应变能计算二、 内容提要1.拉(压)杆的轴向变形、胡克定律拉(压)杆的轴向变形为l ∆,l l l -=∆1,式中l 、1l 分别为变形前、后杆的长度。

当杆的应力不超过材料的比例极限时,可以应用胡克定律计算杆的轴向变形,即EAlF l N ⋅=∆ (4.1) 图 4.1式中,EA 称为杆件的抗拉(压)刚度。

显然,轴力F N 为正时,△l 为正,即伸长变形;轴力F N 为负时,△l 为负,即缩短变形。

公式(4.1)的适用条件:(1) 材料在线弹性范围,即p σσ≤;(2) 在长度l 内,F N ,E ,A 均为应力常量。

当以上参数沿杆轴线分段变化时,则应分段计算变形,然后求代数和得总变形。

即∑==∆ni ii i N A E l F l i 1(4.2)当F N ,A 沿杆轴线连续变化时,式(4.2)化为 ()()⎰=∆lN x EA dxx F l 0 (4.3)2.拉压超静定问题定义 杆系未知力的数目超过静力平衡方程的数目,仅用静力平衡方程不能确定全部未知力。

这类问题,称为超静定问题,或静不定问题。

超静定问题的求解方法 根据变形协调条件建立变形几何方程,将变形与协调关系与力之间的物理关系带入几何方程得到补充方程,再与静力平衡方程联立求解,可得到全部未知力。

解题步骤: (1) 画出杆件或节点的受力图,列出平衡方程,确定超静定次数; (2) 根据结构的约束条件画出变形位移图,建立变形几何方程; (3) 将力与变形间的物理关系代入变形几何方程,得补充方程; (4)联立静力平衡方程及补充方程,求出全部未知力。

超静定结构的特点:(1) 各杆的内力按其刚度分配;(2) 温度变化,制造不准确与支座沉陷等都可能使杆内产生初应力。

材料力学单辉祖第三章轴向拉压变形

材料力学单辉祖第三章轴向拉压变形
o x
FN q
q
L
最大正应力发生在x = 0处
P
max
FN (0) P ql (0) A A
P
x
22
Example-变轴力杆
取长度为dx的微元体 由胡克定理知,微元体伸长为
FN ( x) d dx EA
FN ( x) P q(l x)
o x
FN
dx dFN对微段变形忽略
杆件在外力F2作用下 的伸长为
l
2P
P
3l P
2P
l2 P
FN 2 L 2 Pl EA EA
19
Example-多力杆
杆件的总伸长为
l l P l2 P
方法一答案
2 Pl l l1 l2 EA ()
2 Pl EA
2P
P
l
3l
20
Example-变轴力杆
B
60 0
F2 l
F1
l
C A
C"
D
C´ A´
几何关系
45
Example-Bracket
利用几何关系, 得A点垂直位移AA´
A 2CC CD 2 6.0 mm 0 sin 30
l B
600
F2
F1
l
C A
C"
D
C´ A´
几何关系
46
Example-零力杆
求A点的位移
*AB杆不受力不伸长,只转动
()
41
Example-Bracket
图示托架,AB为刚梁,CD为支撑杆,已知 F1=5kN,F2=10kN,l=1m,斜支撑CD为铝 管,弹性模量为E=70GPa,横截面面积为 A=440mm2,求刚梁AB端点A的铅垂位移。

工程力学-第6章拉压杆件的应力变形分析

工程力学-第6章拉压杆件的应力变形分析

x
4、许可载荷
min 57.6kN F Fi min 57.6kN 176.7kN
目录
§6.4 应力集中的概念
常见的油孔、沟槽 等均有构件尺寸突变, 突变处将产生应力集中 现象。即
max K
理论应力 集中因数 1、形状尺寸的影响: 2、材料的影响: 应力集中对塑性材料的影 响不大;应力集中对脆性材料 的影响严重,应特别注意。
一 、安全因数和许用应力
FN 工作应力 A
极限应力

塑性材料 u ( S p 0.2)
脆性材料 u ( bt bc)

u
n

n —安全因数

s
ns
—许用应力

塑性材料的许用应力
脆性材料的许用应力
bt
nb
p 0.2 n s bc n b
圣 维 南 原 理
目录
如果杆端两种外加力静力学等效,则距离加力点稍远处,静力学等效对应力 分布的影响很小,可以忽略不计。这一思想最早是由法国科学家圣维南(SaintVenant,A.J.C.B.de)于1855年和1856年研究弹性力学问题时提出的。1885年布 森涅斯克(Boussinesq,J.V.)将这一思想加以推广,并称之为圣维南原理(SaintVenant principle)。
§6.2 失效、安全因数和强度计算
P103例题6-4
AC为50×50×5的等边角钢,AB为10 号槽钢,〔σ〕=120MPa。确定许可载荷F。
解:1、计算轴力(设斜杆为1杆,水平杆 为2杆)用截面法取节点A为研究对象 Fx 0 FN1 cos FN 2 0

《工程力学》第6章 拉压杆件的应力变形分析与强度设计

《工程力学》第6章 拉压杆件的应力变形分析与强度设计

【例题4】螺纹内径d=15mm的螺栓,紧固时所承受的预紧力为 F=20kN。若已知螺栓的σ=150MPa,试校核螺栓的强度是否 安全。
解:(1)确定螺栓所受轴力 N=F=20kN
(2) 计算螺栓横截面上的正应力
N A
=
F πd 2
=
20 103 π 152
113.18MPa
4
4
(3)应用强度条件进行校核
2/55
6.1 拉伸与压缩杆件的应力与变形
承受轴向载荷的拉(压)杆在工程中的应用非常广泛。
紧固螺栓
斜拉桥钢缆
螺栓及活塞杆
3/55
6.1 拉伸与压缩杆件的应力与变形
➢应力计算 ➢变形计算
➢举例 ➢超静定问题
4/55
6.1 拉伸与压缩杆件的应力与变形——应力计算 ➢当外力沿杆件轴线作用时,其横截面上只有轴力, 及相对应的正应力; ➢根据均匀性假定,杆件横截面上的应力均匀分布。
=lAD lDE lEB lBC
i
= N lAD AD + N lDE DE + N lEB EB + N lBC BC
Ec AAD Ec ADE Es AEB Es ABC
=- 120103 1000 100103 10102
- 60103 1000 100103 10102
-
60103 1000 210103 10102
10/55
6.1 拉伸与压缩杆件的应力与变形——变形计算
3、横向变形
➢实验结果表明,若在弹性范围内加载,轴向应变x与横向 应变y 之间存在下列关系:
y x
为材料的另一个弹性常数,称为泊松比,为无量纲量。
11/55
6.1 拉伸与压缩杆件的应力与变形——变形计算

第十二章 工程力学之组合变形

第十二章 工程力学之组合变形

二、叠加原理 杆在组合变形下的应力和变形分析,一般可利用叠加原理。
叠加原理: 实践证明,在小变形和材料服从虎克定律的前提下, 杆在几个载荷共同作用下所产生的应力和变形,等于每个载荷 单独作用下所产生的应力和变形的总和。 当杆在外力作用下发生几种基本变形时,只要将载荷简化为一 系列发生基本变形的相当载荷,分别计算杆在各个基本变形下 所产生的应力和变形,然后进行叠加,就得到杆在组合变形下 的应力和变形。 另外,在组合变形情况下,一般不考虑弯曲剪应力。
(2)根部截面的内力分析
作轴的扭矩图和弯矩图如图12-6(c)所示。
根部截面上的扭矩 T m 120 N m
弯矩
M Pl 3Fl 3 960 0.12 346 N m
(3)应力分析
根部截面在弯曲、扭转基本变形下的应力分布如图12-6(d) 所示
由此可见,A点既有正应力,也有剪应力,B点只有剪应力
max N M 5.9 115 120.9MPa
最大应力几乎等于许用应力,故可安全工作。
例12-2:图12-5(a)所示为一钻床,在零件上钻孔时,钻床的 立柱受到的压力为P=15kN。已知钻床的立柱由铸铁制成,许用 拉应力,[σ拉]=35MPa,e=400mm试计算立柱所需的直径d。 解: (1)内力分析,判断变形 形式 用截面法求立柱横截面上 的内力,如图12-5(b)所 示,横截面上的内力有两 个,轴力FN和弯矩M,且 有

可见, Tx和Fcx使AC产生轴向压缩,而Ty、P和Fcy产生弯曲变 形,所以AC杆实际发生的是轴向压缩与弯曲的组合变形。 (2)作内力图,找出危险截面 AC梁的轴力图和弯矩图如图12-4(b)所示。
从图中可以看出,在梁的中间截面上有最大弯矩,而轴力在各 个截面上是相同的,所以,梁的中间截面是危险截面。

工程力学 第四章 杆件的基本变形

工程力学 第四章 杆件的基本变形

随外力产生或消失 随外力改变而改变 但有一定限度
截 面 法
根据空间任意力系的六个平衡方程
X 0 M
步骤: 1、切开 2、代替
x
Y 0 M
y
Z 0 M
z
0
0
0
求内力和取分离体求约束反力的方法本质 相同。这里取出的研究对象不是一个物体系统或一个完 整的物体,而是物体的一部分。
第四章 杆件的基本变形
杆件的外力与变形特点 内力及其截面法
杆件的外力与变形特点
一、杆件变形的定义 杆件在外力作用下,形状和尺寸的变化。 二、杆件变形的形式 1、基本变形 轴向拉伸与压缩 剪切变形 扭转变形 弯曲变形 2、组合变形 同时发生两种或两种以上的变形形式
轴向拉伸或压缩变形
受力特点:作用线与杆轴重合的外力引起的。
拉 伸
压 缩
变形特点:杆轴沿外力方向伸长或缩短, 主要变形是长度的改变
屋 架 结 构 中 的 拉 压 杆
塔 式 结 构 中 的 拉 压 杆
桥 梁 结 构 中 的 拉 杆
剪 切 变形
受力特点:由垂直于杆轴方向的一对大小相等、 方向相反、作用线很近的横向外力引起的。
变形特点:二力之间的横截面产生相对错动变形 主要变形是横截面沿外力作用方向发生相对错动。
螺 栓
连 接 键
销钉
螺 栓
扭 转 变 形
受力特点:由垂直于杆轴线平面内的力偶作用引起的
变形特点:相邻横截面绕杆轴产生相对旋转变形。
对称扳手拧紧镙帽
自 行 车 中 轴 受 扭
桥 体 发 生 扭 转 变 形
弯曲变形
受力特点:是由垂直于杆件轴线的横向力或作用 在杆件的纵向平面内的力偶引起的
变形特点:杆轴由直变弯,杆件的轴线变成曲线。

材料轴向拉压变形的力学原理

材料轴向拉压变形的力学原理

根据小变形假设:杆1和杆2的转角 为很小的角度,因此A1A'可视为垂直 于杆1;A2A'可视为垂直于杆2。
A A5
所以: Ax AA2 l2
节点位移分析步骤: 1. 轴向伸长(缩短)
Ay

AA4

A4 A5

AA1
sin

AA5
tan
2. 切向转动
l1 l2 sin tan
f
f

o
d

V 0 f d
F
o

V

F 2

F

34
材料力学-第3章 轴向拉压变形
拉压与剪切应变能
等截面、均匀拉伸的杆件的拉压应变能:

F
V

F 2
FN l FN FN l FN2l
2
2 EA 2EA
35
材料力学-第3章 轴向拉压变形
拉压与剪切应变能
拉压杆的变形与胡克定律
例题2:
图示等截面直杆受多
a
b
个力作用,截面面积A, 材料拉压弹性常数均为E,
F2
求杆件总变形量。
A
B
F1 C
13
材料力学-第3章 轴向拉压变形
拉压杆的变形与胡克定律
解: 截面法
BC段 AB段
FN1 FN 2
F2
F1
FN1 F1
lBC

FN1lBC EA

F1b EA
F1 FN 2 F1 F:
l

a
0
d

l


a
0

胡克定律与拉压杆的变形

胡克定律与拉压杆的变形

1.分段解法
FN1 = F2 − F1
FN2 = F2
(∆l )分段解法
=
FN1l1 EA
+
FN2l2 EA
=
(F2
− F1 )l1 EA
+
F2l2 EA
(∆l )分段解法
=
F2(l1 + EA
l2 )

F1l1 EA
2. 分解载荷法
(∆l
)分段解法
=
F2
( l1 + EA
l2
)

F1l1 EA
3. 比较
§9 连接部分的强度计算
连接实例 剪切与剪切强度条件 挤压与挤压强度条件 例题
单辉祖:工程力学(材料力学)
73
连接实例
单辉祖:工程力学(材料力学)
销钉
螺栓
耳片
74
单辉祖:工程力学(材料力学)
75
剪切与剪切强度条件
以耳片销钉为例介绍分析方法
单辉祖:工程力学(材料力学)
76
解:1. 破坏形式分析
单辉祖:工程力学(材料力学)
81
2. 许用载荷 [F]
n
τ
=
4F πd 2
≤ [τ
]
F ≤ πd 2[τ ] = 1.257 kN
4
o
σ bs
=
F
δd
≤ [σ bs ]
F ≤ δd[σ bs ] = 2.40 kN
p
σ max
=
F
(b − d )δ
≤ [σ ]
F ≤ (b − d )δ [σ ] = 3.52 kN
FN1 = FN1,F1 + FN1,F2 = −F1 + F2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单辉祖:材料力学Ⅰ
8
解:1. 横截面正应力 l 7.4110-4
l
E 148.2 MPa 2. 螺栓横向变形
' 2.22 104 d ' di 0.0034 mm 螺栓直径缩小 0.0034 mm
单辉祖:材料力学Ⅰ
9
节点位移分析
(l )分段解法
FN1l1 EA

FN2l2 EA

(F2
F1 )l1 EA

F2l2 EA
(l )分段解法

F2(l1 EA
l2
)

F1l1 EA
单辉祖:材料力学Ⅰ
5
2. 分解载荷法
3. 比较
l(F1 l )分F段E1A解l1 法

F2l(FEl21A
Fl22)(
l1 F1ll21) EAEA
解:1. 画变形图 设节点C位移至 C',过 C'点向三杆作垂线。
2. 根据变形图,画受力图
单辉祖:材料力学Ⅰ
23
§10 连接部分的强度计算
连接实例 剪切与剪切强度条件 挤压与挤压强度条件 例题
单辉祖:材料力学Ⅰ
24
连接实例
单辉祖:材料力学Ⅰ
销钉
螺栓
耳片
25
单辉祖:材料力学Ⅰ
26

单辉祖:材料力学Ⅰ
27
剪切与剪切强度条件 以耳片销钉为例介绍分析方法
单辉祖:材料力学Ⅰ
28
剪切面
假设:剪切面上的切应力均匀分布 FS
A
FS [ ] -剪切强度条件 [t ] -许用切应力
A
单辉祖:材料力学Ⅰ
29
挤压与挤压强度条件
几个概念
挤压面-连接件间的相 互挤压接触面
35
例 10-2 已知:F = 80 kN, = 10 mm, b = 80 mm, d = 16 mm, [ ] = 100 MPa, [ bs ] = 300 MPa, [ ] = 160 MPa
试:校核接头的强度
单辉祖:材料力学Ⅰ
36
解:1. 接头受力分析
当各铆钉的材料与直径均相同,且外力作用线在 铆钉群剪切面上的投影,通过铆钉群剪切面形心时, 通常即认为各铆钉剪切面上的剪力相等
补充方程
一度静不定 E1A1= E2A2
单辉祖:材料力学Ⅰ
16
平衡方程 FN2sin - FN1sin 0
FN1cos FN2cos FN3 F 0 变形几何关系 变形协调方程
l1 l3cos 保证结构连续性所应
满足的变形几何关系
胡克定律
l1

FN1l1 E1 A1

FN2 A2

3F
4(b 2d )
125 MPa [ ]
38
例10-3 图示轴与齿轮的平键联接。已知轴直径d=70mm,键 的尺寸为b×h×l=20×12×100mm,传递的力偶矩
Me=2kN·m,键的许用应力[ ]=60MPa,[ bs] =100MPa。试
校核键的强度。
F
(l )分解载荷

lF1

lF2

F2(l1 EA
l2 )

F1l1 EA
(l )分段解法 (l )分解载荷
单辉祖:材料力学Ⅰ
6
叠加原理 原理
几个载荷同时作用所产生的总效果,等于 各载荷单独作用产生的效果的总和
应用 当杆件内力、应力及变形,与外力成正比 关系时,通常即可应用叠加原理
单辉祖:材料力学Ⅰ
37
2. 强度校核
剪切强度:
FS

F 4


4FS πd 2

F πd 2

99.5
MPa
[
]
挤压强度:
bs

Fb
d

FS
d
125 MPa
[ bs ]
拉伸强度:
1
FN1 A1

F
(b d )
125 MPa [ ]
单辉祖:材料力学Ⅰ
2
n FQ n
b l
d
Fbs
O
O
h/2
Me
Me
nn FQ
解:校核键的剪切强度: 校核键的挤压强度:
单辉祖:材料力学Ⅰ
MO 0:FQd / 2 Me


FQ AQ

2M bl
e
/
d

57.1kN
FQ / AQ FQ /(bl) 28.6MPa [ ]
Fbs FQ 57.1kN Abs hl / 2
采用切线代圆弧的方法确定节点位
单辉祖:材料力学Ⅰ
12
例题
例 8-2 F1 = F2 / 2 = F ,求截面 A 的位移
解:1. 计算 FN与 l
FN

2F1 F2 sin 30

6F
l

6F

l sin 60

4
3Fl
EA
EA
刚体 EA
2. 画变形图
3. 位移计算
Ay

AA' 2CC'

F
)

2l

0
FN2 4FN1
FN2=4FN1=88
2F 4.59 104 2 1
N
5. 截面设计
A1

FN1
[ t ]

71.7
mm 2
A2

FN2
[ c ]

383
mm 2
结论: A1 A2 383 mm2
单辉祖:材料力学Ⅰ
22
例 9-3 试画图示静不定桁架的变形图与受力图
挤压应力-挤压面上的 应力
挤压破坏-在接触区的 局部范围内,产生显 著塑性变形
耳片 销钉
单辉祖:材料力学Ⅰ
30
挤压破坏实例
单辉祖:材料力学Ⅰ
31
最大挤压应力
bs

Fb
d
d d: 数值上等于
受压圆柱面在相应径 向平面上的投影面积
挤压强度条件
bs [ bs ]
[sbs] - 许用挤压应
单辉祖:材料力学Ⅰ
2
轴向变形一般公式 变截面变轴力杆
d(l) FN ( x)dx l FN( x) dx
EA( x)
l EA( x)
阶梯形杆
l n FNili i1 Ei Ai
n-总段数 FNi-杆段 i 的轴力
单辉祖:材料力学Ⅰ
3
横向变形与泊松比
拉压杆的横向变形
§8 拉压杆的变形与叠加原理
轴向变形与胡克定律 横向变形与泊松比 叠加原理 例题
单辉祖:材料力学Ⅰ
1
轴向变形与胡克定律
拉压杆的轴向变形

E
(当 p时)
FN
A
l
l
l FNl -胡克定律
EA
EA-杆截面的拉压刚度 l-伸长为正,缩短为负
例题 用叠加法分析内力
FN1 FN1,F1 FN1,F2 F1 F2
单辉祖:材料力学Ⅰ
7
例题
例 8-1 已知:l = 54 mm ,di = 15.3 mm,E=200 GPa,
0.3,拧紧后,l =0.04 mm。 试求:(a) 螺栓横截面上的正应力
(b) 螺栓的横向变形 d
Fl2 l1 l2
FBx

Fl1 l1 l2
19
例 9-2 已知:F = 50 kN,[t ] = 160 MPa,[c ] = 120 MPa
,A1= A2。试问:A1=? A2=?
解: 一度静不定 1. 画变形与受力图
单辉祖:材料力学Ⅰ
注意受力图与变形图协调: 伸长~拉力;缩短~压力
补充方程
l3

FN3l1cos
E3 A3
FN1=EE31
A1 A3
cos 2

FN3
单辉祖:材料力学Ⅰ
-用内力表示的变形协调方程
17
联立求解平衡与补充方程
FN1

FN2

Fcos2 E3 A3 2cos3
E1 A1
FN3

1

2
F E1 A1
cos 3
E3 A3
综合考虑三方面 (静力、几何与物理)
20
2.建立平衡方程
MB 0
FN1
l 2

(
FN2

F
)

2l

0
3. 建立补充方程
l2 2CC'
l2 2 2l1
l1

FN1 EA1
2l
l2

FN2 l EA2
FN2 4FN1
单辉祖:材料力学Ⅰ
21
4. 内力计算
MB 0,
FN1
l 2

( FN2

F dh

0.6
4F d 2

d
:h

2.4
单辉祖:材料力学Ⅰ
40
谢 谢!
单辉祖:材料力学Ⅰ
41
横向应变 ’ 与轴向应变


单辉祖:材料力学Ⅰ
42
bs
Fbs Abs

(
Fbs hl )/
2

95.2MPa
相关文档
最新文档