七年级数学第二章测试卷
人教版七年级上册数学第二章测试卷
人教版七年级上册数学第二章测试卷一、选择题(每题3分,共30分)1. 单项式-frac{2xy^2}{5}的系数是()A. -2B. -(2)/(5)C. (2)/(5)D. 22. 下列式子中,是整式的是()A. (1)/(x)B. (1)/(x + 1)C. x + yD. √(x)3. 多项式3x^2 - 2x - 1的各项分别是()A. 3x^2,2x,1B. 3x^2, - 2x, - 1C. -3x^2,2x,1D. -3x^2, - 2x, - 14. 单项式3x^my^3与-2x^2y^n是同类项,则m + n=()A. 5B. 4C. 3D. 25. 化简a + 2b - b的结果是()A. a - bB. a + bC. a + 3bD. a + 26. 若A = x^2-2x + 1,B = 3x - 2,则A - B=()A. x^2-5x + 3B. x^2+x - 1C. x^2-5x - 1D. x^2-x + 37. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 38. 当x = 1时,代数式ax^3+bx + 1的值为3,则当x=-1时,代数式ax^3+bx + 1的值为()A. -1B. 1C. 3D. -39. 若M = 3x^2-5x + 2,N = 3x^2-4x + 2,则M与N的大小关系是()A. M>NB. M = NC. MD. 无法确定。
10. 某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()A. a元B. 0.99a元C. 1.21a元D. 0.81a元。
二、填空题(每题3分,共18分)11. 单项式frac{3π x^2y}{4}的次数是______。
12. 多项式2x^3-x^2y^2-3xy + x - 1是______次______项式。
苏科版初中数学七年级上册第2章综合测试试卷-含答案02
第二章综合测试一、选择题(共15小题)1.如果盈利2元记为“2 元”,那么“2 元”表示( )A .亏损2元B .亏损2 元C .盈利2元D .亏损4元 2.下列说法中正确的是( )A .任何有理数的绝对值都是正数B .最大的负有理数是1C .0是最小的数D .如果两个数互为相反数,那么它们的绝对值相等 3.如图,数轴上的A 、B 、C 三点所表示的数分别为a ,b ,c ,点A 与点C 到点B 的距离相等,如果a c b >>,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 4.相反数等于其本身的数是( )A .1B .0C .1D .0,1 5.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是( )A .正数B .负数C .零D .不能确定和的符号 6.已知0|31|a b ,则a b 的值是( )A .4B .4C .2D .2 7.12019的倒数是( ) A .12019 B .12019C .2019D .2019 8.绝对值小于5的所有整数的和为( ) A .0 B .8 C .10 D .209.在 1.732,3.14四个数中,无理数的个数是( )A .4个B .3个C .2个D .没有10.在3.14,227,2 )个. A .1个 B .2个C .3个D .4个11,0.32 ,227,3 ,01) ,,0.101 001 000 1中,其中无理数共有( ) A .2个 B .3个C .4个D .5个12,③1729,④0.777…,⑤2 ,是无理数的是( ) A .①③⑤ B .①②⑤ C .①④ D .①⑤13.在1.732,,157,3 ,3 ,3.02中,无理数的个数是( ) A .1 B .2C .3D .414.在实数 1.414 , ,3.14 ,2 ,3.212 212 221…,3.14中,无理数的个数是( )个.A .1B .2C .3D .415.下列实数中,无理数是( )A .2B .12C .3.14 D二、填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作155 m ,南岳衡山高于海平面1 900米,则衡山比吐鲁番盆地高________m .17.在有理数集合中,最小的正整数是________,最大的负整数是________.18.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是________. 19.请写出一个比3大比4小的无理数:________.20.请写出一个无理数________.21.下列各数中:0.3、3 、3.14、1.515 115 11…,有理数有________个,无理数有________个.三、解答题(共3小题)22.蜗牛从某点O 开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):5 ,3 ,10 ,8 ,6 ,12 ,10 .(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点O 最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?23.(1)将下列各数填入相应的圈内:122,5,0,1.5,2,3.(2)说出这两个圈的重叠部分表示的是什么数的集合:________.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为是无理数.可以这样证明:ab,a与b是互质的两个整数,且0b .则222222aa bb因为b是整数且不为0,所以,a是不为0的偶数,设2a n,(n是整数),所以222b n,所以b也是偶数,与a,b无理数.第二章综合测试答案解析一、1.【答案】A【解析】 盈利2元记为“2 元”, “2 元”表示亏损2元.故选:A .本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.【答案】D【解析】A 、0的绝对值是0,故选项A 错误;B 、没有最大的负有理数也没有最小的负有理数,故选项B 错误;C 、没有最大的有理数,也没有最小的有理数,故选项C 错误;D 、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D 正确.故选:D .本题考查了绝对值的几何意义及互为相反数的两个数在数轴上的位置特点,以及有理数的概念,难度适中.3.【答案】C 【解析】a c b >>, 点A 到原点的距离最大,点C 其次,点B 最小,又AB BC , 原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .本题考查了实数与数轴,理解绝对值的定义是解题的关键.4.【答案】B【解析】根据相反数的定义,则相反数等于其本身的数只有0.故选:B .主要考查了相反数的定义,要求掌握并灵活运用.5.【答案】B【解析】一个正数的绝对值小于另一个负数的绝对值, 两数和一定是负数.故选:B .本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.【答案】D【解析】根据题意得,30a ,10b ,解得3a ,1b ,所以,312a b .故选:D .本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.【答案】C 【解析】12019的倒数是1=201912019.故选:C .考查了倒数的定义,考查了学生对概念的记忆,属于基础题. 8.【答案】A 【解析】绝对值小于5的所有整数为:0,1 ,2 ,3 ,4 ,之和为0.故选:A .此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.9.【答案】C【解析】无理数有: 故选:C .本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:0.101 001 000…等;③字母,如 等.10.【答案】B【解析】无理数有:,2 共2个.故选:B .此题主要考查了无理数的定义,其中初中范围内学习的无理数有: ,2 等;开方开不尽的数;以及像0.101 001 000 1…,等有这样规律的数.11.【答案】B,,3共有3个.故选:B .此题主要考查了无理数的定义,其中初中范围内学习的无理数有: ,2 等;开方开不尽的数;以及像0.101 001 000 1…,等有这样规律的数.12.【答案】D2 ,⑤2 .故选:D .本题考查了无理数的定义,属于基础题,解析本题的关键是熟练掌握无理数的三种形式.13.【答案】C【解析】在1.732,,157,3 ,3,3.02中,无理数有:,3,3 共3个.故选:C .此题主要考查了无理数的定义.判断一个数是否是无理数时,可紧密联系无理数的概念以及无理数常见的几种形式进行判断.14.【答案】D【解析】 1.414 是无理数, 是无理数,3.14 无限循环小数是有理数,2 是无理数,3.212 212 221…是无限不循环小数是无理数,3.14有限小数是有理数.故选:D .本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.15.【答案】D 【解析】A 、2是整数,是有理数,选项不符合题意;B 、12是分数,是有理数,选项不符合题意;C 、3.14是有限小数,是有理数,选项不符合题意;D 是无理数,选项符合题意.故选:D .本题考查了无理数的定义:无限不循环小数叫无理数.二、16.【答案】2 055【解析】吐鲁番盆地低于海平面155米,记作155 m ,则南岳衡山高于海平面1900米,记作1900 米; 衡山比吐鲁番盆地高1900(155)2055 (米).17.【答案】1 1【解析】在有理数集合中,最小的正整数是1,最大的负整数是1 .故答案为1;1 .本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.18.【答案】3【解析】设点A 表示的数为x ,由题意得,740x ,解得3x ,所以,点A 表示的数是3 .故答案为:3 .本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.19.【答案】【解析】比3大比4小的无理数很多如 .故答案为: .此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.20.本题考查了无理数,牢记无理数的定义是解题的关键.21.【答案】3 3【解析】0.32 、3.14这三个数是有理数,31.515 115 11…这三个数是无理数,故答案为3、3.此题主要考查了无理数和有理数的知识点.三、22.【答案】(1) 531086121027270,所以,蜗牛最后能回到出发点.(2)蜗牛离开出发点0的距离依次为:5、2、12、4、2、10、0,所以,蜗牛离开出发点0最远时是12厘米.(3)1 053108612531086121054 厘米, 每爬1厘米奖励一粒芝麻, 蜗牛一共得到54粒芝麻.【解析】(1)把爬过的路程记录相加,即可得解.(2)求出各段距离,然后根据正负数的意义解析.(3)求出爬行过的各段路程的绝对值的和,然后解析即可.23.【答案】(1)(2)正整数【解析】(1)答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
人教版七年级上数学第二章《整式加减》综合测试卷(含答案)
人教版七年级上数学第二章《整式加减》综合测试卷(含答案)一、选择题1.下列式子书写正确的是( )A.a48B.x÷yabcC.a(x+y)D.112答案 C2化简-16(x-0.5)的结果是( )A.-16x-0.5B.16x+0.5C.16x-8D.-16x+8答案 D. -16(x-0.5)=-16x+8,故选择D.3.下列说法正确的是( )A.ab+c是二次三项式B.多项式2x+3y2的次数是4C.5是单项式是整式D.ba答案 Cx a+2y3与-3x3y2b-1是同类项,那么a,b的值分别是( )4.如果13A.a=1,b=2B.a=0,b=21C.a=2,b=1D.a=1,b=1答案 Ax-10)元出售,则下列说法中, 5.某商店举办促销活动,促销的方法是将原价x元的衣服以(45能正确表达该商店促销方法的是( )A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元答案 B6.当x=-2时,-(x-3)+(2-x)+(3x-1)的值为( )A.2B.3C.4D.5答案 A7.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A.4、-6、5B.4、0、-1C.2、0、5D.4、6、5答案 D8.多项式1x|n|-(n+2)x+7是关于x的二次三项式,则n的值是( )2A.2B.-2C.2或-2D.3答案 A239. 已知多项式ax 5+bx 3+cx,当x=1时多项式的值为5,那么当x=-1时该多项式的值为( )A.-5B.5C.1D.无法求出 答案 A10.已知m 、n 为常数,代数式2x 4y+mx|5-n|y+xy 化简之后为单项式,则m n的值共有( ) A.1个 B.2个 C.3个 D.4个 答案 C11.若x 2+ax-2y+7-(bx 2-2x+9y-1)的值与x 的取值无关,则-a+b 的值为( )A.3B.1C.-2D.2答案 A12.如果关于x 的代数式-3x 2+ax+bx 2+2x+3合并后不含x 的一次项,那么( )A.a+b=0B.a=0C.b=3D.a=-2 答案 D 二、填空题(每小题3分,共30分)13.一台电视机原价是2 500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.答案 2 000a14.在代数式:a 2-12,-3xy 3,0,4ab,3x 2-4,xy 7,n 中,单项式有 个.答案 5 15.多项式6x 3-xy 5+y 2中共有 项,各项系数分别为 .答案 三;6,-15,115.若单项式-2m2n x-1和5a4b2c的次数相同,则代数式x2-2x+3的值为.3答案2716.已知3a-2b=2,则9a-6b+5= .答案1117.已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2= ,a2-b2= .答案6;-2218.图2-3-1是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n(n为正整数)个图案由个▲组成.图2-3-1答案(3n+1)三、解答题19.化简:(1)2m-3n+[6m-(3m-n)] (2)(2a2-1+3a)-2(a+1-a2).答案(1)5m-2n.(2)4a2+a-3.20.已知A=-x2+5-4x,B=5x-4+2x2,C=-2x2+8x-3.(1)化简A+B-C;45(2)在(1)的结果中,若x 取最大负整数,结果是多少?答案 (1)3x 2-7x+4.(2)4.21.化简求值:12x-2(x -13y 2)+(-32x +13y 2),其中x=-2,y=-23答案 原式=-3x+y 2.当x=-2,y=-23时,原式=-3×(-2)+(-23)2=6+49=649. 22.已知m,x,y 满足:35(x-5)2+|m-2|=0,-3a 2·b y+1与a 2b 3是同类项,求整式(2x 2-3xy+6y 2)-m(3x 2-xy+9y 2)的值.答案-158.23.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?答案 相信.(7a 3-6a 3b+3a 2b)-(-3a 3-6a 3b+3a 2b+10a 3-3)=7a 3-6a 3b+3a 2b+3a 3+6a 3b-3a 2b-10a 3+3=(7a 3+3a 3-10a 3)+(-6a 3b+6a 3b)+(3a 2b-3a 2b)+3=3,则不管a 、b 取何值,整式的值都为3.。
七年级数学第二单元测试卷
七年级数学第二单元测试卷一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 都不是3. 计算下列表达式的结果是负数的是:A. \( 3 + 4 \)B. \( 2 - 7 \)C. \( -3 + 2 \)D. \( -2 - 3 \)4. 下列哪个是偶数?A. 3B. 4C. 5D. 75. 一个数的相反数是-8,这个数是:A. 8B. -8C. 0D. 166. 以下哪个分数是最简分数?A. \( \frac{4}{8} \)B. \( \frac{5}{10} \)C.\( \frac{3}{6} \) D. \( \frac{2}{4} \)7. 一个数的平方是36,这个数是:A. 6B. -6C. 6或-6D. 都不是8. 以下哪个是质数?A. 2B. 4C. 9D. 109. 一个数的立方是-27,这个数是:A. 3B. -3C. 9D. -910. 以下哪个是合数?A. 2B. 3C. 4D. 5二、填空题(每题2分,共20分)11. 一个数的绝对值是它本身,这个数是________。
12. 如果一个数的相反数是-15,那么这个数是________。
13. 两个数的和是20,其中一个数是8,另一个数是________。
14. 一个数的平方根是4,那么这个数是________。
15. 一个数的立方根是-2,那么这个数是________。
16. 一个数的约数有1、2、3,那么这个数是________。
17. 一个数的倍数有6、12、18,那么这个数是________。
18. 一个数的因数有1、2、4,那么这个数是________。
19. 一个数的最小公倍数是60,那么这个数可能是________。
20. 一个数的最大公约数是12,那么这个数可能是________。
北师大版(2024)七年级上册数学第2章 有理数及其运算 达标测试卷(含答案)
北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
浙教版数学七年级上册第二章 有理数的运算单元测试卷(含答案)
浙教版数学七年级上册第二章有理数的运算一、选择题1.下列各对数中,互为相反数的是( )A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.已知数549039用四舍五入法后得到的是5.490×105,则所得近似数精确到( ).A.十位B.百位C.千分位D.万位3.两数相加,如果和小于任何一个加数,那么这两个数( )A.同为正数B.同为负数C.一正数一负数D.一个为0,一个为负数4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.用“▲”定义一种新运算:对于任何有理数a和b,规定a▲b=ab+b2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A.−4B.4C.−8D.86.有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab>0B.a+b<0C.a﹣b<0D.b﹣a<07.一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是( )A.26元B.44元C.56元D.80元8.若x、y二者满足等式x2−3y=3x+y2,且x、y互为倒数,则代数式x2−3(x+y)+5−y2−4xy的值为( )A.1B.4C.5D.99.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .1202110.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制,只需将该数写为若干个2n 的数字之和,依次写出1或0的系数即可,如十进制数字19可以写为二进制数字10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20,32可以写为二进制数字100000,因为32=32=1×25+0×24+0×23+0×22+0×21+0×20,则十进制数字70是二进制下的( )A .4位数B .5位数C .6位数D .7位数二、填空题11.2022年11月20日晚,卡塔尔世界杯正式开幕,仅两天时间,抖音世界杯总话题播放量高达21480000000次,其中数21480000000用科学记数法表示为 .12.计算(−1)2023÷(−1)2004= .13.一个数的立方等于它本身,这个数是 14.如图所示的程序图,当输入﹣1时,输出的结果是 .15.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .16.如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即a =9+1+3+5+7+9=34;步骤2:计算前12位数字中奇数位数字的和b ,即b =6+0+2+4+6+8=26;步骤3:计算3a 与b 的和c ,即c =3×34+26=128;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即d =130;步骤5:计算d 与c 的差就是校验码X ,即X =130−128=2.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是 .三、解答题17.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 18.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?19.已知a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,求代数式(−ab)2024−3(c+d)−n+m2的值.20.在一条不完整的数轴上从左到右有A,B,C三点,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以C为原点,写出点A,B所对应的数,计算p的值;(2)若p的值是﹣1,求出点A,B,C所对应的数;(3)在(2)的条件下,在数轴上表示|﹣0.5|、(﹣1)3和A,B,C所对应的数,并把这5个数进行大小比较,用“<”连接.21.现定义一种新运算“*”,对任意有理数a、b,规定a*b=ab+a﹣b,例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值;(2)求(﹣3)*[(﹣2)*5]的值.22.目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.5第2档超过180度的部分0.7(1)若该市某户12月用电量为200度,该户应交电费 元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?23.如图,已知数轴上有A,B两点,分别代表−40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度秒的速度向右运动,到达点B处时运动停止;乙沿BA方向以4个单位长度秒的速度向左运动.(1)A,B两点间的距离为 个单位长度;乙到达A点时共运动了 秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】A8.【答案】A9.【答案】B10.【答案】D11.【答案】2.148×101012.【答案】−113.【答案】0或±114.【答案】715.【答案】0或4或﹣416.【答案】417.【答案】(1)解:如图所示(2)50(3)-818.【答案】(1)守门员最后回到了球门线的位置(2)12米(3)54米19.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,∴ab=1,c+d=0,m2=9,n=−1,∴(−ab)2024−3(c+d)−n+m2=(−1)2024−3×0−(−1)+9=1−0+1+9=11.20.【答案】(1)解:若以C为原点,∵AB=2,BC=1,∴B表示﹣1,A表示﹣3,此时,p=(﹣3)+(﹣1)+0=﹣4;(2)解:设B对应的数为x,∵AB=2,BC=1,则A点表示的数为x﹣2,C表示的数为x+1,p=x+x+1+x﹣2=﹣1;x=0,则B点为原点,∴A表示﹣2,C表示1;(3)解:如图所示:故﹣2<(﹣1)3<0<|﹣0.5|<1.21.【答案】(1)解:2*(﹣3)=2×(﹣3)+2﹣(﹣3)=﹣6+2+3=﹣1;(2)解:(﹣3)*[(﹣2)*5]=(﹣3)*[(﹣2)×5+(﹣2)﹣5]=(﹣3)*(﹣17)=(﹣3)×(﹣17)+(﹣3)﹣(﹣17)=51﹣3+17=65.22.【答案】(1)104(2)解:当0≤x≤180时,该户12月应交电费为0.5x元;当x>180时,该户12月应交电费为0.5×180+0.7(x−180),=90+0.7x−126,=(0.7x−36)(元).(3)解:∵104<125,∴x>180,∴0.7x−36=125,∴x=230.答:该户12月用电量为230度.23.【答案】(1)60;15(2)解:60÷(4+1)=12,−40+12=−28.答:甲,乙在数轴上的−28点相遇(3)解:两种情况:相遇前,(60−10)÷(4+1)=10;相遇后,(60+10)÷(4+1)=14,答:10秒或14秒时,甲、乙相距10个单位长度;(4)解:乙到达A点需要15秒,甲位于−40+15=−25,乙追上甲需要25÷(1+4)=5(秒)此时相遇点的数是−25+5=−20,故甲,乙能在数轴上相遇,相遇点表示的数是−20.。
七年级数学第二章测试卷
一、选择题(每题2分,共20分)1. 下列各数中,正数是()A. -3B. 0C. 3D. -52. 下列各数中,有理数是()A. √9B. √16C. √25D. √-43. 下列各数中,无理数是()A. √4B. √9C. √16D. √-14. 若a=2,b=-3,则a+b的值是()A. 5B. -5C. 1D. -15. 下列各数中,绝对值最大的是()A. 3B. -2C. -3D. 26. 若|a|=5,|b|=3,则a+b的取值范围是()A. -8≤a+b≤2B. -2≤a+b≤8C. -8≤a+b≤8D. 2≤a+b≤87. 若a=3,b=-2,则|a-b|的值是()A. 5B. 1C. 3D. 28. 下列各数中,互为相反数的是()A. 3和-3B. 2和-2C. 0和-1D. 5和-59. 若a和b互为相反数,则|a|和|b|的关系是()A. |a|≠|b|B. |a|=|b|C. |a|>|b|D. |a|<|b|10. 下列各数中,既是正数又是整数的是()A. 3B. -2C. 0D. -5二、填空题(每题2分,共20分)11. 若a=-2,b=3,则a-b的值是______。
12. 若|a|=4,|b|=6,则|a+b|的最大值是______。
13. 下列各数中,有理数是______。
14. 下列各数中,无理数是______。
15. 若a=2,b=-3,则a+b的值是______。
16. 下列各数中,绝对值最大的是______。
17. 若a和b互为相反数,则|a|和|b|的关系是______。
18. 下列各数中,既是正数又是整数的是______。
19. 若|a|=5,|b|=3,则a+b的取值范围是______。
20. 若a=3,b=-2,则|a-b|的值是______。
三、解答题(每题10分,共30分)21. 已知a=5,b=-3,求a+b和|a-b|的值。
华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案
华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案(测试时间:90分钟;试卷满分:100分)一、选择题(每小题3分,共24分)1.下列叙述中,正确的是( )A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是( )A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是( )A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是( )A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是( )A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是( )A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是( )A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.18.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a +1 0,2-b a -c ; (2)|b -c |= ; (3)化简:|c -3|+|c -b |-|b +1|.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a 厘米、b 厘米、c 厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由.20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果:①11×2+12×3+13×4+…+12022×2023=;②11×2+12×3+13×4+…+1n(n+1)=.(3)探究并计算:①11×3+13×5+15×7+…+12021×2023.②11×3-12×4+13×5-14×6+15×7-…+12021×2023-12022×2024.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).参考答案一、选择题(每小题3分,共24分)1.下列叙述中,正确的是(A)A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是(B)A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是(D)A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是(B)A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是(D)A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是(C)A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是(D)A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有(D)A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=2.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是4.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是2.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为-1.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为1.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有32块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).【解析】(1)原式=(3-2)m+(-3+1)n=m-2n;(2)原式=8x-7y-4y+5x=13x-11y.16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.【解析】(1)原式=12a2b-4ab2+2ab2-6a2b=6a2b-2ab2;因为a是1的相反数,b是2的倒数所以a=-1,b=12所以原式=6×(-1)2×12-2×(-1)×(12)2=3+12=72;(2)原式=3x-6y+5x+10y-5-2=8x+4y-7;当2x+y=3时,原式=4(2x+y)-7=4×3-7=12-7=5.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.【解析】(1)因为A=3x2+3xy+2y,B=x2-xy+x所以A-3B=(3x2+3xy+2y)-3(x2-xy+x)=3x2+3xy+2y-3x2+3xy-3x=6xy+2y-3x;(2)当x=-1,y=3时,A-3B=6xy+2y-3x=6×(-1)×3+2×3-3×(-1)=-18+6+3=-9;(3)A-3B=6xy+2y-3x=(6y-3)x+2y因为A-3B的值与x的取值无关所以6y-3=0,解得y=1.218.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+10,2-b a-c;(2)|b-c|=;(3)化简:|c-3|+|c-b|-|b+1|.【解析】(1)由题意得,-3<a<-2,-1<b<0,1<c<2所以a+1<0,2-b>0>a-c.答案:<>(2)因为b-c<0,所以|b-c|=-(b-c)=c-b.答案:c-b(3)因为-3<a<-2,-1<b<0,1<c<2,所以c-3<0,c-b>0,b+1>0所以|c-3|+|c-b|-|b+1|=3-c+c-b-(b+1)=2-2b.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a厘米、b厘米、c厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由. 【解析】(1)2×2(a +c )+2(b +c )=(4a +2b +6c )厘米,2(a +c )+2×2(b +c )=(2a +4b +6c )厘米 所以甲需要(4a +2b +6c )厘米,乙需要(2a +4b +6c )厘米; 答案:(4a +2b +6c ) (2a +4b +6c )(2)当a =50厘米,b =40厘米,c =30厘米时,4a +2b +6c =4×50+40×2+6×30=460厘米,2×50+4×40+30×6=440厘米 所以甲需要460厘米,乙需要440厘米; 答案:460 440(3)乙种节省,理由如下:(4a +2b +6c )-(2a +4b +6c )=4a +2b +6c -2a -4b -6c =2a -2b 因为a >b >c ,所以2a -2b >0 所以(4a +2b +6c )-(2a +4b +6c )>0 所以乙种打包方式更节省. 20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果: ①11×2+12×3+13×4+…+12 022×2 023= ;②11×2+12×3+13×4+…+1n (n+1)= .(3)探究并计算: ①11×3+13×5+15×7+…+12 021×2 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024.【解析】(1)1n (n+1)=1n -1n+1.答案:1n -1n+1(2)①11×2+12×3+13×4+…+12 022×2 023=1-12+12-13+…+12 022-12 023=1-12 023=2 0222 023.②11×2+12×3+13×4+…+1n (n+1)=1-12+12-13+…+1n -1n+1=1-1n+1=n n+1.答案:①2 0222 023②nn+1(3)①11×3+13×5+15×7+…+12 021×2 023=12(1-13+13-15+15-17+…+12 021-12 023)=12(1-12 023)=1 0112 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024 =(11×3+13×5+…+12 021×2 023)- (12×4+14×6+…+12 022×2 024)=12(1-13+13-15+…+12 021-12 023)-12(12-14+14-16+…+12 022-12 024)=12(1-12 023)-12(12-12 024)=1 0112 023-1 0114 048=2 025×1 0112 023×4 048.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).【解析】(1)12×2+(15-12)×1.5×2=24+9=33(元)所以该户这个月应缴纳的水费为33元;(2)12a+(20-12)×1.5a+(28-20)×2a=12a+12a+16a=40a(元).答案:40a(3)因为12×2=24所以x>12当12<x≤20时,甲用水量超过12 m3但不超过20 m3,乙用水量超过20 m3所以12×2+(x-12)×1.5×2+12×2+(20-12)×2×1.5+(40-x-20)×2×2=24+3x-36+24+24+80-4x= (116-x)元;当20<x<28时,甲的用水量超过20 m3,乙的用水量超过12 m3但不超过20 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+12×2+(40-x-12)×2×1.5=24+24+4x-80+24+84-3x= (x+76)元当28≤x≤40时,甲的用水量超过20 m3,乙的用水量不超过12 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+(40-x)×2=24+24+4x-80+80-2x=(2x+48)元; 综上所述,当12<x≤20时,甲,乙两户一个月共缴纳的水费为(116-x)元;当20<x<28时,甲,乙两户一个月共缴纳的水费为(x+76)元;当28≤x≤40时,甲,乙两户一个月共缴纳的水费为(2x+48)元.。
2024年湘教版七年级数学上册第2章学情评估测试卷(含答案)
第2章学情评估一、选择题(每小题3分,共30分)1.下列各式中,不是单项式的为()A.3 B.a C.ba D.12x2y2.下列式子中,符合代数式书写规范的是()A.2x-y3B.113x2C.x÷y3D.x×2y3.下列有关整式2ab-ab2+3c-1的说法中,正确的是()A.是单项式B.是三次四项式C.系数是-1 D.没有常数项4.若a m-2b n+7与-3a4b4是同类项,则m-n的值为()A.7 B.8 C.9 D.105.下列计算正确的是()A.4a3b2-2a=2a2b B.2ab+ab=2a2b2C.2ab-ab=ab D.-2ab2-a2b=-3a2b26.与多项式1-m+m2相等的式子是()A.1-(-m+m2) B.1-(m-m2) C.1-(m+m2) D.1-(-m-m2)7.已知x-2y=3,则整式6-2x+4y的值为()A.3 B.0 C. -1 D.-38.某企业今年1月份产值为a万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(a-10%)(a+15%)万元B.a(1-90%)(1+85%)万元C.a(1-10%)(1+15%)万元D.a(1-10%+15%)万元9.用正方形按如图所示的规律拼图案,其中图案①中有5个正方形,图案②中有9个正方形,图案③中有13个正方形,图案④中有17个正方形……则图案⑨中正方形的个数为()(第9题)A.32 B.34 C.37 D.4110.如图①,将一个边长为a的正方形纸片剪去两个同样大小的小长方形,得到一个“S”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()(第10题)A.2a-2b B.2a-4b C.4a-8b D.4a-9b二、填空题(每小题3分,共24分)11.单项式-5ab的系数是__________.12.把多项式2m2-4m4+2m-1按m的升幂排列为__________________________.13.请你为代数式6x+3y赋予一个实际意义:__________________________________________________.14.根据图中的程序计算y的值,若输入的x值为3,则输出的y值为________.(第14题)15.某校组织学生开展献爱心捐款活动,七年级学生共捐款a元,八年级学生共捐款b元,九年级学生捐款数比七、八年级捐款总数的3倍少40元,则九年级学生捐款数为__________元.16.若多项式3a2-2(5+b-2a2)+ma2的值与字母a无关,则m的值是________.17.已知A=-2x2-3xy-4y2,B=x2-2xy.若x2+y2=2,xy=1,则A-2B的值为________.18.已知x取任意值时,等式(2x+3)4=a0x4+a1x3+a2x2+a3x+a4都成立.(1)a4=__________;(2)a0-a1+a2-a3+a4=__________.三、解答题(共66分)19.(6分)计算:(1)x2+3x2+x2-3x2;(2)3a+2b-(5a+b).20.(6分)若a,b互为相反数,c,d互为倒数,m的绝对值为2,则a+b+m2-cd的值是多少?21.(6分)先化简,再求值:-(3m2-mn)+12(-4m2+2mn),其中m=-1,n=2.22.(8分)已知关于x,y的多项式xy3-3x4+x2y m+2-5mn是五次四项式(m,n为有理数),且单项式5x4-m y n-3的次数与该多项式的次数相同.(1)求m,n的值;(2)将这个多项式按x的降幂排列.23.(8分)老师出了这样一道题:“当a=2 023,b=-2 024时,计算(2a3-3a2b -2ab2)-(a3-2ab2+b3)+(3a2b-a3+b3)的值.”但在计算过程中,有一名同学错把“a=2 023”写成“a=-2 023”,而另一名同学错把“b=-2 024”写成“b =-20.24”,可他们的运算结果都是正确的,请你说明其中的原因.24.(10分)利用去括号和添括号法则,按要求对多项式4m3n-3mn+2mn3-7n2进行变形.(1)将后三项用前面带有“-”号的括号括起来;(2)将前两项用前面带有“-”号的括号括起来,将后两项用前面带有“+”号的括号括起来;(3)将四次项用前面带有“+”号的括号括起来,将二次项用前面带有“-”号的括号括起来.25.(10分)为了节约用水,某市规定每户每月标准用水量为15 m3,超过部分加价收费,不超过部分水费为1.5元/m3,超过部分水费为3元/m3.(1)如果张燕、李军两家本月用水量分别为10 m3和20 m3,那么这两家该月各应缴纳多少水费?(2)当每月用水量为a m3时,请用含a的式子分别表示按标准用水量和超出标准用水量时各应缴纳多少水费.(3)若王强家本月缴纳水费46.5元,则王强家该月用水多少立方米?26.(12分)活动任务一若长方形土地的长与宽之间满足a=32b,小华为学校提供了如图所示的设计方案:小池塘的长m,宽n分别是a、b的12,种植地的直径为n.(1)用含a,b的式子表示下列各区域的面积:①长方形土地的面积:__________;②长方形小池塘的面积:__________;③半圆形蔬菜种植地的面积:__________.驱动问题一(2)请你判断小华的设计方案是否满足学校的要求.活动任务二经过测量,可得a=18 m,b=12 m.假设学校采用了小华的设计方案,为了保证安全,学校决定购入一批围栏,将小池塘围起来,围栏单价为45元/m.驱动问题二(3)围栏连接处的耗材忽略不计,要想将小池塘都围起来,请你计算学校需要花费多少钱?答案一、1.C 2.A 3.B 4.C 5.C 6.B7.B8.C9.C点拨:图案①中有(4+1)个正方形,图案②中有(4×2+1)个正方形,图案③中有(4×3+1)个正方形,图案④中有(4×4+1)个正方形,按此规律,第个图案中有(4n+1)个正方形,所以图案⑨中正方形的个数为4×9+1=37. 10.C二、11.-512.-1+2m+2m2-4m413.一支钢笔x元,一支铅笔y元,小红买了6支钢笔和3支铅笔,共付的钱数.(答案不唯一)14.515.(3a+3b-40)16.-717.-718.(1)81(2)1点拨:(1)当x=0时,(0+3)4=0+0+0+0+a4,即a4=34=81.(2)当x=-1时,[2×(-1)+3]4=1=a0-a1+a2-a3+a4,所以a0-a1+a2-a3+a4=1.三、19.解:(1)原式=2x2.(2)原式=3a+2b-5a-b=-2a+b.20.解:因为a,b互为相反数,所以a+b=0.因为c,d互为倒数,所以cd=1.因为m的绝对值为2,所以m=±2.则原式=0+4-1=3.21.解:原式=-3m2+mn-2m2+mn=2mn-5m2.当m=-1,n=2时,原式=2×(-1)×2-5×(-1)2=-4-5=-9.22.解:(1)因为多项式xy3-3x4+x2y m+2-5mn是五次四项式,单项式5x4-m y n-3的次数与该多项式的次数相同,所以2+m+2=5,4-m+n-3=5,解得m=1,n=5.(2)由(1)可知,这个多项式为xy3-3x4+x2y3-25,将这个多项式按x的降幂排列为-3x4+x2y3+xy3-25.23.解:原式=2a3-3a2b-2ab2-a3+2ab2-b3+3a2b-a3+b3=2a3-a3-a3-3a2b+3a 2b -2ab 2+2ab 2-b 3+b 3=0.因为化简结果等于0,与a ,b 的取值无关, 所以无论a ,b 取什么样的值,结果都为0. 24.解:(1)由题意,得原式=4m 3n -(3mn -2mn 3+7n 2). (2)由题意,得原式=-(-4m 3n +3mn )+(2mn 3-7n 2). (3)由题意,得原式=(4m 3n +2mn 3)-(3mn +7n 2).25.解:(1)张燕家应缴纳的水费为1.5×10=15(元);李军家应缴纳的水费为15×1.5+3×(20-15)=37.5(元).答:张燕家该月应缴纳水费15元,李军家该月应缴纳水费37.5元. (2)当0<a ≤15时,应缴纳的水费是1.5a (元);当a >15时,应缴纳的水费是1.5×15+3(a -15)=(3a -22.5)元. (3)经分析,王强家本月用水量超过15 m 3. 15+(46.5-15×1.5)÷3=23(m 3). 答:王强家该月用水23 m 3.26.解:(1)①ab ②14ab ③132πb 2(2)因为a =32b ,所以长方形土地的面积为ab =32b 2,长方形小池塘的面积为14ab =14×32b 2=38b 2.又由(1)知半圆形蔬菜种植地的面积为132πb 2,所以绿地面积为32b 2-38b 2-132πb 2=⎝ ⎛⎭⎪⎫98-π32b 2.因为⎝ ⎛⎭⎪⎫98-π32b 2-12×32b 2=38b 2-π32b 2=12-π32b 2,且12-π>0,所以12-π32b 2>0,所以⎝ ⎛⎭⎪⎫98-π32b 2>12×32b 2,所以绿地面积占长方形土地面积的一半以上, 所以小华的设计方案满足学校的要求.(3)围栏的长为2(m +n )=2⎝ ⎛⎭⎪⎫12a +12b =a +b =18+12=30 (m),所以学校需要花费45×30=1 350(元).。
鲁教版(五四制)七年级数学上册第二章达标测试卷含答案
鲁教版(五四制)七年级数学上册第二章达标测试卷一、选择题(每题3分,共36分)1.第24届冬奥会于2022年2月4日~2月20日在北京和张家口举办.下列四个图形分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()2.下列图案中,有且只有三条对称轴的是()3.在Rt△ABC中,∠C=90°,∠B=30°,AB=10 cm,则AC的长度为() A.10 cm B.20 cm C.5 cm D.15 cm 4.如图,△ABC与△A′B′C′关于直线l对称,若∠A=50°,∠C=20°,则∠B′的度数为()A.110°B.70°C.90°D.30°5.如图是一张等边三角形纸片,剪去一个角后得到一个四边形,则∠1+∠2的度数是()A.180°B.220°C.240°D.300°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在() A.AC,BC两边上的高的交点处B.AC,BC两边上的中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图所示,那么哥哥球衣上的号码实际是()A.25 B.52 C.55 D.228.如图,将长方形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD按箭头方向向下对折,然后剪下一个小三角形.将纸片打开,则打开后的图形是()9.如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,连接AE,AF,若△AEF的周长为2,则BC的长是()A.2 B.3 C.4 D.无法确定10.如图,在△ABC中,AI,BI,CI分别平分∠BAC,∠ABC,∠ACB,且ID⊥BC,垂足为点D.若△ABC的周长为34 cm,ID=3 cm,则△ABC的面积为()A.51 cm2B.54 cm2C.56 cm2D.34 cm2 11.如图,AD⊥BC,BD=CD,∠E=∠CAE,△ABD的周长为12,DE=8,则△ADE的面积为()A.48 B.24 C.20 D.1612.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°二、填空题(每题3分,共18分)13.如图,已知OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为________.14.如图,在4×4的正方形网格中已将四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,则不符合条件的小正方形是__________.(填序号)15.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为________.16.在等腰三角形ABC中,AB=AC,腰AB上的高与AC的夹角为40°,则该等腰三角形顶角的度数为____________.17.如图,在长方形ABCD中,AD=5,AB=7.1,BE是∠ABC的平分线,把△ADE沿AE折叠,DE恰好落在BE上,点D的对应点为D′,D′E的长为________.18.如图,∠ABC=30°,点D是∠ABC内的一点,且DB=9,若点E,F分别是射线BA,BC上异于点B的动点,则△DEF的周长的最小值是________.三、解答题(19,20题每题8分,22题10分,24题16分,其余每题12分,共66分)19.如图,∠A=90°,E为BC上一点,点A和点E关于BD对称,点B和点C关于DE对称,求∠ABC和∠C的度数.20.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC 的三等分点.”你同意他的说法吗?请说明理由.21.在3×3的正方形网格图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出这样的△DEF.22.如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,试说明:DE⊥AB.23.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.24.如图,已知BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.(1)AD与CE相等吗?请说明理由;(2)若∠BCD=75°,求∠ACE的度数;(3)若∠BCE=α,∠ACE=β,则α,β之间满足一定的数量关系,请直接写出这个结论.答案一、1.C2.D3.C4.A5.C6.C7.A8.D9.A10.A点拨:过点I作IE⊥AB于点E,IF⊥AC于点F.因为AI,BI,CI分别平分∠BAC,∠ABC,∠ACB,所以IE=IF=ID=3 cm,所以S△ABC=S△IAB+S△IBC+S△IAC=12AB×3+12BC×3+12AC×3=32(AB+BC+AC)=32×34=51(cm2).11.D12.D点拨:如图,作点A关于BC和CD的对称点A′,A″,连接A′A″,交BC于点E,交CD于点F,连接AE,AF,则A′A″的长即AEF周长的最小值.连接AC.因为∠ABC+∠BCA+∠BAC=180°,∠ADC+∠DCA+∠DAC=180°,∠ABC=90°,∠ADC=90°,∠BCA+∠DCA=50°,所以∠BAC+∠DAC=130°,即∠DAB=130°.所以∠A′+∠A″=180°-∠DAB=50°.又易知∠A′=∠EAA′,∠FAD=∠A″,所以∠EAA′+∠FAD=50°.所以∠EAF=130°-50°=80°.二、13.614.①15.48°16.50°或130°点拨:当顶角为锐角时,如图①,因为CD⊥AB,所以∠CDA=90°.因为∠ACD=40°,所以∠A=90°-∠ACD=90°-40°=50°;当顶角为钝角时,如图②,因为CE⊥AB,所以∠CEA=90°.因为∠ACE=40°,所以∠CAE=90°-∠ACE=90°-40°=50°.所以∠BAC=180°-50°=130°.所以该等腰三角形顶角的度数为50°或130°.17.2.118.9点拨:如图,作点D关于射线BA,BC的对称点M,N.连接MN,与射线BA,BC分别交于点E,F,连接DE,DF,则此时△DEF的周长最小,最小的值是MN的长.连接BM,BN.因为点D,M关于射线BA对称,所以BM=BD,∠ABM=∠ABD.同理可得∠NBC=∠DBC,BN=BD.所以∠MBN=2∠ABC=60°,BM=BN.所以MN=BM=BD=9.所以△DEF的周长的最小值是9.三、19.解:因为点A和点E关于BD对称,所以∠ABD=∠EBD,所以∠ABC=2∠EBD.又因为点B和点C关于DE对称,所以∠EBD=∠C,所以∠ABC=2∠C.因为∠A=90°,所以∠ABC+∠C=2∠C+∠C=90°,所以∠C=30°,所以∠ABC=2∠C=60°.20.解:同意.理由如下:如图,连接OE,OF.由题意知BE=OE,CF=OF,∠OBC=∠OCB=30°,所以∠BOE=∠OBC=30°,∠COF=∠OCB=30°,∠BOC=120°.易得∠EOF=60°,∠OEF=60°,∠OFE=60°.所以△OEF是等边三角形.所以OE=OF=EF.所以EF=BE=CF.所以E,F是BC的三等分点.21.解:如图.22.解:(1)如图,AE 即为所作.(2)如图,因为AE 平分∠BAC , 所以∠CAE =∠DAE . 在△ACE 和△ADE 中,⎩⎨⎧AC =AD ,∠CAE =∠DAE ,AE =AE ,所以△ACE ≌△ADE (SAS), 所以∠ADE =∠C =90°, 所以DE ⊥AB .23.解:(1)因为AD ⊥BC ,CE ⊥AB ,所以∠AEF =∠CEB =∠CDF =90°,所以∠AFE +∠EAF =90°,∠CFD +∠ECB =90°. 又因为∠AFE =∠CFD , 所以∠EAF =∠ECB . 在△AEF 和△CEB 中,⎩⎨⎧∠AEF =∠CEB ,AE =CE ,∠EAF =∠ECB ,所以△AEF ≌△CEB (ASA). (2)由△AEF ≌△CEB ,得EF =EB , 所以∠EBF =∠EFB .在△ABC 中,AB =AC ,AD ⊥BC , 所以BD =CD .所以FB =FC . 所以∠FBD =∠FCD .因为∠EFB =180°-∠BFC =∠FBD +∠FCD =2∠FBD , 所以∠EBF =2∠FBD ,11 即∠ABF =2∠FBD .24.解:(1)AD =CE .理由如下:因为BD 为△ABC 的角平分线,所以∠ABD =∠CBE . 在△ABD 和△EBC 中,⎩⎨⎧BA =BE ,∠ABD =∠EBC ,BD =BC ,所以△ABD ≌△EBC (SAS),所以AD =CE .(2)因为BD =BC ,∠BCD =75°,所以∠BDC =∠BCD =75°,所以∠DBC =180°-75°×2=30°.因为BD 为△ABC 的角平分线,所以∠ABD =∠DBC =30°.由(1)知△ABD ≌△EBC ,所以∠BAD =∠BEC .因为∠BAD +∠ABD +∠ADB =180°,∠BEC +∠ACE +∠EDC =180°,∠ADB =∠EDC ,所以∠ACE =∠ABD =30°.(3)2α-β=180°.。
人教版(2024新版)七年级上册数学第二章《代数式》学情评估测试卷(含答案)
人教版(2024新版)七年级上册数学第二章《代数式》学情评估测试卷(时间:120分钟满分:150分)一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用代数式表示“a 的2倍与b的平方的和”,正确的是 ( )A.(2a+b)²B.2(a+b)²C.2a+b²D.(a+2b)²2.下列各式中,最符合代数式书写要求的是 ( )mnA.3mB.123C.-1mnD.2÷3n3.下列对代数式3a-b的意义叙述错误的是 ( )A. a的3倍与b的差B. a的3倍减去bC. a 与b的差的3倍D.3与a 的积减去b4.一个三位数,个位数字是a,十位数字是b,百位数字是c,则这个三位数用代数式表示为 ( )A. abcB. a+10b+100cC.100a+10b+cD. a+b+c5.下列表述中,不能用代数式5a 表示的是 ( )A.5的a倍B. a的5倍C.5个a的和D.5个a 的积6.当a=-2时,式子a²−2a+1的值为 ( )A.1B.9C.-9D.-17.小亮今年n岁,小亮比小丽大2岁,小丽今年的岁数为 ( )A.(n+2)岁B.(n-2)岁岁C.2n岁D.n28.定义一种新运算:a★b=2a-3b.若a★b=10,则-2(2a-3b)-3的值为 ( )A.17B.-17C.-23D.239.下列赋予4a 实际意义的例子中错误的是 ( )A.若葡萄的价格是4元/ kg,则4a表示买a kg葡萄的金额B.若a 表示一个正方形的边长,则4a 表示这个正方形的周长C.若4和a分别表示一个两位数中的十位数字和个位数字,则4a 表示这个两位数D.某款凉鞋的进价为每双a元,销售这款凉鞋盈利100%,则销售两双的销售额为4a元10.航空公司规定,每位乘客登机时免费携带的行李质量不能超过20kg.若超过20kg,则超出的部分每千克要按照飞机票原价的1.25%购买行李票.已知某航班从长沙飞往成都的机票价格为b元,如果一位旅客携带了 40kg 的行李,那么他乘坐该航班从长沙飞往成都的总费用为 ( )A.1.35b元B.1.15b元C.1.25b元D. b元二、填空题(本题共5小题,每小题5分,共25分)11.“比x的2倍小3的数”用代数式表示是 .12.当x分别为1和-1时,代数式5x⁴−6x²−2的两个值的差是x+1的值为0,那么当x=4时,它的值为 .13.已知当x=2时,代数式nx2−5614.如图,在一个长方形广场的中央设计一个圆形音乐喷泉.若圆形音乐喷泉的半径为 r m,广场的长为a m、宽为 bm,则广场空地的面积为;m².15.如图,用相同的圆点按照一定的规律拼出图形.第1幅图4个圆点,第2幅图7个圆点,第3幅图10个圆点,第4幅图 13个圆点……按照此规律,第100幅图中圆点的个数是三、解答题(本题共8小题,共75分.解答时应写出文字说明、演算步骤或推理过程)16.(10分)设甲数为x,用含x的代数式表示乙数:(1)乙数比甲数大5;(2)乙数比甲数的4倍小3;(3)乙数比甲数大甲数的16%.17.(8分)当x=1时,代数式ax³+bx+3的值为20,当x=−1时,求该代数式的值.18.(8分)判断下面各题中的两个量是否成反比例关系,并说明理由.(1)三角形的面积一定,三角形的底与高;(2)一辆汽车匀速从甲地行驶到乙地,路程一定时,行驶时间与行驶速度.19.(8分)王大伯在庭院里整理出一块长方形菜园,为方便种植,王大伯把它分为宽度不等的四块小长方形菜地,各部分的长度如图所示.(1)用S 表示这块长方形菜园的面积,请你用两种不同的方法求这块菜园的面积;(2)根据(1)中的结果,你能得到什么结论? 这个结论验证了有理数的哪个运算律?。
第二章 有理数 综合测试卷(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏科版)
(苏科版)七年级上册数学《第二章有理数》综合测试卷时间:100分钟试卷满分:120分一、选择题(每小题3分,共10个小题,共30分)1.(2023春•望奎县期末)规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A.9吨记为﹣9吨B.12吨记为+2吨C.6吨记为﹣4吨D.+3吨表示重量为13吨2.(2022秋•佛山期末)四个有理数−12,﹣0.8,−14,0中,最小的数是()A.−12B.﹣0.8C.−14D.03.(2022秋•连山区期末)《葫芦岛市第七次全国人口普查公报》发布,全市常住人口约为271.4万人,271.4万用科学记教法表示为()A.271.4×104B.2.714×106C.2.714×107D.2.714×1084.(2023春•镇江期末)将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.65.(2022秋•丰都县期末)若m、n是有理数,满足|m|>|n|,且m>0,n<0,则下列选项中,正确的是()A.n<﹣m<m<﹣n B.﹣m<n<﹣n<m C.﹣n<﹣m<n<m D.﹣m<﹣n<n<m6.(2022秋•西安期中)一只蚂蚁沿数轴从点A 向一个方向移动了3个单位长度到达点B ,若点B 表示的数是﹣2,则点A 所表示的数是( ) A .1 B .﹣5 C .﹣1或5 D .1或﹣57.下列各对数中,互为相反数的是( ) A .﹣23与﹣32 B .(﹣2)3与﹣23C .(﹣3)2与﹣32D .−223与(23)28.(2023•贵阳模拟)有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .ab<09.(2023春•东湖区校级期末)若a ,b 为有理数,则下列说法中正确的是( ) A .若a ≠b ,则a 2≠b 2 B .若a >|b |,则a 2>b 2 C .若|a |>|b |,则a >b D .若a 2>b 2,则a >b10.(2022秋•龙岗区校级期末)2022减去它的12,再减去余下的13,再减去余下的14⋯⋯以此类推,一直减到余下的12022,则最后剩下的数是( )A .20212022B .0C .20222021D .1二、填空题(每小题3分,共8个小题,共24分)11.(2023•临沂模拟)﹣2023的绝对值是 .12.(2022秋•渌口区期末)有理数+3,7.5,﹣0.05,0,﹣2019,23中,非负数有 个.13.小超同学在计算30+A 时,误将“+”看成了“﹣”算出结果为12,则正确答案应该为 .14.(2022秋•南充期末)两个数的积是−29,其中一个是−16,则另一个是 .15.(2022秋•赣县区期末)草莓开始采摘啦!每筐草莓以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐草莓的总质量是 千克.16.(2023春•南岗区校级月考)已知|a |=5,|b |=7,且|a +b |=a +b ,则a +b 的值为 .17.定义一种运算:|a c bd |=ad ﹣bc ,如:|1−3−20|=1×0﹣(﹣2)×(﹣3)=﹣6.那么当a =﹣12,b =(﹣2)2﹣1,c =﹣32+5,d =14−|−34|时,则|a cbd|的值是 .18.(2023春•惠阳区校级月考)已知x ,y ,z 都是有理数,x +y +z =0,xyz ≠0,则|x|y+z+|y|x+z+|z|x+y的值是 .三、解答题(共8个小题,共66分)19.(每小题4分,共8分)(2022秋•和平区校级期末)计算 ①(13−18+16)×24; ②(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.20.(8分)(2022秋•立山区期中)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.21.(8分)(2022秋•天门期中)已知有理数x、y满足|x|=9,|y|=5.(1)若x<0,y>0,求x+y的值;(2)若|x+y|=x+y,求x﹣y的值.22.(8分)(2022秋•潮安区期末)已知:a,b互为相反数,c,d互为倒数,x的绝对值是2,求x2﹣(a+b+cd)x+(a+b)2021+(﹣cd)2022的值.23.(8分)(2022秋•雁塔区校级期末)一架飞机进行特技表演,起飞后的高度变化如下表:高度变化上升4.5km下降3.2km上升1.1km下降1.5km上升0.8km 记作+4.5km﹣3.2km+1.1km﹣1.5km+0.8km (1)求此时飞机比起飞点高了多少千米?(2)若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么这架飞机在这5个特技动作表演过程中,一共消耗多少升燃油?24.(8分)(2022秋•永川区期末)某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+15,﹣2,﹣6,+7,﹣18,+12,﹣4,﹣5,+24,﹣3.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.1升,每升油7元,则这辆出租车这天下午耗油费用多少元?(3)若出租车起步价为10元,起步里程为3千米(包括3千米),超过部分每千米2.4元,问这天下午这辆出租车司机的营业额是多少元?25.(8分)(2022秋•东昌府区校级期末)观察下列等式:第一个等式:a1=11×3=12(1−13);第二个等式:a2=13×5=12(13−15);第三个等式:a3=15×7=12(15−17);第四个等式:a4=17×9=12(17−19);…回答下列问题:(1)按以上规律列出第6个等式:a6=.(2)若n是正整数,请用含n的代数式表示第n个等式,a n==.(3)a1+a2+a3+…+a2022+a2023.26.(10分)老王在上星期五以每股10元的价格买进某种股票1000股,该股票的涨跌情况如下表(单位:元)(注:每天的涨跌价是以上一天的收盘价为基础)星期一二三四五每股涨跌﹣0.19+0.16﹣0.18+0.25+0.06(1)星期五收盘时,每股是元;(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知股票卖出时需付成交额3‰的手续费和2‰的交易税,如果老王在星期五以收盘价将股票全部卖出,他的收益情况如何?。
七年级上册数学第二章单元测试卷【含答案】
七年级上册数学第二章单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少厘米?A. 32厘米B. 36厘米C. 40厘米D. 46厘米3. 下列哪个数是合数?A. 31B. 33C. 37D. 394. 一个长方体的长、宽、高分别是8厘米、6厘米、4厘米,那么这个长方体的体积是多少立方厘米?A. 192立方厘米B. 200立方厘米C. 216立方厘米D. 224立方厘米5. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{6}{9}$C. $\frac{8}{10}$D. $\frac{10}{12}$二、判断题(每题1分,共5分)1. 两个质数相乘,得到的数一定是合数。
()2. 等边三角形的三条边都相等。
()3. 一个数的因数一定比这个数小。
()4. 两个长方体的体积相等,它们的长、宽、高一定相等。
()5. 分子和分母都是偶数的分数一定不是最简分数。
()三、填空题(每题1分,共5分)1. 100以内的质数有____个。
2. 一个等腰三角形的底边长是12厘米,腰长是15厘米,那么这个三角形的周长是____厘米。
3. 一个长方体的长、宽、高分别是10厘米、8厘米、6厘米,那么这个长方体的体积是____立方厘米。
4. $\frac{8}{12}$化简成最简分数是____。
5. 下列各数中,____是既是偶数又是合数。
四、简答题(每题2分,共10分)1. 请列举出10以内的质数。
2. 请说明等腰三角形和等边三角形的区别。
3. 请解释什么是合数。
4. 请说明长方体的体积公式。
5. 请解释什么是最简分数。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是12厘米、9厘米、6厘米,求这个长方体的体积。
2. 请将$\frac{16}{24}$化简成最简分数。
人教版七年级数学上册第二章测试卷(附答案)
A.第504个正方形的左下角 B.第504个正方形的右下角
C.第505个正方形的右上角 D.第505个正方形的左上角
12.按图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是( )
A. B. C. D.
四、解答题(共3题;共28分)
23.计算:
(1)(﹣x)•x2•(﹣x)6(2)(y4)2+(y2)3•y2.
24.毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:
名称及图形
几何点数
层数
三角形数
正方形数
五边形数
六边形数
第一层几何点数
1
1
1
1
第二层几何点数
2
3
4
5
第三层几何点数
3
5
7
9
…
…
…
…
…
(1)求搭建第4个几何体需要的小立方体个数;
(2)为了美观,若将每个几何体的所有露出部分(不包含底面)都喷涂油漆,已知喷涂1cm2需要油漆0.2g.
①求喷涂第4个几何体需要油漆多少g?
②求喷涂第n个几何体需要油漆多少g?(用含n的代数式表示)
答案
一、单选题
1. C 2. D 3. A 4. B 5. C 6. B 7. B 8. A 9. B 10.B 11. D 12. B
=9x3y+9x2y﹣9x2y2﹣9xy2﹣9x2y+3xy2+6y3+6x2y2+6xy2﹣6xy3﹣6y3
=9x3y﹣3x2y2﹣6xy3,
当 ,y=2时,原式=9×(﹣ )3×2﹣3×(﹣ )2×22﹣6×(﹣ )×23
七年级上册《数学》第二章测试卷(含答案)
七年级上册《数学》第二章测试卷(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分.下列各题给出的四个选项中,只有一项符合题意)1.下列各式不是单项式的是()A.a3B.-15C.0D.3a2.(2020·湖南湘潭中考)已知2x n+1y3与13x4y3是同类项,则n的值是()A.2B.3C.4D.53.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x-2x=1D.x2y-2x2y=-x2y4.组成多项式6x2-2x+7的各项是()A.6x2-2x+7B.6x2,2x,7C.6x2-2x,7D.6x2,-2x,75.小红要购买珠子串成一条手链(如图).黑色珠子每个a元,白色珠子每个b 元,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元6.将2(x+y)+3(x+y)-4(x+y)合并同类项,得()A.x+yB.-x+yC.-x-yD.x-y7.已知当x=1时,多项式12ax3-3bx+4的值是7.则当x=-1时,这个多项式的值是()A.7B.3C.1D.-78.如图①,7张长为a,宽为b(a>b)的小长方形纸片按图②的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()b B.a=3bA.a=52b D.a=4bC.a=72二、填空题(本大题共4小题,每小题4分,共16分)9.体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y 元,则式子500-3x-2y表示的实际意义是.10.(2020·湖北十堰中考)已知x+2y=3,则1+2x+4y=.11.如图,由边长相同的小正方形组成一组有规律的图案,其中部分小正方形涂有阴影,依此规律,第n个图案中有个涂有阴影的小正方形.(用含有n的式子表示)12.如图,它是一个程序计算器,用字母及符号把它的程序表达出来,如果输入m=3,那么输出.三、解答题(本大题共5小题,共52分)13.(10分)规定|a b c d |=a-b+c-d,试计算:|xy-3x 2 -2xy-x 2-2x 2-3 -5+xy |.14.(10分)先化简,再求值:-12(xy-x 2)+3(y 2-12x 2)+2(14xy −12y 2),其中x=-2,y=12.15.(10分)已知M=2a 2+3ab-2a-1,N=a 2+ab-1. (1)求3(M-2N)的值;(2)若3(M-2N)的值与a 的取值无关,试求b 的值.16.(10分)张华在一次测验中计算一个多项式加上5xy-3yz+2xz时,不小心看成减去5xy-3yz+2xz,计算出结果为2xy+6yz-4xz,试求出原题目的正确答案.17.(12分)小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖每平方米的价格是k元,木地板每平方米的价格是2k元,那么小王一共需要花多少钱?七年级上册《数学》第二章测试卷答案一、选择题1.D2.B3.D4.D5.A6.A 可把x+y 看成一个整体进行合并.7.C 将x=1代入多项式12ax 3-3bx+4,得12a-3b+4=7,则12a-3b=3,故-12a+3b=-3.当x=-1时,12ax 3-3bx+4=-12a+3b+4=-3+4=1.8.B 设AD 的长为x+a,则S=3bx-a(x+a-4b)=3bx-ax-a 2+4ab=(3b-a)x-(a 2-4ab).因为当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,所以3b-a=0,即a=3b. 二、填空题9.体育委员小金买了3个足球、2个篮球后剩余的钱数. 10.7. 11.4n+1. 12.m 2+2m 10-1;12.三、解答题13.解:|xy-3x 2 -2xy-x 2-2x 2-3 -5+xy|=(xy-3x 2)-(-2xy-x 2)+(-2x 2-3)-(-5+xy) =xy-3x 2+2xy+x 2-2x 2-3+5-xy =-4x 2+2xy+2.14.解:原式=-12xy+12x 2+3y 2-32x 2+12xy-y 2=-x 2+2y 2.当x=-2,y=12时,原式=-(-2)2+2×(12)2=-4+12=-72.15.解:(1)原式=3[(2a 2+3ab-2a-1)-2(a 2+ab-1)] =6a 2+9ab-6a-3-6a 2-6ab+6 =3ab-6a+3.(2)若3(M-2N)的值与a的取值无关,则3ab-6a+3=(3b-6)a+3中必有3b-6=0,解得b=2.16.解:2xy+6yz-4xz+2(5xy-3yz+2xz)=2xy+6yz-4xz+10xy-6yz+4xz=12xy.17.解:(1)木地板的面积为2b(5a-3a)+3a(5b-2b-b)=2b·2a+3a·2b=4ab+6ab=10ab(平方米);地砖的面积为5a·5b-10ab=25ab-10ab=15ab(平方米).(2)15ab·k+10ab·2k=15abk+20abk=35abk(元).答:小王一共需要花35abk元钱.。
七年级数学第二章《有理数》测试题(含答案)
七年级数学第二章《有理数》测试题一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .任何负数都小于它的相反数B .零除以任何数都等于零C .若b a ≠,则22b a ≠ D .两个负数比较大小,大的反而小2.如果一个数的绝对值等于它的相反数,那么这个数( ) A .必为正数 B .必为负数 C .一定不是正数 D .不能确定正负 3.当a 、b 互为相反数时,下列各式一定成立的是( ) A .1-=a b B .1=abC .0=+b aD .0 ab 4.π-14.3的计算结果是( )A .0B .π-14.3C .14.3-πD .π--14.35.a 为有理数,则下列各式成立的是( )A .02>a B .012<-a C .0)(>--a D .012>+a 6.如果一个数的平方与这个数的绝对值相等,那么这个数是( )A .0B .1C .-1D .0,1或-1 7.若3.0860是四舍五入得到的近似数,则下列说法中正确的是( )A .它有四个有效数字3,0,8,6B .它有五个有效数字3,0,8,6,0C .它精确到0.001D .它精确到百分位8.已知0<a ,01<<-b ,则a ,ab ,2ab 按从小到大的顺序排列为( )A .2ab ab a << B .ab a ab <<2C .a ab ab <<2D .ab ab a <<29. 下列各组运算中,其值最小的是( )A .2)23(---B .)2()3(-⨯-C .22)2()3(-÷-D .)2()3(2-⨯- 10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A .28 B .33 C .45 D .57 二、填空题(每小题3分,共24分)11.绝对值小于n (n 是正整数)的整数共有___________个。
人教版七年级数学上册第二章综合测试卷含答案
人教版七年级数学上册第二章综合测试卷一、选择题(每题3分,共30分) 1.[2023·陕西]计算:3-5=( ) A.2B.-2C.8D.-82.[真实情境题·2024·苏州工业园区一模·体育赛事]2024苏州马拉松暨大运河马拉松系列赛(苏州站)于4月14日成功举行,本次赛事吸引了来自世界各地的约25 000名选手同台竞技,数据25 000用科学记数法可以表示为( ) A.2.5×103B.0.25×105C.2.5×104D.25×1033.下列各组数中,互为相反数的是( ) A.-6与-16B.(-2)2与4C.-24与(-4)2D.8与|-8|4.[2023·西宁]要使算式-3□1的值最小,则□中填入的运算符号是( ) A.+B.-C.×D.÷5.[2024·衢州衢江区期中]算式(34+712-59)×(-36)=34×(-36)+712×(-36)-59×(-36)利用了( )A.乘法交换律B.乘法结合律C.加法交换律D.分配律6.有理数a ,b 在数轴上的对应点如图,则下列结论正确的是( )(第6题)A.ab >0B.ba <0C.a +b <0D.b -a <07.杨梅开始采摘啦!每筐杨梅以5 kg 为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是( )(第7题)A.19.7kgB.19.9kgC.20.1kgD.20.3kg8.下列等式中不成立的是( ) A.-(-12)-|-13|=16B.(-12)÷(-115)=(-12)×(-15) C.14÷1.2÷23=14×56×32D.(-34)÷0.25=(-34)×149.[母题 教材P64活动二] 计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(101)2表示二进制数,将它转换成十进制形式是:1×22+0×21+1×20=5,那么将二进制数(10101)2转换成十进制数是( ) A.41 B.21 C.13D.1110.若|x |=11,|y |=14,|z |=20,且|x +y |=x +y ,|y +z |=-(y +z ),则x +y -z =( ) A.23 B.45C.45或23D.-45或-23二、填空题(每题3分,共18分)11.[2024·西安高新区模拟]如图,数轴上点A 所表示的数的倒数为 .12.[新考向·2024·温州龙湾区期中·数学文化]魏晋时期,伟大的数学家刘徽通过“割圆术”得到圆周率的近似值为3.141 6,则数据3.141 6精确到百分位是.13.若|x-2|+(y+1)2=0,则x-2y=.14.[新视角·结论开放题]如图,5张卡片上分别写了5个不同的整数,若同时抽取3张,这3张卡片上各数之积最小为-48,则卡片上a表示的数为.(写出一个即可)-40a2 615.[新考向·数学文化]《九章算术》中有这样一个问题:“今有蒲生一日,长三尺.蒲生日自半.”其意思是“有蒲这种植物,蒲第一日长了3尺,以后蒲每日生长的长度是前一日的一半”.则第二十日蒲生长的长度为尺.16.下列说法:①2 024个不为0的有理数相乘,其中负数有2 005个,那么所得的积为负数;②若m满足|m|+m=0,则m<0;③若三个有理数a,b,c满足|ab|ab +|ac|ac+|bc|bc=-1,则|a|a+|b|b +|c|c=-1.其中正确的是.(填序号) 三、解答题(共72分)17.(6分)计算:(1)2×(-3÷19)-4×(-3);(2)(-2)3+(-3)×[(-4)2+2].18.(8分)[母题 教材P40例2] 气象统计资料表明:山上的高度每升高100 m ,平均气温下降0.6 ℃.已知某座山山脚的温度是8 ℃. (1)若这座山的高度是2 km ,求山顶的温度;(2)小明在上山过程中看到温度计上的读数是-1 ℃,此时他距山脚有多高?19.(10分)认真阅读材料,解决问题.计算:120÷(14-15+12). 我们知道除法没有分配律,在遇到类似的除法的混合运算时,计算会很困难,在学完倒数时,小明对这种除法的混合运算有了自己的想法:先算这个式子的倒数,再利用倒数的意义得出结果,下面是小明的计算过程:解:原式的倒数为(14-15+12)÷120=(14-15+12)×20=14×20-15×20+12×20=5-4+10=11.故原式=111.请你根据对小明的方法的理解,计算(-124)÷(14-512+38).20.(10分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,-,×,÷中的某一个(可重复),然后计算结果. (1)计算:1+2-6-9;(2)若1÷2×6□9=-6,请推算□内的符号;(3)在“1□2□6-9”的□内填入符号,使计算所得的数最小,求出这个最小数,并说明理由.21.(12分)粮库6天粮食进出库的吨数如下(“+”表示进库,“-”表示出库):+36,-35,-10,+32,-48,-10. (1)经过这6天,粮库里的粮食是增多了还是减少了?(2)经过这6天,粮库管理员结算时发现粮库里还存有390吨粮食,那么6天前粮库里存有粮食多少吨?(3)如果进出的装卸费都是每吨8元,那么这6天要付装卸费多少元?22.(12分)[新视角 规律探究题]观察下列各式:第1个等式:-1×12=-1+12=-12;第2个等式:-12×13=-12+13=-16;第3个等式:-13×14=-13+14=-112;…(1)根据上述规律写出第5个等式: ; (2)第n 个等式: ;(用含n 的式子表示)(3)计算:(-1×12)+(-12×13)+(-13×14)+…+(-12 024×12 025).23.(14分) [新视角 新定义题]规定:若干个相同的有理数(均不等于0)的除法运算叫作除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n 个a 相除记作,读作“a 的圈n 次方”.请你阅读以上材料并完成下列问题: (1)直接写出计算结果:2③=,(-13)④= ;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算能否转化为乘方运算呢?我们可以进行下列计算: 如:2④=2÷2÷2÷2=2×12×12×12=(12)2;(-3)⑤=(-3)÷(-3)÷(-3)÷(-3)÷(-3)=(-3)×(-13)×(-13)×(-13)×(-13)=(-13)3.仔细思考上述计算过程,将下列运算结果直接写成幂的形式: 5⑤= ,(-2)⑥= ;(3)想一想,将一个非零有理数a 的圈n 次方写成幂的形式为a n= ;(4)算一算:122÷(-13)④×(-2)⑤.答案一、1. B 2. C 3. C4. B 【点拨】因为-3+1=-2,-3-1=-4,-3×1=-3,-3÷1=-3,-4<-3<-2,所以□中填入的运算符号是“-”.5. D6. B 【点拨】由数轴可知b>1,-1<a<0,|a|<|b|,所以ab<0,b<0,a+b>0,b-a>0.a7. C 【点拨】这4筐杨梅的总质量是(-0.1-0.3+0.2+0.3)+5×4=20.1(kg).8. D9. B 【点拨】1×24+0×23+1×22+0×21+1×20=16+0+4+0+1=21.10. C 【点拨】因为|x|=11,|y|=14,|z|=20,所以x=±11,y=±14,z=±20.因为|x+y|=x+y,|y+z|=-(y+z),所以x+y≥0,y+z≤0.所以x=11,y=14,z=-20或x=-11,y=14,z=-20.当x=11,y=14,z=-20时,x+y-z=11+14-(-20)=45,当x=-11,y=14,z=-20时,x+y-z=-11+14-(-20)=23,所以x+y-z=45或23.12.3.1413.4二、11.-1214.1(答案不唯一) 【点拨】因为5张卡片上分别写了5个不同的整数,所以a≠-4,0,2,6.因为若同时抽取3张,这3张卡片上各数之积最小为-48,且2×6×(-4)=-48,所以当3张卡片上各数之积最小时,抽取的卡片是-4,2,6, 所以a 可能是1,-1,-2,-3. 15.3219 【点拨】根据题意,第一日长了3尺,第二日长了(3×12)尺,第三日长了3×12×12=3×122(尺),…,所以第二十日蒲生长的长度为3×12×12×…×12=3×1219=3219(尺).16.① 【点拨】①2 024个不为0的有理数相乘,其中负数有2 005个,那么所得的积为负数,故原说法正确;②若m 满足|m |+m =0,则m ≤0,故原说法错误; ③若三个有理数a ,b ,c 满足|ab |ab+|ac |ac+|bc |bc=-1,则a ,b ,c 中有2个为负数或1个为负数, 当a ,b ,c 中有2个为负数时,|a |a+|b |b+|c |c=-1;当a ,b ,c 中有1个为负数时,|a |a+|b |b+|c |c=1,故原说法错误.三、17.【解】(1)原式=2×(-27)-(-12)=-54+12 =-42.(2)原式=-8+(-3)×(16+2) =-8+(-3)×18 =-8-54 =-62.18.【解】(1)2 km =2 000 m , 8-2 000÷100×0.6=8-12=-4(℃).所以山顶的温度为-4 ℃.(2)[8-(-1)]÷0.6×100=9÷0.6×100=1 500(m). 所以此时他距山脚有1 500 m 高. 19.【解】原式的倒数为(14-512+38)÷(-124)=(14-512+38)×(-24)=14×(-24)-512×(-24)+38×(-24)=-6+10-9=-5,故原式=-15.20.【解】(1)1+2-6-9=3-6-9=-3-9=-12. (2)因为1÷2×6□9=-6, 所以1×12×6□9=-6,所以3□9=-6,所以□内的符号是“-”. (3)这个最小数是-20.理由:在“1□2□6-9”的□内填入符号,使计算所得的数最小, 所以1□2□6的结果应最小. 1□2□6的最小值是1-2×6=-11. 所以1□2□6-9的最小值是-11-9=-20. 所以这个最小数是-20.21.【解】(1)36-35-10+32-48-10=-35(吨), 答:经过这6天,粮库里的粮食是减少了. (2)390-(-35)=390+35=425(吨), 答:6天前粮库里存有粮食425吨.(3)(36+35+10+32+48+10)×8=171×8=1 368(元). 答:这6天要付装卸费1 368元. 22.【解】(1)-15×16=-15+16=-130(2)-1n ×1n+1=-1n+1n+1=-1n (n+1)(3)由(2)知,第n 个等式为-1n ×1n+1=-1n +1n+1=-1n (n+1);则(-1×12)+(-12×13)+(-13×14)+…+(-12 024×12 025) =(-1+12)+(-12+13)+(-13+14)+…+(-12 024+12 025) =-1+12-12+13-13+14+…-12 024+12 025=-1+12 025=-2 0242 025.23.【解】(1)12;9 (2)(15)3;(12)4(3)(1a )n -2(4)由题意可得122÷(-13)④×(-2)⑤=122÷(-3)2×(-12)3=-2.。
人教版七年级数学上册《第二章有理数的运算》单元测试卷-附答案
人教版七年级数学上册《第二章有理数的运算》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.根据有关数据,目前全球稀土资源储量为1.2亿吨,而中国储量为4400万吨,居世界第一位,请用科学记数法表示44000000为( )A .0.04×109B .0.04×107C .4.4×107D .44×1062.用四舍五入法按要求对1.8040分别取近似值,其中错误的是( )A .1.8(精确到0.1)B .1.80(精确到0.01)C .1.80(精确到千分位)D .2(精确到个位)3.甲、乙、丙三地的海拔高度分别为30米,-25米和-10米,那么最高的地方比最低的地方高( )A .25米B .40米C .15米D .55米4.已知a =|5|,|b|=8,且满足a+b <0,则a ﹣b 的值为( )A .13或3B .11或3C .3D .﹣35.如果|a +2|+(b −1)2=0,那么(a +b )2023的值是( )A .3B .1C .−1D .−1或16.有理数a,b 在数轴上对应的位置如图所示,则下列选项错误的是( )A .a +b <0B .a −b >0C .−b a >0D .ab <07.一根1m 长的绳子,第1次剪去一半,第2次剪去剩下绳子的一半.如此剪下去,剪第8次后剩下的绳子的长度是( )A .(12)6mB .(12)7mC .(12)8mD .(12)12m 8.|13−12|+|14−13|+|15−14|+⋅⋅⋅+|110−19|的值是( )A .−23B .23C .−25D .25 9.根据以下程序,当输入x =1时,输出的结果为( )A .﹣3B .﹣1C .2D .810.规定一种运算:aΨb =a (b +a )(a −b ),如2Ψ3=2×(3+2)×(2−3)=−10,则3Ψ4=( )A .7B .12C .−16D .−21 二、填空题11.比较大小:−(−5)2 −|−62|.12.近似数7.200万精确到 位.13.若|x|=|−2|,|y −3|=2且|x −y|=y −x 则x +y = .14.根据“二十四点”游戏的规则,用仅含有加、减、乘、除及括号的运算式(每个数字只能用一次),使12,−12,3,−1的运算结果等于24: (只要写出一个算式即可 )15.数学家发明了一个魔术盒,当任意数对(a ,b )放入其中时,会得到一个新的数:a 2+b +1.将数对(﹣3,2)放入其中得到数m = .16.已知a 、b 、c 都是有理数,其中a 为正数,若代数式abc |abc|的值为−1,则代数式|a|a +|b|b +|c|c 的值为 .17.进制也就是进位计数制,是人为定义的带进位的计数方法.我们常用的十进制是逢十进一,如4652可以写作4×103+6×102+5×101+2×100,数要用10个数字组成:0、1、2、3、4、5、6、7、8、9.在小型机中引入了八进制,只要八个数字:0、1、2、3、4、5、6、7,如八进制中174可以写作1×82+7×81+4×80等于十进制的数124.将八进制中的数1234等于十进制中数应为 .(请直按写结果)三、解答题18.计算:(1)(−38)×(−112)÷(−214); (2)(−2)2×5−(−2)3÷4;(3)2×(−3)3−4×(−3)+15; (4)−14+(−5)×[(−1)3+2]−(−3)2÷(−12).19.元朝时期人们已经把正负数作为一个专门的数学研究科目,朱世杰在《算学启蒙》一书中还写出了正负数的乘法法则,这是人们对正负数研究迈出的新的一步.小云学习了有理数的运算后,在计算(−5)−(−5)×110÷110×(−5)时,她的解法如下:解:原式=−5−(−12)÷(−12)① =−5−1①=−6①请回答:(1)小云的解法有错误,错误处是______(填序号),错误原因是__________________;(2)请写出正确的解答过程.20.一只小虫从某点O 出发在一条直线上爬行. 规定向右爬行为正,向左为负. 小虫共爬行5次,小虫爬行的路程依次为:(单位:厘米)−5,−3,+10,−4,+8.(1)小虫最后在出发点的左边还是右边?离出发点多少厘米?(2)若小虫爬行速度保持不变,共用了6分钟,请问小虫的爬行速度是多少?21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中,最接近25千克的那筐白菜为千克;(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?(3)若白菜每千克售价26元,则出售这8筐白菜可卖多少元?22.金秋,学校的劳动实践果园里苹果挂满枝头,老师组织七年级同学一共采摘了10袋苹果,每袋质量各不相同,为了计算简便,以每袋5千克为标准,超过标准质量的记作正数,不足的记作负数,所做记录如下表:袋子编号12345678910记录结果+0.8−1−0.3+1.1+0.7+0.2−0.4+1−0.7−1.3(1)在摘得的10袋苹果中,质量最多和最少的一袋各是多少千克?(2)七年级同学共摘得苹果多少千克?23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(−3)÷(−3)÷(−3)÷(−3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”(−3)÷(−3)÷(−3)÷(−3)记作(−3)④,读作“−3的圈4次方”,一般地,把a÷a÷a⋅⋅⋅÷a(n个a)(a≠0)记作aⓝ,读作“a的圈n次方”.初步探究(1)直接写出计算结果:2③=________,(−12)③=________;(2)关于除方,下列说法错误的是________:A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1的圈n次方都等于1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考:我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(−3)的圈4次方=________5的圈5次方=________;(−12)的圈6次方=________(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;(3)算一算:24÷23+(−8)×2③.参考答案1.C2.C3.D4.A5.C6.B7.C8.D9.C10.D11.>12.十13.7或3或−114.3×(−12)×(−1)−12=2415.1216.117.668.18.(1)−14;(2)22;(3)-27;(4)1219.运算顺序错误20.(1)右边,6厘米(2)5厘米/分钟21.(1)24.5(2)这8筐白菜总计不足5.5千克.(3)出售这8筐白菜可卖5057元.22.(1)质量最多的一袋是6.1千克,最少的一袋是3.7千克;(2)七年级同学共摘得苹果50.1千克.23.初步探究(1)12,−2;(2)C;深入思考(1)(−13)2,(15)3,(−2)4;(2)(1a)n−2(3)−1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第二章测试卷
(时间:90分钟 总分:120分)
一、选择题:(每题3分,共18分) 1.下列等式变形正确的是( ) A.如果s=
12ab,那么b=2s a
; B.如果12x=6,那么x=3 C.如果x-3=y-3,那么x-y=0; D.如果mx=my,那么x=y
2. 方程
1
2
-3=2+3x 的解是( ) A.-2; B.2; C.-12; D.1
2
3.关系x 的方程(2k-1)x 2
-(2k+1)x+3=0是一元一次方程,则k 值为( ) A.0 B.1 C.
1
2
D.2 4.已知:当b=1,c=-2时,代数式ab+bc+ca=10,则a 的值为( ) A.12 B.6 C.-6 D.-12 5.下列解方程去分母正确的是( )
A.由
1132x x --=,得2x-1=3-3x; B.由232
124x x ---=-,得2(x-2)-3x-2=-4
C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y;
D.由44
153
x y +-=
,得12x-1=5y+20 6.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a B.1.12a C.
1.12a D.0.81
a
二、填空题:(每空3分,共36分)
7.x=3和x=-6中,________是方程x-3(x+2)=6的解. 8.若x=-3是方程3(x-a)=7的解,则a=________.
9.若代数式
213
k
--的值是1,则k=_________. 10.当x=________时,代数式12x -与1
13
x +-的值相等.
11.5与x 的差的1
3
比x 的2倍大1的方程是__________.
12.若4a-9与3a-5互为相反数,则a 2
-2a+1的值为_________.
13.一次工程,甲独做m 天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_______天完成. 14.解方程
132
x
-=,则x=_______. 15.三个连续偶数的和为18,设最大的偶数为x,则可列方程______.
16.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨,甲池有水_______吨,________小时后,甲池的水与乙池的水一样多. 三、解方程:(每题6分,共24分)
17.70%x+(30-x)×55%=30×65% 18.51124
1263
x x x +--=+
;
19.112
2(1)(1)223
x x x x ⎡⎤---=-⎢⎥⎣⎦; 20.432.50.20.05x x ---=
.
四、解答题:(共42分)
21.(做一做,每题5分,共10分) 已知
2
y
+m=my-m. (1)当m=4时,求y 的值.(2)当y=4时,求m 的值.
22.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米? (10分)
23.请你联系你的生活和学习,编制一道实际问题,使列的方程为51-x=45+x. (11分)
24.(探究题)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗?”试列出方程,解答小赵与小王的问题.(11分)
答案:
一、1.C 2.A 3.C 4.D 5.C 6.D
二、
7.x=-6 8.a=
16
3
- 9.k=-4 10.x=-1
11.解:由5与x的差得到5-x,5与x的差的1
3
表示为
1
3
(5-x),5与x的差的
1
3
比x的2 倍大
1得1
3
(5-x)=2x+1或
1
3
(5-x)-2x=1,解关于x的方程得x=
2
7
.
12.1 13.
11(3) 1
323
m m
m m m
+⎛⎫
÷+=
⎪
++⎝⎭
.
14.解题思路:一个数的绝对值是3,那么这个数为±3,因此得到或 =-3,解这两个方程便得到x的值,即可得本题答案.
略解:根据题意得
132
x
-=±,去分母,去括号,移项,合并同类项,化系数为1得x=-5或x=7. 15.x+(x-2)+(x-4)=18 16.11+2x=31-2x,x=5 三、
17.解:去括号,得70%x+16.5-55%x=19.5. 移项,得70%x-55%x=19.5-16.5. 合并同类项,得x=12.
18.解:去分母,得3x-(5x+11)=6+2(2x-4). 去括号,得3x-5x-11=6+4x-8 移项,得3x-5x-4x=6-8+11. 合并同类项,得-6x=9 化系数为1,得x=32
-.
19.解:去括号,得11122
222233
x x x x ⎛⎫--+=- ⎪⎝⎭,
1122
24433
x x x -
-=- 移项,得1212
24343
x x x --=-
合并同类项,得15
11212x =-
化系数为1,得x=5
13
-.
20.解:把4
0.2x -中分子,分母都乘以5,得5x-20,
把30.05
x -中的分子,分母都乘以20, 得20x-60. 即原方程可化为5x-20-2.5=20x-60. 移项得5x-20=-60+20+2.5, 合并同类项,得-15x=-37.5, 化系数为1,得x=2.5. 四、
21.解题思路:
(1)已知m=4,代入2
y
+m=my-m 得关于y 的一元一次方程, 然后解关于y 的方程即可. (2)把y=4代入
2y
+m=my-m,得到关于m 的一元一次方程,解这个方程即可. 解:(1)把m=4代入2y +m=my-m,得 2y +4=4y-4.移项,得 2y
-4y=-4-4,
合并同类项,得72y -=-8,化系数为1,得y=16
7
.
(2)把y=4代入2
y
+m=my-m,得 42+m=4m-m,移项得4m-m-m=2,
合并同类项,得2m=2, 化系数为1,得m=1.
22.解法1:设王强以6米/秒速度跑了x米,那么以4米/秒速度跑了(3000-x)米.
根据题意列方程:
3000
1060 64
x x
-
+=⨯
去分母,得2x+3(3000-x)=10×60×12.
去括号,得2x+9000-3x=7200.
移项,得2x-3x=7200-9000.
合并同类项,得-x=-1800.
化系数为1,得x=1800.
解法二:设王强以6米/秒速度跑了x秒,则王强以4米/秒速度跑了(10×60-x)秒.
根据题意列方程6x+4(10×60-x)=3000,
去括号,得6x+2400-4x=3000.
移项,得6x-4x=3000-2400.
合并同类项,得2x=600.
化系数为1,得x=300,6x=6×300=1800.
答:王强以6米/秒的速度跑了1800米.
23.评析:本方程51-x=45+x,方程左边是数51与x的差,方程右边是45与x的和,从数的角度考虑,由于数可以为正,也可为负,还可为0, 则此方程可以这样编制实际问题: 51与某数的差与45与这个数的和相等,又由方程51-x=45+x的解为正数,我们又可以这样编制:甲同学有51元钱,乙同学有45元钱,应当甲同学给乙同学多少元时,甲、乙两同学的钱数相等?
解(略)
24.解:设小赵参加夏令营这七日中间的日期期数为x,
则其余六日日期分别为(x-3),(x-2),(x-1),(x+1),(x+2),(x+3).
根据题意列方程:(x-3)+(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=84.
去括号,得x-3+x-2+x-1+x+x+1+x+2+x+3=84.
移项合并,得7x=84.
化系数为1,得x=12,则x-3=12-2=9.
故小王是9号出去的.
设小王到舅舅家这一个星期中间的日期期数为x,
则其余六天日其数分别是( x-3),(x-2),(x-1),(x+1),(x+2),(x+3).
根据题意列方程:(x-3)+(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=77.
解得7x=77,x=11,则x+3=14.
故小王是七月14日回家的.。