人教版八年级上册数学《整式的除法》整式的乘除与因式分解3精品PPT教学课件
合集下载
《整式的除法》整式的乘除PPT课件(第1课时)
所以ax3my12÷9x4y2n=4x2y2, 所以a÷9=4,3m-4=2,12-2n=2, 解得a=36,m=2,n=5.
方法总结:熟练掌握积的乘方的计算法 则以及整式的除法运算是解题关键.
ZYT
课堂小结
法
单项式 除以单 项式
注意
1.系数相除; 则 2.同底数的幂相除;
3.只在被除式里的因式照搬 作为商的一个因式
被除式的系数 底数不变, 除式的系数 指数相减.
保留在商里 作为因式.
ZYT
针对训练
下列计算错在哪里?怎样改正?同数底不数变幂,的指除数法相,减底
(1)4a8 ÷2a 2= 2a 4 ( × ) 2a6
(2)10a3 ÷5a2=5a ( × ) 2a
系数相除
(3)(-9x5) ÷(-3x) =-3x4 ( × ) 3x4
ZYT
探究新知
探究:单项式除以单项式
你能计算下列各题吗?如果能,说说你的理由. (1)x5y÷x2; (2)8m2n2÷2m2n; (3)a4b2c÷3a2b.
ZYT
方法一:利用乘除法的互逆
(1)因为x2 x3 y x5 y, 所以x5 y x2 x3 y
(2)因为2m2n 4n 8m2n2 , 所以8m2n2 2m2n 4n
(3) 因为3a2b 1 a2bc a4b2c, 3
所以a4b2c 3a2b 1 a2bc 3
ZYT
方法二:利用类似分数约分的方法
被除式 除式
商式
(1)x5y÷x2=
x5 y x2
x3 y;
(2)8m2n2÷2m2n=
8m2n2 2m2n
4n;
(3)a4b2c÷3a2b=
a4b2c 3a2b
方法总结:熟练掌握积的乘方的计算法 则以及整式的除法运算是解题关键.
ZYT
课堂小结
法
单项式 除以单 项式
注意
1.系数相除; 则 2.同底数的幂相除;
3.只在被除式里的因式照搬 作为商的一个因式
被除式的系数 底数不变, 除式的系数 指数相减.
保留在商里 作为因式.
ZYT
针对训练
下列计算错在哪里?怎样改正?同数底不数变幂,的指除数法相,减底
(1)4a8 ÷2a 2= 2a 4 ( × ) 2a6
(2)10a3 ÷5a2=5a ( × ) 2a
系数相除
(3)(-9x5) ÷(-3x) =-3x4 ( × ) 3x4
ZYT
探究新知
探究:单项式除以单项式
你能计算下列各题吗?如果能,说说你的理由. (1)x5y÷x2; (2)8m2n2÷2m2n; (3)a4b2c÷3a2b.
ZYT
方法一:利用乘除法的互逆
(1)因为x2 x3 y x5 y, 所以x5 y x2 x3 y
(2)因为2m2n 4n 8m2n2 , 所以8m2n2 2m2n 4n
(3) 因为3a2b 1 a2bc a4b2c, 3
所以a4b2c 3a2b 1 a2bc 3
ZYT
方法二:利用类似分数约分的方法
被除式 除式
商式
(1)x5y÷x2=
x5 y x2
x3 y;
(2)8m2n2÷2m2n=
8m2n2 2m2n
4n;
(3)a4b2c÷3a2b=
a4b2c 3a2b
《因式分解》整式的乘除与因式分解PPT课件3 (共13张PPT)
分解因式的完全平方公式,左边是 一个二次三项式,其中有两个数的 平方和还有这两个数的积的2倍或 这两个数的积的2倍的相反数,符 合这些特征,就可以化成右边的两 数和(或差)的平方.从而达到因 式分解的目的.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
《整式的乘法》整式的乘除与因式分解PPT课件
=15a-6ab
(2) (x-3y)·(-6x)
=x ·(-6x)+(-3y) ·(-6x)
=-6x+18xy
单项式与多项式相乘时可先确定积的符号
❖ 例:计算 ❖ (1)2a·(3a-5b) ( 2 ) (-2b)(-4a+b)
解(1)2a ·(3a-5b)
❖
=2a·3a-2a·5b
=6a-10ab
( 2 ) (-2b)(-4a+b) =2a·4a-2b·b =8a-2b
练习:
1、化简 x(x-1)+2x(x+1)-3x(2x-5)
2、(计1算):(2a2- a - 4 ) ·(-9a )
( 2 )-xy(-x-y+1)
练习答案:
1、解:x(x-1)+2x(x+1)-3x(2x-5) =x·x-x·1+2x·x+2x·1-3x·2x+3x·5
3
2
=2
3
a b2
· 1 ab2Biblioteka +(-2ab)
·1
2
ab
= 1 a2 b3- a2 b2
3
单项式与多项式相乘的结 果是一个多项式,其项数与因 式中的项数相同
巩固练习: 1.计算:(1)3a(5a-2b) (2)(x-3y)·(-6x)
解 (1)3a(5a-2b)
=3a ·5a+3a ·(-2b)
▪ 单项式与多项式相乘,就 是用单项式去乘多项式的每一 项,再把所得的积相加.
例5 计算:
(1) (-4 x2)·(3 x+ 1),
(2)(
2
3a
b2 -2ab)·
1 2
(2) (x-3y)·(-6x)
=x ·(-6x)+(-3y) ·(-6x)
=-6x+18xy
单项式与多项式相乘时可先确定积的符号
❖ 例:计算 ❖ (1)2a·(3a-5b) ( 2 ) (-2b)(-4a+b)
解(1)2a ·(3a-5b)
❖
=2a·3a-2a·5b
=6a-10ab
( 2 ) (-2b)(-4a+b) =2a·4a-2b·b =8a-2b
练习:
1、化简 x(x-1)+2x(x+1)-3x(2x-5)
2、(计1算):(2a2- a - 4 ) ·(-9a )
( 2 )-xy(-x-y+1)
练习答案:
1、解:x(x-1)+2x(x+1)-3x(2x-5) =x·x-x·1+2x·x+2x·1-3x·2x+3x·5
3
2
=2
3
a b2
· 1 ab2Biblioteka +(-2ab)
·1
2
ab
= 1 a2 b3- a2 b2
3
单项式与多项式相乘的结 果是一个多项式,其项数与因 式中的项数相同
巩固练习: 1.计算:(1)3a(5a-2b) (2)(x-3y)·(-6x)
解 (1)3a(5a-2b)
=3a ·5a+3a ·(-2b)
▪ 单项式与多项式相乘,就 是用单项式去乘多项式的每一 项,再把所得的积相加.
例5 计算:
(1) (-4 x2)·(3 x+ 1),
(2)(
2
3a
b2 -2ab)·
1 2
2021完整版《整式的乘法》整式的乘除与因式分解PPT课件
3
2
=2
3
a b2
·1 ab
2
+
(-2ab)
·1
2பைடு நூலகம்
ab
= 1 a2 b3- a2 b2
3
单项式与多项式相乘的结 果是一个多项式,其项数与因 式中的项数相同
巩固练习: 1.计算:(1)3a(5a-2b) (2)(x-3y)·(-6x)
解 (1)3a(5a-2b)
=3a ·5a+3a ·(-2b)
=15a-6ab
解法(二):先分别求三家连锁店的收入,再求它们的和,
即总收入(单位:元)为:
ma+mb+mc ②
你能根 据分配律 得到这个 等式吗?
由于①和②表示同一个量,所以:
m(a+b+c)=ma+mb+mc
乘法分配律: (a+b)c=ac+bc
由乘法公式可知:m(a+b+c)=ma+mb+mc
▪ 单项式与多项式相乘的方法:
(2) (x-3y)·(-6x)
=x ·(-6x)+(-3y) ·(-6x)
=-6x+18xy
单项式与多项式相乘时可先确定积的符号
❖ 例:计算 ❖ (1)2a·(3a-5b) ( 2 ) (-2b)(-4a+b)
解(1)2a ·(3a-5b)
❖
=2a·3a-2a·5b
=6a-10ab
( 2 ) (-2b)(-4a+b) =2a·4a-2b·b =8a-2b
▪ 单项式与多项式相乘,就 是用单项式去乘多项式的每一 项,再把所得的积相加.
例5 计算:
(1) (-4 x2)·(3 x+ 1),
《整式的除法》整式的乘除与因式分解PPT课件 (共16张PPT)
注意运算顺序先乘方再乘除
学一学 例题解析
例1 计算: (1) (24 a3b2) ÷ 3 ab2 ; (2) (-21a2b3c)÷(3ab);
(3) (6 xy2)2 ÷ 3 xy (4)(2x2y)3·(−7xy2)÷(14x4y3); (5) (2a+b)4÷(2a+b)2
随堂练习 随堂练习
(1.9010 ) (5.9810 )
24 21
谈谈你的计算方法.
做一做
类比探索
可以用类似于 分数约分的方法 来计算。
计算下列各题, 并说说你的理由: (1) (x5y) ÷x2 ; = x3y ; (2) (8m2n2) ÷(2m2n) ; (3) (a4b2c)÷(3a2b) .
解:(1) (x5y)÷x2 把除法式子写成分数形式, 5 x y x x x x x y = 2 = 把幂写成乘积形式, x x x x 约分。 = x · x ·x ·y 省略分数及其运算, 上述过程相当于: (1)(x5y) ÷x2 =(x5÷x2 )·y = x 5 − 2 ·y (2) (8m2n2) ÷(2m2n) = (8÷2 )·(m2÷m2 )·(n2÷n ) =(8÷2 )·m 2 − 2·n2− 1
=(3.84÷8)×( 105 ÷ 102 )
=20(天) . ?做完了吗
答: 如果乘坐此飞机飞行这么远 的距离, 大约需要20天时间.
综合 ◣ ◢
1、计算填空:
⑴ (60x3y5)
巩固练
÷(−12xy3)
习
2y2 − 5 x = ;
(2) (8x6y4z) ÷( −2x4y2z ) =−4x2y2 ;
观察 & 归纳
被除式
学一学 例题解析
例1 计算: (1) (24 a3b2) ÷ 3 ab2 ; (2) (-21a2b3c)÷(3ab);
(3) (6 xy2)2 ÷ 3 xy (4)(2x2y)3·(−7xy2)÷(14x4y3); (5) (2a+b)4÷(2a+b)2
随堂练习 随堂练习
(1.9010 ) (5.9810 )
24 21
谈谈你的计算方法.
做一做
类比探索
可以用类似于 分数约分的方法 来计算。
计算下列各题, 并说说你的理由: (1) (x5y) ÷x2 ; = x3y ; (2) (8m2n2) ÷(2m2n) ; (3) (a4b2c)÷(3a2b) .
解:(1) (x5y)÷x2 把除法式子写成分数形式, 5 x y x x x x x y = 2 = 把幂写成乘积形式, x x x x 约分。 = x · x ·x ·y 省略分数及其运算, 上述过程相当于: (1)(x5y) ÷x2 =(x5÷x2 )·y = x 5 − 2 ·y (2) (8m2n2) ÷(2m2n) = (8÷2 )·(m2÷m2 )·(n2÷n ) =(8÷2 )·m 2 − 2·n2− 1
=(3.84÷8)×( 105 ÷ 102 )
=20(天) . ?做完了吗
答: 如果乘坐此飞机飞行这么远 的距离, 大约需要20天时间.
综合 ◣ ◢
1、计算填空:
⑴ (60x3y5)
巩固练
÷(−12xy3)
习
2y2 − 5 x = ;
(2) (8x6y4z) ÷( −2x4y2z ) =−4x2y2 ;
观察 & 归纳
被除式
《整式的除法》课件
总结词
在整式除法中,利用代数公式可以简化 运算过程,提高计算的准确性。
VS
详细描述
在整式除法中,一些常用的代数公式如平 方差公式、完全平方公式等可以帮助我们 快速解决一些复杂的运算问题。例如,在 计算 (a+b)^2/(a-b) 时,可以利用平方 差公式进行化简,从而得到 (a+b)/(a-b) 的形式。
详细描述
设计一系列简单的整式除法题目,包 括单项式除以单项式、多项式除以单 项式等,旨在帮助学生熟悉整式除法 的基本概念和运算规则。
进阶练习题
总结词
提高运算能力和技巧
详细描述
设计一些稍具难度的整式除法题目,包括需要运用交换律、结合律、分配律等运算规则 的题目,旨在提高学生的运算能力和技巧。
综合练习题
04
整式除法的实际应用
在数学问题中的应用
代数方程求解
整式除法在代数方程求解中有着 广泛的应用,如一元二次方程、 一元高次方程等。通过整式除法 ,可以将方程化简,便于求解。
函数图像绘制
在数学函数图像绘制中,整式除法 可以用于计算函数值,从而绘制出 精确的函数图像。
数学分析
在数学分析中,整式除法可以用于 极限、导数和积分的计算,是数学 分析中重要的运算技巧之一。
整式除法运算
在数学中,整式除法运算是一种基本 的代数运算,用于简化代数表达式和 解决代数问题。
整式除法的运算顺序
01
02
03
04
先进行括号内的运算;
然后进行乘除运算,最后进行 加减运算;
同级运算按照从左到右的顺序 进行;
先进行乘方运算,再进行乘除 运算,最后进行加减运算。
整式除法的应用场景
01
02
人教版八年级数学上册《整式的乘法》整式的乘法与因式分解PPT课件(第3课时)
加长了bm,加宽了qm. 你能用几种方法表示扩大后的算绿说地明面它积们?
(a b)(p q) = ap aq bp bq
相等吗?
b
p
p
b
q
q
ap aq bp bq
合作探究 (a b)(p q) = ap aq bp bq
如何计算:( x y) (2x 3y) 呢?
当a=-1,b=1时, 原式=-8+2-15=-21.
小试牛刀
4、若多项式(x2+mx+n)(x2-3x+4)展开后不含x3项和x2项,试求 m+2n的值.
解:(x2+mx+n)(x2-3x+4) =x4 -3x3+4x2 +mx3-3mx2+4mx+ nx2 -3nx+4n =x4+(m-3)x3+(n-3m+4)x2+(4m-3n)x+4n. ∵展开后不含x3和x2项, ∴所以m-3=0且n-3m+4=0, 解得m=3,n=5 ∴m+2n=3+2×5=13.
典例精析
例1 计算:(1)(3x+1)(x+2); (2)(x-8y)(x-y);
(3) (x+y)(x2-xy+y2). 解: (1) 原式=3x·x+2·3x+1·x+1×2
结果中有同类项 的要合并同类项.
=3x2+6x+x+2
=3x2+7x+2; (2) 原式=x·x-xy-8xy+8y2
计算时要注意 符号问题.
=x2-9xy+8y2;
典例精析
(3) 原式=x·x2-x·xy+xy2+x2y-xy2+y·y2 =x3-x2y+xy2+x2y-xy2+y3 = x3+y3.
《整式的除法》课件
被除数
需要被另一个多项式除的多项 式。
商和余数
整式除法的结果,商是另一个 多项式,余数是带有余数的项
。
整式除法的运算顺序
先进行括号内的运算 ;
最后进行加减运算。
然后进行乘除运算;
整式除法的性质
01
02
03
整式除法的交换律
交换被除数和除数的位置 ,商不变。
整式除法的结合律
改变被除数和除数的组合 方式,商不变。
运算过程中的错误纠正
检查运算过程
在完成整式除法后,需要仔细检 查运算过程,确保没有出现计算
错误。
验算
可以通过验算来检查运算结果是否 正确。例如,将商乘以除数,看是 否等于被除数。
注意细节
在整式除法中,需要注意细节,避 免因为粗心大意而出现错误。例如 ,注意符号、括号等细节问题。
05
整式除法的练习题与解析
多项式除以多项式
总结词
转化为单项式除以单项式的形式
详细描述
多项式除以多项式时,可将其转化为单项式除以单项式的形式,然后逐一进行除法运算。例如,$frac{3a^2 + 2ab}{3b^2 + 2a} = frac{a(3a)}{b(3b)} + frac{b(2b)}{b(2a)} = frac{a}{b} + frac{2}{2} = frac{a}{b} + 1$。
乘除法与加减法的符号规则
在整式中,乘除法与加减法的符号规则不同,需要特别注意。
运算过程中的化简问题
化简步骤
在整式除法中,化简是非 常重要的步骤。通过化简 可以简化运算过程,提高 运算效率。
合并同类项
在化简过程中,可以将同 类项合并,简化表达式。
人教版数学八年级上册整式的乘除ppt课堂课件
人教版数学八年级上册14.1.4整式的 乘除课 件
定义 把一个多项式化成几个整式的积的形式,这
种变形叫做把这个多项式分解因式。
与整式乘法的关系 互为逆过程,互逆关系
分解因式 方法
人教版数学八年级上册14.1.4整式的 乘除课 件
步骤
提公因式法
公式法 提:提公因式
平方差公式
a2-b2=(a+b)(a-b)
解:∵ 10a ÷ 10b=10a-b ∴10a-b=20 ÷ 5-1=100=102
∴ a-b=2
∵ 9a÷32b= 9a ÷ 9b=9a-b ∴ 9a÷32b= 92=81
思考题
观察下列各式: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 根据前面各式的规律可得
C.(c3)4 ÷c5=c6 ( ) D.(m3•m2)5÷m4=m21 (✓ )
计算(口答)
1.(-3)2•(-3)3= (-3)5 = -35 2. x3•xn-1-xn-2•x4+xn+2= xn+2 3.(m-n)2•(n-m)2•(n-m)3= (n-m)3 4. -(- 2a2b4)3= 8a6b12 5.(-2ab)3 •b5 ÷8a2b4=-ab4
•
5.根据诗歌内容,课文中配有相应的 插图, 形象地 描绘了 三种植 物传播 种子的 方法, 同时告 诉小读 者植物 传播种 子的方 法有很 多,仔 细观察 就能得 到更多 的知识 。
•
6本课的突出特点是拟人手法的运用, 把植物 和种子 分别当 作“妈 妈”和 “孩子 ”来写 。“妈 妈孩子 ”这样 的关联 ,易触 动儿童 的情感 世界, 易激发 想象、 引发思 考,读 起来亲 切、有 趣,易 于调动 小读者 的阅读 兴趣。
人教版八年级数学上册《整式的乘法》整式的乘法与因式分解PPT精品课件
小试牛刀
2、先化简,再求值:3a(2a2-4a+3)-2a2(3a+4), 其中a=-2.
解:3a(2a2-4a+3)-2a2(3a+4) =6a3-12a2+9a-6a3-8a2 =-20a2+9a.
当a=-2时, 原式=-20×4-9×2=-98.
小试牛刀
3、如果(-3x)2(x2-2nx+2)的展开式中不含x3项,求n的值. 解:(-3x)2(x2-2nx+2) =9x2(x2-2nx+2) =9x4-18nx3+18x2. ∵展开式中不含x3项,∴n=0.
=8x3(-5xy3)
= 15a3b;
=[8×(-5)](x3•x)y3
=-40x4y3.
温馨提示:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的
积;(2)注意按顺序运算;(3)不要漏掉只在一个单项式里含有的字母因式;
小试牛刀
1、计算:
(1) 3x2 ·5x3 ; (3) (-3x)2 ·4x2 ;
合作探究
想一想:如果将上式中的数字改为字母,比如ac5 ·bc2,怎样计算 这个式子?
ac5 ·bc2 =(a ·b) ·(c5·c2) (乘法交换律、结合律) =abc5+2 (同底数幂的乘法) =abc7.
根据以上计算,想一想如何计算单项式乘以单项式?
合作探究
单项式与单项式的乘法法则: 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于 只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
回顾旧知
1.说一说单项式乘以多项式的计算法则?
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把
所得的积相加.
2.计算:
(1) (2x2 )(6x 2); (2) (3ab)2 (2a2b 1 ab2 )
《整式的乘法》整式的乘法与因式分解PPT课件(第3课时整式的除法)
2.下列算式中,不正确的是( D
A.(-12a5b)÷(-3ab)=4a4
B.9xmyn-1÷3xm-2yn-3=3x2y2
C. 4a2b3÷2ab=2ab2
D.x(x-y)2÷(y-x)=x(x-y)
)
3.计算:
(1)(103)÷(52) =
(2)66÷ (33) =2a3
(3)(-12s4t6) ÷(2s2t3)2 = -3
例2 已知:=4,=9,
求Hale Waihona Puke (1) -;(2) -.4
解:(1)-=÷=4÷9= 9 .
(2)-2=÷=()3÷()2
64
=43÷92= 81 .
例3
如果2-1 ÷ 2 =xm+1,求的值.
解:∵ 2-1 ÷ 2
∴2
(4)(a-b)5÷(a-b)3
3、计算:
(1)(-a)5÷a3
(3)(a8)2·a4÷a10
(2)x8÷x2÷x3
(4)(a-b)2m÷(a-b)m
由单项式与单项式的
乘法法则计算.
探究:
(1)计算:4a2x3·3ab2= 12a3b2x3 ;
(2)计算:12a3b2x3
观察:
÷
3ab2=
4a2x3
.
由乘除法互为逆运
算可得结果.
12a b x (3ab )
3 2
解:原式= 12 3
3
2
·
(a 3 a) ·(b 2 b 2 ) · 3
(系数÷系数) (同底数幂相除)×单独的幂
=4a2x3 .
你能总结单项式与单项式相除的法则吗?
单项式除以单项式法则
一般地,单项式相除,把系数与同底数幂
《整式的乘除——整式的除法》数学教学PPT课件(5篇)
C. a2 b2 a b a b D. a2 b2 a b a b
(2)在① (6ab 5a) a 6b 5 ,② (8x2 y 4xy2 ) (4xy) 2x y, ③ (15x2 yz 10xy2 ) 5xy 3x 2 y , ④ (3x2 y 3xy2 x) x 3xy 3y2 中,不正确的个数有( C ). A.1个 B.2个 C.3个 D.4个
2a b2
4a2 4ab b2
例2.计算:
28 x4 y2 7 x3 y (28 7) x43 y21
4xy
典型例题
5a5b3c 15a4b =[( 5) 15] a54 b31c 1 ab2c
3
典型例题
例3.若a(xmy4)3÷(3x2yn)2=4x2y2,求a、m、n的值. 解:∵a(xmy4)3÷(3x2yn)2=4x2y2,∴ax3my12÷9x4y2n=4x2y2, ∴a÷9=4,3m-4=2,12-2n=2, 解得a=36,m=2,n=5.
第一章 整式的乘除
整式的除法
第1课时
学习目标
1.会进行简单的单项式除以单项式的运算(结果是整式); 2.经历探索单项式除以单项式法则的过程,理解单项式除 以单项式的算理; 3.在探索中体会类比方法的作用,发展有条理的思考与表 达能力和运算能力.
复习回顾
1.单项式与单项式相乘法则: 一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘, 对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因 式.
(1)2 ÷(-3xy)= 2 xy2 ; 3
错误 2 xy2 3
(2)10 ÷2 x2 y = 5xy2 ;
错误 5xy2 z
(3)4 ÷ 1 xy2 =2x; 2
(2)在① (6ab 5a) a 6b 5 ,② (8x2 y 4xy2 ) (4xy) 2x y, ③ (15x2 yz 10xy2 ) 5xy 3x 2 y , ④ (3x2 y 3xy2 x) x 3xy 3y2 中,不正确的个数有( C ). A.1个 B.2个 C.3个 D.4个
2a b2
4a2 4ab b2
例2.计算:
28 x4 y2 7 x3 y (28 7) x43 y21
4xy
典型例题
5a5b3c 15a4b =[( 5) 15] a54 b31c 1 ab2c
3
典型例题
例3.若a(xmy4)3÷(3x2yn)2=4x2y2,求a、m、n的值. 解:∵a(xmy4)3÷(3x2yn)2=4x2y2,∴ax3my12÷9x4y2n=4x2y2, ∴a÷9=4,3m-4=2,12-2n=2, 解得a=36,m=2,n=5.
第一章 整式的乘除
整式的除法
第1课时
学习目标
1.会进行简单的单项式除以单项式的运算(结果是整式); 2.经历探索单项式除以单项式法则的过程,理解单项式除 以单项式的算理; 3.在探索中体会类比方法的作用,发展有条理的思考与表 达能力和运算能力.
复习回顾
1.单项式与单项式相乘法则: 一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘, 对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因 式.
(1)2 ÷(-3xy)= 2 xy2 ; 3
错误 2 xy2 3
(2)10 ÷2 x2 y = 5xy2 ;
错误 5xy2 z
(3)4 ÷ 1 xy2 =2x; 2
人教版数学八年级上册整式的乘除精品课件
解:∵ 10a ÷ 10b=10a- a-b=2
∵ 9a÷32b= 9a ÷ 9b=9a-b ∴ 9a÷32b= 92=81
人教版数学八年级上册整式的乘除精 品课件
人教版数学八年级上册整式的乘除精 品课件
思考题
观察下列各式: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 根据前面各式的规律可得
C.(c3)4 ÷c5=c6 ( ) D.(m3•m2)5÷m4=m21 (✓ )
计算(口答)
1.(-3)2•(-3)3= (-3)5 = -35 2. x3•xn-1-xn-2•x4+xn+2= xn+2 3.(m-n)2•(n-m)2•(n-m)3= (n-m)3 4. -(- 2a2b4)3= 8a6b12 5.(-2ab)3 •b5 ÷8a2b4=-ab4
人教版数学八年级上册整式的乘除精 品课件
人教版数学八年级上册整式的乘除精 品课件
1. 已知: a b 5 , ab 1 ,
求 a 2 b 2 的值。 6
6
解:因为 a 2 b2 = (a b)2 2ab
所以 a 2 b=2 (5)2 2 1
6
6
25 1 36 3
人教版数学八年级上册整式的乘除精 品课件
人教版数学八年级上册整式的乘除精 品课件
(1) 已知 (a+b)2=11, (a-b)2 =7,
则ab=( A)
(A) 1 (B)-1(C) 0 (D) 1或-1
(2) 如果4x2+12xy+k是一个关于x、y的完全
B 平方式,则k=( )
∵ 9a÷32b= 9a ÷ 9b=9a-b ∴ 9a÷32b= 92=81
人教版数学八年级上册整式的乘除精 品课件
人教版数学八年级上册整式的乘除精 品课件
思考题
观察下列各式: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 根据前面各式的规律可得
C.(c3)4 ÷c5=c6 ( ) D.(m3•m2)5÷m4=m21 (✓ )
计算(口答)
1.(-3)2•(-3)3= (-3)5 = -35 2. x3•xn-1-xn-2•x4+xn+2= xn+2 3.(m-n)2•(n-m)2•(n-m)3= (n-m)3 4. -(- 2a2b4)3= 8a6b12 5.(-2ab)3 •b5 ÷8a2b4=-ab4
人教版数学八年级上册整式的乘除精 品课件
人教版数学八年级上册整式的乘除精 品课件
1. 已知: a b 5 , ab 1 ,
求 a 2 b 2 的值。 6
6
解:因为 a 2 b2 = (a b)2 2ab
所以 a 2 b=2 (5)2 2 1
6
6
25 1 36 3
人教版数学八年级上册整式的乘除精 品课件
人教版数学八年级上册整式的乘除精 品课件
(1) 已知 (a+b)2=11, (a-b)2 =7,
则ab=( A)
(A) 1 (B)-1(C) 0 (D) 1或-1
(2) 如果4x2+12xy+k是一个关于x、y的完全
B 平方式,则k=( )
《整式的乘法》整式的乘除与因式分解ppt实用课件
12、你们要学习思考,然后再来写作。——布瓦罗 13、在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。——华罗庚
14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。
4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。
5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。
4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。
5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
人教版数学八年级上册整式的乘除PPT优秀课件3
人教版数学八年级上册整式的乘除PPT 优秀课 件3
人教版数学八年级上册整式的乘除PPT 优秀课 件3
练习:1、计算下列各式。
(1)(2a)(x2y3c), (2)(x2)(y3)(x1)(y2) (3)(xy)(2x1 y)
2
己知: (x+1)(x2+mx+n) 的计算结果不含x2和x项。 求m,n的值
2、多项式除以单项式
法则:多项式除以单项式,就是多项式的每一项 去除单项式,再把所得的商相加。
人教版数学八年级上册14.1.4整式的 乘除课 件
练习:计算下列各题。
(1)(1 a6b4c)((2a3c) 4
(2)6(ab)5 [1(ab)2] 3
(3)(5x2y3 4x3y2 6x)(6x)
(4) 1 x3my2n x2m1y2 3 x2m1y3) (0.5x2m1y2)
请运用完全平方公式把下列各式分解因 式:
1 x 2 4 x 4 原式x22
2a2 6a 9
3 4 a 2 4 a 1 原式2a12
4 9 m 2 6 m n n 2 原式3mn2
5 x2 1 x
4
原式
x
1 2
2
6 4 a 2 1 2 a b 9 b 2 原式2a3b2
人教版数学八年级上册整式的乘除PPT 优秀课 件3
人教版数学八年级上册整式的乘除PPT 优秀课 件3
4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示: amanamn
(其中m、n为正整数)
ap
1 ap
(a 0,
p为正整数 )
a0 1(a 0)
人教版数学八年级上册整式的乘除PPT 优秀课 件3
人教版数学八年级上册整式的乘除PPT 优秀课 件3
练习:1、计算下列各式。
(1)(2a)(x2y3c), (2)(x2)(y3)(x1)(y2) (3)(xy)(2x1 y)
2
己知: (x+1)(x2+mx+n) 的计算结果不含x2和x项。 求m,n的值
2、多项式除以单项式
法则:多项式除以单项式,就是多项式的每一项 去除单项式,再把所得的商相加。
人教版数学八年级上册14.1.4整式的 乘除课 件
练习:计算下列各题。
(1)(1 a6b4c)((2a3c) 4
(2)6(ab)5 [1(ab)2] 3
(3)(5x2y3 4x3y2 6x)(6x)
(4) 1 x3my2n x2m1y2 3 x2m1y3) (0.5x2m1y2)
请运用完全平方公式把下列各式分解因 式:
1 x 2 4 x 4 原式x22
2a2 6a 9
3 4 a 2 4 a 1 原式2a12
4 9 m 2 6 m n n 2 原式3mn2
5 x2 1 x
4
原式
x
1 2
2
6 4 a 2 1 2 a b 9 b 2 原式2a3b2
人教版数学八年级上册整式的乘除PPT 优秀课 件3
人教版数学八年级上册整式的乘除PPT 优秀课 件3
4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示: amanamn
(其中m、n为正整数)
ap
1 ap
(a 0,
p为正整数 )
a0 1(a 0)
人教版数学八年级上册整式的乘除PPT 优秀课 件3
《整式的除法》整式的乘除与因式分解PPT课件3
(1)若10m=20,10n=
,求9m÷32n 的值
1 5
(2)如果x2m-1 ÷ x2 =xm+1,求m的值.
解:∵ x2m-1 ÷ x2 =xm+1 ,
∴2m-1-2=m+1,
解得:m=4.
(3)若10m=16,10n=20,求10m-n的值.
解:∵ 10m =16,10n=20,
∴ 10m-n = 10m ÷ 10n = 16 ÷20=0.8
0 3 ( );
再利用am÷an=amn计算,发现了什么?
(2)103÷103= ( 100 );
(3)am÷am=( a0 ) (a≠0).
规定
a0=1 (a≠0).
即任何不等于0的数的0次幂都等于1
am÷an=am-n(a≠0,m,n都 是正整数,并且m>n ). ≥
练习
1.填空:
(1)a5•( a2)=a7; (3) x3•x5•( x4 ) =x12 ; 2.计算: (1) x7÷x5; x2
解: (1) x8 ÷x2=x 8-2=x6.
(2)a4 ÷a =a 4-1=a3.
(3) (ab) 5÷(ab)2=(ab)5-2=(ab)3=a3b3.
(4)(-a)7÷(-a)5=(-a)7-5=(-a)2=a2 (5)(-b)5÷(-b)2=(-b)5-2=(-b)3=-b3
探究
分别根据除法的意义填空,你能得什 么结论? (1)32÷32=
整式的乘除与因式分解
同底数幂的除法
复习巩固
三种幂的运算
1、同底数幂的乘法:am · an=am+n (m、n都是正整数) 即:同底幂相乘,底数不变,指数相加。 2、幂的乘方:(am)n=amn(m、n都是正整数) 即:幂的乘方,底数不变,指数相乘。
《整式的乘法》整式的乘除与因式分解 精品课件3(共15张)
例1:
如图,王大伯有一块长方形菜地, a 他把这块菜地分为6个大小相等 a 的菜畦,每个菜畦的宽都是a米, ka ka 长都是ka米,这块菜地的面积是多 少? 解:S= 2a· 3ka =(2×3) ka· a=6ka2(平方米)
答:这块菜地的面积是6ka2 平方米
ka
例2:计算 3 4 3 4 解:(1)4a 7a =(4×7) (a a ) =28a7
有两幅画,规格如下图所示:(单位 米)
ቤተ መጻሕፍቲ ባይዱ
33 x 5
5 2 x 3
(1)第一幅画的面积是 (2)第二幅画的面积是
2b
3ab2
3 3 5 2 x 2 x 米3 5
3ab2米 ×2 2b
3 3) ( 5×10 10 × (1.2×102 ) = ( 5×
乘法交换律(ab=ba) 乘法结合律 (ab)c=a(bc) 2
(2)7ax (2a2bx2 ) = [7 ×(-2) ] a a 2 b x x 2
14a bx
3
3
例3 计算
(1)(-2a2)3 · (-3a3)2
2 a
3 23
例2
计算
8 9 a a
6
3 a
3
(24a b )
3 2 5 ( a bx y ) 2
4 5
(4a )
8
如果a· a可以看做是边长为a的 正方形的面积,那么你会说明 3a· 2b, 3a· 5a· b的几何意义吗?
你有什么收获?
名言摘抄 1、抓紧学习,抓住中心,宁精勿杂,宁专勿多。——周恩来 2、与雄心壮志相伴而来的,应老老实实循环渐进的学习方法。——华罗庚 3、惟有学习,不断地学习,才能使人聪明,惟有努力,不断地努力,才会出现才能。——华罗庚 4、发愤早为好,苟晚休嫌迟。最忌不努力,一生都无知。——华罗庚 5、自学,不怕起点低,就怕不到底。——华罗庚 6、聪明出于勤奋,天才在于积累。——华罗庚 7、应当随时学习,学习一切;应该集中全力,以求知道得更多,知道一切。——高尔基 8、学习永远不晚。——高尔基 9、学习是我们随身的财产,我们自己无论走在什么地方,我们的学习也跟着我们在一起。——莎士比亚 10、人不光是靠他生来就拥有的一切,而是靠他从学习中所得到的一切来造就自己。——歌德 11、单学知识仍然是蠢人。——歌德 12、终身努力便是天才。——门捷列夫 13、知之为知之,不知为不知,学而时习之,不亦说乎?三人行,必有我师焉。——孔子 14、三人行,必有我师也。择其善者而从之,其不善者而改之。——孔子 15、知之者不如好之者,好之者不如乐之者。——孔子 16、学而不厌,诲人不倦。——孔子 17、己所不欲,勿施于人。——孔子 18、学而不思则罔,思而不学则殆。——孔子 19、敏而好学,不耻下问。——孔子 20、兴于《诗》,立于礼,成于乐。——孔子 21、不要企图无所不知,否则你将一无所知。——德谟克利特 22、学习知识要善于思考,思考再思考,我就是用这个方法成为科学家的。——爱因斯坦 23、要想有知识,就必须学习,顽强地耐心地学习。——斯大林 24、向所有人学习,不论是敌人或朋友都要学习,特别是向敌人学习。——斯大林 25、自学,是我们当今造就人才的一条重要途径。——周培源 26、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。——毛泽东 27、情况在不断的变化,使用也是学习,而且是更重要的学习。——毛泽东 28、饭可以一日不吃,觉可以一日不睡,书不可以一日不读。——毛泽东 29、学习必须和蜜蜂一样,采过许多花,这才能酿出蜜来,倘若可在一处,所得就非常有限,枯燥了。——鲁迅 30、伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,日积月累,从少到多,奇迹就可以创造出来。——鲁迅
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/23
9
(1)311÷ 27; (2)516 ÷ 125.
解:311÷ 27 =311 ÷33 =38
(3)(m-n)5÷(n-m);
=513
解:(m-n)5÷(n-m)
=(m-n)5 ÷【 (-1)(m-n) 】
=-(m-n)4
(4)(a-b)8 ÷(b-a) ÷(b-a).
解:原式=(b-a)8 ÷(b-a) ÷(b-a).
思维!
81
2020/11/23
11
谈谈你今天这节课 的收获
同底数幂相除法则:同底数幂相除, 底数不变,指数相减。
a0=1(a≠0) 即am÷an=am-n(a≠0,m,n都是正
整数,且m>n))
2020/11/23
12
布置作业
思考题(课后合作交流,不需交) (1)若10m=20,10n= ,求9m÷32n 的值
2020/11/23
6
探究
分别根据除法的意义填空,你能得什
么结论? (1)32÷32= ( 30 );
再利用am÷an=amn计算,发现了什么?
(2)103÷103= ( 100 );
(3)am÷am=( a0 ) (a≠0).
2020/11/23
7
规定
a0=1 (a≠0). 即任何不等于0的数的0次幂都等于1
2020/11/23
14
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
2020/11/23
15
2020/11/23
1 5
13
(2)如果x2m-1 ÷ x2 =xm+1,求m的值.
解:∵ x2m-1 ÷ x2 =xm+1 , ∴2m-1-2=m+1, 解得:m=4.
(3)若10m=16,10n=20,求10m-n的值.
解:∵ 10m =16,10n=20, ∴ 10m-n = 10m ÷ 10n = 16 ÷20=0.8
2020/11/23
2
提出问题
一种数码照片的文件大小是28K,一个存储 量为26M(1M=210K)的移动存储器能存储多少 张这样的数码照片?
26M=26×210=216K 216÷28=?
2020/11/23
3
探究
根据除法的意义填空,看看计算结果 有什么规律:
(1)55÷53=5( 5-3 ); (2)107÷105=10(7-5 ); (3)a6÷a3=a( 6-3 ).
(2) m8÷m8; 1
(3) (-a)10÷(-a)7; -a3 (4) (xy)5÷(xy)3. x2y2
3.下面的计算对不对?如果不对,应当怎样改正?
(1) x6÷x2=x3; x4 (2) 64÷64=6; 1
(3)a3÷a=a3; a2 (4)(-c)4÷(-c)2=-c2. (-c)2=c2
(5) (-b) 5÷(-b)2 解: (1) x8 ÷x2=x 8-2=x6.
(2)a4 ÷a =a 4-1=a3.
(3) (ab) 5÷(ab)2=(ab)5-2=(ab)3=a3b3.
(4)(-a)7÷(-a)5=(-a)7-5=(-a)2=a2
(5)(-b)5÷(-b)2=(-b)5-2=(-b)3=-b3
am÷an=am-n(a≠0,m,n都 是正整数,并且m>n≥).
2020/11/23
8
练习
1.填空:
(1)a5•( a2)=a7;
(2) m3•( m5) =m8;
(3) x3•x5•( x4) =x12 ;
(4) (-6)3((-6)2 ) = (-6)5.
2.计算:
(1) x7÷x5; x2
2020/11/23
4
一般地,我们有
为什么这 里规定 a=0?
am÷an=am-n(a≠0,m,n都是 正整数,并且m>n).
即同底数幂相除,底数不变, 指数相减.
2020/11/23
5
例题
例1 计算:
(1)x8÷x2 ; (2) a4 ÷a ;
(3)(ab) 5÷(ab)2;(4)(-a)7÷(-a)5
整式的乘除与因式分解
同底数幂的除法ຫໍສະໝຸດ 2020/11/231
复习巩固
三种幂的运算
1、同底数幂的乘法:am · an=am+n (m、n都是正整数) 即:同底幂相乘,底数不变,指数相加。
2、幂的乘方:(am)n=amn(m、n都是正整数) 即:幂的乘方,底数不变,指数相乘。
3、积的乘方:(ab)n=anbn(n是正整数) 即:积的乘方,等于积中各个因式分别乘方的积。
2020/11/23
=(a-b)6
10
实践与创新 am÷an=am-n
❖思维延伸
则am-n=am÷an
已知:xa=4,xb=9,求(1)x a-b;(2)x 3a-2b
解(1)xa-b=xa÷xb=4÷9= 4
9
这种思维
(2)x3a-2b=x3a÷x2b=(xa)3÷(xb)2
叫做逆向
=43÷92= 64