青霉素提取工艺
青霉素的萃取工艺
五 说教学过程
作用原理
青霉素药理作用是干扰 细菌细胞壁的合成。青霉素 的结构与细胞壁的成分粘肽 结构中的D-丙氨酰-D-丙氨 酸近似,可与后者竞争转肽 酶,阻碍粘肽的形成,造成 细胞壁的缺损,使细菌失去 细胞壁的渗透屏障,对细菌 起到杀灭作用。
预处理
发酵液中的杂质如高价无机离子(Fe2+、Ca2+、Mg2+) 和蛋白质在离子交换的过程中对提炼影响甚大,不利于树 脂对抗生素的吸收。如用溶媒萃取法提炼时,蛋白质的存 在会产生乳化,使溶媒合水相分离困难。对高价离子的去 除,可采用草酸或磷酸。如加草酸则它与钙离子生成的草 酸钙还能促使蛋白质凝固以提高发酵滤液的质量。如加磷 酸(或磷酸盐),既能降低钙离子浓度,也利于去除镁离 子。加黄血盐及硫酸锌,则前者有利于去除铁离子,后者 有利于凝固蛋白质。此外,两者还有协同作用。他们所产 生的复盐对蛋白质有吸附作用。为了有效的去除发酵液中 的蛋白质,需加入絮凝剂。絮凝剂是一种能溶于水的高分 子化合物。含有很多离子化基团(如—NH2,—COOH,— OH)。
取青霉素钾对照品和青霉素对照品各10mg置10ml量瓶中用ph65磷酸盐缓冲液取02moll磷酸二氢钾溶液125ml加水250ml混匀用氢氧化钠试液调节ph值至65再用水稀释至500ml溶解并稀释至刻度摇匀20l注入液相色谱仪记录色谱图青霉素v峰与青霉素峰的分离度应大于60
青霉素的萃取工艺
组员:徐波 刘金安 李万智 徐标 叶永逸
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
青霉素钠含量测定
色谱条件与系统性试验:用十八烷基硅烷键合硅胶为填充剂; 以 0.5mol/L磷酸二氢钾溶液(用磷酸调节 pH 值至 3.5) -甲醇-水(10:30:60)为流动相 A;以 0.5mol/L 磷酸 二氢钾溶液(用磷酸调节 pH 值至3.5)-甲醇-水(10: 50:40)为流动相B;检测波长为 225nm;流速为每分钟 1ml。以流动相A—流动相B(70:30)等度洗脱;取青霉 素对照品和苯乙酸各适量,加水制成每1ml中含各约 0.2mg 的混合溶液,取 20μl 注入液相色谱仪,记录色 谱图,色谱峰流出顺序为苯乙酸、青霉素,两峰之间的分 离度应不小于 6.0。理论板数不低于 5000。 测定法:取本品适量,精密称定,加水溶解并定量稀释成每 1ml 中约含 1mg的溶液,摇匀,精密量取 20μl 注入液 相色谱仪,记录色谱图;另取青霉素对照品适量,同法测 定。按外标法以峰面积计算,其结果乘以 1.0658,即为 供试品中 C16H17N2NaO4S 的含量。每1mg的C16H17N2NaO4S相 当于 1670 青霉素单位。
青霉素的提取
26
3、萃取设备 (5)混合槽或静态混合器
国内大多数厂家是用混合槽或静态混合器进行混合萃取,再用碟片 式离心机进行分离。这种装置结构复杂,拆洗困难,特别是由于离心 分离过程中蛋白质和固体杂质的沉积,需要天天进行拆洗,十分不便。
27
青霉素的提取与工艺
4 青霉素提取工艺条件
(1) 温度、酸度对青霉素稳定性的影响
17
2、新提取方法的研究 (2) 反胶团萃取
反胶团是近年来新的生物活性物质分离、提纯方法 一方面,由于 pH对萃取率影响不大,可以在较高的pH条件下操作,另一方面,可以 利用离子强度的变化将杂蛋白去除。反胶团萃取已经在某些生物 产品的提纯上得到应用,但是要用于青霉素这样的大处理量、低附 加值的产品生产,还很困难
膜 分 离 器 具 21
膜分离原理
青霉素的提取与工艺 3、萃取设备
(1)波式离心萃取器 (2)倾析机 (3)环隙式离心萃取器 (4)排渣式离心分离机 (5)混合槽或静态混合器
22
3、萃取设备 (1)波式离心萃取器
23
3、萃取设备 (2)倾析机
24
3、萃取设备 (3)环隙式离心萃取器
12
不同 pH时石油亚砜-煤油体系的萃砜
亚 砜 萃 取 相 关 酶 反 应
13
反萃取过程中的乳化问题
溶剂萃取法从发酵液中萃取青霉素已有五十余年的历史。但其 萃取工艺基本没有改变: 所用的萃取剂主要是乙酸丁( 戊) 脂, 甲基异丁酮等。萃取操作条件为: p H 1.8一2. 2, 有机相与水 相体积比O⁄A꞊ 2/ 1, 反萃PH .6 7 一.7 2 , 相比O⁄A꞊ 2/ 1。 在其萃取过程中有以下两个特点: ①青霉素易被破坏,在pH 4 一8 范围内相对较稳定, 在PH 4< 或p H >8 皆易分解。在 PH 2.0,10 摄氏度下, 青霉素的半衰期为1.3小时, 萃取要在 很短时间内完成。② 由于发酵液中含有大量蛋白质、有机色 素及其他生物副产品, 所以萃取过程中乳化严重。而且采用离 心办法也很难将乳化消除, 需要使用破乳剂。
青霉素的工艺流程
青霉素的工艺流程
青霉素是一种抗菌药物,是由真菌青霉(Penicillium)制作而成的。
青霉素的工艺流程可以分为以下几个步骤:
1. 材料准备:准备培养基,培养霉菌和提取青霉素所需的其他原料。
2. 角化:将培养基倒入培养皿中,使其凝固,形成可以供霉菌生长的基质。
3. 培养霉菌:在适宜温度和湿度下,接种霉菌于培养皿中,培养霉菌使其生长并产生青霉素。
4. 提取:将培养得到的发霉的培养皿进行打碎,然后用有机溶剂(如甲醇或乙酸乙酯)进行浸提。
浸提过程可以将青霉素从霉菌体内提取出来。
5. 分离纯化:通过过滤等操作,将有机溶剂中的悬浮物和杂质分离出来。
然后通过蒸发和结晶等步骤,使青霉素得到进一步纯化。
6. 干燥:将纯化后的青霉素进行干燥,以获得最终的产品。
需要注意的是,青霉素的生产过程还需要注意以下几个方面:
1. 培养环境:青霉素的生产需要在适宜的温度、湿度和pH值条件下进行。
同
时,在培养过程中还需要注意防止其他细菌和真菌的污染。
2. 溶剂选择:在提取过程中选择适宜的有机溶剂,以确保溶剂能够有效地提取青霉素,并尽可能减少对青霉素的破坏。
3. 分离纯化:在分离纯化过程中需要根据青霉素的物化性质来选择适当的纯化方法,以确保青霉素的纯度和产量。
4. 质量控制:在整个生产过程中,需要进行严格的质量控制,包括对原料、中间产物和最终产品的检测和分析,以确保产品的质量和安全性。
总结起来,青霉素的工艺流程包括材料准备、角化、培养霉菌、提取、分离纯化和干燥等步骤。
通过合理选择培养条件、提取和纯化方法等,可以实现对青霉素的高效生产和优质产品的制备。
青霉素提取工艺的研究
关键词 : 青霉素 ; 提取 ; 工艺
青霉素( B e n z y l p e n i c i U i n,P e n i c i l l i n ) 又被称 为青 霉素 G、 青霉素 为 3 0 m g / m l , p h 值为 6 . 5的青霉素 G溶液上柱 , 采用 2 0 %丙酮洗脱 , 钠、 苄青霉素钠 、 青霉素钾 、 苄青霉素钾等 。青霉素是指从青霉菌培 流量 5 m l / ai r n , 碘量法测定青霉素浓度 , 利用软件 M a t l a b 5 - 3 计算 吸 洗脱率 。实验结果表明 D M1 1 树脂 吸附量为 0 . 6 5 g / g , 洗脱率为 养液 中提制 的分子中含有青霉烷 、能破坏细菌的细胞壁并在细菌细 附量 、 胞的繁殖期起杀菌作用的一类抗生素[ 7 - ” 。 青霉素具有抗菌活性强 , 疗 8 8 . 3 2 %, 洗脱剂用量为 5 9 0毫升 ; D 8 4 5 树脂 吸附量为 0 . 5 l g / g , 洗脱率 5 . 3 1 %, 洗脱剂用量 为 4 9 3毫升 ; D 2 0 1 树脂吸附量 为 0 . 5 6 g / g , 洗脱 效高 , 毒性低等优 点。青霉素 G是弱酸 , 目前 国内外生产 中大多采用 为 6 溶媒萃取法 , 生产中能耗大 m 。本文对青霉素提取工艺进行研究。 率为 6 5 . 1 2 %,洗脱剂用量为 5 6 7毫升 ; 3 3 0 树脂 吸附量为 0 . 3 2 g / g , 洗 1仪器与试药 脱率为 5 0 . 3 1 %, 洗脱剂用量为 1 3 2 1 毫升 。实验结果表 明 D M1 1 树脂 L C 一 1 0 0 ( 梯度配置 ) 高效液相色谱仪( 上海伍 丰科学仪器有 限公 树脂效果最好 。采用 D M1 1 树脂进行实验 , 树脂柱高 2 5 厘米 , 装树脂 司) ;h e n o m e n e x通 用型保 护柱 ( 广 州菲罗 门科 学 仪器 有 限公 司) ; l O克 , 树脂颗粒为 4 0 0 p m。将 2 0毫升浓度为 3 0 m g / ml , p h 值为6 . 5 K H W— D 一 1 L C精密拉伸水浴锅( 上海科恒实业发展有限公 司) ; 双向磁 的青霉素 G溶液上 柱 。分 别采 用 2 0 %丙酮 、 1 m o l /L K C 1 、 0 . 3 m o l / 力搅拌器 E 京来亨科贸有限责任公 司) ; A P 一 0 1 P型无油真空泵( 天津 L N a 2 S O 4进行洗脱实验 , 流量 5 ml /m i n , 碘量法测定青霉素浓度 。采 奥特赛恩斯仪器有 限公 司) ; 奥豪斯 E x p l o r e r 专业型分析天平( 奥豪斯 用 2 0 %丙酮洗脱 时洗脱率 为 8 8 . 3 2 %, 1 mo l /L K C 1 洗脱时洗 脱率 为 仪器上海有限公司 ) ; P S 3 2 0 0超声波震荡器清洗机( 普洛帝 中国服务 9 2 . 3 2 %, O . 3 mo l / L N a 2 S O 洗 脱时洗 脱率 为 6 3 . 3 2 %。实验结 果表 明 中心) ;5 4 1 8 R小型台式冷冻离心机 ( E p p e n d o f 中国有限公 司 ) ; MW 1 m o l /L K C 1 洗脱效果最好。 3 结 论 实验室级超纯水器 口E 京盈安美诚科学仪器有 限公司) ;精密离子计 本实验采用溶剂萃取 、 整体液膜和离子交换技术三种工艺对青霉 P X S 一 4 5 0 9 ( 上海大普仪器公司) ; X S Y F — D 实验室废水处理设备( j B 京 湘顺源科技有限公司1 ; 酸度计( 上海精密仪器仪表有限公 司) 。 青霉素 素进行提取。 溶剂萃取和离子交换技术适合青霉素提取 。 整体液膜提 不适合青霉素的提取。萃取平衡实验获得 的最佳工艺为 G 钠盐 ( 华北制药集团 ) , 磷酸三丁酯 ( 上海翔康科技发展有限公 司) , 取效率较低 , 煤油( 上海千峰化工有 限公 司) , K H 2 P 0 4 ( 青岛市鹏远化工贸易有限 磷酸三丁酯为载体 , 煤油为稀释剂 , 水相 中的 p H值3 . 1 , 磷酸三丁酯 公司) , 甲醇 ( 广西 明利化 工 有 限公 司 ) 。 浓度为 6 0 0 mm o l / L 。离子交换实验获得 的最佳工艺为采用 D M1 1 树 2 实验 脂进行实验 , 树脂柱高 2 5 厘米 , 装树脂 1 0克 , 树脂颗粒为 4 0 0 p m, 将 0毫升浓度 为 3 0 mg / ml , p h值 为 6 . 5的青霉素 G溶液上柱 ,采用 2 . 1 萃取平衡实验。磷酸三丁酯为载体 , 煤油为稀释剂 , 将2 0 m L 2 的有机相和 2 0 m L水溶液放人锥形瓶中,恒温水浴中振荡 5 分钟后 , 1 m o l / L K C 1 进行洗脱实验 , 流量 5 m l / mi n , 碘量法测定青霉素浓度。 将溶液取 出放人分液漏斗中分层 ,采用高效液相测定青霉素的摩尔 参考 文 献 浓度。磷酸三丁酯浓度 6 0 0 mm o l / L时 ,分别采用水相 中的 p H值为 f l 1吴麟华.分离膜 中的新成 员—— 纳滤膜及其在制药工业 中的应 用 3 . 1 、 3 . 5 、 4 . 0 、 4 . 5 、 5 . 0 、 5 . 5 、 6 . 0 、 7 . 0进行实 验。实验结果 表 明水 相 中的 m. 膜科 学与技 术 , 1 9 9 7 ( 5 ) . p H值 3 . 1 时, 单级萃取率为 8 6 . 2 %; 水相 中的 p H值 3 . 5时 , 单级萃 [ 2 ]  ̄x - , 杨峰 . 青霉素类抗 生素临床应用有关问题分析『 J J . 黑龙 江科技 取率为 7 6 %; 表明水相 中的 p H值 4 . 0时 , 单级萃取率为 5 6 . 2 %; 水相 信 息 , 2 0 1 0 ( 7 ) . 中的 p H值 4 . 5 时, 单级 萃取率为 4 6 - 3 %; 水相 中的 p H值 5 . 0 时, 单 f 3 1 杨光, 张鑫鑫. 浅谈青霉素的药理、 作用及其过敏反 应f J 】 . 黑龙江科技 级萃取率为 3 8 . 1 %; 水相中的 p H值5 . 5时 , 单级萃取率 为 3 0 . 8 %; 水 信 息 , 2 0 0 9 ( 3 3 ) . 相 中的 p H值 6 . 0时 , 单级萃取率 为 2 2 . 8 %; 水相 中的 p H值 6 . 5时 , 【 4 . 王楠 . 青霉素类抗 生素临床应 用有 关 问题探讨 [ J ] . 中国当代 医药 , 单级萃取率为 1 4 . 2 %; 水相中的 p H值 7 . 0时 , 单级萃取率为 5 . 6 %。 实 2 0 0 9 ( 9 ) . 验结果表明水相 中的 p H值3 . 1 时效果最好。水相 中的 p H值 为 3 . 1 【 5 1 方成 开月 庆, 卢志生. 青霉素提炼新工艺研 究及经济效益评估( 上) 时 ,分 别 采 用 磷 酸 三 丁 酯 浓 度 为 1 0 0 m mo l / L 、 2 0 0 m mo l / L 、 3 0 0 I J 1 . 湿 法 冶金 , 2 0 0 1 ( 2 ) . 6 1 刘毓梅, 杨 东林. 青霉素类药物临床 用药分析【 J 】 . 齐齐哈 尔医学院学 mm o l / L 、 4 0 0 m mo l / L 、 5 0 0 mm o l / L 、 6 0 0 m mo l / L进行实验 。 实验结果表 f 明磷酸三丁酯浓度为 1 0 0 mm o l / L时, 单级萃取率为 2 9 . 9 %; 磷酸三丁 报 . 2 0 1 0 ( 3 ) . 酯浓度为 2 0 0 m m o l / L时 ,单级萃 取率为 4 3 . 2 %;磷酸三丁酯浓度为 [ 7 】 张永信. 青霉素类的药理特点与选用I J I _ 上海 医药, 2 0 0 3 ( 1 0 ) . 8 侧 士敬, 朱倩. 青霉素类抗 生素概述『 J 1 . 中国社 区医师 , 2 0 1 0 ( 3 ) . 3 0 0 m mo l / L时 , 单级萃取率为 6 0 . 6 %; 磷酸三丁酯浓度为 4 0 0 mm o l / L f 时, 单级萃取率 为 6 8 . 3 %; 磷酸三丁酯浓度为 5 0 0 m mo l / L时 , 单级萃 『 9 1 吴子 生, 贾颖 萍, 褚 莹, 王 玉洁 , 刘 沛妍 , 马 占芳. 反胶 团相 转移 法提 取 取率为 7 6 . 2 %;磷 酸三丁酯浓度为 6 0 0 mm o l / L时 ,单级萃取率 为 青霉素 G的研 究f J ] . 高等 学校化 学学报 , 1 9 9 3 ( 1 0 ) . 8 6 . 2 %。实验结果表明 , 磷酸三丁酯浓度为 6 0 0 m mo l / L时效果最好。 【 1 o l 朱澄云 风奎, 朱金 良, 宋文喧, 朱宁金 守征, 王蔷. 乳状液膜法从发 2 . 2整体 液膜 实验 。先在左 右两 室 中分别 加入 一定 量 的 8 . 6 9 论 坛
青霉素的工艺流程
青霉素的工艺流程
《青霉素的生产工艺流程》
青霉素是一种重要的抗生素,广泛应用于临床医学和养殖业中。
其生产工艺流程包括以下几个主要步骤:
1. 发酵培养:首先,选取高产菌株,将其接种于含有合适营养物质的发酵培养基中,进行培养和发酵。
在适宜的温度、搅拌和通气条件下,维持菌株的生长和代谢活动,产生大量的青霉素。
2. 分离提纯:将发酵液中的青霉素进行提取、分离和纯化。
通常采用物理法和化学法相结合的方法进行,包括有机溶剂提取、离心、过滤、结晶和柱层析等步骤。
通过这些方法,可将青霉素从其他杂质中分离出来,得到高纯度的青霉素。
3. 结晶干燥:将提纯后的青霉素溶液进行结晶和干燥处理,得到成品的青霉素粉末或结晶体。
这一步是为了提高青霉素的稳定性和保存期限,以便后续的包装、储存和运输。
4. 包装储存:最后,将成品的青霉素进行包装和标识,存放于干燥、阴凉和通风的环境中。
严格控制温湿度等环境条件,以确保青霉素的质量和效力。
总的来说,青霉素的生产工艺流程是一个复杂且精细的过程,需要高度的技术储备和严格的操作管理。
只有通过科学规范的
工艺流程,才能生产出高质量、高效力的青霉素产品,为医疗卫生和养殖业做出贡献。
青霉素提取精制工艺过程
10℃以下 pH值 加1/3体积BA
10℃以下 pH值 加1/3体积BA
水和丁醇形成共沸物而蒸出。 微生物制药工艺及反应器(第十章)
⑶ 盐酸普鲁卡因水溶液的加入速度 在普鲁卡因青霉素结晶的过程中,是采用先行加入晶种的方法,故反应剂盐酸普鲁卡因水溶液的
加入速度是“先馒后快”。
微生物制药工艺及反应器(第十章)
⑷ 结晶
萃取液一般通过结晶提纯。青霉素钾盐在醋酸丁酯 中溶解度很小,在二次丁酯萃取液中加入醋酸钾-乙醇 溶液,青霉素钾盐就结晶析出。然后采用重结晶方法, 进一步提高纯度,将钾盐溶于KOH溶液,调pH至中性, 加无水丁醇,在真空条件下,共沸蒸馏结晶得纯品。
微生物制药工艺及反应器(第十章)
晶种的质量(即大小、均匀度)好坏,对晶体形态控 制有着关键的作用。工艺上要求晶种的形态应椭圆形, 直径在2微米左右。如果加入的晶种直径过大,则结晶 后生成的晶体相应也大。因此控制晶种的质量,对晶 体的形态有着直接影响。
微生物制药工艺及反应器(第十章)
直接结晶:在二次乙酸丁酯萃取液中加醋酸钠-乙 醇溶液反应,得到结晶钠盐。加醋酸钾-乙醇溶液, 得到青霉素钾盐。
共沸蒸馏结晶:萃取液,再用0.5 mol/ml NaOH 萃取,下得到钠盐水浓缩液。加倍体积丁醇,16- 26℃,下共沸蒸馏。水和丁醇形成共沸物而蒸出。钠 盐结晶析出。结晶经过洗涤、干燥后,得到青霉素产 品。
微生物制药工艺及反应器(第十章)
青霉素的生产工艺
青霉素的生产工艺青霉素是一种重要的抗生素,广泛应用于治疗各种感染疾病。
下面是青霉素的主要生产工艺。
青霉素的生产主要包括以下几个步骤:步骤一:菌种培养和细菌发酵首先,要获取产生青霉素的青霉菌菌株。
常用的菌株有Penicillium chrysogenum和Penicillium notatum。
菌株接种于培养基中,并经过一系列的培养步骤,包括发酵和发酵液的提取。
在发酵过程中,合理控制温度、pH值、氧气供应和营养物质等因素,以促进菌株生长和生产青霉素。
步骤二:提取和纯化青霉素通过发酵液的提取和纯化过程,将青霉素从菌体中分离出来。
首先,将发酵液经过离心或过滤等操作,除去无菌质和杂菌。
然后,通过酸碱调节,将青霉素盐酸盐溶出,并使用有机溶剂萃取法,将青霉素从溶液中提取出来。
最后,对提取得到的青霉素溶液进行再结晶和过滤,得到纯度较高的青霉素。
步骤三:结晶和干燥通过结晶和干燥过程,将溶液中的青霉素进一步提纯,并将其转化为固体形态。
首先,将青霉素溶液放置在低温环境下,以促使青霉素结晶。
然后,将结晶得到的青霉素通过过滤或离心,除去残余溶液。
最后,将青霉素固体进行干燥,以去除水分,得到最终的干燥青霉素。
步骤四:包装将干燥青霉素进行包装,以确保其质量和稳定性。
通常,青霉素以粉末或片剂的形式包装,并通过密封包装保持其纯度和药效。
以上是青霉素的主要生产工艺。
在生产过程中,需要严格控制各个环节的条件和参数,以确保青霉素的质量和有效成分的含量。
此外,生产工艺还需要符合药品生产的相关标准和规范,确保生产出符合医药行业要求的高质量青霉素产品。
青霉素提取工艺
青霉素的提取工艺青霉素(Benzylpenicillin / Penicillin)又被称为青霉素G、peillin G、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。
青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素.青霉素类抗生素是β—内酰胺类中一大类抗生素的总称。
(图1。
青霉素分子式)化学特性青霉素又称盐酸巴氨西林。
其化学名为1-乙氧甲酰乙氧6—〔D(—)-2—氨基—2-乙酰氨基〕青霉烷酸盐酸盐。
是一种有机酸,性质稳定,难溶于水。
可与金属离子或有机碱结合成盐,临床常用的有钠盐、钾盐.青霉素盐如青霉素钾或钠盐为白色结晶性粉末,无臭或微有特异性臭,有引湿性。
干燥品性质稳定,可在室温保存数年而不失效,且耐热.遇酸、碱、重金属离子及氧化剂等即迅速失效。
极易溶于水,微溶于乙醇,不溶于脂肪油或液状石蜡.其水溶液极不稳定,在室温中效价很快降低10%,水溶液pH为5。
5~7。
5.青霉素价格较为便宜,因而也证明了生产并提取青霉素是有着较为成熟的工业方法的。
(图2青霉素的售价)青霉素的提纯青霉素提纯工艺流程简图:(图3)因为青霉素水溶液不稳定,故发酵液预处理、提取和精制过程要条件温和、快速,防止降解。
在提炼过程中要遵循下面三个原则:错误!时间短错误!温度低错误!pH适中1。
预处理发酵结束后,目标产物存在于发酵液中,浓度较低,只有10-30kg/m3,并且含有大量杂质,如高价无机离子(Ca,Mg,Fe离子),菌丝,未用完的培养基,易污染杂菌,产生菌的代谢产物,蛋白质等。
因此必须对其进行的预处理,其目的在于浓缩目的产物,去除大部分杂质,利于后续的分离纯化过程,是进行分离纯化的第一个工序。
2.过滤发酵液在萃取之前需预处理,可在发酵液加少量絮凝剂沉淀蛋白(比如明矾),或者调解发酵液pH至蛋白质的等电点以沉淀蛋白,然后经真空转鼓过滤(以负压作过滤推动力)或板框过滤(浮液用泵送入滤机的每个密闭的滤室,在工作压力的作用下,滤液透过滤膜或其它滤材,经出液口排出,滤渣则留在框内形成滤饼,从而达到固液分离目的),除掉菌丝体及部分蛋白.青霉素在常温下易降解,因而发酵液及滤液应冷至10 ℃以下,过滤收率一般90%左右。
青霉素提纯采用的膜分离技术工艺
青霉素提纯采用的膜分离技术工艺
青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。
青霉素提纯采用超滤+卷式超滤膜分离技术,替代转鼓工序及萃取、反萃取工序,提高滤液质量的同时完全取消溶媒和破乳剂的使用,降低生产成本,改善生产环境,降低环保压力。
因为青霉素水溶液不稳定,故发酵液预处理、提取和精制过程要条件温和、快速,防止降解。
在提炼过程中要遵循下面三个原则:
1.时间短
2.温度低
3.pH适中
采用卷式纳滤技术,替代传统的结晶工艺,超滤液在压力的驱动下通过纳滤膜,青霉素被截留浓缩,达到裂解底物浓度要求,直接裂解得到6-APA,缩短整体生产工艺,提高系统收率。
结晶母液利用溶媒回收工艺及纳滤浓缩工艺,实现了溶媒的同时,也对浓缩得到母液中残留的6-APA进行回收,为整条生产工艺带来1%的收率提高。
以上为大家介绍的就是青霉素提纯采用的膜分离技术工艺,希望对大家有帮助。
青霉素的裂解工艺
青霉素的裂解工艺青霉素是一种重要的抗生素,具有广谱抗菌作用,对许多细菌都有很好的杀菌效果。
而青霉素的制备过程中,裂解工艺起着非常重要的作用。
青霉素的裂解工艺是将产酸青霉素的固体发酵糊状物与固液分离后,得到青霉素干粉。
以下将从青霉素的裂解原理、裂解工艺、裂解设备等方面进行详细介绍。
青霉素的裂解原理:青霉素是由青霉素产酸菌生产的,其发酵过程是生产青霉素的核心。
经过长时间的发酵,青霉素产酸菌将产生产酸青霉素的固体发酵糊状物,这是裂解的原料。
产酸青霉素是一种沉淀物,需要经过固液分离后才能进行裂解。
青霉素的裂解工艺:首先,需要将产酸青霉素的固体发酵糊状物与适量的水混合,并进行搅拌,得到稀释后的悬浮液。
然后,将悬浮液经过固液分离,去除固体杂质,得到含有产酸青霉素的液态部分。
接下来,将液态部分进行处理,得到青霉素的干粉。
裂解工艺的难点和挑战:青霉素的裂解工艺中存在一些难点和挑战。
首先,固体发酵糊状物与水的混合和搅拌过程需要控制得当,以确保悬浮液的均匀性和稳定性。
其次,固液分离过程需要有效地去除固体杂质,以提高后续工艺的效率和产品质量。
最后,干燥过程中需要控制温度和湿度,以避免青霉素的失效和降解。
裂解工艺的设备和技术:青霉素的裂解工艺需要使用一系列设备和技术。
首先是混合设备,用于将固体发酵糊状物与水进行充分混合和搅拌。
其次是固液分离设备,如离心机和压滤机,用于去除悬浮液中的固体杂质。
最后是干燥设备,如喷雾干燥机和真空干燥机,用于将青霉素的液态部分转化为干粉。
青霉素的裂解工艺在生产过程中起着至关重要的作用。
通过科学合理的工艺设计和设备选型,可以提高生产效率,降低生产成本,提高产品质量。
同时,也为青霉素的工业化生产提供了可靠的技术保障。
在未来,随着工艺技术的不断创新和进步,青霉素的裂解工艺将会得到更好的优化和改进,为抗生素产业的发展做出更大的贡献。
青霉素的萃取
青霉素的生产工艺流程
(1)丝状菌三级发酵工艺流程 冷冻管(25°C,孢子培养,7天)——斜面母瓶 (25°C,孢子培养,7天)——大米孢子(26°C, 种子培养56h,1:1.5vvm)——一级种子培养液 (27°C,种子培养,24h,1:1.5vvm)——二级种 子培养液(27~26°C,发酵,7天,1:0.95vvm)—— 发酵液。 (2)球状菌二级发酵工艺流程 冷冻管(25°C,孢子培养,6~8天)——亲米 (25°C,孢子培养,8~10天)——生产米 (28°C,孢子培养,56~60h,1:1.5vvm)——种 子培养液(26~25-24°C,发酵,7天,1: 0.8vvm)——发酵液。
青霉素的菌种发酵过程
菌种发酵:将产黄青霉菌接种到固体培养基上, 在25℃下培养7~10天,即可得青霉菌孢子培养物。 用无菌水将孢子制成悬浮液接种到种子罐内已灭 菌的培养基中,通入无菌空;气、搅拌,在27℃ 下培养24~28h,然后将种子培养液接种到发酵罐 已灭菌的含有苯乙酸前体的培养基中,通入无菌 空气,搅拌,在27℃下培养7天。在发酵过程中需 补入苯乙酸前体及适量的培养基。
青霉素生产工艺的控制
(1)基质浓度 (2)温度 (3)培养基成分的控制 (4)pH 值、溶氧 (5)浓菌丝度 (6)泡沫的控制 (7)合理控制发酵时间青霉素的提取工艺流程来自发酵液过滤 反萃取 过滤
萃取
洗涤
共沸结晶 干燥 成品
青霉素的提取与精制
提取精制:将青霉素发酵液冷却,过滤。 滤液在pH2~2.5的条件下,于萃取机内用 醋酸丁酯进行多级逆流萃取,得到丁酯萃 取液,转入pH7.0~7.2的缓冲液中,然后 再转入丁酯中,将此丁酯萃取液经活性炭 脱色,加入成盐剂,经共沸蒸馏即可得青 霉素G钾盐。青霉素G钠盐是将青霉素G钾盐 通过离子交换树脂(钠型)而制得。
青霉素提炼工艺流程图
青霉素提炼工艺流程图青霉素提炼工艺流程图:发酵液———-———→预处理液——→板框过滤—-→滤液——→储罐——→BA提取-—→脱色——→过滤——→BA脱色液--→结晶——→离心分离——→含1%水重液回收溶媒的异丙醇洗涤-—→甩滤——→无水异丙醇洗涤-—→甩干——→摇摆机粉碎—-→烘干——→工业钾盐成品发酵液是一个混合液,其中有菌丝、未用完的培养基、生产菌的代谢产物,一些杂质,青霉素的含量仅为0。
1~4。
5%。
而且,溶液中的青霉素很不稳定,温度的变化、pH的变化都能引起青霉素的分解。
提炼工艺要围绕时间,温度,pH,和去除杂质这四个基本点来改进。
提炼的第一步是发酵液的预处理。
预处理的目的是为了改善发酵液性质,以利于下一步固液分离。
发酵液中含有铁、镁、钙等无机离子和蛋白质,这些对提炼影响很大:不利于离子交换,蛋白质很容易引起萃取时的乳化-使溶媒和水相分离困难。
生产中常用的方法是:加黄血盐去铁离子;加磷酸盐去钙,镁;加絮凝剂去蛋白质。
固液分离这一工序中,把发酵液中的固相的物质如菌丝、未用完的培养基和含有有效成分的液相分离来。
常用的设备是板框过滤机和真空转鼓过滤机。
印象中板框的处理能力比转鼓小?我个人比较喜欢转鼓.过滤下来的固相物质主要是菌丝,未用完的培养基,黄乎乎的,软软的,好在没有异味,要不发酵车间就成了那个啥了。
过滤后得到的液相中含有我们想得到的青霉素。
文章开头的工艺流程我看有点不完全准确。
在提取过程中就用BA提取含胡过去了。
其实这有三步。
从溶液中提取有效物质常用的方法有萃取法,离子交换法和沉淀法.青霉素生产中用的是萃取法。
具体的三步包括一次萃取,然后用离心机将重相和轻相分开;然后将轻相反萃取,再用离心机分离重相和轻相;把重相进行二次萃取,再用离心机分开重相和轻相。
最后得到的轻相是经过处理的溶液,其中含有高浓度的青霉素。
BA是指醋酸丁脂,采用它的原因是青霉素在醋酸丁脂中的溶解度很小。
反萃取的作用我记得是去杂质.二次BA液中含有色素和热原质。
青霉素萃取原理及工艺流程
青霉素萃取原理及工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!青霉素是一种广泛使用的抗生素,它的萃取原理和工艺流程如下:1. 青霉素萃取原理:青霉素是一种β-内酰胺类抗生素,它的分子结构中含有β-内酰胺环,这种环状结构在酸性或碱性条件下容易破裂,从而失去抗菌活性。
青霉素提炼工艺流程
青霉素提炼工艺流程
《青霉素提炼工艺流程》
青霉素是一种重要的抗生素药物,它在医学领域有着广泛的应用。
提炼青霉素的工艺流程是一个复杂而精密的过程,需要经过多个步骤才能得到纯度高的青霉素制剂。
首先,青霉素的提炼通常是从青霉素产生菌株中进行提取。
这些菌株可以通过发酵培养和提取发酵液获取。
然后,发酵液中的青霉素会通过一系列的分离和纯化步骤,包括过滤、结晶、柱层析等工艺,从而得到较为纯净的青霉素产物。
接下来,得到的青霉素产物需要经过结晶、洗涤和干燥等步骤,使其达到药用级别的纯度要求。
同时,还需要进行结构鉴定和质量检测,确保青霉素的结构和性质符合药品标准。
最后,经过上述工艺流程得到的青霉素产品可以用于制备药物制剂,或用于制备其他抗生素化合物。
在生产过程中,要严格控制各个环节的工艺条件,确保青霉素产品的质量和效果。
总的来说,青霉素的提炼工艺流程是一个复杂而技术含量高的过程,需要经过严格的工艺控制和质量检测,以确保最终提取的青霉素符合药品标准,具有稳定性和有效性。
青霉素提炼工艺流程
青霉素提炼工艺流程青霉素是一种广谱的抗生素,被广泛用于医疗领域。
它的提炼工艺流程经过多年的研究和改进,已经取得了很大的进展。
以下是青霉素提炼工艺流程的详细描述。
首先,青霉素的提炼通常从青霉菌的培养开始。
选择适当的青霉菌菌株,能够高效产生青霉素。
将选定的青霉菌菌株接种到培养基中,提供适宜的生长条件,如温度、pH和营养成分等。
通过培养,青霉菌能够生长并产生青霉素。
随后,对培养得到的青霉菌发酵液进行分离和除杂。
通常是通过离心、滤过和微生物膜的方法,将菌体和其他杂质分离开来,得到纯净的青霉菌发酵液。
然后,通过酸化和沉淀,将青霉素从发酵液中提取出来。
发酵液酸化后,青霉素会形成无溶性的盐,沉淀到底部。
然后将沉淀物进行过滤,将沉淀的青霉素与溶剂分离开来。
溶剂中含有水,可以有效地溶解青霉素。
接下来,将青霉素的溶液进行浓缩。
通常使用蒸发和冷冻干燥的方法,将青霉素溶液中的溶剂去除,使其浓缩成固体。
这样可以减少体积,便于储存和运输。
最后,通过结晶和纯化,将青霉素提纯。
青霉素溶液进行结晶,使其形成结晶体。
经过多次结晶和过滤,去除杂质,提高青霉素的纯度。
最后得到的青霉素经过干燥,得到纯净的青霉素产品。
整个青霉素提炼工艺流程中,需注意操作的质量控制。
在培养阶段,需要控制菌株选择和培养条件,以获得高产青霉素的青霉菌。
在分离和除杂阶段,需要控制分离效果,确保得到纯净的青霉菌发酵液。
在提取和浓缩阶段,需要控制提取效率和浓缩效果,以获得高纯度且无溶剂残留的青霉素溶液。
在结晶和纯化阶段,需要控制结晶和过滤效果,以获得高纯度的青霉素产品。
青霉素提炼工艺流程的不断改进和优化,使青霉素的生产效率和纯度得到了显著提高,大大满足了临床需求。
随着科学技术的不断进步,相信青霉素的提炼工艺会进一步完善,为医疗领域的抗生素治疗提供更好的支持。
青霉素提取原始方法
青霉素提取原始方法
青霉素提取原始方法即青霉素发现之初采用的提取方法。
在此方法中,使用培养的青霉菌株,通过培养基发酵生产青霉素,然后进行萃取和纯化。
具体步骤如下:
1. 培养青霉菌:使用含有合适营养物质的培养基,培养青霉菌株。
青霉菌株在适宜的温度、pH和氧气条件下生长,并产生
青霉素。
2. 收集发酵液:经过一段时间的培养,酶类和微生物代谢产物会溶解在发酵液中。
收集发酵液,即培养基中含有青霉菌培养产生的物质。
3. 萃取:将收集的发酵液经过反复的溶剂萃取。
常用的溶剂包括丁醇、正己烷等。
通过溶剂的选择性提取,将青霉素从其他杂质中分离出来。
4. 蒸馏:将经过溶剂萃取的溶液进行蒸馏,将溶剂和青霉素分离。
在蒸馏过程中,溶剂会蒸发,而青霉素则保留在残留物中。
5. 结晶:将残留物溶解在适当的溶剂中,通过降低温度逐渐结晶。
青霉素会以晶体的形式沉淀下来。
6. 进一步纯化:对青霉素晶体进行洗涤和过滤,以去除杂质。
可以使用适当的溶剂进行洗涤,然后通过过滤将洗涤后的纯净青霉素分离出来。
这些步骤描述了青霉素提取的原始方法。
使用这种方法可以从青霉菌的培养液中提取纯净的青霉素,为后续药物制剂提供原料。
青霉素的生产工艺流程
青霉素的生产工艺流程
青霉素是一种抗生素,由青霉菌(Penicillium)产生。
下面是青霉素的生产工艺流程。
1. 青霉株的培养和筛选:首先在培养基中培养青霉菌株,筛选出产青霉素的高效菌株。
2. 发酵:将高效菌株接种到大型发酵罐中进行发酵。
发酵罐内要控制好温度、氧气、pH值等因素,以便提高产量和保证产品质量。
3. 分离和提取:发酵液经过离心、滤过等处理,得到含有青霉素的液体。
再通过萃取等方法提取出青霉素粗品。
4. 精制:将青霉素粗品经过结晶、溶解、过滤、干燥等工艺步骤,得到纯度更高的青霉素制剂。
5. 包装和贮存:对青霉素制剂按照规格进行包装,同时进行质量检测。
存放在阴凉、干燥、通风良好的环境中。
总之,青霉素的生产是一个复杂的工艺过程,需要严格的控制和管理,以确保产品的质量和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青霉素的提取工艺
青霉素(Benzylpenicillin / Penicillin)又被称为青霉素G、peillin G、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。
青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素。
青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。
(图1.青霉素分子式)
化学特性
青霉素又称盐酸巴氨西林。
其化学名为1-乙氧甲酰乙氧6-〔D(-)-2-氨基-2-乙酰氨基〕青霉烷酸盐酸盐。
是一种有机酸,性质稳定,难溶于水。
可与金属离子或有机碱结合成盐,临床常用的有钠盐、钾盐。
青霉素盐如青霉素钾或钠盐为白色结晶性粉末,无臭或微有特异性臭,有引湿性。
干燥品性质稳定,可在室温保存数年而不失效,且耐热。
遇酸、碱、重金属离子及氧化剂等即迅速失效。
极易溶于水,微溶于乙醇,不溶于脂肪油或液状石蜡。
其水溶液极不稳定,在室温中效价很快降低10%,水溶液pH为~。
青霉素价格较为便宜,因而也证明了生产并提取青霉素是有着较为成熟的工业方法的。
(图2青霉素的售价)
青霉素的提纯
青霉素提纯工艺流程简图:
(图3)
因为青霉素水溶液不稳定,故发酵液预处理、提取和精制过程要条件温和、快速,防止降解。
在提炼过程中要遵循下面三个原则:
○1时间短○2温度低○3pH适中
1.预处理
发酵结束后,目标产物存在于发酵液中,浓度较低,只有10-30kg/m3,并且含有大量杂质,如高价无机离子(Ca,Mg,Fe离子),菌丝,未用完的培养基,易污染杂菌,产生菌的代谢产物,蛋白质等。
因此必须对其进行的预处理,其目的在于浓缩目的产物,去除大部分杂质,利于后续的分离纯化过程,是进行分离纯化的第一个工序。
2.过滤
发酵液在萃取之前需预处理,可在发酵液加少量絮凝剂沉淀蛋白(比如明矾),或者调解发酵液pH至蛋白质的等电点以沉淀蛋白,然后经真空转鼓过滤(以负压作过滤推动力)或板框过滤(浮液用泵送入滤机的每个密闭的滤室,在工作压力的作用下,滤液透过滤膜或其它滤材,经出液口排出,滤渣则留在框内形成滤饼,从而达到固液分离目的),除掉菌丝体及部分蛋白。
青霉素在常温下易降解,因而发酵液及滤液应冷至10 ℃以下,过滤收率一般90%左右。
(1)菌丝体粗长10μm,采用鼓式真空过滤机过滤,滤渣形成紧密饼状,容易从滤布上刮下。
滤液,蛋白质含量。
需要进一步除去蛋白质。
(2)改善过滤和除去蛋白质的措施:硫酸调节,加入%溴代十五烷吡啶PPB,%硅藻土为助滤剂。
再通过板框式过滤机。
滤液澄清透明,进行萃取。
3.萃取
青霉素的提取采用溶媒萃取法。
这是利用抗生素在不同的pH值条件下以不同的化学状态(游离态酸或盐)存在时,在水及水互不相溶的溶媒中溶解度不同的特性,使抗生素从一种液相(如发酵滤液)转移到另一种液相(如有机溶媒)中去,以达到浓缩和提纯的目的。
青霉素分子结构中有一个酸性基团(羧基),青霉素的pKa=2.75,所以将青霉素G的水溶液酸化至pH2.0左右,青霉素即成游离酸。
这种青霉素酸在水中溶解度很小,但易溶于醇类、酮类、醚类和酯类,利用这一特性,工业上可用溶媒萃取法从发酵液中分离并提纯青霉素。
在酸性条件下青霉素转入有机溶媒中,调节pH至左右,再转入中性水相,反复几次萃取,即可提纯浓缩。
选择对青霉素分配系数高的有机溶剂。
工业上通常用醋酸丁酯和戊酯。
萃取2-3次。
从发酵液萃取到乙酸丁酯时,pH选择,从乙酸丁酯反萃到水相时,pH选择。
发酵滤液与乙酸丁酯的体积比为,即一次浓缩倍数为。
为了避免pH波动,采用硫酸盐、碳酸盐缓冲液进行反萃。
发酵液与溶剂比例为3-4。
几次萃取后,浓缩10倍,浓度几乎达到结晶要求。
萃取总收率在85%左右。
所得滤液多采用二次萃取,用10%硫酸调~,加入醋酸丁酯,用量为滤液体积的三分之一,反萃取时常用碳酸氢钠溶液调~。
在一次丁酯萃取时,由于滤液含有大量蛋白,通常加入破乳剂防止乳化。
第一次萃取,存在蛋白质,加乳化剂PPB。
萃取条件:为减少青霉素降解,整个萃取过程应在低温下进行(10 ℃以下)。
萃取罐冷冻盐水冷却。
在萃取过程中,青霉素的降解受温度、酸度影响很大, 这是决定操作工艺条件的主要因
素, 许多学者对其进行了研究, 已详细考察了不同 pH 条件下水溶液的温度对青霉素降解半衰期的影响, 如图 4所示。
他们认为: 青霉素的稳定区间是pH5~8, 在最为稳定, 在酸性或碱性条件下降解都很快。
将该数据进行曲线拟合可以得到不同温度下青霉素降解半衰期与水溶液pH 的关系曲线。
(图4.水中青霉素降解与 pH 的关系 (25 °C) (图5.青霉素降解半衰期与pH的关系)a: pH4. 0, b: pH5. 0, c: pH6. 0, d: pH6. 25,
e: pH6. 5, f: pH7. 0, g: pH8. 0, h: pH9. 0)
可以看出, 在pH 值一定的条件下, 温度越低青霉素越稳定。
因此工厂都采用低温操作, 萃取在pH2. 0、温度5°C下进行。
但是这既增加了能耗, 也增加了乳化的可能性。
另一方面, 青霉素在醋酸丁酯中却很稳定。
据报道,室温下, 其半衰期达 75 h 以上。
从图5 可以看出, 在半衰期不变的情况下, pH 值越高, 允许的操作温度也越高。
也就是说, 只要能提高操作pH 值, 就可以在较高温度下进行萃取操作。
工厂采用的操作条件下半衰期只有 2 h, 如果其操作 pH 值提高, 就可以在常温下操作。
这取决于pH 对萃取率的影响。
为研究温度、酸度对萃取率的影响, 用模拟料液在不同温度和平衡pH 值下进行了实验研究, 用分光光度法进行分析。
结果表明青霉素的萃取率受pH 影响很大; 提高萃取的平衡pH 值, 萃取率将明显下降。
另一方面, 在相同pH下随操作温度升高萃取率也稍有升高(图 6)。
(图6.温度、pH对青霉素萃取率的影响)
4.脱色
萃取液中添加活性炭,除去色素、热源,过滤,除去活性炭。
5.结晶
萃取液一般通过结晶提纯。
青霉素钾盐在醋酸丁酯中溶解度很小,在二次丁酯萃取液中加入醋酸钾-乙醇溶液,青霉素钾盐就结晶析出。
然后采用重结晶方法,进一步提高纯度,将钾盐溶于KOH溶液,调pH至中性,加无水丁醇,在真空条件下,共沸蒸馏结晶得纯品。
直接结晶:在2次乙酸丁酯萃取液中加醋酸钠-乙醇溶液反应,得到结晶钠盐。
加醋酸钾-乙醇溶液,得到青霉素钾盐。
共沸蒸馏结晶:萃取液,再用 mol/L NaOH萃取,调pH至下得到钠盐水浓缩液。
加倍体积丁醇,16-26℃,下蒸馏。
水和丁醇形成共沸物而蒸出。
钠盐结晶析出。
结晶经过洗涤、干燥后,得到青霉素产品。