数学人教版六年级下册圆柱体积解决问题

合集下载

人教版六年级数学下册 第三单元《圆柱圆锥》解决问 专项训练50道习

人教版六年级数学下册 第三单元《圆柱圆锥》解决问 专项训练50道习

人教版六年级数学下册第三单元《圆柱圆锥》解决问题专项训练(50道习题)1.有甲、乙两个圆柱,表面积都是90 cm2;底面积也相等,每个底面的面积都是15 cm2.如果把这两个圆柱接起来,成为一个大圆柱.①这个大圆柱的侧面积是?②这个大圆柱的表面积是?2.求出下面图形的表面积是多少.3.计算下面圆柱的侧面积是多少?4.如图,冬冬要把自己做的圆柱形笔筒的1高度以下涂上褐色(底面不涂),涂3褐色部分的面积是多少平方厘米?5.一个粮仓装满稻谷后上半部分是圆锥形,下半部分是圆柱形。

粮仓的底面周长是18.84米,圆柱高2米,圆锥高0.6米。

如果每立方米稻谷重600千克,那么这个粮仓装有多少千克稻谷?6.将一个棱长为1 5厘米的正方体容器装满水,倒入一个底面半径是2021的圆柱体容器中,这时圆柱体容器的水深多少厘米?(得数保留一位小数)7.有一个高10厘米、底面直径是8厘米的圆柱形水杯(数据均从杯子内测量的),能装下500毫升的牛奶吗?8.一个工具箱的下半部分是棱长为2021的正方体,上半部分是圆柱体的一半。

这个工具箱的体积是多少立方分米?9.自来水管的内直径是2厘米,水管内水的流速是每秒8厘米。

一位同学洗完手后忘记关掉水龙头,5分钟会浪费多少升水?( π值取3.14)10.一个底面周长是3.14分米的圆柱形玻璃杯内盛有一些水,恰好占杯子容量。

将两个同样大小的鸡蛋放人杯子中,浸没在水里。

这时水面上升8厘的23米,刚好与杯子口平齐,求玻璃杯的容积。

11.一个长为5分米、宽为3分米、高为4分米的长方体铁块,熔铸成底面积为6平方分米的圆柱。

圆柱的高是多少分米?12.一个圆柱形油桶,高是48厘米,底面直径是2021,做这个油桶至少要用铁皮多少平方厘米?13.把一个底面半径为5分米,高2分米的圆柱形钢柱熔铸成一个底面直径为4分米的圆锥,这个圆锥的高是多少分米?14.14.把一个棱长是6厘米的正方形铁块,在车床上削成一个最大的圆柱体,这个圆柱体的体积是多少?15.一个圆锥形谷堆底面周长6.28米,高0.9米,每立方米稻谷约重700千克,这堆稻谷约重多少千克?16.大厅里有6根圆柱,每根柱子的底面半径是4分米,高5米,如果每平方米需要油漆费5元,漆这6根柱子,一共需用油漆费多少元?17.17.一台压路机的前轮是圆柱体,轮宽2 m,直径1.2 m。

六年级数学下册圆柱圆锥解决问题

六年级数学下册圆柱圆锥解决问题

1、一个圆柱形蓄水池,直径10米,深2米。

这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?2、做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米3、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。

如果每分转动5周,每分钟可以压多大面积的路面?4、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶至少要用铁皮多少平方厘米?(接口处不计)5、一个圆柱的侧面积是200.96平方厘米,底面半径是2厘米,它的表面积是多少?6、把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?7、工人叔叔把一根高1米的圆柱形木料,沿横截面锯成三段,这时表面积比原来增加了314平方分米,求这根料的底面半径是多少分米?8、有一个长方体木块,高20厘米,底面是个长方形,长30厘米,宽15厘米,上面有一个底面直径和高都是10厘米的圆柱形的孔,它的表面积是多少平方厘米9、把一个圆柱体的侧面展开,得到一个边长6.28分米的正方形,这个圆柱体底面积是多少平方分米?10、右图是一个零件的直观图。

下部是一个棱长为40cm 的正方体,上部是圆柱体的一半。

求这个零件的表面积。

11、把一棱长10厘米的正方形木块,削成一个最大的圆柱体,这个圆柱体的表面积是多少平方厘米?12、一个圆柱体高为10cm ,若截去3cm 的一段后,表面积比原来减少了75.36平方厘米,求剩下的圆柱体表面积?13.一个圆柱,它的高增加2厘米,它的侧面积就增加37.68平方厘米,这个圆柱的底面半径是多少厘米?14、把一根2米长的圆柱体木料截成3段,表面积增加了12平方分米,这跟木料的体积是多少立方米?15、把一个长8厘米、宽8厘米、高6厘米的长方体木块,切成一个最大的圆柱,圆柱的体积是多少立方厘米?16、将一个底面周长是12.56厘米的圆柱体沿底面半径切成若干等份,拼成一个长方体,表面积比原来增加了20平方厘米.求原来这个圆柱体的体积?17、一个圆柱形水桶盛满水,倒出水的32后,还剩下8立方分米,已知桶高5分米,求桶的底面积.(水桶厚度不计)6.08升=( )毫升=( )立方分米=( )立方厘米 8.9平方米=( )平方分米6.7公顷=( )平方米 415平方厘米=( )平方分米 4.5立方米=( )立方分米2.4立方分米=( )升( )毫升 4070立方分米=( )立方米3立方分米40立方厘米=( )立方分米 3.22立方米=( )立方米( )立方分米1、把一圆柱体钢坯削成一个最大的圆锥,削去1.8立方厘米,未削前圆柱的体积是()立方厘米。

新人教版六年级下册数学第三单元《圆柱体积解决问题》预习单

新人教版六年级下册数学第三单元《圆柱体积解决问题》预习单

解决问题
温习旧知计算下面各图形的面积。

(单位:cm)
求不规则图形的
面积时,可以用“分
割添补”法把它转化
成规则图形来计算。

预习新课如图,一个饮料瓶内直径是9cm,瓶里饮料的高度是15cm,把
瓶盖拧紧后,使其瓶口向下倒立,无饮料部分的高度是5cm,
求这个饮料瓶的容积。

小明这样想:饮料瓶里饮料的体积倒立后没变,饮料的体积加
上()cm高圆柱的体积就是饮料瓶的容积,也就是把饮料瓶
的容积转化成了()个圆柱的体积,列式为()。

求不规则图形的
体积时,可以利用
的特性,把它转化成
来计算。

练习反馈1.一种饮料瓶的瓶身(不包括瓶颈)呈圆柱形,容积是480毫升,现在瓶中装有一些饮料,如图所示,瓶内有饮料多少毫升?
2.一个圆柱形玻璃容器的底面直径是10cm,容器中装有一定量的水。

把一块完全浸没在水中的铁块取出后,水面的高度由9cm降到6cm。

这块铁块的体积是多少?
3.(培优题)求图形物体的体积。

(单位:cm)。

【典型例题系列】人教版六年级数学下册典型例题系列之第三单元圆柱的体积问题基础部分

【典型例题系列】人教版六年级数学下册典型例题系列之第三单元圆柱的体积问题基础部分
【答案】(1)314平方米
(2)2009.6吨
【解析】
【分析】(1)求一个圆柱形粮囤的占地面积,即是这个圆柱形粮囤的一个底面积;代入圆的面积公式即可解答;
(2)先根据圆柱的体积公式算出这个粮囤的体积即是装小麦的体积,然后根据乘法的意义算出共重多少吨。
【详解】(1)3.14×(20÷2)2
=3.14×100
【对应练习2】
10.如下图,是一个圆柱展开图(单位:cm),求圆柱的体积。
【答案】84.78立方厘米
【解析】
【分析】根据圆柱的体积V=πr2h,其中r=C÷π÷2,代入数据计算即可。
【详解】18.84÷3.14÷2
=6÷2
=3(cm)
3.14×32×3
=28.26×3
=84.78(立方厘米)
答:圆柱的体积是84.78立方厘米。
(立方分米)
226.08立方分米=226.08升
(千克)
答:这个油桶可以装油 千克。
【点睛】本题考查了圆柱的体积,圆柱的体积等于底面积乘高。
【对应练习3】
20.一个圆柱形粮囤,从里面量,底面直径20米,高是8米。
(1)这个圆柱形粮囤,里面占地面积多少平方米?
(2)如果每立方米的小麦0.8吨,这个圆柱形粮囤能装小麦多少吨?
【答案】88.17千克
【解析】
【分析】根据“ ”求出圆柱形钢坯的体积,再乘每立方分米钢材的重量即可。
【详解】1米=10分米;
3.14×(1.2÷2)²×10×7.8
=11.304×7.87千克。
【点睛】熟记圆柱的体积计算公式是解答本题的关键,本题要注意单位。
【方法点拨】
圆柱体积的意义和计算公式
(1)意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。

人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

第三单元第3课时圆柱的体积(1)教学设计情境导入—引“探究”教师谈话导入:什么是物体的体积?你会计算哪些物体的体积?长方体和正方体的体积计算公式?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?V长=长×宽×高V正=棱长×棱长×棱长V=底面积×高字母表示:V=Sh思考:圆柱的体积怎样计算呢?前面的学习中我们遇到过这样的问题吗?知识链接—构“联系”回忆一下圆面积的计算公式是如何推导出来的?(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的长方形。

长方形的长相当于圆周长的一半,长方形的宽就当于圆的半径,用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式。

圆柱的体积该怎么计算呢?今天我们就一起来研究这个问题。

(板书课题:圆柱的体积)学习任务一:圆柱体积公式的推导【设计意图:由复习圆面积公式的推导过程入手,实现知识的迁移,从而调动学生学习的积极性,激发学生探求新知的欲望,在教学中充分运用课件中的动画直观演示的同时,广泛让学生动手、动脑、动口,在操作中感知,在猜想中验证,在观察中理解,在比较中归纳。

让学生在自主探究、合作交流中发现和解决问题,培养学生乐学、积极探究的学习态度,获得成功的体验。

这样进行教学,不仅有利于学生理解公式的推导过程,而且在公式的推导过程中,充分让学生感受和体验“转化”这一解决数学问题重要的思想方法。

】新知探究—习“方法”结合教材的内容,探究圆柱体积公式的推导。

1.提问:什么是圆柱的体积?圆柱的体积怎么求?(说一说、想一想、猜一猜)让学生自由发言。

(1)学生猜想可以把圆柱转化成什么图形?(借助于圆面积公式的推导进行知识迁移学习)出示推导示意图,建立直观,巩固旧知(2)阅读教材内容,利用手中的学具进行探索,小组交流。

2.圆柱体积公式的推导(1)多媒体课件演示圆柱体等分转化为长方体。

(让学生观察)通过课件的演示、观察、思考:(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?(4) 你认为圆柱的体积可以怎样计算?3.交流展示,小组讨论,交流汇报。

部编新人教版小学六年级数学下册 圆柱的体积《解决问题》学霸作业及答案

部编新人教版小学六年级数学下册 圆柱的体积《解决问题》学霸作业及答案

解决问题第1关练速度1.填一填。

(1)求圆柱形水桶能装水多少升,是求它的();做一个圆柱形水桶要多少铁皮,是求它的()。

(2)已知一个正方体、一个长方体与一个圆柱的底面周长相等,高也相等,则它们的体积相比,()的体积大。

(3)有两个底面积相等的圆柱,一个圆柱的高是6cm,体积是18.84cm³;另一个圆柱的高是10cm,体积是()cm³。

2.一个圆柱形的玻璃杯,测得底面内直径是8cm,内装药水的深度是16cm,正好占杯内容积的80%,这个玻璃杯的容积是多少毫升?3.如图是一个酸奶瓶,它的瓶身呈圆柱形(不包括瓶颈),底面直径是6cm。

当瓶子正放时瓶内酸奶高为10cm,瓶子倒放时,空余部分高为2cm。

(1)瓶子里酸奶的体积倒置后没变,酸奶的体积加上()cm高的圆柱的体积就是酸奶瓶的容积。

(2)算一算,酸奶瓶的容积是多少毫升?4.一个水龙头的内直径是1.4cm,打开水龙头后水的流速是25cm/s。

淘气洗手后没有关闭水龙头,10分钟后被发现并关闭,淘气浪费了多少水?第2关练准确率5.输液100m,每分钟输2.5mL,如图是刚过12分钟时吊瓶的数据,求整个吊瓶的容积是多少毫升。

6.把一个底面半径为5cm的圆柱形铁块放入个底面半径为10cm,高为14cm的圆柱形容器里,完全浸没在水中,水面上升了3cm,求这个圆柱形铁块的体积。

7.一支牙膏出口处直径是5mm,小红每次刷牙都挤出1cm长的牙膏。

这支牙膏可用36次。

现将出口处的直径改为6mm,小红还是按习惯每次挤出1cm长的牙膏。

这样这支牙膏能用几次?8下面三个图形的面积都是16cm²(图中的单位:cm)。

用这些图形分别卷成圆柱(图形的宽作为圆柱的高),可以卷成体积最小的圆柱的图形是(),可以卷成体积最大的圆柱的图形是()。

9.有甲、乙两个圆柱形容器,从里面量得它们的底面半径分别为10cm和5cm,两个容器内分别盛有深10cm和15cm的水,现将乙容器中的一部分水倒入甲容器内,使得两个容器里的水面相平,这时水深多少厘米?第3关练思维10.如图,有一个高为8cm、容积为50mL的圆柱形容器A,里面装满了水。

六年级数学下册典型例题系列之第三单元圆柱体积的生活实际问题专项练习(解析版)(人教版)

六年级数学下册典型例题系列之第三单元圆柱体积的生活实际问题专项练习(解析版)(人教版)

2021-2022学年六年级数学下册典型例题系列之第三单元:圆柱体积的生活实际问题专项练习(解析版)1.家具厂订购了500根方木,每根方木横截面的面积是0.24m2、长3m,这些木料一共是多少立方米?【解析】0.24×3×500=0.72×500=360(立方米)答:这些木料一共是360立方米。

2.用七步洗手法洗手可以有效地清洁双手,预防病毒传播。

小红外出回家用七步洗手法洗一次手,放水时间大约30秒,而自来水管内直径是2厘米,水管内水的流速是每秒8厘米。

小红洗一次手用水多少升?【解析】3.14×(2÷2)²×(30×8)=3.14×1×240=753.6(立方厘米)753.6立方厘米=0.7536升答:小红洗一次手用水0.7536升。

3.有一个圆柱形钢材,它的高是1.5米,底面直径是2米,它的重量是多少吨?(每立方米钢重7.5吨,得数保留整数)【解析】3.14×(2÷2)2×1.5×7.5=3.14×1×1.5×7.5=35.325(吨)≈35(吨)答:它的重量是35吨。

4.一个圆形水池,它的内直径是10米,深2米,池上装有5个同样的进水管,每个管每小时可以注入水7.85立方米,五管齐开几小时可以注满水池?【解析】[3.14×(10÷2)2×2]÷(7.85×5)=157÷39.25=4(小时)答:五管齐开4小时可以注满水池。

5.一个圆柱形油桶,底面内直径为40厘米,高50厘米,如果每立方分米柴油重0.85千克,这个油桶可装柴油多少千克?【解析】53.38千克6.一根水管的内直径是4厘米,放水时水的流速是25厘米/秒。

打开水龙头后,往一个容积是94.2升的水桶里放水,放满这桶水需要多少分钟?【解析】3.14×(4÷2)2×25=3.14×4×25=314(立方厘米)94.2升=94200立方厘米94200÷314=300秒=5(分钟)答:放满这桶水需要5分钟。

六年级下册数学教案-《圆柱的体积》人教版

六年级下册数学教案-《圆柱的体积》人教版
突破方法:提醒学生注意单位统一,以及π的取值(一般取3.14),培养学生严谨的计算习惯。
(4)合作交流中的难点:在小组合作过程中,学生可能无法充分表达自己的观点,或者无法倾听他人的意见。
突破方法:教师引导学生学会倾听、尊重他人,培养学生的团队协作能力和人际沟通能力。
四、教学流程
(一)导入新课(用时5分钟)
1.讨论主题:学生将围绕“圆柱体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如圆柱体积计算在工程设计中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.理论介绍:首先,我们要了解圆柱体积的基本概念。圆柱体积是指圆柱体所占空间的大小。它是我们研究几何体积的一个重要部分,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过将圆柱切割、拼凑成近似长方体的方式,推导出圆柱体积的计算公式,并展示如何运用这个公式解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调圆柱体积公式V=πr²h和圆柱与长方体体积关系这两个重点。对于难点部分,如空间观念的建立和公式的应用,我会通过实物操作和举例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆柱体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量水桶的半径和高度,计算其体积,从而验证圆柱体积公式的正确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

部编新人教版小学六年级数学下册 圆柱的体积《解决问题》学霸作业及答案

部编新人教版小学六年级数学下册 圆柱的体积《解决问题》学霸作业及答案

解决问题第1关练速度1.填一填。

(1)求圆柱形水桶能装水多少升,是求它的();做一个圆柱形水桶要多少铁皮,是求它的()。

(2)已知一个正方体、一个长方体与一个圆柱的底面周长相等,高也相等,则它们的体积相比,()的体积大。

(3)有两个底面积相等的圆柱,一个圆柱的高是6cm,体积是18.84cm³;另一个圆柱的高是10cm,体积是()cm³。

2.一个圆柱形的玻璃杯,测得底面内直径是8cm,内装药水的深度是16cm,正好占杯内容积的80%,这个玻璃杯的容积是多少毫升?3.如图是一个酸奶瓶,它的瓶身呈圆柱形(不包括瓶颈),底面直径是6cm。

当瓶子正放时瓶内酸奶高为10cm,瓶子倒放时,空余部分高为2cm。

(1)瓶子里酸奶的体积倒置后没变,酸奶的体积加上()cm高的圆柱的体积就是酸奶瓶的容积。

(2)算一算,酸奶瓶的容积是多少毫升?4.一个水龙头的内直径是1.4cm,打开水龙头后水的流速是25cm/s。

淘气洗手后没有关闭水龙头,10分钟后被发现并关闭,淘气浪费了多少水?第2关练准确率5.输液100m,每分钟输2.5mL,如图是刚过12分钟时吊瓶的数据,求整个吊瓶的容积是多少毫升。

6.把一个底面半径为5cm的圆柱形铁块放入个底面半径为10cm,高为14cm的圆柱形容器里,完全浸没在水中,水面上升了3cm,求这个圆柱形铁块的体积。

7.一支牙膏出口处直径是5mm,小红每次刷牙都挤出1cm长的牙膏。

这支牙膏可用36次。

现将出口处的直径改为6mm,小红还是按习惯每次挤出1cm长的牙膏。

这样这支牙膏能用几次?8下面三个图形的面积都是16cm²(图中的单位:cm)。

用这些图形分别卷成圆柱(图形的宽作为圆柱的高),可以卷成体积最小的圆柱的图形是(),可以卷成体积最大的圆柱的图形是()。

9.有甲、乙两个圆柱形容器,从里面量得它们的底面半径分别为10cm和5cm,两个容器内分别盛有深10cm和15cm的水,现将乙容器中的一部分水倒入甲容器内,使得两个容器里的水面相平,这时水深多少厘米?第3关练思维10.如图,有一个高为8cm、容积为50mL的圆柱形容器A,里面装满了水。

人教版六年级下册数学第三单元第7课时 圆柱的体积(3)【教案】

人教版六年级下册数学第三单元第7课时 圆柱的体积(3)【教案】

教学笔记第7课时圆柱的体积(3)教学内容教科书P27例7,完成教科书P29~30“练习五”中第9、10、15题。

教学目标1.用已学的圆柱的体积知识解决生活中的实际问题,掌握解决问题的策略,培养应用意识。

2.经历探究不规则物体体积的转化和计算过程,让学生在动手操作中初步体会转化的数学思想,体验“等积变形”的转化过程。

3.通过实践,在合作中建立协作精神,增强学生“用数学”的意识。

教学重点利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

教学难点体会转化的思想。

教学准备课件,瓶体是圆柱形的矿泉水瓶,瓶里装有适量清水。

教学过程一、激活学生经验,引出问题1.教师出示一个空的矿泉水瓶。

师:这个矿泉水瓶的容积是多少?【学情预设】预设1:学生可能无处下手。

(让学生说说为什么不知道该怎么求,因为瓶子是一个不规则的物体。

)预设2:也可能会通过寻找标签上的“净含量”来代替矿泉水瓶的容积。

预设3:将瓶子里灌满水,把这些水倒到量杯或量筒中,就能测出瓶子的容积。

师:要是没有这些工具,甚至连一个玻璃杯都没有,怎么办?2.揭示课题。

师:这节课,我们就来研究怎样求这个不规则瓶子的容积的问题。

[板书课题:圆柱的体积(3)]【设计意图】抛出问题,引发学生思考,为学习新知作好铺垫。

二、体验过程,探索瓶子容积的计算方法1.教师出示一个装有适量水的矿泉水瓶(水大约有13瓶高)。

师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?【学情预设】预设1:瓶子里还有多少水?(就是剩下的水的体积。

)预设2:喝了多少水?(也就是瓶子的空气部分的体积。

)预设3:这个瓶子一共能装多少水?(也就是这个瓶子容积。

) 师:你觉得你能轻松解决什么问题?【学情预设】求瓶子里还有多少水。

师:需要知道哪些信息呢?【学情预设】学生汇报瓶子里剩下的水呈圆柱状,所以只要量出这个瓶子的底面直径和水的高,就能算出剩下水的体积。

【设计意图】让学生自己提出问题,激发学生解决问题的内在需求,培养学生的问题意识。

人教版六年级下册 圆柱体积应用题(附答案)

人教版六年级下册 圆柱体积应用题(附答案)

人教版六年级下册圆柱体积应用题(附答案)1、一个底面半径为2米、高为3米的圆柱形粮囤,能装多少吨玉米?假设每立方米玉米的重量约为600千克。

答案:粮囤的体积为2×2×3.14×3=37.68立方米,所以能装千克=22.68吨玉米。

2、一个底面半径为2米、高为5米的圆柱形水池,能装多少吨水?假设每立方米水的重量为1吨。

答案:水池的体积为2×2×3.14×5=62.8立方米,所以能装62.8吨水。

3、一个底面直径为10厘米的圆柱形玻璃,将一个铁块完全浸没在水中后,水面下降了2厘米。

这个铁块的体积是多少?答案:的半径为5厘米,所以的体积为5×5×3.14×2=157立方厘米,铁块的体积为2立方厘米。

4、一个底面直径为20厘米的圆柱形玻璃,将一块完全浸在水中的铁块取出后,水面下降了4厘米。

这块铁块的体积是多少?答案:的半径为10厘米,所以的体积为10×10×3.14×4=1256立方厘米,铁块的体积为4立方厘米。

5、一个底面直径为12厘米的圆柱形玻璃,将一个铁块完全浸在水中后,水面上升了4厘米。

这块铁块的体积是多少?答案:的半径为6厘米,所以的体积为6×6×3.14×4=452.16立方厘米,铁块的体积为4立方厘米。

6、一个底面直径为16厘米的圆柱形玻璃,将一个铁块完全浸在水中后,水面上升了10厘米。

这个铁块的体积是多少?答案:的半径为8厘米,所以的体积为8×8×3.14×10=2009.6立方厘米,铁块的体积为10立方厘米。

7、一个底面直径为40厘米、水面高度为20厘米的圆柱形水桶,将一些碎石头放入水中后,水面升高到30厘米。

这些碎石头的体积是多少立方分米?答案:水面升高了10厘米,所以水桶内的水的体积为40×40×3.14×10=立方厘米=50.24立方分米。

六年级下数学教案圆柱的体积_人教新课标

六年级下数学教案圆柱的体积_人教新课标

六年级下数学教案圆柱的体积_人教新课标【教学内容】《义教课标实验教科书数学》(人教版)六年级下册【教学目标】1、探究并把握圆柱体积的运算方法,并能运用运算公式解决简单的实际问题。

2、经历观看、实验、猜想、证明等数学活动过程,进展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积运算公式的推导、运用的过程,体验数学问题的探干脆和挑战性,感受数学摸索过程的条理性和数学结论的确定性,获得成功的欢乐。

【教学重点】:把握和运用圆柱体积运算公式。

【教学难点】:圆柱体积公式的推导过程。

【教学预备】:多媒体课件【自学内容】:见预习作业听课随想【教学预设】一、自学反馈如图,一根圆柱形木料,底面半径是5分米,长10分米。

它的体积是多少?12、汇报交流:34圆柱的底面是圆。

5、什么缘故圆柱的体积能够用底面积乘高来运算?二、关键点拨1、回忆旧知,关心迁移请大伙儿想一想,在学习圆的面积时,我们是如何样把圆转化成已学的图形,来推导圆面积的运算公式的?配合学生的回答,课件动态演示:把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积的运算公式。

2、小组合作,实践迁移(1)启发:我们能不能把圆柱转化成我们已学过的立体图形,来运算它的体积?学生相互讨论,摸索应如何转化,而后组织全班汇报。

(2)操作:学生操作学具,进行拼组。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……)让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

(3)讨论:圆柱与所拼成的近似长方体之间有什么联系?学法指导:长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积确实是圆柱的体积,长方体的体积等于底面积乘高,因此圆柱的体积也等于底面积乘高。

(4)概括:试着让学生依照圆柱与近似长方体的关系,推导公式,用字母表示运算公式。

出示推导图示:长方体的体积=底面积×高=高用字母表示公式:V=sh(6)深化:要用那个公式运算圆柱的体积,必须明白什么条件?三、巩固练习2、判定正误,对的画“√”,错误的画“×”。

新人教版小学六年级下数学《用圆柱的体积解决问题》教学设计优秀教案

新人教版小学六年级下数学《用圆柱的体积解决问题》教学设计优秀教案

新人教版小学六年级下数学《用圆柱的体积解决问题》教课方案优秀教课方案《用圆柱的体积解决问题》设计浙江省诸暨市暨阳小学章梧飞一、教课目的(一)知识与技术用已学的圆柱体积知识解决生活中的实质问题,并浸透转变。

(二)过程与方法经历研究不规则物体体积的转变、丈量和计算过程,让学生在着手操作中初步成立“转变”的数学思想,体验“等积变形”的转变过程。

(三)感情态度和价值观经过实践,让学生在合作中成立协作精神,并加强学生“用数学” 的意识。

二、教课重难点教课要点:利用所学知识合理灵巧地剖析、解决不规则物体的体积的计算方法。

教课难点:转变前后的交流。

三、教课准备每组一个矿泉水瓶(课前一致收集农民山泉矿泉水瓶,装有适当清水,水高度分别为 6、7、8、9 厘米),直尺。

四、教课过程(一)复习旧知,做好铺垫1.板书:圆柱的体积。

问:圆柱的体积怎么计算?体积和容积有什么差别?2.揭题:这节课,我们要依据这些体积和容积的知识来解决生活中的实质问题。

(完好板书:用圆柱的体积解决问题。

)【设计企图】经过复习圆柱的体积计算方法以及体积和容积之间的联系和差别,为学习新知做好知识上的准备。

(二)研究实践,体验转变过程1.创建情境,提出问题。

每个小组桌子上有一个没有装满水的矿泉水瓶。

教师:本来这是一瓶装满水的矿泉水,已经喝了一部分,你能依据它来提一个数学识题吗?(随机板书)预设 1:瓶子还有多少水?(剩下多少水?)预设 2:喝了多少水?(也就是瓶子的空气部分。

)预设 3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)2.你感觉你能轻松解决什么问题?( 1)预设 1:瓶子有多少水?(怎么解决?)学生:瓶子里剩下的水呈圆柱状,只需量出这个圆柱的底面直径和高就能算出它的体积。

教师:需要用到什么工具?(直尺)你想利用直尺获得哪些数据?(底面直径、水的高度)小结:知道了底面直径和水的高度,要解决这个问题确实易如反掌。

请你准备好直尺,也许等会儿实用哦!(2)预设 2:喝了多少水?学生:喝掉部分的形状是不规则,没有方法计算。

数学人教版六年级下册圆柱体积公式的应用

数学人教版六年级下册圆柱体积公式的应用

新知探究
7 一个内直径是8cm的瓶子里,水的高度是
7cm,把瓶盖拧紧倒置放平,无水部分是 圆柱形,高度是18cm。这个瓶子的容积 是多少?
分析:瓶子里的水倒置 后,体积没变,水的体 积加上18cm高圆柱的体 积就是瓶子的容积。
7cm 18cm
新知探究
7 一个内直径是8cm的瓶子里,水的高度是
7cm,把瓶盖拧紧倒置放平,无水部分是 圆柱形,高度是18cm。这个瓶子的容积 是多少?
数学人教版六年级下册圆柱体积公式的应用
复习旧知
圆柱的体积如何求?
圆柱的体积=底面积×高 V圆柱=S底面积×h=πr2h
复习旧知
1. 一个圆柱形水桶,底面积是20平方 厘米,高是1.5米。它可以装多少立方 厘米水?
1.5m = 150cm 20×150 = 3000(cm3) 答:它的体积是3000立方厘米。
课堂训练
饮料瓶中装有18升的饮料,正放时饮料的高 度是15厘米,倒放时空余部分的高度是10厘 米,这个瓶子最多还能装进多少升的饮料?
谢谢大家!
3.14×(6÷2)2×10 =282.6(cm3) =282.6(mL) 答:小明喝了282.6毫升的水。
10cm
课堂训练
一个圆柱形容器的底面直径是10厘米,把一 块铁块放入这个容器后,水面上升2厘米,这 块铁块的体积是多少?
3.14×(10÷2)2×2 =157(cm3) 答:这块铁块的体积是157立方厘米。
瓶子的容积:
3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=3.14×16×25 =1256(cm3)
转化法
=1256(mL)
答:这个瓶子的容积是1256毫升。源自课堂训练一瓶装满的矿泉水,小明喝了一些,把瓶盖 拧紧后倒置放平,无水部分高10cm,内直径 是6cm。小明喝了多少水?

新人教版六年级下数学圆柱与圆锥解决问题

新人教版六年级下数学圆柱与圆锥解决问题

一、解决问题。

1、做一种圆柱形的通风管,通风管的
管口周长是42厘米,长2米,做
35节这样的通风管,至少需要铁皮
多少平方米?
2、大厅里有6根圆柱体柱子,要给它
们重新漆油漆,每根柱子的底面周
长是2.5米,高4米,按1千克尤
其能漆5平方米计算,漆6根柱子
需要多少千克油漆?
3、把一个长4分米,宽2.5分米,高3
分米的长方体,削成一个最大的圆
柱体,这个圆柱体的体积是多少立
方分米?
4、有一个圆锥形粮仓,底面周长是
50.24米,高30米,这个粮仓的体
积是多少立方米?
5、有一根圆柱形钢管,内直径是2分
泌,外直径是3分泌,钢管长2米,
这根钢管的体积是多少立方分米?
6、在底面半径是10厘米的圆柱形容
器中放入一块不规则的铜块,铜块
完全浸没在水中,这是水面上升了
4厘米,这个铜块的体积是多少立
方厘米?
7、一个饮料瓶里面深27厘米,底面
内直径是8厘米,瓶里饮料深15
厘米。

把饮料塞紧后瓶口向下倒
立,这是饮料深20厘米,问饮料
瓶的容积是多少?。

人教版六年级数学——圆柱的表面积、体积知识点+练习

人教版六年级数学——圆柱的表面积、体积知识点+练习

圆柱的表面积应用类型一:利用圆柱表面积解决实际问题例1:一顶圆柱形厨师帽,高30 cm,帽顶直径20cm。

做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。

)1、一种没有盖的圆柱形铁皮水桶,底面周长是12.56 dm,高是6 dm。

做一对这样的水桶大约需要铁皮多少平方分米?例2:制作一截底面直径是6cm,长是40cm的烟囱,至少要用多少平方厘米铁皮?2、一个刷油漆的滚简长为1.4 dm,直径为5 cm。

如果它向一个方向滚动100 周,能刷墙多少平方分米?类型二:运用图示法解决圆柱的高增加(或减少)引起表面积的变化问题例3、一根圆柱形木料的底面半径是0.3m,长是2m。

将它截成4段,这些木料的表面积比原木料增加了多少平方米?例4、一个高为25cm的圆柱,截去高为5cm的小圆柱后,圆柱的表面积减少了31.4cm,原来圆柱的表面积是多少平方厘米?3、把一根长是2m,底面直径是3dm的圆柱形木材锯成3段,得到的3个小圆柱的表面积总和比原来增加了多少平方分米?4、一个高为10 cm的圆柱,如果它的高增加2cm,那么它的表面积就增加125.6㎡,原来这个圆柱的表面积是多少?类型三:组合图形的面积例5、如图是一种钢制的配件,计算它的表面积。

(单位:cm)5、要将路灯柱(如右图,圆柱的下底面不刷漆)漆上白色的油漆,要漆多少平方米?街心花园有30 个这样的灯柱,如果油漆灯柱每平方米人工费5 元,一共需要人工费多少元?圆柱的体积知识点一:理解圆柱的体积的意义一个圆柱所占空间的大小叫做这个圆柱的体积。

比较拼成的长方体与原来的圆柱的关系将圆柱切拼成近似的长方体,形状变了,但体积不变。

(2)推导圆柱体积的计算公式长方体的体积=底面积x 高 圆柱的体积 = 底面积x 高 如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,那么圆柱的体积计算公式用字母表示为:V=Sh 。

归纳总结:计算圆柱的体积的基本方法。

人教版数学六年级下册圆柱体积公式的推导及应用

人教版数学六年级下册圆柱体积公式的推导及应用

《圆柱体积公式的推导及应用》教学设计教学内容:人教版小学数学第十二册第三单元第3课时《圆柱的体积》教学目标:1、知识技能结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、过程方法让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、情感态度价值观通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。

因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。

《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到最大化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:1、合作探究学习为主要的学习方式。

2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。

3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。

教学用具:课件烧杯水体积不同的圆柱体圆柱实物教学过程一、情景引入1、教学开始首先观看微视频,教师拿一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察思考:会发生什么情况?再放入一个更大一些的圆柱体呢?由这个发现你想到了些什么?(水面会上升,因为圆柱占了一定个空间)2、引出体积的概念提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)【设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供了研究方法。

小学数学六年级下册:1.圆柱第7课时解决问题-优质课件(图文并茂)

小学数学六年级下册:1.圆柱第7课时解决问题-优质课件(图文并茂)
六年级数学下册(RJ)
教学课件
第 3 单元
圆柱与圆锥
1. 圆 柱
第 7 课时 解 决 问 题
一、探索新知
一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧 倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积 是多少?
7
能不能转化成圆柱呢?
7cm
这个瓶子不是一个完整的 圆柱,无法直接计算容积。
2. 一个圆柱的高是5cm,若高增加2cm(如图 所示),圆柱的表面积就增加25.12cm2。原来圆柱 的体积是多少立方厘米? 25.12÷2÷3.14÷2=2(cm) 3.14×22×5=62.8(cm3) 答:原来圆柱的体积是62.8cm3。
三、课堂小结
正放时水的体积+倒放瓶子时空余部分的容积=瓶 子的容积;利用体积不变的特性,把不规则圆柱转化 成规则圆柱来计算。
81 ÷4.5 ×3 =18 ×3 =54(dm³)
答:它的体积是54dm³ 。
10. 一个圆柱形玻璃容器的底面直径是10cm,把一块完全浸 泡在这个容器的水中的铁块取出后,水面下降2cm。这块铁 块的体积是多少?
请你想一想,如何求这 块铁块的体积?
2 3.14×(10÷2) ×2 =3.14×5² ×2 =3.14×25×2 =78.5×2 =157(cm³ )
7. 学校要在教学区和操场之间修一道围墙,原计划用土35m³。 后来多开了一个厚度为25cm的月亮门,减少了土石的用量。 现在用了多少立方米的土石?
请你仔细想一想,要想知道 现在用多少立方米的土石? 就要先求什么? 35-3.14×(2÷2)×0.25 =35-3.14×1×0.25 =35-0.785 =34.215(m³ )
4.一个圆柱的体积是80cm3,底面积是16cm。 它的高是多少厘米 分析:此题为已知圆柱体积和底面积求高,

人教版六年级下册《圆柱的体积》小学数学-有答案-同步练习卷(某校)

人教版六年级下册《圆柱的体积》小学数学-有答案-同步练习卷(某校)

人教版六年级下册《圆柱的体积》小学数学-有答案-同步练习卷(某校)一、解答题(共13小题,满分0分)1. 一个圆柱体玻璃杯,从里面量得直径是6厘米,深是10厘米,这个玻璃杯内最多能装多少毫升水?2. 做一个底面直径是0.4米,高是5分米的圆柱形水桶,这样的一个水桶能盛多少升水?3. 将一张长为20厘米、宽为15厘米的长方形纸以长边为轴,旋转一周,得到一个立体图形,它的体积是多少?4. 一个圆柱的底面直径是4厘米,它的侧面展开图正好是一个正方形。

这个圆柱的体积大约是多少立方厘米?5. 一个圆柱的底面半径是5厘米,它的侧面展开图正好是一个正方形,这个圆柱的体积大约是多少立方厘米?6. 一个圆柱形玻璃瓶,体积是75.36立方厘米,底面积是12.56平方厘米。

它的高是多少厘米?7. 一根6米长的圆柱形木料被锯成3段,表面积增加了15平方厘米,这根木料的体积是多少立方厘米?8. 一根长为2米的圆木,截成两段相同的圆木后,表面积增加了48平方厘米,每段圆木的体积是多少立方厘米?9. 已知一个圆柱的半径是2厘米,把它切拼成一个近似的长方体后,表面积增加了48平方厘米,这根圆柱的体积是多少?10. 一个圆柱的底面周长是6.28厘米,把它切拼成一个近似的长方体后,表面积增加了48平方厘米。

求原来圆柱的体积?11. 一个酒瓶里面深32厘米,底面内直径为8厘米,瓶里酒深10厘米,把瓶盖拧紧后瓶口向下,这时酒深20厘米,酒瓶的容积是多少毫升?12. 甲、乙两个圆柱形容器的底面积之比为3:5,甲容器中装着1200毫升水,水面高16厘米,乙容器中是空的。

现将甲容器中的一部分水倒入乙容器,使两个容器中水的高度一样。

问:这时水面高多少厘米?13. 一个圆柱形玻璃杯内装着水,水面高15厘米,从里面量,玻璃杯的底面积是50平方厘米,将一个底面积为10平方厘米,高17厘米的长方体铁块垂直放入杯中,这时高多少厘米?(水未溢出)【家庭作业】一、填空.一个圆柱的底面半径3分米,高2分米,表面积是________平方分米,体积________立方分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《用圆柱体积解决问题》教学设计
教学内容:人教版六年级下册第三单元例7
教学目标:
1、结合具体情境,探索不完整的圆柱体容器的容积的计算方法;
2、通过观察思考、分析,结合合情推理能力和初步的演绎推理能力,体验数学思想和数学研究的方法;
3、体验数学问题的探究性和挑战性,在探索过程中获得成功的喜悦。

教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

教学难点:通过实践操作、合作交流,体会转化的数学思想。

教学方法:引导探究合作交流
教学准备:多媒体课件每组一个矿泉水瓶
教学过程
一、问题引入,揭示课题
1.出示一个空瓶子。

提问:关于这个瓶子你能提出什么数学问题?瓶子的容积能直接去解决吗?
2.揭题:这节课,我们要根据我们学过的知识来解决生活中的实际问题。

二、探索实践,体验转化过程
1.创设情境,提出问题。

如果现在没有规则形体的容器我们如何来求瓶子的溶剂?如果把满瓶的水倒出一部分,你觉得可以求吗?
2.小组合作探究解决方法。

课件给出探究提示。

3.小组代表上台汇报探究结果,演示转化过程。

4.教师演示并小结。

倒置前水的体积+倒置后空气的体积=瓶子容积。

三、学以致用,解决实际问题。

1.出示教材例7
2.再次提出问题:如果我们要求喝掉了多少水,怎么去解决?
3.学生根据转化思想给出方案并完成做一做。

四、全课总结,提升认识。

通过这节课的学习你有什么收获?刚才两个问题我们为什么都要把瓶子倒转过来呢?转化的思想在我们以前那些知识的学习中有过应用?你有什么收获?
教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。

在解决问题时,主要要弄清楚转化前后两部分之间的关系。

五、作业布置
教材29页练习五第7、8题
六、板书设计
用圆柱体积解决问题
水的体积+空气的体积=瓶子的容积
倒置前空气的体积=倒置后空气的体积。

相关文档
最新文档