第1课时 利用等式的性质解方程
新华东师大版七年级数学下册《6章 一元一次方程 6.2 解一元一次方程 等式的性质与方程的简单变形》教案_1
1.等式的性质与方程的简单变形第1课时由等式的性质到方程简单变形归纳导入复习导入类比导入悬念激趣同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.图6-2-1小时候的曹冲是多么聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的质量.最常见的方法是用天平测量一个物体的质量.现在认识一下天平,然后回答下列问题:问题1:天平有什么作用呢?它代表什么意义呢?问题2:要让天平平衡应该满足什么条件?问题3:如果天平在平衡的条件下,左盘放着重(3x+4)克的物体,右盘放着重4x克的物体,你知道怎样列式吗?问题4:已知方程4x=3x+4,你能求出x吗?[说明与建议] 说明:通过对天平的认识让学生感受等式可以类比天平,利用天平称物的图示可以形象直观地展现等式的性质,还可以直观地展现方程的求解过程,从而激发学生的求知欲.建议:充分发挥学生的主动性,注重训练学生的合作交流意识,通过解决问题,回顾以前知识,提醒学生注意与新知识的对比.上节课我们将几个实际问题转化成了数学模型即方程,只列出了方程,并没有求出方程的解.其实,在小学我们利用逆运算能够去求形如ax+b=c的方程的解,比如:5x+4=9.对于这样的方程:23x=13,比较复杂,怎么解呢?要想求出这些复杂的一元一次方程的解,我们必须研究等式的性质,才可以解决这个问题.[说明与建议] 说明:学生感受到自己原先具有的知识已不能够解决目前的问题,学生遇到了困难,从而激发学生的求知欲,产生了克服困难的决心和信心,更能积极投入到新课的学习情境中去.建议:可让学生去解一下这个复杂的方程,让他们亲身体会此方程的复杂,然后小组讨论,是否能够找到解决办法.——教材第6页例1、例2 例1 解下列方程: (1)x -5=7;(2)4x =3x -4. 例2 解下列方程: (1)-5x =2;(2)32x =13.【模型建立】利用等式的基本性质解方程就是通过对方程进行简单变形,使含未知数的项在一边,不含未知数的项在另一边,合并同类项后,两边同时除以未知数的系数即可.【变式变形】1.如果5a 3b 5与a 3b 6m -7是同类项,那么m 的值为( B )A .-4B .2C .-2D .42.当x =___3___时,代数式3x -7的值是2. 3.当k =__-12__时,方程5x -k =3x +8的解是-2. 4.解方程:(1)2-3x =5.[答案:x =-1] (2)-2x =6+3x.[答案:x =-65](3)-35x +2=-4.[答案:x =10] (4)-14x +1=-2x +4.[答案:x =127][命题角度1] 等式的基本性质的应用此种题型考查学生对等式的基本性质的理解,应用等式的基本性质对方程进行简单变形. 例 把方程12x =1变形为x =2,其依据是__等式的性质2__.[命题角度2] 移项的识别移项的依据是方程的变形规则1,这一变形过程不改变方程的解.注意:(1)移项的时候一定要变号;(2)移项不等于移动,在等号一边利用加法交换律移动的项不能改变符号;(3)移项不改变方程中项的数目,不要漏写任一项.例 解方程6x +1=-4,移项正确的是( D ) A .6x =4-1 B .-6x =-4-1 C .6x =1+4 D .6x =-4-1[命题角度3] 利用等式的基本性质解方程利用等式的基本性质可以把一个等式进行变形,变成ax =b 的形式,然后两边同时除以a 即可.例 [湖州中考] 方程2x -1=0的解是x =__12__.[命题角度4] 与其他知识综合此类型试题检测学生的审题能力,并能根据题意准确列出式子,利用一元一次方程的解法求出有关字母的值.例 x 为何值时,代数式2x -3与-3x +7的值互为相反数?[答案:x =4] [命题角度5] 解决实际应用题列方程解决实际问题是本章的重点及难点,此类型考题注重考查学生的综合分析能力及解决问题的能力,要求学生能够读懂题意,找准等量关系,正确列出方程并求解.图6-2-2例 [金华中考] 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图6-2-2方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可做多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张?解:(1)4张餐桌:4×4+2=18(人);8张餐桌:4×8+2=34(人). (2)设这样的餐桌需要x 张,由题意得4x +2=90,解得x =22. 答:这样的餐桌需要22张.练习1 P5 1.回答下列问题:(1)由a =b 能不能得到a -2=b -2?为什么? (2)由m =n 能不能得到-m 3=-n3?为什么?(3)由2a =6b 能不能得到a =3b ?为什么? (4)由x 2=y3能不能得到3x =2y ?为什么?解:(1)能,根据等式的基本性质1,两边同时减去2. (2)能,根据等式的基本性质2,两边同时乘以-13.(3)能,根据等式的基本性质2,两边同时除以2. (4)能,根据等式的基本性质2,两边同时乘以6.2. 填空,使所得结果仍是等式,并说明是根据哪一条等式性质得到的: (1)如果x -2=5,那么x =5+________; (2)如果3x =10-2x ,那么3x +________=10; (3)如果2x =7,那么x =________; (4)如果x -12=3,那么x -1=________.解:(1)2,等式的基本性质1. (2)2x ,等式的基本性质1. (3)72,等式的基本性质2. (4)6,等式的基本性质2. 练习2 P71.下列方程的变形是否正确?为什么? (1)由3+x =5,得x =5+3; (2)由7x =-4,得x =-74;(3)由12y =0,得y =2;(4)由3=x -2,得x =-2-3.解:(1)错误,3由等号左边移项到等号右边没有改变符号. (2)错误,方程两边同时除以7,得x =-47.(3)错误,方程两边同时乘以2,得y =0.(4)错误,x 由等号右边移项到等号左边没有改变符号. 2.(口答)求下列方程的解: (1)x -6=6; (2)7x =6x -4; (3)-5x =60; (4)14y =12. 解:(1)x =12. (2)x =-4. (3)x =-12. (4)y =2. 练习3 P8 1.解下列方程: (1)3x +4=0; (2)7y +6=-6y ; (3)5x +2=7x +8; (4)3y -2=y +1+6y ; (5)25x -8=14-0.2x ; (6)1-12x =x +13.解:(1)移项,得3x =-4. 两边同时除以3,得x =-43.(2)移项,得7y +6y =-6. 合并同类项,得13y =-6. 两边同时除以13,得y =-613. (3)移项,得5x -7x =8-2. 合并同类项,得-2x =6. 两边同时除以(-2),得x =-3. (4)移项,得3y -y -6y =1+2. 合并同类项,得-4y =3. 两边同时除以(-4),得y =-34.(5)两边同时乘以20,得8x -160=5-4x . 移项,得8x +4x =5+160. 合并同类项,得12x =165.两边同时除以12,得x =554. (6)两边同时乘以6,得6-3x =6x +2. 移项,得-3x -6x =2-6. 合并同类项,得-9x =-4. 两边同时除以(-9),得x = 49.2.试解6.1节中问题1所列出的方程. 解:移项,得44x =328-64. 合并同类项,得44x =264. 两边同时除以44,得x = 6. 习题6.2.1 P9 1.解下列方程: (1)18=5-x ; (2)34x +2=3-14x ; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ; (5)x -1=5+2x ;(6)0.3x +1.2-2x =1.2-2.7x . 解:(1)移项,得x =5-18. 合并同类项,得x =-13. (2)移项,得34x +14x =3-2.合并同类项,得x =1.(3)移项,得3x +4x -6x =7-2. 合并同类项,得x =5.(4)移项,得10y -11y +2y =-5-5. 合并同类项,得y =-10. (5)移项,得x -2x =5+1. 合并同类项,得-x =6, 两边同时除以-1,得x =-6. (6)移项,得0.3x -2x +2.7x =1.2-1.2. 合并同类项,得x =0. 2.解下列方程: (1)2y +3=11-6y ; (2)2x -1=5x +7; (3)13x -1-2x =-1; (4)12x -3=5x +14. 解:(1)移项,得2y +6y =11-3. 合并同类项,得8y =8. 两边同时除以8,得y =1.(2)移项,得2x -5x =7+1. 合并同类项,得-3x =8. 两边同时除以-3,得x =-83.(3)移项,得13x -2x =-1+1.合并同类项,得-53x =0.两边同时除以-53,得x =0.(4)移项,得12x -5x =14+3.合并同类项,得-92x =134.两边同时除以-92,得x =-1318.3.已知A =3x +2,B =4-x ,解答下列问题: (1)当x 取何值时,A =B? (2)当x 取何值时,A 比B 大4?解:(1)根据题意,要求3x +2=4-x 的解. 解这个方程得x =12.所以当x =12时,A =B .(2)根据题意,要求3x +2-(4-x )=4的解. 解这个方程得x = 32.所以当x =32时,A 比B 大4.专题一 一元一次方程1. 在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1. 2. 某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( ).A .25%B .40%C .50%D .66.7% 3. 下面判断中正确的是 [ ]A .方程132=-x 与方程x x x =-)32(同解B .方程132=-x 与方程x x x =-)32(没有相同的解C .方程x x x =-)32(的解都是方程132=-x 的解D .方程132=-x 的解都是方程x x x =-)32(的解专题二 探究题4. 对于数x ,符号[x ]表示不大于x 的最大整数.例如[3.14]=3,[-7.59]=-8,则满足关系式[377x +]=4的x 的整数值有( )A .6个B .5个C .4个D .3个5. 现在弟弟的年龄恰是哥哥年龄的21,而九年前弟弟的年龄是哥哥年龄的51,则哥哥现在的年龄是___________岁.6.解方程:3x-1.10.4 -4x-0.20.3 =0.16-0.7x0.06状元笔记【知识要点】1.等式的基本性质:(1)等式的两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式;(2)等式的两边都乘以(或都除以)同一个数(除数不能为0),所得结果仍是等式.2.方程的变形规则:(1)方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变;(2)方程的两边都乘以(或都除以)同一个不等于0的数,方程的解不变.3.方程的变形类型:(1)移项:依据方程的变形规则1,将方程中的某些项改变符号后,从方程的一边移到另一边的变形;(2)将未知数的系数化为1:依据方程的变形规则2,将方程的两边都除以未知数的系数的变形.4.一元一次方程:只含有一个未知数,并且未知数的最高次数是的整式方程叫做一元一次方程.5.解一元一次方程的步骤: ①去分母 ②去括号 ③移项④合并同类项⑤化未知项的系数为1⑥检验方程的解一般不需答出,但要养成检验的习惯 6.列一元一次方程解应用题的步骤:①弄清题意,设未知数:求什么?用字母表示适当的未知数;②分析条件,找等量关系:找出已给出的数量及未知数之间的等量关系;③组织方程,列方程:对等量关系中涉及的量,列出所需的表达式,根据等量关系得到方程.④解所得的方程:求解所列出的一元一次方程,并检验所求的解是否原方程的解、是否符合实际意义.⑤写出答语.【温馨提示(针对易错)】1.判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等都不是一元一次方程.2.解方程时要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.【方法技巧】解方程的基本思想就是应用等式的基本性质进行转化,将方程化为“x =常数”的形式,最后的“常数”就是方程的解. 答案1.【答案】D2.【答案】C .【解析】设商品的进价为a 元,标价为b 元, 则80%b -a =20%a ,解得b =32 a ,原标价出售的利润率为b-aa ×100%=50%3.【答案】D【解析】方程132=-x 的解是2=x;方程x x x =-)32(的解是0=x 和2=x .因此,A .B .C .的判断都是错误的,只有D 判断正确. 4. 【答案】D 5. 【答案】12【解析】设弟弟年龄是x ,则哥哥年龄是2x ,则依题意有5(x -9)=(2x -9), ∴x = 12.6. 【答案】解:原方程变形为 30x-114 -40x-23 =16-70x6去分母,得3×(30x -11)-4×(40x -2)=2×(16-70x ) 去括号,得90x -33-160x +8=32-140x 移项, 得90x -160x +140x =32+33-8 合并, 得70x =57 系数化为1,得x =5770“方程的简单变形”学习点拨学习方程变形的依据及方程的两种简单变形,是为进一步学习解一元一次方程作铺垫。
2.1.1等式的性质与方程的解集(课件)高一数学(人教B版2019必修第一册)
(2 + 1)2 −( − 1)2 = [(2 + 1) + ( − 1)][(2 + 1) − ( − 1)]
= 3( + 2) = 3 2 + 6.
新知探索
下面我们介绍另外一个经常会用到的恒等式:对任意的,,,都有
2 + 5 + 6 =________________.
( + 2)( + 3)
新知探索
尝试与发现:证明恒等式( + )( + ) = 2 + ( + ) + .
并由此探讨 2 + + 的因式分解方法.
上述恒等式的证明,也只需将左边展开然后合并同类
不难知道,利用类似的方法可以得到所有一元一次方程的解集.
新知探索
从小学开始我们就知道,
任意两个非零的实数,它们的乘积不可能是零,因此:
如果 = 0,则 = 0或 = 0.
利用这一结论,我们可以得到一些方程的解集.例如,由方程
(4 + 1)( − 1) = 0可知4 + 1 = 0或 − 1 = 0,从而
2.1.1等式的性质与方程的解集
复习引入
我们已经学习过等式的性质:
(1)等式的两边同时加上同一个数或代数式,等式仍成立;
(2)等式的两边同时乘以同一个不为零的数或代数式,等式仍成立.
尝试与发现:请用符号语言和量词表示上述等式的性质:
+ =+
(1)如果 = ,则对任意,都有___________________;
项即可.据此也可进行因式分解.例如,对于3 2 + 11 + 10
用等式的性质解方程
两边不能 除以0
复习知识要点 等式的性质1
等式两边加(或减)同一个数(或式 子),结果仍相等.
用式子形式怎样 表示?
如果 a = b,那么 a ± c = b ± c
复习知识要点
等式的性质2
等式两边乘同一个数,或除以同一个非0 的数,结果仍相等.
用式子
280 1.5x 280 355 280 1.5x 75 x 50
答:用余下的布可以做50套儿童服装。
请同学们谈谈本节课的收获:
我的收获是.... 我感到困难的是.....
课本P83,习题3.1 第四题
4
实践应用:
服装厂用355米布作成人服装和儿童 服装,成人服装每套平均用布3.5米,儿 童服装每套平均用布1.5米。现在已经做 了80套成人服装,用余下的布做几套儿 童服装?
解:设余下的布可以做 x 套儿童,那么这 x 套服装就需要布1.5 x米,根据题意,得:
803.5 1.5x 355 280 1.5x 355
3.1.2等式的性质解方程
临沧市民族中学 高俊
学习目标:
1.熟练运用等式的性质解方程
2.初步体验解方程中的“化归” 意识
以下等式变形,是否正确?
(1) 由x = y,得到 x+2 = y+2 √ (2) 由 2a-3 = b-3,得到 2a =b√ (3) 由m =n,得到 2am= 2an √
的形式怎
样
如果 a = b,那么ac= bc
表示?
如果
a
=
b,那么
a c
=
bc(c≠ 0)
用等式的性质变形时:
1.两边必须同时进行计算; 2.加(或减),乘(或除以)的数必 须是同一个数或式; 3.两边不能除以0.
北师大版七年级数学上册《求解一元一次方程(第1课时)》教学教案
《求解一元一次方程(第1课时)》教学教案教师引导学生思考:(1)与原方程相比,哪些项的位置发生了改变?哪些没变?(2)改变位置的项的符号是否发生了变化?没改变位置的项的符号是否发生了变化?与原方程相比常数项-2的位置发生了改变,一次项5x 和常数项8没变常数项-2的位置由等号的左边移动到了右边,符号由“-”变成了“+”,一次项5x 和常数项8的位置没变,符号也没变.师生总结出移项:移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。
做一做:例1下列计算,其中属于移项变形的是(C)A.由5+3x-2,得3x-2+5B.由-10x-5=-2x,得-10x-2x=5C.由5x+3=-4x+1,得5x+4x=1-3D.由5x=15,得x=3易错提醒:1.移项时必须是从等号的一边到另一边,并且不要忘记对移动的项变号,如从3+6x=7得到6x=7+3是不对的.鼓励学生积极思考,主动解决问题,小组交流,总结发言,教师及时纠正.培养了学生用符号语言表示等式的两个基本性质.加深学生对方程概念的理解,同时还可以锻炼学生思维的主动性.2.没移项时不要误认为移项,如从-2=x得到x=2,犯这样的错误,其原因在于对等式的基本性质(对称性)与移项的区别没有分清.3、出示课件做一做:教师引导学生利用移项求解一元一次方程例1解下列方程:(1)2x+6=1;(2)3x+3=2x+7;解:(1)移项,得2x=1-6.合并同类项,得2x=-5.方程两边同除以2,得x=-5 2 .(2)移项,得3x-2x=7-3.合并同类项,得x=4.例2解方程:14x=-12x+3.解:移项,得14x+12x=3.合并同类项,得34x=3.方程两边同除以34(或同乘以43),得x=4.师生共同总结:利用移项解方程的步骤:(1)移项;(2)合并同类项;(3)系数化为1.做一做:1.用移项法解方程:7-2x=3-4x;解:(1)移项,得4x-2x=3-7.合并同类项,得2x=-4.方程两边同除以2,得x=-2.2.x为何值时,代数式4x+3与15-2x的值相等?解:4x+3=15-2x 鼓励学生积极思考,自主解决问题,小组交流,总结发言,大胆提出自己的观点,教师及时鼓励和纠错。
《等式的性质(一)》教学设计与评析
《等式的性质(一)》教学设计与评析如东县曹埠镇孙窑小学薛志华教学内容苏教版《义务教育课程标准实验教科书·数学》五年级下册第一单元第3~4页例3、例4,“试一试”“练一练”,练习一第4~6题。
教材简析本课内容包括两部分,一部分是等式的性质(一),即等式两边同时加上或者减去同一个数,所得的结果仍然是等式;另一部分是利用等式的这一性质解一步计算的方程。
这些内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础。
在过去的小学数学教材里,学生是运用四则运算各部分之间的关系解方程,这样的思路只适宜解比较简单的方程,而且和中学教材不一致。
《数学课程标准》从学生的长运发展和中小学数学教学的衔接出发,要求小学阶段的学生能“理解等式的性质,会利用等式的性质解简单的方程”。
关于等式性质的内容,教材分两段教学:本课只学习第一段,即等式两边同时加上或者减去同一个数,所得的结果仍然是等式。
教材中,等式的这一性质是通过四幅层层递进的天平图引导学生发现的。
关于解方程,教材先用天平呈现了数量关系,再让学生列方程并学习解方程,同时学会正确的书写格式和检验的方法。
由于不再利用四则计算各部之间的关系解方程,因此,暂时只解未知数不是减数的一步计算的方程。
教学目标1、让学生在具体的情境中初步理解“等式的两边同时加上或减去同一个数,所得的结果仍然是等式”,会用等式的性质解简单的方程。
2、让学生在观察、分析、抽象、概括和交流的过程中,进一步积累数学活动的经验,感受方程的思想方法,发展初步的抽象思维能力。
3、让学生在学习和探索的过程中,进一步培养主动与他人合作交流、自觉检验等习惯,获得一些成功的体验,进一步树立学好数学的信心。
教学重点理解并会用等式性质(一)解简单的方程,书写规范,自觉检验。
教学难点在探索过程中,积累数学活动经验,发展数学能力,培养良好的习惯。
教学过程一、情境引入,组织猜想师:同学们都听过“两只笨狗熊”的故事。
人教版高中数学B版高中数学必修一《等式》等式与不等式(第1课时等式的性质与方程的解集)
因式分解法解一元二次方程 用因式分解法求下列方程的解集. (1)6x(x+1)=5(x+1); (2)(2x-1)2-(x+1)2=0; (3)(x+3)(x+1)=6x+2. 【解】 (1)分解因式,得(6x-5)(x+1)=0, 所以 6x-5=0 或 x+1=0,所以 x1=56,x2=-1. 所以方程的解集为56,-1.
1.分解因式 x3-x,结果为( )
A.x(x2-1)
B.x(x-1)2
C.x(x+1)2
D.x(x+1)(x-1)
解析:选 D.x3-x=x(x2-1)=x(x+1)(x-1).
2.已知 a+b=3,ab=2,计算:a2b+ab2 等于( )
A.5
B.6
C.9
D.1
解析:选 B.a2b+ab2=ab(a+b)=2×3=6.
把下列各式分解因式: (1)x2-3x+2=________; (2)x2+37x+36=________; (3)(a-b)2+11(a-b)+28=________; (4)4m2-12m+9=________. 解析:(1)x2-3x+2=(x-1)(x-2). (2)x2+37x+36=(x+1)(x+36).
一元一次方程的解集 用适当的方法求下列方程的解集: (1)0x.7-0.170-.030.2x=1; (2)x-12x-12(x-1)=2(x3-1). 【解】 (1)原方程可化为170x-1030(0.17-0.2x)=1, 即170x-17-320x=1,
去分母,得 30x-7(17-20x)=21, 去括号,得 30x-119+140x=21, 移项,得 30x+140x=21+119, 合并同类项,得 170x=140, 系数化为 1,得 x=1147. 所以该方程的解集为1147.
第一单元简易方程《等式的性质和解方程(1)》教案
5.培养学生面对数学问题时的自信心和毅力,形成良好的数学学习习惯,提升数学情感素养。
三、教学难点与重点
1.教学重点
-理解并掌握等式的性质,包括等式两边同时加减同一个数、同时乘除同一个不为0的数,等式仍然成立。
-学会运用等式的性质解一元一次方程,如x+a=b、ax=b(a≠0)等。
第一单元简易方程《等式的性质和解方程(1)》教案
一、教学内容
本节课选自《数学》五年级第一单元简易方程中的《等式的性质和解方程(1)》。教学内容主要包括以下几部分:
1.等式的性质:介绍等式两边同时加上或减去同一个数,等式仍然成立;等式两边同时乘或除以同一个不为0的数,等式仍然成立。
2.解方程:利用等式的性质解一元一次方程,如x+a=b、ax=b(a≠0)等。
-在解方程过程中,正确识别未知数和已知数,并熟练运用等式性质进行变形。
-解决实际问题时,能够将问题转化为方程,并运用所学知识求解。
举例解释:
-通过分组讨论和教师引导,让学生理解等式性质推导过程,如:用数轴表示3x=9,除以3后数轴上的点如何移动。
-在解方程时,强调找等号两边相等的部分,如:3x+2=5,先将2移到等号右边,得到3x=3,再除以3求解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等式的性质、一元一次方程的解法以及它们在实际生活中的应用。通过实践活动和小组讨论,我们加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版七年级数学上册《求解一元二次方程》第1课时示范课教学设计
第五章一元一次方程2 求解一元一次方程第1课时一、教学目标1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能.2.在解方程的过程中分析、归纳移项法则,并能运用这一法则解方程.3.体会解一元一次方程中的转化思想.4.通过学生观察、独立思考等过程、培养学生归纳、概括的能力.二、教学重难点重点:正确理解和使用移项法则.难点:能利用移项的方法解一元一次方程.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【议一议】教师活动:通过观察、归纳,发现移项法则,在应用移项法则时体验移项的优越性.问题:观察下列变形过程,你发现了什么?引导学生先观察,发现相同和不同之处,并说一说自己的看法.预设:把方程中的某一项改变符号后,从方程的一边移动到另一边,这种变形叫做移项.【做一做】下面的移项对不对?如果不对,应怎样改正?(1)5+x=10移项得x=10+5 ;(2)6x=2x+8移项得6x=8 +2x;(3)5-2x=4-3x移项得3x-2x=4-5;(4)-2x+7=1-8x移项得-2x+8x=1-7.预设:(1)错,移项没有变号,应修改为x=10-5.(2)错,交换位置不是移项,应修改为6x-2x=8.(3)(4)都是对的.想一想:提出问题:移项时,应注意什么问题?预设:1.解下列方程:(1) 10x-3 =9 ; (2)5x-2 = 7x +8; (3)3162x x =+; (4)3513.22x x -=+解: (1) 移项,得 10x = 9+3.化简,得 10x = 12.两边同时除以10,得 x = 1.2. (2)移项,得5x-7x = 8+2.合并同类项,得 -2x = 10. 两边同时除以-2,得 x = -5. (3)移项,得316.2x x -= 合并同类项,得 116.2x -=两边同时乘以-2,得 x = -32. (4)移项,得353 1.22x x --=- 合并同类项,得 93.22x -=两边同时乘以29-,得 1.3x =-2.下面方程的解法对吗?如果不对,应怎样改正?解:移项没有变号,正确的解法:移项,得思维导图的形式呈现本节课的主要内容:教科书第136页。
人教版高中数学B版高中数学必修一《等式》等式与不等式课时(第1课时等式的性质与方程的解集)
B [A.两边加不同的数,故A不符合题意; B.两边都乘以c,故B符合题意; C.c=0时,两边都除以c无意义,故C不符合题意; D.两边乘6c,得到3x=2y,故D不符合题意.故选B.]
16
恒等式的化简 【例 2】 化简: (1)(3a-2)-3(a-5); (2)-3x2y+2x2y+3xy2-2xy2; (3)2m+(m+n)-2(m+n); (4)(4a2b-5ab2)+[-2(3a2b-4ab2)].
24
3.将 y2-5y+4 因式分解的结果是( )
A.(y+1)(y+4)
B.(y+1)(y-4)
C.(y-1)(y+4)
D.(y-1)(y-4)
D [因式分解,可得 y2-5y+4=(y-1)(y-4),故选 D.]
25
方程的解集 【例4】 求下列方程的解集. (1)x(x+2)=2x+4; (2)16(x-5)2-9(x+4)2=0.
故原方程的解集为87,32.
28
用“十字相乘法”求一元二次方程的解集的一般步骤 1移项,将一元二次方程的右边化为0; 2化积,利用提取公因式法、公式法等将一 元二次方程的左 边分解为两个一次因式的积; 3转化,两个因式分别为0,转化为两个一 元一次方程 4求解,解这两个一元一次方程,它们的解就是原方程的解; 5将其解写成集合的形式.
11
合作探究 提素养
12
等式性质的应用
【例 1】 已知 x=y, 则下列各式:①x-3=y-3;②4x=6y;
③-2x=-2y;④xy=1;⑤x-3 2=y-3 2;⑥ax=ay.其中正确的有(
)
A.①②③
B.④⑤⑥
C.①③⑤
D.②④⑥
C [①x-3=y-3;③-2x=-2y;⑤x-3 2=y-3 2正确,故选 C.]
初中数学 等式的性质如何应用于解一元一次方程
初中数学等式的性质如何应用于解一元一次方程等式的性质是解决一元一次方程的重要工具。
在解题过程中,我们可以利用等式的性质来简化计算和转化等式,从而更加轻松地解决方程问题。
下面将介绍等式的性质在解一元一次方程中的应用。
一、等式的加法性质和减法性质一元一次方程的一般形式为ax + b = c,其中a,b,c 是已知数,x 是未知数。
我们可以利用等式的加法性质和减法性质来解决方程问题。
具体方法如下:1. 如果方程中有多项式,可以将其中的同类项合并,然后利用等式的加法性质和减法性质化简方程。
例如,对于方程2x + 3x + 4 = 7x + 2,我们可以将方程中的同类项合并:5x + 4 = 7x + 2,然后用等式的减法性质将5x 移到方程的一边,将常数项移到另一边:5x - 7x = 2 - 4,即-2x = -2。
最后,用等式的乘法性质将x 的系数消去,解得x = 1。
2. 如果方程中有分式,可以通过通分来化简方程。
例如,对于方程2/x + 1/(x+1) = 3/2,我们可以通过通分将方程化简为(4(x+1) + 2x) / (2x(x+1)) = 3/2,即6x + 6 = 3x^2 + 3x,然后移项得到3x^2 - 3x - 6 = 0。
最后,用一元二次方程的求解公式解得x = 2 或x = -1。
二、等式的乘法性质和除法性质一元一次方程的另一种解法是利用等式的乘法性质和除法性质。
具体方法如下:1. 如果方程中有一个未知数的系数为1,可以利用等式的乘法性质将系数移动到未知数的一边。
例如,对于方程x/3 + 2 = 5,我们可以通过等式的乘法性质将1/3 移到未知数x 的一边,得到x = 9。
2. 如果方程中有一个未知数的系数不为1,也可以利用等式的乘法性质来解决方程。
例如,对于方程2x/3 + 4 = 8,我们可以将方程两边都乘以3,得到2x + 12 = 24,然后移项得到2x = 12,最后解得x = 6。
用等式的性质解方程教案
用等式的性质解方程教案教学目标:1.通过本课的学习,学生能够掌握等式的性质,利用等式的性质解方程;2.能够灵活运用等式的性质解决实际问题。
教学重点:1.等式的性质;2.利用等式的性质解方程。
教学难点:利用等式的性质解决实际问题。
教学准备:1.教师准备好教材、黑板、粉笔等教学用具;2.学生准备好教材、笔、笔记本等学习用具。
教学过程:Step 1 引入新课教师以生活实例引入新课,如“小明和小红一起做作业,小明写了多少题目,小红写了多少题目?”,引导学生思考解决方法。
Step 2 学习等式的性质教师通过引导学生观察不等式,比较大小关系,介绍等式的性质,即“等式两边加(减、乘、除)同一个数,仍然相等”、“等式两边乘(除)同一个非零数,不变相等”。
Step 3 利用等式的性质解方程1.教师先以简单的例子引导学生理解等式的性质,如“x+3=7”,学生可以通过两边减3的操作,解得x的值为42.教师提供多个练习题,让学生通过等式的性质解决,如“2x-5=3”,学生应该通过将两边加5的操作,解得x的值为4Step 4 解决实际问题教师引导学生将等式的性质应用到实际问题中,如“小华和小明一起做作业,小华写了x道题目,小明写了12道题目,他们写的题目总数是30”,学生应该通过建立方程“x+12=30”来求解x的值。
Step 5 练习巩固教师提供一系列的练习题,让学生通过等式的性质进行解答。
同时,教师在黑板上解答其中的一些问题,引导学生查漏补缺。
Step 6 作业布置教师布置作业,要求学生利用等式的性质解决一些实际问题,并要求学生写出解题思路和步骤。
Step 7 总结回顾教师与学生共同回顾本节课的学习内容,检查学生对等式的性质的掌握情况,并解答学生在学习过程中遇到的问题。
扩展:教师可以引导学生思考更复杂的问题,如一元一次方程组的解法,以及利用等式的性质解决更复杂的实际问题。
比如,“小明和小红一起买了一些苹果和橙子,小明买了苹果5个,橙子8个,一共花了40元;小红买了苹果3个,橙子6个,一共花了30元。
教你如何用等式的性质解一元一次方程
教你如何用等式的性质解一元一次方程。
一、等式的基本性质1.一等式两边加减相同的数/式,仍相等。
例如:若 $a=b$,则 $a+c=b+c$。
2.一等式两边乘除相同的数/式,仍相等。
例如:若 $a=b$,且 $c\neq0$,则$\dfrac{a}{c}=\dfrac{b}{c}$。
3.一等式两边交换位置,仍相等。
例如:若 $a=b$,则 $b=a$。
4.一等式两边同时乘法运算,仍相等。
例如:若 $a=b$,且 $c\neq0$,则 $ac=bc$。
5.一等式两求平方/开平方,两边仍相等。
例如:若 $a=b$,则 $a^2=b^2$,或 $a=\sqrt{b}$,则$a^2=b$。
二、利用等式的性质解一元一次方程在解一元一次方程中,通常采用“等式转化法”或“代入法”。
其中“等式转化法”又叫作“变形法”,即通过变形,使方程转化为形式相同的等式。
这里我们介绍如何利用等式的性质解一元一次方程。
1.同次数等式可以相减。
例如:解方程 $3x+2=5x-6$。
解法:将方程转化为同次数等式:$3x-5x=-6-2$。
由此得到:$-2x=-8$。
将等式两边都除以 $-2$,可得:$x=4$。
2.分式可以通分后相减。
例如:解方程 $\frac{1}{x}+\frac{3}{x-2}=2$。
解法:将分式通分转化为同分母分式:$\frac{x-2+3x}{x(x-2)}=2$。
由此得到:$\frac{4x-2}{x(x-2)}=2$。
将等式两边都乘以 $x(x-2)$,可得:$4x-2=2x^2-4x$。
化简后得到:$2x^2-8x+2=0$。
解得:$x=1-\sqrt{3}$ 或 $x=1+\sqrt{3}$。
3.方程两边可以求平方。
例如:解方程 $\sqrt{2x+5}=x-1$。
解法:将方程转换成同次数等式:$\sqrt{2x+5}=x-1$,即$2x+5=(x-1)^2$。
将方程化简:$x^2-4x+4-2x-5=0$。
四年级下册数学《简易方程》教案
四年级下册数学《简易方程》教案一、教学目标知识与技能:1. 让学生掌握方程的概念,理解等式的性质。
2. 学会解简单的方程,提高学生解决实际问题的能力。
过程与方法:1. 通过观察、分析、操作、交流等活动,培养学生抽象、概括的能力。
2. 学会用方程表示数量关系,培养学生的模型思想。
情感态度与价值观:1. 培养学生对数学的兴趣,激发学习热情。
2. 感受数学与生活的联系,培养学生的应用意识。
二、教学内容第1课时:方程的引入1. 初步认识方程,了解方程的意义。
2. 学会用方程表示数量关系。
第2课时:等式的性质1. 理解等式的概念,掌握等式的性质。
2. 学会利用等式的性质解方程。
第3课时:解方程1. 学习解简单的一元一次方程。
2. 培养学生的解方程能力。
第4课时:应用题1. 利用方程解决实际问题。
2. 培养学生的应用意识。
第5课时:练习与复习1. 巩固方程、等式的知识。
2. 提高学生的解题能力。
三、教学重点与难点重点:1. 方程的概念及意义。
2. 等式的性质。
3. 解简单的一元一次方程。
难点:1. 理解等式的性质,学会利用等式的性质解方程。
2. 利用方程解决实际问题。
四、教学方法采用情境教学法、启发式教学法、合作学习法等,引导学生主动探究、积极参与,提高学生的学习兴趣和积极性。
五、教学准备1. 准备相关课件、教学素材。
2. 安排学生进行小组合作学习。
3. 提前布置预习任务,让学生初步了解方程的知识。
六、教学过程第1课时:方程的引入1. 导入新课:通过生活情境,引导学生认识方程。
2. 探究方程:学生独立思考,尝试用方程表示数量关系。
3. 讲解方程:教师引导学生总结方程的意义,讲解方程的组成。
4. 巩固练习:学生解答相关练习题,教师点评并讲解。
第2课时:等式的性质1. 导入新课:复习上节课的知识,引出等式的概念。
2. 探究等式:学生观察、分析等式的性质,总结规律。
3. 解方程:教师示范解方程的方法,学生跟随练习。
2 一元一次方程的解法 第1课时 等式的基本性质
12345678
(2)请分析产生错误的原因,写出等式正确的变形过程, 求出 m 的值. 解:产生错误的原因是等式两边同时除以字母 m 时, 没有考虑字母 m 是否为0. 正确过程: 等式两边同时加2,得5 m =3 m . 等式两边同时减3 m ,得2 m =0. 等式两边同时除以2,得 m =0.
12345678
8. 【教材P146习题T7变式新考法·过程辨析法】小明在学习 了等式的基本性质后,对等式5 m -2=3 m -2进行变 形,得出“5=3”的错误结论,但他找不到错误原因,聪 明的你能帮助他找到原因吗?小明的具体过程如图所示:
12345678
将等式5 m -2=3 m -2变形 两边同时加2,得5 m =3 m (第①步) 两边同时除以 m ,得5=3(第②步) (1)第 ② 步等式变形产生错误;
(3)3 x +1=4. 解: x =1
(2)0.5 x =15; (2) x =30
12345678
2星题 提升能力
C A. 1个 C. 3个
B. 2个 D. 4个
12345678
7. 【教材P146习题T6变式2023秦皇岛海港区期末】用 “●”“■”“▲”分别表示三种不同的物体,如图所 示,前两架天平保持平衡,若要使第三架天平也平衡,那 么“?”处应放 5 个“■”.
第五章 一元一次方程 2 一元一次方程的解法 第1课时 等式的基本性质
1星题 夯实基础
知识点1 等式的基本性质 1. 【2024六安月考】已知 a = b ,则下列变形正确的是
(B) A. =
B. maቤተ መጻሕፍቲ ባይዱ= mb
C. m - a = m + b
D. =
12345678
用等式的性质(1)解方程
教学内容:用等式的性质(1)解方程课程标准:了解等式的性质,能用等式的性质解决简单的方程。
教材分析:这部分内容是在学生已学用方程表示简单情境中的数量关系的基础上,通过天平这一直观教具,让学生观察天平两侧都加上或减去相同的质量,天平仍然平衡,引导学生探索和发现“等式两边都加上(或减去)同一个数,等式仍然成立”的等式性质,从而让学生利用等式的性质解简单的方程。
通过教学,使学生理解并掌握等式的性质,能运用等式的性质解决形如x±a=b的简单实际问题,使学生初步理解“方程”“方程的解”和“解方程”的含义。
前置基础:它是在学生学习了等式及方程的意义的基础上进行学习的。
后继地位:为后面学习解复杂方程作准备,在知识衔接上具有重要作用。
而这一节恰好在这一单元之中起着承上启下的作用。
核心知识点:理解等式的性质,用等式的性质解x+a =b或x-a =b 的方程教学目标:1、通过实验探索,使学生理解等式的性质,学会用等式性质解方程。
2、在观察、操作、讨论的过程中,掌握等式的性质,能灵活运用等式的性质解形如:x+a =b或x-a =b 的方程。
3、在教学活动过程中,培养积极的数学兴趣;在利用等式性质解决问题的过程中,体验方程的对称美和数学的严密性,培养学生良好的书写与检验习惯。
教学重难点:理解等式的性质,学会用等式性质解方程,检验方程。
教学过程:一、导入新课:1、师:课件出示主题图,提问:根据以上信息,你发现了什么?用数量关系式说说你的发现。
生:小金丝猴的质量+笼子的质量=500克生:x+150=500师:小金丝猴的质量是多少呢?学生说出答案。
师:刚才,这个同学说的是我们原来学过的方法,我们换一种思路来研究。
2、师:还可以怎样求未知数x呢?请大家一起借助天平来研究一下。
二、探究新知1、实验一:天平的一边放上2听相同的啤酒易拉罐,另一边放上1瓶啤酒,使天平平衡。
师:(1)天平两边平衡,说明了什么?2听啤酒=1瓶啤酒。