能力测试点62 常见离散型随机变量的分布列、均值与方差
离散型随机变量的均值与方差、正态分布(基础+复习+习题+练习)
离散型随机变量的均值与方差、正态分布(基础+复习+习题+练习)课题:离散型随机变量的均值与方差、正态分布考纲要求:① 理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;② 利用实际问题的直方图,了解正态分布曲线及曲线所表示的意义.教材复习1.离散型随机变量分布列的两个性质:任何随机事件发生的概率都满足:0≤()P A ≤1,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:()1i p ≥0,1,2,i =…;()212p p ++…1=对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和.即(P ξ≥1)()()k k k x P x P x ξξ+==+=+2.数学期望:则称=ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望3.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平4.平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …1n n p ==,=ξE +1(x +2x …1)n n x +?,所以ξ的数学期望又称为平均数、均值 .5.期望的一个性质:若b a +=ξη,则b aE b a E +=+ξξ)(6.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么,ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 7.标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ 8.方差的性质:()1 ξξD a b a D 2)(=+;()2 22)(ξξξE E D -= .9.方差的意义:()1随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ()2随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;()3标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.10.二项分布的期望与方差:若(),B n p ξ,则E np ξ= ,()1D np p ξ=-11.几何分布的期望和方差:若(),g k p 1k qp -=,其中0,1,2k =,…, p q -=1.则1E p ξ=,21p D pξ-=. 12.正态分布密度函数:22()2(),(,)xf x xμσ--=∈-∞+∞,(0σ>)其中π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为) ,(2σμN。
离散型随机变量的均值与方差
课堂互动讲练
(3)设技术革新后的三等品率为x, 则此时1件产品的平均利润为 Ex=6×0.7+2×(1-0.7-0.01-x)+ x+(-2)×0.01 =4.76-x(0≤x≤0.29),9分 依题意,Ex≥4.73, 即4.76-x≥4.73, 解得x≤0.03. 所以三等品率最多为3%. 12分
课堂互动讲练
(2)EY=E(2X+3)=2EX+3 =2×(-13)+3=73; DY=D(2X+3)=4DX=4×59=290. 【名师点评】 ξ是一个随机变 量,则η=f(ξ)一般仍是一个随机变 量,在求η的期望和方差时,要应用期 望和方差的性质.
课堂互动讲练
考点四 均值与方差的实际应用
利用期望和方差比较随机变量的 取值情况,一般是先比较期望,期望 不同时,即可比较出产品的优劣或技 术水平的高低,期望相同时,再比较 方差,由方差来决定产品或技术水平 的稳定情况.
课堂互动讲练
P(X≥7)=P(X≤3) =12×[1-P(3<X<7)], =12×(1-0.9544)=0.0228, ∵P(4<X<6)=0.6826, ∴P(5<X<6)=12P(4<X<6) =0.3413.
课堂互动讲练
考点二 求离散型随机变量的期记与方差
求离散型随机变量X的均值与方差 的步骤:
课堂互动讲练
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投 篮得分超过3分与选择上述方式投篮 得分超过3分的概率的大小.
课堂互动讲练
【思路点拨】 首先由P(ξ=0)= 0.03计算出q2,从而可写出分布 列.本题便可求解.
【解】 (1)由题设知,“ξ=0”对 应的事件为“在三次投篮中没有一次投 中”,由对立事件和相互独立事件性质 可知
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量的均值与方差
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
离散型随机变量的均值与方差
结束
考点一
离散型随机变量的均值 [典例引领]
(2016· 南京三模)从 0,1,2,3,4 这五个数中任选三个不同的数组 成一个三位数,记 X 为所组成的三位数各位数字之和. (1)求 X 是奇数的概率; (2)求 X 的概率分布列及数学期望.
解析:E(X)=1×0.5+3×0.3+5×0.2=2.4. 答案:2.4
课 前 ·双 基 落 实
课 堂 ·考 点 突 破
课后· 三维演练
离散型随机变量的均值与方差
结束
1.理解均值 E(X)易失误.均值 E(X)是一个实数,由 X 的 分布列唯一确定, 即 X 作为随机变量是可变的, 而 E(X) 是不变的,它描述 X 值的取值平均状态. 2.注意 E(aX+b)=aE(X)+b,V(aX+b)=a2V(X)易错.
离散型随机变量的均值与方差
结束
(2)X 的可能取值为 3,4,5,6,7,8,9. 当 X=3 时,组成的三位数只能是由 0,1,2 三个数字组成,所 4 1 以 P(X=3)= = ; 48 12 4 当 X=4 时, 组成的三位数是由 0,1,3 组成, 所以 P(X=4)= 48 1 = ; 12 当 X=5 时,组成的三位数是由 0,1,4 或 0,2,3 组成,所以 P(X 8 1 =5)= = ; 48 6
解:(1)记“X 是奇数”为事件 A,
2 能组成的三位数的个数是 A1 A 4 4=48. 2 3 1 1 2 X 是奇数的个数有 C1 2C3A3-C2C2A2=28,
离散型随机变量的分布列及均值、方差
(2)方差
n
称 D(X)=
(xi-E(X))2pi
i=1
为随机变量 X 的方差,它刻画了随机变量 X 与其均
值 E(X)的 平均偏离程度 ,并称其算术平方根 DX为随机变量 X 的 标准差 .
4.均值与方差的性质 (1)E(aX+b)= aE(X)+b . (2)D(aX+b)= a2D(X) .(a,b 为常数)
题型一 分布列的求法 例 1 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,
在推出的第二季名师云课中,数学学科共计推出 36 节云课,为了更好地将课程
内容呈现给学生,现对某一时段云课的点击量进行统计:
点击量 [0,1 000] (1 000,3 000] (3 000,+∞)
节数
3 5
题型二 均值与方差 例 2 某投资公司在 2019 年年初准备将 1 000 万元投资到“低碳”项目上,现有 两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利 30%,也 可能亏损 15%,且这两种情况发生的概率分别为79和29;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利 50%,可能 损失 30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115. 针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
3.离散型随机变量的均值与方差 一般地,若离散型随机变量 X 的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn (1)均值 称 E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量 X 的均值或 数学期望 .它 刻画了离散型随机变量取值的 平均水平 .
【思维升华】 离散型随机变量的均值与方差的常见类型及解题策略 (1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布 列,然后利用均值、方差公式直接求解. (2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的 方程(组),解方程(组)即可求出参数值. (3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题 作出判断.
离散型随机变量的分布列及均值与方差
第6节离散型随机变量的分布列及均值与方差课时训练练题感提知能【选题明细表】一、选择题1.抛掷2颗骰子,所得点数之和记为X,那么X=4表示的随机试验结果是( D )(A)2颗都是4点(B)1颗是1点,另1颗是3点(C)2颗都是2点(D)1颗是1点,另1颗是3点,或者2颗都是2点解析:所得点数之和为4的有1+3,2+2,故选D.2.设X是一个离散型随机变量,其分布列为:则q等于( C )(A)1 (B)1±(C)1-(D)1+解析:由分布列的性质知∴q=1-,故选C.3.已知某一随机变量ξ的概率分布列如下,且E(ξ)=6.3,则a值为( C )(A)5 (B)6 (C)7 (D)8解析:由分布列的性质可得0.5+0.1+b=1,解得b=0.4.由E(ξ)=4×0.5+a×0.1+9×0.4=6.3,解得a=7.故选C.4.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为( C )(A) (B)(C) (D)解析:P(X=4)==,故选C.5.设随机变量ξ的分布列为P(ξ=)=ak(k=1,2,3,4,5),则P(<ξ<)等于( C )(A)(B)(C)(D)解析:由已知,分布列为由分布列的性质可得a+2a+3a+4a+5a=1,解得a=.∴P(<ξ<)=P(ξ=)+P(ξ=)+P(ξ=)=++=.故选C.6.有10件产品,其中3件是次品,从这10件产品中任取两件,用ξ表示取到次品的件数,则E(ξ)等于( A )(A)(B)(C)(D)1解析:ξ服从超几何分布P(X=ξ)=(x=0,1,2),∴P(ξ=0)===,P(ξ=1)===,P(ξ=2)===.∴E(ξ)=0×+1×+2×==.故选A.7.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P(<X<)的值为( D )(A)(B)(C)(D)解析:由题意得,+++=1,解得a=.于是P(<X<)=P(X=1)+P(X=2)=+=a=,故选D.8.已知抛物线y=ax2+bx+c(a≠0)的对称轴在y轴的左侧,其中a,b, c∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ=|a-b|,则E(ξ)为( A )(A)(B)(C)(D)解析:∵抛物线的对称轴在y轴的左侧,∴-<0,即>0,即a,b同号.∴随机变量ξ的分布列为∴E(ξ)=0×+1×+2×=.故选A.二、填空题9.设随机变量ξ等可能取1,2,3,…,n,若P(ξ<4)=0.3,则n= .解析:因为1,2,3,…,n每个值被取到的概率为,故P(ξ<4)=P(ξ=1)+P(ξ=2)+P(ξ=3)=++==0.3,所以n=10.答案:1010.已知某篮球运动员比赛中罚球的命中率为0.8,每次罚球命中得1分,罚不中得0分,则他罚球一次得分ξ的期望为.解析:由题意,他得分的分布列为,∴E(ξ)=1×0.8+0×0.2=0.8.答案:0.811.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是.解析:P===.答案:12.两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数X的数学期望E(X)= .解析:X的分布列如下:所以期望E(X)=0×+1×+2×==.答案:三、解答题13.某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=+=.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)==;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=++=.故X的分布列为X的数学期望为E(X)=2×+3×=.14.在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值ξ(元)的概率分布列并求期望E(ξ).解:(1)P=1-=1-=,即该顾客中奖的概率为.(2)ξ的所有可能取值为0,10,20,50,60元.P(ξ=0)==,P(ξ=10)==,P(ξ=20)==,P(ξ=50)==,P(ξ=60)==.故ξ的分布列为从而期望E(ξ)=0×+10×+20×+50×+60×=16.15.(2014四川雅安中学检测)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设Y为质量超过505克的产品数量,求Y的分布列;(3)从该流水线上任取5件产品,求恰有2件产品的质量超过505克的概率.解:(1)质量超过505克的产品数量是40×(0.05×5+0.01×5)=12(件);(2)Y的所有可能取值为0,1,2,P(Y=0)==,P(Y=1)==,P(Y=2)==,Y的分布列为(3)从流水线上任取5件产品,恰有2件产品的质量超过505克的概率为===.。
离散型随机变量的分布列及均值与方差一教
离散型随机变量的分布列及均值与方差基础梳理一、随机变量的概念 1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量. 2.离散型随机变量随机变量可能取的值,可以一一列出,这样的随机变量叫做离散型随机变量. 二、 离散型随机变量的分布列及均值与方差 1.一般分布设离散型随机变量X 可能取得值为x 1,x 2,…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率为P (X =x i )=p i ,则称表为随机变量X (1)概率:p 1+p 2+…+p n =_1_.(2)均值:E (X )=x 1p 1+x 2p 2+…+x i p i +…+xn p n .(3)方差:D (X )=∑i =1n[x i -E (X )]2p i ,其算术平方根D (X )为随机变量X 的标准差.2.两点分布如果随机变量X 的分布列为其中0<p <1,q =1-p ,则称离散型随机变量p 的两点分布. (1)概率:p +q =_1_. (2)均值:E (X )=p .(3)方差:D (X )=p (1-p ) . 3.二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发 生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布, 记作X ~B (n ,p ),并称p 为成功概率.(1)概率:p 1+p 2+…+p n =_1_. (2)均值:E (X )=np .(3)方差:D (X )=np (1-p ) . 4.超几何分布在含有M 件次品数的N 件产品中,任取n 件,其中含有X 件次品数,则事件{X =k }发生的概率为:P (X =k )=C k M C n -k N -MC n N(k =0,1,2,…,m ),则称分布列(1)概率:p 1+p 2+…+p n =_1_.(2)均值:E (X )=n MN .(3)方差:D (X )= i =1n[x i -E (X )]2p i .三、均值与方差的性质(1)E (aX +b )=aE (X )+b (a 、b 为常数) . (2)E (X 1+X 2)=EX 1+EX 2. (3)D (aX +b )=a 2·D (X ) . 四.解题关键解决随机变量分布列问题的关键是正确求出随机变量可以取哪些值以及取各个值对应的概率(直接统计、排列组合、古典概型、独立事件的概率),要正确地理解随机变量取值的意义.例题分析【例1】►以下茎叶图记录了甲、乙两组各四名同学的植树棵数分别从甲、乙两组中各随机选取一名同学(1)求这两名同学的植树总棵数y 的分布列;(2)每植一棵树可获10元,求这两名同学获得钱数的数学期望.解 (1)分别从甲、乙两组中随机选取一名同学的方法种数是4×4=16,这两名同学植树总棵数Y的取值分别为17,18,19,20,21,P(Y=17)=216=18P(Y=18)=416=14P(Y=19)=416=14P(Y=20)=416=14P(Y=21)=216=18则随机变量Y的分布列是:(2)由(1)知E(Y)=178+184+194+204+218=19,设这名同学获得钱数为X元,则X=10Y,则E(X)=10E(Y)=190.【例2】►某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:解析设该公司一年后估计可获得的钱数为X元,则随机变量X的取值分别为50 000×12%=6 000(元),-50 000×50%=-25 000(元).由已知条件随机变量X的概率分布列是因此E(X)=6 000×2425+(-25 000)×125=4 760【例3】►袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X表示取球终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量X的分布列;(3)求甲取到白球的概率.解 (1)设袋中白球共有x 个,根据已知条件C 2xC 27=17,即x 2-x -6=0,解得x =3,或x =-2(舍去).(2)X 表示取球终止时所需要的次数,则X 的取值分别为:1,2,3,4,5.因此,P (X =1)=A 13A 17=37,P (X =2)=A 14A 13A 27=27,P (X =3)=A 24A 13A 37=635,P (X =4)=A 34A 13A 47=335, P (X =5)=A 44A 13A 57=135.则随机变量X 的分布列为:(3)甲取到白球的概率为P =A 3A 17+A 4A 3A 37+A 4A 3A 57=37+635+135=2235.【例4】► (2011·江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.解 (1)X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i4C 48(i =0,1,2,3,4),则(2)令Y 2 800,3 500,则 P (Y =3500)=P (X =4)=170,P (Y =2800)=P (X =3)=835,P (Y =2100)=P (X ≤2)=5370,E (Y )=3 500×170+2 800×1670+2 100×5370=2 280, 所以此员工月工资的期望为2 280元.【例5】►(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________. 解析 由已知条件P (X =0)=112即(1-P )2×13=112,解得P =12, 随机变量X 的取值分别为0,1,2,3.P (X =0)=112,P (X =1)=23×⎝ ⎛⎭⎪⎫1-122+2×13×⎝ ⎛⎭⎪⎫122=13,P (X =2)=2×23×12×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫122=512,P (X =3)=23×⎝ ⎛⎭⎪⎫122=16.因此随机变量X 的分布列为E (X )=0×112+1×13+2×512+3×16=53. 答案 53【例6】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.解 (1)将通过每个交通岗看做一次试验,则遇到红灯的概率为13,且每次试验结果是相互独立的,故X ~B ⎝ ⎛⎭⎪⎫6,13.所以X 的分布列为P (X =k )=C k 6⎝ ⎛⎭⎪⎫13k ·⎝ ⎛⎭⎪⎫236-k,k =0,1,2,3,4,5,6. (2)由于Y 表示这名学生在首次停车时经过的路口数,显然Y 是随机变量,其取值为0,1,2,3,4,5,6.其中:{Y =k }(k =0,1,2,3,4,5)表示前k 个路口没有遇上红灯,但在第k +1个路口遇上红灯,故各概率应按独立事件同时发生计算.P (Y =k )=⎝ ⎛⎭⎪⎫23k ·13(k =0,1,2,3,4,5),而{Y =6}表示一路没有遇上红灯.故其概率为P (Y =6)=⎝ ⎛⎭⎪⎫236,因此Y 的分布列为:{X ≥1}={X =1或X =2或…或X =6},所以其概率为P (X ≥1)=∑k =16P (X =k )=1-P (X =0)=1-⎝ ⎛⎭⎪⎫236=665729.达标练习一、选择题1.随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( ). A.316 B.14 C.116 D.516解析 P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316. 答案 A2.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ). A .25 B .10 C .7 D .6解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9. 答案 C3.已知随机变量X 的分布列为P (X =i )=i2a (i =1,2,3),则P (X =2)等于( ). A.19 B.16 C.13 D.14解析 ∵12a +22a +32a =1,∴a =3,P (X =2)=22×3=13. 答案 C4.设某项试验的成功率为失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)的值为( ). A .1 B.12C.13D.15解析 设X 的分布列为:即“X =0”表示试验失败,“X p ,成功的概率为2p .由p +2p =1,则p =13,因此选C. 答案 C5.一袋有5个白球,3个红球,现从袋中取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ).A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B .C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238,C .C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P (X =12)=38C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582. 答案 D 6.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( ). A.⎝ ⎛⎭⎪⎫125B .C 25⎝ ⎛⎭⎪⎫125 C .C 35⎝ ⎛⎭⎪⎫123 D .C 25C 35⎝ ⎛⎭⎪⎫125解析 P 必须右移两次,上移三次,故C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125,答案 B 二、填空题7.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是 ________.解析 此分布列为两点分布列.答案 8.随机变量X 的分布列P (X =k )=a ⎝ ⎛⎭⎪⎫23k,k=1,2,3,…,则a 的值为________.解析 由∑k =1∞P (X =k )=1,即a ⎣⎢⎡⎦⎥⎤23+⎝⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫233+…=1.∴a 231-23=1. 答案 12 9.设随机变量X 的分布列为P (X =i )=i 10,(i =1,2,3,4),则P ⎝ ⎛⎭⎪⎫12<X <72=________.解析 P ⎝⎛⎭⎪⎫12<X <72=P (X =1)+P (X =2)+P (X =3)=35. 答案 35三、解答题10.一个袋中有一个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回去,直到取得白球为止,求取球次数的分布列.解设取球次数为X,则X的可能取值为1,2,3,4,5,P(X=1)=1A15=15,P(X=2)=A14A25=15,P(X=3)=A24A35=15,P(X=4)=A34A45=15,P(X=5)=A44A55=15,∴随机变量X的分布列为:11.袋中装着标有数字3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计分介于20分到40分之间的概率.解(1)“一次取出的3个小球上的数字互不相同”的事件记为A,则P(A)=C35C12C12C12C310=23.(2)由题意知,X有可能的取值为2,3,4,5,取相应值的概率分别为.P(X=2)=C22C12+C12C22C310=130;P(X=3)=C24C12+C14C22C310=215;P(X=4)=C26C12+C16C22C310=310;P(X=5)=C28C12+C18C22C310=815.所以随机变量X的分布列为:(3)C,则P(C)=P(X=3或X=4)=P(X=3)+P(X=4)=215+310=1330.12.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x 、y ,记ξ=|x -2|+|y -x |. (1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (2)求随机变量ξ的分布列.解 (1)∵x ,y 可能的取值为1,2,3,∴|x -2|≤1,|y -x |≤2, ∴ξ≤3,且当x =1,y =3或x =3,y =1时,ξ=3. 因此,随机变量ξ的最大值为3.∵有放回抽两张卡片的所有情况有3×3=9种,∴P (ξ=3)=29. 故随机变量ξ的最大值为3,事件“ξ取得最大值”的概率为29.(2)ξ的所有取值为0,1,2,3.∵ξ=0时,只有x =2,y =2这一种情况,ξ=1时,有x =1,y =1或x =2,y =1或x =2,y =3或x =3,y =3四种情况, ξ=2时,有x =1,y =2或x =3,y =2两种情况. ξ=3时,有x =1,y =3或x =3,y =1两种情况. ∴P (ξ=0)=19,P (ξ=1)=49,P (ξ=2)=29,P (ξ=3)=29. 则随机变量ξ的分布列为:13.某射手进行射击训练,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答); (3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列. 解 (1)记“射手射击1次,击中目标”为事件A ,则在3次射击中至少有两次连续击中目标的概率P 1=P (AA A )+P (A AA )+P (AAA )=35×35×25+25×35×35+35×35×35=63125. (2)射手第3次击中目标时,恰好射击了4次的概率P 2=C 23×⎝ ⎛⎭⎪⎫352×25×35=162625.(3)由题设,“ξ=k ”的概率为P (ξ=k )=C 2k -1×⎝ ⎛⎭⎪⎫352×⎝ ⎛⎭⎪⎫25k -3×35=C 2k -1×⎝ ⎛⎭⎪⎫25k -3×⎝ ⎛⎭⎪⎫353(k ∈N *且k ≥3).所以,ξ的分布列为:1450元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.解 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P =C 14C 16+C 24C 210=3045=23.⎝ ⎛⎭⎪⎫或用间接法,即P =1-C 26C 210=1-1545=23. (2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.所以X 的分布列为:154次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数X 的分布列,并求李明在一年内领到驾照的概率. 解 X 的取值分别为1,2,3,4.X =1,表明李明第一次参加驾照考试就通过了,故P (X =1)=0.6.X =2,表明李明在第一次考试未通过,第二次通过了, 故P (X =2)=(1-0.6)×0.7=0.28.X =3,表明李明在第一、二次考试未通过,第三次通过了, 故P (X =3)=(1-0.6)×(1-0.7)×0.8=0.096. X =4,表明李明第一、二、三次考试都未通过, 故P (X =4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024. ∴李明实际参加考试次数X 的分布列为-0.9)=0.997 6. 16.某社区进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取两张卡片,若抽到两张都是“海宝”卡即可获奖.(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是13.求抽奖者获奖的概率;(2)现有甲、乙、丙、丁四个人依次抽奖,抽后放回,另一个人再抽,用ξ表示获奖的人数,求ξ的分布列及E (ξ),D (ξ).解 (1)设“世博会会徽”卡有n 张,由C 2n C 210=13,得n =6,故“海宝”卡有4张,抽奖者获奖的概率为C 24C 210=215.(2)由题意知,符合二项分布,且ξ~B ⎝ ⎛⎭⎪⎫4,215,故ξ的分布列为P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫215k ⎝ ⎛⎭⎪⎫13154-k(k =0,1,2,3,4)或由ξ的分布列知,E (ξ)=4×215=815,D (ξ)=4×215×⎝ ⎭⎪⎫1-215=104225.。
离散型随机变量的均值与方差(含答案)
离散型随机变量的均值与方差测试题(含答案)一、选择题1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =,0.1p =【答案】B【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得6n =,0.4p =.考点:二项分布的数学期望与方差. 【难度】较易2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13B .23C .15D .25【答案】A考点:二项分布的数字特征. 【题型】选择题 【难度】较易3.若随机变量),(~p n B ξ,91035==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52D.53 【答案】A【解析】由题意可知,()5,3101,9E np D np p ξξ⎧==⎪⎪⎨⎪=-=⎪⎩解得5,1,3n p =⎧⎪⎨=⎪⎩故选A.考点:n 次独立重复试验.【题型】选择题 【难度】较易4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( )ξ0 1Pm nA .()()3,E m D n ξξ== B .()()2,E m D n ξξ== C .()()21,E m D m m ξξ=-=- D .()()21,E m D m ξξ=-=【答案】C考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( )A.71 B.61 C.51D.41 【答案】A【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴149,7n p ==,故选A.考点:二项分布的期望与方差. 【题型】选择题 【难度】较易6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )A .252和254 B .52和54 C .252和1254 D .254和1254【答案】C【解析】因为随机变量ξ~(5,0.5)B ,所以5.25.05=⨯=ξE ,25.15.05.05=⨯⨯=ξD ,所以E η=252,D η=1254. 考点:二项分布,数学期望,方差. 【题型】选择题 【难度】较易7.设随机变量ξ的分布列为下表所示,且 1.6E ξ=,则a b -= ( )A .-0.2B .0.1C .0.2D .-0.4 【答案】A【解析】由题中分布列可得0.8a b +=,20.3 1.6a b ++=,则0.3,0.5a b ==,0.2a b -=-,故选A.考点:随机变量的期望. 【题型】选择题 【难度】较易8.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X 表示取出竹签的最大号码,则EX 的值为( ) A .4B .4.5C .4.75D .5【答案】B考点:随机变量的期望.【题型】选择题【难度】较易9.随机变量X的分布列如表所示,2EX=,则实数a的值为( )Xa234P 13b1614A.0B.13C.1D.32【答案】A【解析】11111,3644b b+++=∴=Q,又11112342,03464a a⨯+⨯+⨯+⨯=∴=Q.考点:随机变量的期望. 【题型】选择题【难度】较易10.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ服从二项分布1(5,)4B,则()Eξ-的值为()A.14B.14-C.54D.5 4 -【答案】D【解析】因为1(5,)4Bξ:,所以15()5.44E Eξξ-=-=-⨯=-故选D.考点:二项分布的含义和性质. 【题型】选择题【难度】较易11.已知102a <<,随机变量ξ的分布列如下表,则当a 增大时 ( ) ξ1-0 1Pa12a - 12A.()E ξ增大,()D ξ增大B.()E ξ减小,()D ξ增大C.()E ξ增大,()D ξ减小D.()E ξ减小,()D ξ减小 【答案】B考点:离散型随机变量的期望与方差. 【题型】选择题 【难度】一般12.甲命题:若随机变量2~(3,)N ξσ,若(2)0.3P ξ≤=,则(4)0.7P ξ≤=.乙命题:随机变量~(,)B n p η,且300E η=,200D η=,则13p =,则正确的是( ) A .甲正确,乙错误 B .甲错误,乙正确 C .甲错误,乙也错误 D .甲正确,乙也正确 【答案】D考点:正态分布,期望,方差,命题的真假判定. 【题型】选择题 【难度】一般13.据气象预报,某地区下月有小洪水的概率为0.2,有大洪水的概率为0.05.该地区某工地上有一台大型设备,两名技术人员就保护设备提出了以下两种方案:方案一:建一保护围墙,需花费4000元,但围墙无法防止大洪水,当大洪水来临时,设备会受损,损失费为30 000元.方案二:不采取措施,希望不发生洪水,此时小洪水来临将损失15000元,大洪水来临将损失30000元.以下说法正确的是( )A .方案一的平均损失比方案二的平均损失大B .方案二的平均损失比方案一的平均损失大C .方案一的平均损失与方案二的平均损失一样大D .方案一的平均损失与方案二的平均损失无法计算 【答案】A 【解析】用1X 表示方案i (1,2i =)的损失,则1()300000.054000150040005500E X =⨯+=+=,2()300000.05150000.2150030004500E X =⨯+⨯=+=.综上可知,采用方案一的平均损失大.考点:期望的实际应用. 【题型】选择题【难度】一般14.若X 是离散型随机变量,1221(),()33P X x P X x ====且12x x <,又42(),()39E X D X ==,则12x x +的值为( )A .3B .53C .73D .113【答案】A考点:离散型随机变量期望与方差.【题型】选择题 【难度】一般15.设随机变量()2,X B p :,随机变量()3,Y B p :,若()519P X ≥=,则()31D Y +=( )A .2B .3C .6D .7 【答案】C【解析】∵随机变量()2,X B p :,∴()()()20251101C 19P X P X p ≥=-==--=,解得13p =, ∴()1223333D Y =⨯⨯=,∴()231963D Y +=⨯=,故选C . 考点:二项分布,方差. 【题型】选择题 【难度】一般16.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望()ξE 为( ) A .24181 B .26681 C .27481 D .670243【答案】B【解析】依题意知,ξ的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为95313222=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有()952==ξP ,()812095944=⋅==ξP ,()81169462=⎪⎭⎫ ⎝⎛==ξP ,故()812668116681204952=⨯+⨯+⨯=ξE ,故选B.考点:离散型随机变量的数学期望. 【题型】选择题 【难度】一般17.已知离散型随机变量X 的分布列如下表.若()0,()1E X D X ==,则,a b 的值分别是( )X 1-0 1 2Pabc112A.51,248B.51,62C.31,53D.51,124【答案】D考点:离散型随机变量的期望与方差. 【题型】选择题 【难度】一般 二、填空题18.已知随机变量η=23+ξ,且()2D ξ=,则()D η=________. 【答案】18【解析】η=23+ξ,则()()99218D D ηξ==⨯=. 考点:方差的性质. 【题型】填空题 【难度】较易19.已知随机变量X 的分布列如下表所示,则(68)E X += .X 1 2 3 P 0.2 0.40.4【答案】21.2 【解析】由分布列得()2.24.034.022.01=⨯+⨯+⨯=X E ,则()()2.218686=+=+X E X E .考点:离散型随机变量与分布列. 【题型】填空题 【难度】较易20.已知随机变量()~5,0.2X B ,21Y X =-,则()E Y =,标准差()Y σ= .【答案】1;455考点:二项分布,期望与标准差. 【题型】填空题 【难度】一般21.设p 为非负实数,随机变量ξ的分布列如下表,则()D ξ的最大值为_________.ξ0 1 2p12p - p12【答案】1【解析】由随机变量ξ的分布列的性质,得101,201,p p ⎧≤-≤⎪⎨⎪≤≤⎩解得0≤p ≤12.()1E p ξ=+,则()D ξ=()()()22222111501112112224p p p p p p p p ⎛⎫⎛⎫--⨯-+--⨯+--⨯=--+=-++ ⎪ ⎪⎝⎭⎝⎭,∴当0p =时,()D ξ取最大值,()max D ξ=15144-+=.考点:离散型随机变量及其分布列.【题型】填空题【难度】一般三、解答题22.某大学依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲同学参加考试,已知他每次考A科合格的概率均为23,每次考B科合格的概率均为12.假设他不放弃每次考试机会,且每次考试互不影响.(1)求甲恰好3次考试通过的概率;(2)记甲参加考试的次数为ξ,求ξ的分布列和期望.【答案】(1)518(2)分布列见解析,期望()83Eξ=考点:独立事件的概率,随机变量的概率和期望. 【题型】解答题【难度】一般23.第31届夏季奥林匹克运动会将于2016年8月5日—21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大中国3851322816俄罗斯2423273226(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(2)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为45,丙猜中国代表团的概率为35,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.【答案】(1)茎叶图见解析,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值,俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散(2)分布列见解析,115 EX考点:茎叶图,独立事件的概率,随机变量的概率和期望. 【题型】解答题 【难度】一般24.为推行“新课堂”教学法,某地理老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表,记成绩不低于70分者为“成绩优良”.分数 [5059),[6069),[7079),[8089),[90100),甲班频数 5 6 4 4 1 乙班频数13565(1)由以上统计数据填写下面22⨯列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关”?甲班 乙班 总计 成绩优良 成绩不优良 总计附:()()()()()()2n ad bc K n a b c d a c b d a b c d -==+++++++.临界值表:()20P K k ≥0.10 0.05 0.025 0.010k 2.706 3.841 5.024 6.635(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.【答案】(1)列联表见解析,在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关” (2)分布列见解析,4 5考点:独立性检验,离散型随机变量的期望与方差.【题型】解答题【难度】一般25.某校高三年级有400人,在省普通高中学业水平考试中,用简单随机抽样的方法抽取容量为50的样本,得到数学成绩的频率分布直方图(如图).(1)求第四个小矩形的高;(2)估计该校高三年级在这次考试中数学成绩在120分以上的学生大约有多少人?(3)样本中,已知成绩在[140,150]内的学生中有三名女生,现从成绩在[140,150]内的学生中选取3名学生进行学习经验推广交流,设有X名女生被选取,求X的分布列和数学期望.【答案】(1)0.028(2)280(3)分布列见解析,3 2考点:频率分布直方图,离散型随机变量的分布列和期望.【题型】解答题【难度】一般26.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:050:为优;51100:为良;100151:为轻度污染;151200:为中度污染;201300:为重度污染;大于300为严重污染.一环保人士记录去年某地某月10天的AQI 的茎叶图如下.(1)利用该样本估计该地本月空气质量优良(AQI 100≤)的天数;(按这个月总共30天计算)(2)将频率视为概率,从本月随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【答案】(1)18 (2)分布列见解析,1.8考点:古典概型,二项分布. 【题型】解答题 【难度】一般27.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(2)以上样本述数据来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【答案】(1)列联表见解析,有99.5%的把握认为平均车速超过100km/h与性别有关(2)分布列见解析,65考点:独立性检验,离散型随机变量的分布列.【题型】解答题【难度】一般28.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生50,100内,发布成绩使用等级制.各等级划分标准见下表,规定:的原始成绩均分布在[]C B A 、、三级为合格等级,D 为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了n 名学生的原始成绩作为样本进行统计,按照[)50,60,[)[)[)[)60,70,70,80,80,90,90,100的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示. (1)求n 和频率分布直方图中的,x y 的值;(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;(3)在选取的样本中,从A C 、两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C 等级的学生人数,求随机变量ξ的分布列及数学期望.百分制 85分及以上70分到84分60分到69分60分以下等级A B C D【答案】(1)50,0.004n x ==,0.018y = (2)9991000 (3)分布列见解析,94E ξ=所以ξ的分布列为:ξ0 1 2 3P12202722027552155()127272190123.22022055554Eξ=⨯+⨯+⨯+⨯=考点:频率分布直方图及对立事件的概率公式,数学期望计算公式等有关知识的综合运用.【题型】解答题【难度】一般。
离散型随机变量的分布列、期望、方差-复习指导
离散型随机变量的分布列、期望、方差复习指导学习要求:了解随机变量,离散型随机变量的意义,会求简单的离散型随机变量,掌握离散型随机变量的分布列,会求出期望、方差。
知识总结:一、离散型随机变量的分布列1.随机变量:如果一个随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,可以按一定次序列出的随机变量叫做离散型随机变量,常用ξ,等希腊字母表示2.离散型随机变量的分布列:若离散型随机变量ξ的一切可能取值为:a1, a2, ……, a n, ……, 相应取这些值的概率为:p1,P2,……, P n, ……,则称下表:为离散型随机变量ξ的概率分布列,简称ξ的分布列。
离散型随机变量的分布列具有的两个性质:①P i0(i=1,2,……,n,……) ②P1+P2+……+P n+……=1 一种典型的离散型随机变量的分布列:二项分布:设重复独立地进行n次随机试验A,在每一次试验中,P(A)=P(0<P<1),ξ为n次试验中A 发生的次数,则ξ的分布列为:称ξ服从二项分布,记作ξ~B(n,P)注:是二项展开式[P+(1-P)]n=++……++……+中的第k+1项。
P1+P2+……+P n=++……+=[P+(1-P)]n=1。
二、离散型随机变量的期望与方差1.期望:设离散型随机变量ξ的分布列是:ξa1a2……a n……p p1p2……p n……称a1p1+a2p2+……+a n p n+……为ξ的数学期望,简称期望,记作Eξ。
期望的性质:①若=aξ+b (a,b均为常数), 则E=aEξ+b。
②E(ξ1+ξ2)=Eξ1+Eξ2。
③若ξ~B(n, p), 则Eξ=np注:期望Eξ是反映随机变量ξ集中趋势的指标,也反映了ξ取值的平均水平。
2.方差:设离散型随机变量ξ的分布列是ξa1a2……a n……p p1p2……p n……称(a1-Eξ)2p1+(a2-Eξ)2p2+……+(a n-Eξ)2p n+……为随机变量ξ的均方差,简称方差,记作Dξ。
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量的分布列均值与方差
P
4 15
7 15
4 15
所以随机变量X的分布列为
[方法技巧] 求超几何分布的分布列的步骤
第一步,验证随机变量服从超几何分布,并确定参 数N,M,n的值;
第二步,根据超几何分布的概率计算公式计算出随 机变量取每一个值时的概率;
第三步,用表格的形式列出分布列.
对应演练 1.一盒中有 12 个乒乓球,其中 9 个新的,3 个旧的,从盒子中
1.离散型随机变量的均值与方差 若离散型随机变量X的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn
(1)称E(X)=_x_1_p_1_+__x_2p_2_+__…__+__x_ip_i_+__…__+__x_np_n_为随机变量X的 均值或数学期望,它反映了离散型随机变量取值的_平__均__水__平__.
[解] (1)由题意,参加集训的男、女生各有6名. 参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的 概率为CC3633CC3634=1100. 因此,A中学至少有1名学生入选代表队的概率为1-1100=19090. (2)根据题意,X的可能取值为1,2,3. P(X=1)=CC13C46 33=15,P(X=2)=CC23C46 23=35, P(X=3)=CC33C46 13=15,
列.有时也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
n
(2)分布列的性质:①pi__≥___0,i=1,2,3,…,n;② pi=_1_.
i=1
3.常见的离散型随机变量的分布列 (1)两点分布
X
0
1
P
_1_-___p__
p
若随机变量X的分布列具有上表的形式,则称X服从两点 分布,并称p= P(X=1) 为成功概率.
高中数学离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一
专题三离散型随机变量的分布列及均值与方差
专题三:离散型随机变量的分布列及均值与方差 知识点归纳分布列的性质为:),,2,1(0n i p i =≥ 1211=+++=∑=n i ni p p p p数学期望(均值)和方差分别为:n n i i n i p x p x p x p x X E +++=∑== 22111)(nn i i ni p X E x p X E x p X E x p X E x X D 222212121))(())(())(())(()(-++-+-=-∑==2、均值和方差的性质:若b a +=ξη则b aE E +=ξη,ξηD a D 2=;22)()()(EX X E X D -=。
题型一:离散型随机变量分布列性质解题思路:熟记离散型随机变量分布列性质并结合其它相关知识。
例1: 随机变量ξ的分布列为P (k =ξ)45ak =(=k 1,2……5)则=<<)2521(ξP 解。
1)5()1(==++=ξξP P ∴ 145545245=+++a a a 13=a3=a51152151)2()1()2521(=+==+==<<ξξξP P P题型二:离散型随机变量分布列及均值与方差的问题解题思路:弄清题目中的事件属于哪类事件和随机变量的取值情况及其概率是关键。
[例2](2001年天津)一个袋子里装有大小相同的3个红球和2个黄球.从中同时取出2个,则其中含红球个数的数学的期望是__________(用数字作答). 提示:含红球个数的分布列是数学期望1636012.1010105E ξ=⨯+⨯+⨯=启发:作为填空题还有更快的解法吗?[例3]一盒中有9个正品和3个次品,每次取一测试,不放回在取出一个正品前已取出的废品数为ξ,求期望、方差。
解次 次 正2209109112123)2(3121923=⋅=⋅⋅==A A A P ξ3.0220322029449=+⋅+=ξE 3)3.02201(2)3.02209(1)3.0449(222⋅-+⋅-+⋅-=ξD 2)3.0(220922049449-+⋅+= 1100351100922090=-= 启发:若每次取一测试,再放回呢?求期望,方差结果怎样?例4.(2005年全国卷二)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令ξ为本场比赛的局数.求ξ的概率分布和数学期望. [解答]单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4,比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=330.60.40.28+=, 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜, 因而P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=,比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜,因而P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=,所以ξ的概率分布为ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656,题型三:离散型随机变量在风险决策的应用解题思路:对于风险决策问题,常用概率和期望来做决策。
常见的离散型随机变量的分布列、均值与方差(学生)
常见的离散型随机变量的分布列、均值与方差【知识要点】一、离散型随机变量及其分布列 1、随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。
长用希腊字母ηξ,来表示。
若ξ是随机变量,b a +=ξη,其中b a ,是常数,则η也是随机变量。
2、离散型随机变量如果对于随机变量可能取的值,可以一一列出,这样的随机变量叫做离散型随机变量。
3、离散型随机变量的分布列(1)若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,⋅⋅⋅⋅⋅⋅21,X 取每一个值)21(n i x i ,,,⋅⋅⋅=的概率i i p x X P ==)(,以表格的形式表示如下:此表称为离散型随机变量X 的分布列,简称X 的分布列。
有时为了表达简单,也用等式i i p xX P ==)(,n i ,,,⋅⋅⋅=21,表示X 的分布列。
(2)性质:①n i p i ,,,,⋅⋅⋅=≥210;②11=∑=ni i p ;③在某个范围内取值的概率等于这个范围内每个随机变量值的概率的总和。
4、常见离散型随机变量 (1)两点分布若随机变量X 的分布列是则这样的分布列称为两点分布列。
如果随机变量X 的分布列为两点分布列,就称X 服从两点分布(也称伯努利分布),而称)1(==x P p 为成功概率。
其EX=p ,DX=p(1-p). (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为m k C C C X P nNkn MN k M ,,,,,⋅⋅⋅=⋅==--210)k (,其中}min{n M m ,=,且*∈≤≤N N M n N M N n 、、,,,称分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
记作:1)1()(---•==N nN N M N nM DX N nM EX n M N H X ,,其,,—。
离散型随机变量的分布列、均值与方差-高考数学复习
高考一轮总复习 • 数学
返回导航
4
4
[解析] 根据均值 E(X)= xipi,方差 D(X)= [xi-E(X)]2·pi,标准
i=1
i=1
差最大即方差最大,由各选项对应的方差如下表 选项 均值 E(X) 方差 D(X)
A
2.5
0.65
B
2.5
1.85
C
2.5
1.05
D
2.5
1.45
由此可知选项 B 对应样本的标准差最大,故选 B.
3.均值与方差的性质 (1)E(aX+b)=_a_E_(_X_)_+__b___. (2)D(aX+b)=_a_2_D_(_X_)___. (3)D(X)=E(X2)-(E(X))2.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
归纳拓展 1.若X是随机变量,则Y=aX+b(a,b是常数)也是随机变量. 2.随机变量X所取的值分别对应的事件是两两互斥的. 3.随机变量的均值是常数,样本的平均数是随机变量,它不确 定. 4.随机变量的方差和标准差都反映了随机变量取值偏离均值的平 均程度,方差或标准差越小,则偏离变量的平均程度越小.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
知识点二 离散型随机变量的分布列及性质
1.一般地,若离散型随机变量X可能取的不同值为x1,x2,…, xi,…,xn,称X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi为X的 分布列,可用表格表示为:
X
x1
x2
若离散型随机变量 X 的分布列为 P(X=xi)=pi,i=1,2,…,n. n
1.均值:称 E(X)=__x_1_p_1+__x_2_p_2_+__…__+__x_ip_i+__…__+__x_n_p_n_=__i∑=_1_x_ip_i__为随
高考数学一轮复习离散型随机变量的分布列、均值与方差
2
6
9
6
1
6
)
a
(2)随机变量X的概率分布列规律为P(X=n)=
n n+1
1
5
其中a为常数,则P( <X< )的值为(
)
2
2
2
3
4
5
A.
B.
C.
D.
3
4
5
6
(n=1,2,3,4),
答案:D
解析:根据题意,由于P(X=n)=
a
n n+1
,那么可知,(n=1,2,3,4)时,则可
a
a
a
a
得概率和为1,即 + + + =1.
(4)若X1,X2相互独立,则E(X1X2)=E(X1)·E(X2).
夯实双基
1.思考辨析(正确的打“√”,错误的打“×”)
(1)测量全校所有同学的身高,在170 cm~175 cm之间的人数是离散
型随机变量.( √ )
(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ )
(3)离散型随机变量分布列中,随机变量取各个值的概率之和可以小
4.(易错)袋中有3个白球,5个黑球,从中任取2个,可以作为随机
变量的是(
)
A.至少取到1个白球 B.至多取到1个白球
C.取到白球的个数
D.取到的球的个数
答案:C
解析:选项A,B是随机事件; 选项D是定值2;选项C可能的取值为0,1,2,
可以用随机变量表示.
5.(易错)已知离散型随机变量X的分布列为:
4
2
3
5
(1)求居民甲能进入下一轮的概率;
(2)用ξ表示居民甲初赛结束时答题的个数,求ξ的分布列.
2020届高考数学(理)一轮必刷题 专题62 离散型随机变量均值与方差、正态分布(解析版)
考点62 离散型随机变量均值与方差、正态分布1.(广东省潮州市2019届高三第二次模拟考试数学理)一试验田某种作物一株生长果个数x 服从正态分布()290,N σ,且()700.2P x <=,从试验田中随机抽取10株,果实个数在[]90,110的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( )A .3B .2.1C .0.3D .0.21【答案】B 【解析】∵290(),x N δ~,且()700.2P x <=,所以()1100.2P x >=∴()901100.50.20.3P x <<=-=, ∴()10,0.3X B ~,X 的方差为()100.310.3 2.1⨯⨯-=.故选B .2.(湖北省钟祥市2019届高三高考第一次模拟考试理)某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( )A .10B .9C .8D .7【答案】B 【解析】∵考试的成绩ξ服从正态分布N (105,102). ∴考试的成绩ξ关于ξ=105对称, ∵P (95≤ξ≤105)=0.32, ∴P (ξ≥115)=12(1-0.64)=0.18, ∴该班数学成绩在115分以上的人数为0.18×50=9 故选:B .3.(辽宁省丹东市2019届高三总复习质量测试理)某种种子每粒发芽的概率都为0.85,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望()E X =_______. 【答案】300【解析】设没有发芽的种子数为Y ,则有2X Y =,由题意可知Y 服从二项分布,即Y(1000,0.15)B ,()10000.15150E Y =⨯=,()2()300E X E Y ==.4.(河北省石家庄市2019届高三毕业班模拟考试一A 卷理)已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.【答案】1 【解析】由正态分布的性质可得正态分布的图像对称轴为2X =, 结合题意有:()()2232,12a a a -++=⇒=.故答案为:1.5.(湖南省益阳市2019届高三4月模拟考试数学理)某市高三年级26000名学生参加了2019年3月模拟考试,已知数学考试成绩2(100,)XN σ.统计结果显示数学考试成绩X 在80分到120分之间的人数约为总人数的34,则数学成绩不低于120分的学生人数约为__________. 【答案】3250 【解析】因为成绩()2100,X N σ~,所以正态分布曲线关于100X =对称,又成绩在80分到120分之间的人数约占总人数的34,由对称性知:成绩不低于120分的学生约为总人数的1311248⎛⎫⨯-= ⎪⎝⎭,所以此次考试成绩不低于120分的学生约有12600032508⨯=.6.(2019届湘赣十四校高三联考第二次考试理)我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为23,女性观众认为《流浪地球》好看的概率为12.某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女). (1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设ξ表示这4名观众中认为《流浪地球》好看的人数,求ξ的分布列与数学期望. 【答案】(1)736(2)见解析【解析】设X 表示2名女性观众中认为好看的人数,Y 表示2名男性观众中认为好看的人数, 则12,2X B ⎛⎫~ ⎪⎝⎭,22,3Y B ⎛⎫~ ⎪⎝⎭. (1)设事件A 表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,则()()()()2,12,01,0P A P X Y P X Y P X Y ===+==+==,222212022221211123323C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 21022111722336C C ⎛⎫⎛⎫⎛⎫+⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)ξ的可能取值为0,1,2,3,4,()()00,0P P X Y ξ==== 2200221112336C C ⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭, ()()()11,00,1P P X Y P X Y ξ====+==,= 2210012222111121223233C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅+⋅ ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭16=, ()()()()22,01,10,2P P X Y P X Y P X Y ξ====+==+==,2220112222111121232233C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅ ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 22022*********C C ⎛⎫⎛⎫+⋅= ⎪ ⎪⎝⎭⎝⎭, ()()()31,22,1P P X Y P X Y ξ====+==,2212212222112*********C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅ ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭13=, ()()42,2P P X Y ξ==== 222222121239C C ⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭, ∴ξ的分布列为∴11131170123436636393E ξ=⨯+⨯+⨯+⨯+⨯=. 7.(天津市耀华中学2019届高三第一次模拟考试数学理)在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球4个,白球3个,蓝球3个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能力测试点62 常见离散型随机变量的分布列、均值与方差考点1. 离散型随机变量的分布列 (1)随机变量的概念如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,常用希腊字母,ξη来表示。
①离散型随机变量:如果对于随机变量可能的取值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
②连续型随机变量:如果随机变量可以取一个区间内的一切值,这样的随机变量叫做连续型随机变量。
③若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量。
(2)离散型随机变量的分布列若离散型随机变量X 可能取的不同值为12,,,n x x x ,X 取每一个值(1,2,,)i x i n =的概率()i i P X x p ==,列出下表:称这个表为离散型随机变量X 的分布列,简称X 的分布列。
有时为了表达简单,也用等式()i i P X x p ==,1,2,,i n =表示X 的分布列。
○2A 与B 相互独立是指事件A (或B )是否发生对事件B (或A )发生没有影响。
(3)离散型随机变量分布列的性质 ①0,1,2,,i p i n ≥=;②11ni i p ==∑;③一般地,离散型随机变量在某一范围内取值的概率等于这个范围内每个随机变量值的概率总和。
(4)常见离散型随机变量的分布列 ①两点分布若随机变量X 的分布列是则这样的分布列称为两点分布列。
如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称(1)p P X ==为成功概率。
两点分布又称01-分布。
由于只有两个可能结果的随机试验叫做伯努利试验,所以还称这种分布为伯努利分布,其,(1)EX p DX p p ==-。
②超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为(),0,1,2,,k n k M N MnNC C P X k k m C --===,其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈,称分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
记作:~(,,)X H N M n ,其,(1)1nM nM M N nEX DX N N N N -==⋅-⋅-。
考点2. 离散型随机变量的均值与方差 (1)均值若离散型随机变量ξ的概率分布为则ξ的数学期望(或平均数、均值,简称为期望)为1122n n E x p x p x p ξ=++++,它反映了离散型随机变量取值的平均水平。
(2)方差a .如果离散型随机变量ξ所有可能的取值为12,,,,n x x x ,且取这些值的概率分别是12,,,,n p p p ,那么2221122()()()n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+叫做ξ的方差。
b .另一方面D ξ叫做随机变量ξ的标准差,记作σξ。
c .随机变量的方差与标准差都反映了随机变量的稳定与波动、集中与离散的程度。
(标准差与随机变量本身有相同的单位)(3)若ξ服从二项分布,即~(,)B n p ξ,则,(1)E np D p p ξξ==-。
(4)均值、方差的性质及应用均值的性质方差的性质①EC C =(C 为常数);②()E a b aE b ξξ+=+(a 、b 为常数); ③1212()E E E ξξξξ+=+;④如果12,ξξ相互独立(即这两个随机变量取什么值互不发生影响),那么1212()E E E ξξξξ⋅=⋅。
上述②③项称为期望值的线性性质。
①22()D E E ξξξ=-; ②2()D a b a D ξξ+=⋅【经典范例】例1. (2013年 青岛模拟题)给出下列四个表,其中能成为随机变量ξ的分布列的是( ) A.B.C.D.例2. (2012 人大附中检测题)一次数学摸底考试,某班60名同学成绩的频率分布直方图如右图所示,若90分以上为及格,从该班任取一位同学,其分数是否及格记为ξ,求ξ的分布列。
例3. (2013 华中师范大学一附中单元检测)某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛,用X 表示其中男生人数,求X 的分布列。
例4. (2009 广东卷)已知离散型随机变量X 的分布列如下表。
若0,1EX DX ==,则a = ,b = 。
例5. (2013 西安调研)随机变量ξ的分布列如下:其中a 、b 、c 成等差数列,若13E ξ=,则D ξ= 。
例6. (1)(2013 东北三校联考)设随机变量ξ的分布列为2()()(1,2,3)3k P k m k ξ===,则m = 。
(2)(2013 黄冈调研)设随机变量ξ的分布列为()(1,2,3,4,5)5k P ak k ξ===,则常数a = ,3()5P ξ≥= 。
例7. (2010 重庆卷)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,,6),求: (1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数ξ的分布列与期望。
例8. (2011 江西卷)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别。
公司准备了两种不同饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料。
若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元。
令X 表示此人选对A 饮料的杯数。
假设此人对A 和B 饮料没有鉴别能力。
(1)求X 的分布列;(2)求此员工月工资的期望。
例9. (2012 浙江高考)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分。
现从该箱中任取(无放回,且每球取道的机会均等)3个球,记随机变量X为取出此3球所得分数之和。
(1)求X的分布列;(2)求X的数学期望EX。
例10. (2009 上海高考)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则均值Eξ=(结果用最简分数表示)。
例11. (2009 辽宁高考)某人向一目标射击4次,每次击中目标的概率为13。
该目标分为3个不同的部分,第一、二、三部分的面积之比为1:3:6。
击中目标时,击中任何一部分的概率与其面积成正比。
(1)设X表示目标被击中的次数,求X的分布列;(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求()P A。
例12. (2013 南昌调研)某篮球选修课的考核方式采用远距离投篮,规定若学生连中二球,则通过考核,终止投篮;否则继续投篮,直至投满四次终止。
现有某位同学每次投篮的命中率为23,且每次投篮相互独立。
(1)该同学投中二球但未能通过考核的概率;(2)现知该校选修篮球的同学共27位,每位同学每次投篮的命中率为23,且每次投篮相互独立。
在这次考核中,记通过考核的人数为X,求X的期望。
例13. (2008 江西卷)因冰雪灾害,某柑橘基地果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都须分两年实施。
若实施方案一,预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑橘产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5。
若实施方案二,预计第一年可以使柑橘产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以是柑橘产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6。
实施每一种方案第一年与第二年相互独立,令(1,2)i i ξ=表示方案i 实施两年后柑橘产量达到灾前产量的倍数。
(1)写出12,ξξ的分布列;(2)实施哪种方案,两年后柑橘产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑橘产量达不到、恰好达到、超过灾前产量的预计利润分别为10万元、15万元、20万元。
问实施哪种方案的平均利润更大?【真题过关】1.(2012 上海高考)设412341010x x x x ≤<<<≤,5510x =,随机变量1ξ取值12345,,,,x x x x x 的概率均为0.2,随机变量2ξ取值233412,,,222x x x x x x +++ 4551,22x x x x ++的概率也均为0.2,若记12,D D ξξ分别为12,ξξ的方差,则( ) A.12D D ξξ>B.12D D ξξ=C.12D D ξξ<D.1D ξ与2D ξ的大小关系与1234,,,x x x x 的取值有关 2.(2010 山东高考)样本中共有5个个体,其值分别为a 、0、1、2、3,若该样本的平均值为1,则样本方差为( )B.65D.23.(2011 浙江高考)某毕业生参加人才招聘会,。