数值计算方法-复习-第五章

合集下载

数值计算方法复习

数值计算方法复习

数值计算方法复习数值计算方法是利用数值计算机进行数值计算的方法,广泛应用于科学计算、工程计算和统计计算等领域。

本文将对数值计算方法进行全面的复习介绍,包括数值计算的基本概念、数值计算的误差分析、数值求解非线性方程的方法、插值与拟合方法、数值积分与微分方法以及常微分方程数值解法等内容。

数值计算的基本概念包括数值计算方法的定义、数值计算的基本运算规则和数值计算的基本误差理论。

数值计算方法是一种利用有限的计算机算力和存储器容量来解决数学问题的方法。

数值计算的基本运算规则包括加减乘除等基本运算规则,以及数值计算中常用的数值算法。

数值计算的基本误差理论是指在进行数值计算时,由于各种原因所导致的计算结果与精确结果之间的差距,主要包括舍入误差、截断误差和舍入误差。

数值计算的误差分析是数值计算方法中非常重要的一部分,它可以帮助我们评估数值计算的精度和可靠性。

误差分析的主要方法有绝对误差分析和相对误差分析两种。

绝对误差分析是指通过计算数值解与精确解之间的差距来评估数值计算的误差。

相对误差分析是指通过计算数值解与精确解之间的相对差距来评估数值计算的误差。

误差分析的结果可以用来指导我们选择合适的数值计算方法和优化数值计算过程,以提高计算的精度和可靠性。

数值求解非线性方程是数值计算中的重要问题之一,它在科学计算和工程计算中得到了广泛的应用。

数值求解非线性方程的方法有迭代法、二分法、割线法、牛顿法等。

其中,迭代法是一种基本的数值求解方法,它通过不断迭代更新初始近似解来逼近方程的根。

二分法是一种简单有效的数值求解方法,它通过不断将区间二分来逼近方程的根。

割线法是一种迭代法,它通过利用函数在两个初始近似解之间的割线来逼近方程的根。

牛顿法是一种基于函数导数的迭代法,它通过利用切线来逼近方程的根。

插值与拟合方法是数值计算中常用的方法之一,它们可以通过给定的数据点来构造一个函数,以实现数据的近似表示和计算。

插值方法是利用已知数据点来构造一个函数,使得该函数在这些数据点上的取值与已知的数据点相等。

数值计算1-5章

数值计算1-5章

数值计算1-5章数值计算⽅法第1章绪论1.1数值计算⽅法的研究对象和特点数值计算⽅法也称数值分析,它研究⽤计算机求解各种数学问题的数值⽅法及其理论。

数学学科内容⼗分⼴泛,数值计算⽅法属于计算数学的范畴,这⾥只涉及科学和⼯程计算中常见的数学问题,如函数的插值、逼近、离散数据的拟合、数值积分与数值微分、线性和⾮线性⽅程数值解法和矩阵特征值问题数值解法和微分⽅程数值解法等.由于计算机科学与技术的迅速发展,数值计算⽅法的应⽤已经普遍深⼊到各个科学领域,很多复杂和⼤规模的计算问题都可以在计算机上进⾏计算,新的、有效的数值⽅法不断出现.现在,科学与⼯程中的数值计算已经成为各门⾃然科学和⼯程技术科学研究的⼀种重要⼿段,成为与实验和理论并列的⼀个不可缺少的环节.所以,数值计算⽅法既是⼀个基础性的,同时也是⼀个应⽤性的数学学科分⽀,与其他学科的联系⼗分紧密.⽤数值⽅法求解数学问题⾸先要构造算法,即由运算规则(包括算术运算、逻辑运算和运算顺序)构成的完整的解题过程.同⼀个数学问题可能有多种数值计算⽅法,但不⼀定都有效.评价⼀个算法的好坏主要有两条标准:计算结果的精度和得到结果所付出的代价.我们⾃然应该选择代价⼩⼜能满⾜精度要求的算法.计算代价也称为计算复杂性,包括时间复杂性和空间复杂性.时间复杂性好是指节省时间,主要由运算次数决定.空间复杂性好是指节省存储量,主要由使⽤的数据量决定.⽤计算机求数学问题的数值解不是简单地构造算法,它涉及多⽅⾯的理论问题,例如,算法的收敛性和稳定性等.除理论分析外,⼀个数值⽅法是否有效,最终要通过⼤量的数值实验来检验.数值计算⽅法具有理论性、实⽤性和实践性都很强的特点.作为数值计算⽅法的基础知识,本课程不可能⾯⾯俱到.除构造算法外,各章根据内容⾃⾝的特点,讨论的问题有所侧重.学习时我们⾸先要注意掌握⽅法的基本原理和思想,要注意⽅法处理的技巧及其与计算机的结合,要重视误差分析、收敛性和稳定性的基本理论.其次,要通过例⼦,学习使⽤各种数值⽅法解决实际计算问题,熟悉数值⽅法的计算过程.最后,为了掌握本课程的内容,还应做⼀定数量的理论分析与计算练习.1.2数值计算的误差1.2.1误差的来源应⽤数学⼯具解决实际问题,⾸先,要对被描述的实际问题进⾏抽象、简化,得到实际问题的数学模型.数学模型与实际问题之间会出现的误差,我们称之为模型误差.在数学模型中,通常要包含⼀些由观测数据确定的参数.数学模型中⼀些参数观测结果⼀般不是绝对准确的.我们把观测模型参数值产⽣的误差称为观测误差.例如,设⼀根铝棒在温度t时的实际长度为Lt,在t=0时的实际长度为L0,⽤lt来表⽰铝棒在温度为t时的长度计算值,并建⽴⼀个数学模型l t =L(1+at), a≈0.0000238/℃,其中a是由实验观测得到的常数,a∈[0.0000237,0.0000239],则称Lt -lt为模型误差,a-0.0000238是a 的观测误差.在解实际问题时,数学模型往往很复杂,因⽽不易获得分析解,这就需要建⽴⼀套⾏之有效的近似⽅法和数值⽅法.我们可能⽤容易计算的问题代替不易计算的问题⽽产⽣误差,也可能⽤有限的过程代替⽆限的过程⽽产⽣误差.我们将模型的准确解与⽤数值⽅法求得的准确解之间的误差称为截断误差或⽅法误差.例如,对函数()()35721sin 13!5!7!21!n x x x xn x x n +=-+-+++-+,该式右边有⽆限多项,计算机上⽆法计算.然⽽,根据微积分学中的泰勒(Taylor )定理,当|x |较⼩时,我们若⽤前3项作为sin x 的近似值,则截断误差的绝对值不超过77!x .⽤计算机做数值计算时,⼀般也不能获得数值计算公式的准确解,需要对原始数据、中间结果和最终结果取有限位数字.我们将计算过程中取有限位数字进⾏运算⽽引起的误差称为舍⼊误差.例如,13=0.33333…,如果我们取⼩数点后4位数字,则13-0.3333=0.000033…就是舍⼊误差.在数值分析中,除了研究数学问题的算法外,还要研究计算结果的误差是否满⾜精度要求,这就是误差估计问题.在数值计算⽅法中,主要讨论的是截断误差和舍⼊误差.1.2.2 误差与有效数字定义1.1 设x 是某实数的精确值,A x 是它的⼀个近似值,则称x -A x 为近似值A x 的绝对误差,或简称误差.Ax x x-称为x A 的相对误差.当x =0时,相对误差没有意义.在实际计算中,精确值x 往往是不知道的,所以通常把AAx x x -作为A x 的相对误差.定义1.2 设x 是某实值的精确值,A x 是它的⼀个近似值,并可对A x 的绝对误差作估计|x -A x |?A ε,则称εA 是A x 的绝对误差界,或简称误差界.称AAx ε是A x 的相对误差界.例 1.1 我们知道π=3.1415926…,若取近似值πA =3.14,则π-πA =0.0015926…,可以估计绝对误差界为0.002,相对误差界为0.0006.例 1.2 测量⼀⽊板长是954 cm,问测量的相对误差界是多⼤?解因为实际问题中所截取的近似数,其绝对误差界⼀般不超过最⼩刻度的半个单位,所以当x =954 cm 时,有A ε=0.5 cm ,其相对误差界为0.50.00052410.053%954AAx ε==< .定义1.3 设A x 是x 的⼀个近似值,将A x 写成12100.,k A i x a a a =±? , (1.1) 它可以是有限或⽆限⼩数的形式,其中i a (i =1,2,…)是0,1,…,9中的⼀个数字,1a ≠0,k 为整数.如果|x -A x |?0.5×10k n -,则称A x 为x 的具有n 位有效数字的近似值.可见,若近似值A x 的误差界是某⼀位的半个单位,该位到A x 的第⼀位⾮零数字共有n 位,则A x 有n 位有效数字.通常在x 的准确值已知的情况下,若要取有限位数的数字作为近似值,就采⽤四舍五⼊的原则,不难验证,采⽤四舍五⼊得到的近似值,其绝对误差界可以取为被保留的最后数位上的半个单位.例如|π-3.14|?0.5×210-, |π-3.142|?0.5×310-.按定义,3.14和3.142分别是具有3位和4位有效数字的近似值.显然,近似值的有效数字位数越多,相对误差界就越⼩,反之也对.下⾯,我们给出相对误差界与有效数字的关系.定理1.1 设x 的近似值A x 有(1.1)式的表达式. (1) 如果A x 有n 位有效数字,则 111×102A nAx x x a --≤; (1.2)(2) 如果()111×1021A nAx x x a --≤+, (1.3)则A x ⾄少具有n 位有效数字.证由(1.1)式可得到()111--?+≤≤?k A k a x a . (1.4)所以,当A x 有n 位有效数字时11110.5101×10,×102k nA nk Ax x x a a ----?≤=即(1.2)式得证.由(1.3)式和(1.4)式有()()nk nk AAA A a a x x x x x x ---?=?+?+≤-=-105.0101211011111,即说明A x 有n 位有效数字,(2)得证.例1.30.1%,应取⼏位有效数字?解由于因此1a =4,设有n 位有效数字,则由(1.2)式,可令11110a -?≤,即410n -?18,得n ?4.故只要对4位有效数字,其相对误差就可⼩于0.1%,4.472.例1.4 已知近似数A x 的相对误差界为0.3%,问A x ⾄少有⼏位有效数字?解设A x 有n 位有效数字,由于A x 的第⼀个有效数1a 没有具体给定,⽽我们知道1a ⼀定是1,2,…,9中的⼀个,由于()12311101000210291A Ax x x --≤<=+,故由(1.3)式知n=2,即A x ⾄少有2位有效数字.1.2.3 函数求值的误差估计对⼀元函数f(x ),⾃变量x 的⼀个近似值为A x ,以f(A x )近似f(x ),其误差界记作ε(f(A x )).若f(x )具有⼆阶连续导数,f′(A x )与f″(A x )的⽐值不太⼤,则可忽略|x -A x |的⼆次项,由Taylor 展开式得到f(A x )的⼀个近似误差界ε(f(A x ))≈|f′(A x )|ε(A x ).对n 元函数f(x 1,x 2,…,x n ),⾃变量x 1,x 2,…,x n 的近似值分别为x 1A ,x 2A ,…,x n A ,则有()()()12121,,,,,,nn A A nA k kA k k Af f x x x f x x x x x x=??-≈- ∑ ,其中()12,,,A A nA k k f f x x x x x A.因此,可以得到函数值的⼀个近似误差界()()()121,,,nAA nA kA k k Af f x x x x x εε=??≈ ∑. 特别地,对f(x 1,x 2)=x 1±x 2有ε(x 1A ±x 2A )=ε(x 1A )+ε(x 2A ).同样,可以得到ε(x 1A x 2A )≈|x 1A |ε(x 2A )+|x 2A |ε(x 1A ),()()12211222A A A A A A A x x x x x x x εεε+??≈,20A x ≠例1.5 设有长为l,宽为d 的某场地.现测得l 的近似值l A =120 m,d 的近似值d A =90 m ,并已知它们的误差界为|l-l A |?0.2 m,|d-d A |?0.2 m.试估计该场地⾯积S=ld 的误差界和相对误差界.解这⾥ε(l A )=0.2,ε(d A )=0.2,并且有2,,10800A A A S S d l S l d mld====.于是有误差界()21200.2900.242A S m ε≈?+?=,相对误差界()()420.39%10800A r A AS S l dεε=≈=.例1.6 设有3个近似数a=2.31, b=1.93, c=2.24,它们都有3位有效数字.试计算p=a+bc 的误差界和相对误差界,并问p 的计算结果能有⼏位有效数字?解 p=2.31+1.93×2.24=6.6332.于是有误差界ε(p)=ε(a)+ε(bc)≈ε(a)+|b|ε(c)+|c|ε(b) =0.005+0.005(1.93+2.24)=0.02585,相对误差界εr (p)=()0.025856.6332p pε≈≈0.39%.因为ε(p)≈0.02585<0.05,所以p=6.6332能有2位有效数字.1.2.4 计算机中数的表⽰任意⼀个⾮零实数⽤(1.1)式表⽰,是规格化的⼗进制科学记数⽅法.在计算机中通常采⽤⼆进制的数系(或其变形的⼗六进制等),并且表⽰成与⼗进制类似的规格化形式,即浮点形式±2m ×0.β1β2…βt ,这⾥整数m 称为阶码,⽤⼆进制表⽰为m=±α1α2…αs , αj =0或1(j=1,2,…,s),s 是阶的位数.⼩数0.β1β2…βt 称为尾数,其中β1=1,βj =0或1(j=2,3,…,t),t 是尾数部位的位数.s 和t 与具体的机器有关.由于计算机的字长总是有限位的,所以计算机所能表⽰的数系是⼀个特殊的离散集合,此集合的数称为机器数.⽤浮点⽅式表⽰的数有⽐较⼤的取值范围.⼗进制输⼊计算机时转换成⼆进制,并对t 位后⾯的数作舍⼊处理,使得尾数为t 位,因此⼀般都有舍⼊误差.两个⼆进制数作算术运算时,对计算结果也要作类似的舍⼊处理,使得尾数为t 位,从⽽也有舍⼊误差.在实现算法时,计算的最后结果与算法的精确解之间的误差,从根本上说是由机器的舍⼊误差造成的,包括输⼊数据和算术运算的舍⼊误差.因此有必要对计算机中数的浮点表⽰⽅法和舍⼊误差有⼀个初步的了解.有时为了分析某⼀个计算⽅法可能出现的误差现象,为了适应⼈们的习惯,我们会采⽤⼗进制实数系统进⾏误差分析.1.3 数值稳定性和要注意的若⼲原则 1.3.1 数值⽅法的稳定性实际计算时,给定的数据会有误差,数值计算中也会产⽣误差,并且,这些误差在进⼀步的计算中会有误差传播.因此,尽管数值计算中的误差估计⽐较困难,我们还是应该重视计算过程中的误差分析.定义 1.4 对于某个数值计算⽅法,如果输⼊数据的误差在计算过程中迅速增长⽽得不到控制,则称该算法是数值不稳定的,否则是数值稳定的.下⾯举例说明误差传播的现象.例 1.7 计算积分值105nxdx I x =+?, n=0,1,…,6.解由于要计算系列的积分值,我们先推导In 的⼀个递推公式.由1110555n n n n x x I I dx x --++=+?111n xdx n-==,可得下⾯两个递推算法.算法1:115n n I I n-=-,n=1,2, (6)算法2:1115n n I I n -??=-,n=6,5, (1)直接计算可得0ln 6ln 5I =-.如果我们⽤4位数字计算,得I 0的近似值为0I *=0.1823.记n n n E I I *=-,I n *为In 的近似值.对算法1,有15n n E E -=-=…=()5n-E 0.按以上初始值I0的取法有|E 0|?0.5×410-,事实上|E 0|≈0.22×410-.这样,我们得到|E 6|=65|E 0|≈0.34.这个数已经⼤⼤超过了I 6的⼤⼩,所以6I *连⼀位有效数字也没有了,误差掩盖了真值.对算法2,有E k-n =15n ??-E k ,|E 0|=615??|E 6|.如果我们能够给出I 6的⼀个近似值,则可由算法2计算I n (n=5,4,…,0)的近似值.并且,即使E 6较⼤,得到的近似值的误差将较⼩.由于()()11011616551kkk xxI d d x x k k =<<=++??,因此,可取Ik 的⼀个近似值为()()11126151k I k k *=+?? ? ?++??. 对k=6有6I *=0.0262.按0I *=0.1823和6I *=0.0262,分别按算法1和算法2计算,计算结果如表1-1,其中()1n I 为算法1的计算值, ()2n I 为算法2的计算值.易知,对于任何⾃然数n,都有0表1-1n()1nI()2nInI (4位)0 0.1823 0.1823 0.18231 0.0885 0.0884 0.08842 0.0575 0.0580 0.05803 0.0458 0.0431 0.04314 0.0210 0.0344 0.03435 0.0950 0.0281 0.02856-0.3083 0.0262 0.0243当然,数值不稳定的⽅法⼀般在实际计算中不能采⽤.数值不稳定的现象属于误差危害现象.下⾯讨论误差危害现象的其他表现及如何避免问题.1.3.2 避免有效数字的损失在数值计算中,参加运算的数有时数量级相差很⼤,⽽计算机位数有限,如不注意,“⼩数”的作⽤可能消失,即出现“⼤数”吃“⼩数”的现象. 例1.8 ⽤3位⼗进制数字计算x =101+δ1+δ2+…+δ100,其中0.1?δi ?0.4,i =1,2, (100)解在计算机内计算时,要写成浮点数形式,且要对阶.如果是101与δ1相加,对阶时,101=0.101×103,δ1=0.000×103.因此,如果我们⾃左⾄右逐个相加,则所有的δi 都会被舍掉,得x ≈101.但若把所有的δi 先加起来,再与101相加,就有111=101+100×0.1?x ?101+100×0.4=141.可见,计算的次序会产⽣很⼤的影响.这是因为⽤计算机计算时,在运算中要“对阶”,对阶引起了⼤数吃⼩数的现象.⼤数吃⼩数在有些情况下是允许的,但有些情况下则会造成谬误.在数值计算中,两个相近数相减会使有效数字严重损失.例1.9 求实系数⼆次⽅程20ax bx c ++=的根,其中b 2-4ac>0,ab ≠0. 解考虑两种算法. 算法1:1,22x a=算法2:(12b sign b x a--=, 21c x ax =,其中sign 表⽰取数的符号,即()1,0,0,0,1,0.b sign b b b >??==??-对算法1,若ac b 42>>,则是不稳定的,否则是稳定的.这是因为在算法1中分⼦会有相近数相减的情形,会造成有效数字的严重损失,从⽽结果的误差很⼤.算法2不存在这个问题,在任何情况下都是稳定的.因此称算法1是条件稳定的,算法2是⽆条件稳定的.例如,对于⽅程262.10 1.0000x x ++=,⽤4位有效数字计算,结果如下:算法1:x 1=-62.08, x 2=-0.02000. 算法2:x 1=-62.08, x 2=-0.01611.准确解是x 1=-62.083892…,x 2=-0.016107237….这⾥,ac b 42>>,所以算法1不稳定,舍⼊误差对x 2的影响⼤.在进⾏数值计算时,如果遇到两相近数相减的情形,可通过变换计算公式来避免或减少有效数字的损失.例如,如果|x |≈0,有变换公式1cos sin sin 1cos x x xx-=+.如果x 1≈x 2,有变换公式1122lg lg lgx x x x -=.如果x 〉〉1,有变换公式.此外,⽤绝对值很⼩的数作除数时,舍⼊误差会很⼤,可能对计算结果带来严重影响.因此,要避免除数绝对值远远⼩于被除数绝对值的除法运算.如果⽆法改变算法,则采⽤增加有效位数进⾏计算,或在计算上采⽤双精度运算,但这要增加机器计算时间和多占内存单元.1.3.3 减少运算次数在数值计算中,要注意简化计算步骤,减少运算次数,这也是数值分析中所要研究的重要内容.同样⼀个计算问题,如果能减少运算次数,不但可节省计算机的计算时间,还能减少误差的积累.下⾯举例说明简化计算公式的重要性.例1.10 给定x ,计算多项式()110nn n n n P x a x a xa --=+++的值.如果我们先求ak x k ,需要进⾏k 次乘法,再相加,则总共需要()12n n +次乘法和n次加法才能得到⼀个多项式的值.如果我们将多项式写成下⾯的形式()(){}1210n n n n P x x x x a x a a a a --??=+++++?? ,则只需n 次乘法和n 次加法即可得到⼀个多项式的值,这就是著名的秦九韶算法,可描述为1,,1,2,,0,n n k k k u a u u x a k n n +=??=+=--?最后有()0n u P x =.例1.11 计算ln2的值. 解如果利⽤级数()()11ln 11nn n xx n∞+=+=-∑计算ln2,若要精确到误差的绝对值⼩于10-5,要计算10万项求和,计算量很⼤,并且舍⼊误差的积累也⼗分严重.如果改⽤级数()35211ln 213!5!21!n xx x xx x n +??+=+++++ ? ?-+??来计算ln2,取x =1,则只要计算前9项,截断误差便⼩于10-10.1.4 向量和矩阵的范数为了对矩阵计算进⾏数值分析,我们需要对向量和矩阵的“⼤⼩”引进某种度量.在解析⼏何中,向量的⼤⼩和两个向量之差的⼤⼩是⽤“长度”和“距离”的概念来度量的.在实数域中,数的⼤⼩和两个数之间的距离是通过绝对值来度量的.范数是绝对值概念的⾃然推⼴.1.4.1 向量的范数定义1.5 如果向量x ∈n R 的某个实值函数f(x )=‖x ‖满⾜ (1) 正定性:x ?0,且x =0当且仅当x =0;(2) 齐次性:对任意实数α,都有αx =|α|x ; (3) 三⾓不等式:对任意x ,y ∈R n ,都有+x y ?x +y ,则称x 为n R 上的⼀个向量范数.在n R 中,记()12,,,Tn x x x =x ,实际计算中最常⽤的向量范数有: (1) 向量的∞范数1max i i nx ∞≤≤=x;(2) 向量的1范数11nii x ==∑x;(3) 向量的2范数12221in x i ==??∑x.容易验证,向量的∞范数和1范数满⾜定义1.5中的条件.对于2范数,满⾜定义1.5中的条件(1)和(2)是显然的,对于条件(3),利⽤向量内积的Cauchy-Schwarz 不等式可以验证.更⼀般地,有如下向量的p 范数1pipn px i ==??∑x,其中p ∈ [1,+∞).容易验证1ppn∞∞≤≤xxx,由此可得如下定理.定理1.2 lim pp ∞→∞=xx.下⾯,我们利⽤向量范数的连续性来说明向量范数的重要特征.定理1.3 设给定A ∈R n ×n ,x =(x 1,x 2,…,x n )T ∈R n ,则对R n 上每⼀种向量范数,‖A x ‖都是x 1,x 2,…,x n 的n 元连续函数.证设a j 为A 的列向量,将A 写成A =(a 1,a 2,…,a n ). 则由三⾓不等式,对h =(h 1,h 2,…,h n )T ∈R n,有|‖A (x +h )‖-‖A x ‖|?‖A h ‖=‖1ni i h =∑a i ‖1ni i h =∑‖a i ‖M max|h i |,其中M=1ni =∑‖a i ‖.所以,对任意的ε>0,当max|h i |<Mε时,有|‖A (x +h )‖-‖A x ‖|<ε, 这就证明了‖A x ‖的连续性.推论1.1 ‖x ‖是x 的各分量的连续函数. 向量范数的⼀个重要特征是具有等价性.定理 1.4 R n 上的所有向量范数是彼此等价的,即对R n 上的任意两种向量范数‖x ‖s和‖x ‖t ,存在常数c 1,c 2>0,使得对任意x ,有c 1‖x ‖s ?‖x ‖t ?c 2‖x ‖s .证只要就‖x ‖s =‖x ‖∞证明上式成⽴即可,即证明存在常数c 1,c 2>0,对⼀切x ∈R n且x ≠0,有c 1‖x ‖∞?‖x ‖t ?c 2‖x ‖∞.记R n 上的有界闭集D={x :x =(x 1,x 2,…,x n )T ,‖x ‖∞=1}.由定理1.3的推论知,‖x ‖t 是D 上的n 元连续函数,所以在D 上有最⼤值c 2和最⼩值c 1,且x ∈D 时有x ≠0,故有c 2?c 1>0.现考虑x ∈R n ,且x ≠0,则有∞x x ∈D,所以有c 1?‖∞x x ‖t ?c 2, ?x ∈R n ,x ≠0.从⽽对x ≠0有c 1‖x ‖∞?‖x ‖t ?c 2‖x ‖∞.⽽x =0时上式⾃然成⽴,定理得证.由于向量范数之间具有等价性,对于范数的极限性质,我们只需对⼀种范数进⾏讨论,其余范数也都具有相似的结论.⽐如,我们可以⽅便地讨论向量序列的收敛性.定义1.6 设向量序列x (k)=()()()()12,,,Tk k k nx x x ∈R n ,k=1,2,…,若存在x *=()12 ,,,Tn x x x ***∈R n ,使得()lim k iik x x *→∞=, i =1,2,…,n,则称序列{x (k)}收敛于x *,记为()lim k ik *→∞=x x.按定义有)()lim lim 0k k k k **→∞→∞∞=?-=xx xx.⼜因为()()()12k k k c c ***∞∞-≤-≤-xxxxxx,所以有()()lim lim 0k k k k **→∞→∞=?-=xx xx.因此,若向量序列在⼀种范数下收敛,则在其他范数下也收敛.不必强调是在哪种范数意义下收敛.1.4.2矩阵的范数定义1.7 如果矩阵A ∈R n ×n 的某个实值函数f(A )=‖A ‖满⾜ (1) 正定性:‖A ‖?0,且‖A ‖=0当且仅当A =0;(2) 齐次性:对任意实数α,都有‖αA ‖=|α|‖A ‖;(3) 三⾓不等式:对任意A ,B ∈R n ×n ,都有‖A +B ‖?‖A ‖+‖B ‖; (4) 相容性:对任意A ,B ∈R n ×n ,都有‖A B ‖?‖A ‖‖B ‖;则称‖A ‖为Rn ×n上的⼀个矩阵范数.可以验证,对()ij n na ?=A ,12211Fn n a ij i j ?? ?=∑∑ ?==??A是⼀种矩阵范数,称之为Froben i us 范数,简称F 范数.由于矩阵与向量常常同时参与讨论与计算,矩阵范数与向量范数之间需要有⼀种联系. 定义1.8 对于给定的R n 上的⼀种向量范数‖x ‖和R n ×n 上的⼀种矩阵范数‖A ‖,如果满⾜‖A x ‖?‖A ‖‖x ‖,则称矩阵范数‖A ‖与向量范数‖x ‖相容.上⾯的定义1.7是矩阵范数的⼀般定义,下⾯我们通过已给的向量范数来定义与之相容的矩阵范数.定义 1.9 设x ∈R n ,A ∈R n ×n ,对给出的⼀种向量范数v x ,相应地定义⼀个矩阵的⾮负函数m axvvx v≠=A x Ax.称之为由向量范数导出的矩阵范数,也称为算⼦范数或从属范数.由定义可得vvv≤A xAx,1max vvv==xAAx.算⼦范数满⾜矩阵范数⼀般定义中的条件(1)和(2)是显然的,现验证满⾜条件(3)和(4).对任意的A ,B ∈R n ×n ,有()1maxvvv =+=+xA B x11max max v vvvvvxx==≤+=+Ax BxAB1max vvv==xABABx1max vvvvvv=≤=xABxA.因此,算⼦范数满⾜矩阵范数⼀般定义中的条件(3)和(4).由常⽤的向量范数,可以导出与其相容的矩阵算⼦范数.定理1.5 设A ∈R n ×n ,记()ij n na ?=A ,则(1)11max nij i nj a ∞≤≤==∑A,称之为矩阵A 的⾏范数;(2) 111m ax nij j ni a ≤≤==∑A ,称之为矩阵A 的列范数;(3)2=A称之为矩阵A 的2范数或谱范数,其中,()max TλA A 表⽰T A A的最⼤特征值.证这⾥只对(1)和(3)给出证明,(2)的证明同理可得. 先证明(1):设x =(x 1,x 2,…,x n )T ≠0,不妨设A ≠0,则有1111max max nnij j ij i ni nj j xa x xa ∞∞≤≤≤≤===≤∑∑A .111max max nij xi nj a ∞∞∞=≤≤===∑AAx.设矩阵A 的第p ⾏元素的绝对值之和达到最⼤,即111max nnpj ij i nj j a a ≤≤===∑∑.取向量()12,,,Tn ξξξ= ξ,其中1,0,1,0.a pj j apjξ≥??=?-显然,‖ξ‖∞=1,⽽且1111m ax m axnn∞∞=≤≤===≥==∑∑xAA xA ξ.于是(1)得证.再证明(3):显然,A TA 是对称半正定矩阵,它的全部特征值均⾮负,设为120n λλλ≥≥≥≥ .由实对称矩阵的性质,各特征值对应的特征向量必正交.设对应的标准正交特征向量为12,,,nu u u ,即T i i i λ=A Au u (i =1,2,…,n),(u i ,u j )=δi j (i ,j=1,2,…,n).对向量x ∈R n ,‖x ‖2=1,可由R n 的⼀组基u i (i =1,2,…,n)线性表⽰,即有1niii c ==∑x u ,22211nii c===∑x11nnT Ti ii i i cc λλλ====≤=∑∑A xx A A x .另⼀⽅⾯,取ξ=u 1,显然有‖ξ‖2=1,211112T T Tλλ===A ξξA A ξu u .因此,2221m ax ===xAA x得证.由定理1.5可见,计算⼀个矩阵的⾏范数和列范数是⽐较容易的,⽽矩阵的2范数计算却不⽅便,但由于它有许多好的性质,所以在理论上还是有⽤的.例1.12 设矩阵1234-??=解 {}m ax 3,77∞==A,{}1m ax 4,66==A ,10141420T-??=-A A ()21014det 3041420Tλλλλλ--==-+-I A A ,求得115λ=+215λ=-因此25.46=≈A.定义1.10 设A ∈R n ×n 的特征值为λi (i =1,2,…,n),称()1max i i nρλ≤≤=A为A 的谱半径.谱半径在⼏何上可解释为以原点为圆⼼,能包含A 的全部特征值的圆的半径中最⼩者.例1.13 计算例1.12中矩阵的谱半径.解由A 的特征⽅程()2=--=-I A得12λ=,22λ=所以() 5.372ρ=≈A .定理1.6 设A ∈R n ×n ,则有()ρ≤A A .证设A x =λx ,x ≠0,且|λ|=ρ(A ),必存在向量y ,使x y T 不是零矩阵.于是()TTTTA ρλ==≤A xyxyxyA xy,即得ρ(A )?‖A ‖.例1.14 设矩阵A 与矩阵B 是对称的,求证ρ(A +B )?ρ(A )+ρ(B ).证因T =A A ,于是有()()()222max max 2A A AA ,即‖A ‖2=ρ(A ).同理‖B ‖2=ρ(B ).由于A +B =(A +B )T,因此()()()222ρρρ+=+≤+=+A B A BABA B .定理1.7 如果‖B ‖<1,则I ±B 为⾮奇异矩阵,且()111-±≤-I B B,这⾥的矩阵范数是指矩阵的算⼦范数.证若I ±B 奇异,则存在向量x ≠0,使(I ±B )x =0,故有ρ(B )?1,这与‖B ‖<1⽭盾,所以I ±B ⾮奇异.由于()()11--±=± I B I B I B ,于是得()()11--±≤+±I B I BI B .上的任意两种矩阵范数都是等价的,即对Rn ×n上的任意两种矩阵范数sA和t A ,存在常数c 1,c 2>0,使得12stsc c ≤≤AAA.由矩阵范数的等价性,我们可以⽤矩阵的范数描述矩阵序列的极限性质.定义1.11 设矩阵序列()()()kk n nijn na ??=∈A R,k=1,2,…,若存在()n nij n na **=∈A R,使得()lim k ijijk a a *→∞()lim k k *→∞=AA.可以验证()()lim lim 0k k k k **→∞→∞=?-=AA AA.评注本章介绍了数值计算的研究对象、误差及相关概念、数值计算的稳定性及构造算法的基本原则.考虑到矩阵计算的数值分析,本章还介绍了向量范数和矩阵范数的基本概念和常⽤定理.误差分析问题是数值分析中重要⽽困难的问题.误差的基本概念和误差分析的若⼲原则,对学习本课程是很有必要的.但是,作为⼯程或科学计算的实际问题则要复杂得多,往往要根据不同问题分门别类地进⾏分析.例如,由于舍⼊误差有随机性,有⼈应⽤概率的观点研究误差规律.在⼯程计算中,常⽤⼏种不同办法(包括实验⽅法)进⾏⽐较,以确定计算结果的可靠性.20世纪60年代以来,发展了两种估计误差的理论:⼀种是J.H.W i lk i nson 等⼈针对计算机浮点算法提出了⼀套预先估计的研究误差的⽅法,使矩阵运算的舍⼊误差研究获得了新发展;另⼀种是R .E.Moore 等⼈应⽤区间分析理论估计误差,开创了研究误差的新⽅法. 关于范数⽅⾯,所述内容是为以下各章服务的⼀些初步概念和常⽤的定理,对本书够⽤就可以了.例如只讨论了R n ×n 的范数,⽽没有顾及R n ×m .⼜例如介绍了R n 和R n ×n 上范数的等价性,此性质对有限维空间都是成⽴的,⽽对于C[a,b]则没有这个性质,这些都是赋范线性空间有关的问题,详细讨论这些问题是泛函分析的内容.习题 11.1 已知e=2.71828…,问下列近似值A x 有⼏位有效数字,相对误差界是多少? (1) x =e, A x =2.7; (2) x =e, A x =2.718; (3) x =e100, A x =0.027; (4) x =e100, A x =0.02718. 1.2 设原始数据的下列近似值每位都是有效数字:1x *=1.1021, 2x *=0.031, 3x *=56.430. 试计算(1) 1x *+2x *+3x *;(2),并估计它们的相对误差界.1.3 设x 的相对误差界为δ,求n x 的相对误差界.1.4 设x >0,x 的相对误差界为δ,求ln2的绝对误差界.1.5 为了使计算球体体积时的相对误差不超过1%,问测量半径R 时的允许相对误差界是多少?1.6 三⾓函数值取4位有效数字,怎样计算1-cos2°才能保证精度? 1.7 设0Y =28,按递推公式nY=1n Y --…,计算.若取27.982(5位有效数字),试问计算Y 100将有多⼤误差?1.8 求解⽅程25610x x ++=,使其根⾄少具有4位有效数字(≈27.982).1.9 正⽅形的边长⼤约为100 cm ,应怎样测量才能使其⾯积的误差不超过21cm ? 1.10 序列{yn}满⾜递推关系1101n n y y -=-,n=1,2,….若y 0 1.41(3位有效数字),计算到y 10时的误差有多⼤?这个计算过程稳定吗?1.11 对积分11n x n I x edx -=,n=0,1,…,验证101I e-=-,11n n I nI -=-.若取e -1≈0.3679,按递推公式11n n I nI -=-,⽤4位有效数字计算I 0,I 1,…,I 9,并证明这种算法是不稳定的.1.12 反双曲正弦函数为()(ln f x x =+.如何计算f(x )才能避免有效数字的损(1) sin x -siny ; (2) arctan x -arctany ;(3)2; (4)212xe-.1.14 已知三⾓形⾯积1sin 2s ab C=,其中C 为弧度,0π,且测量a,b,C 的误差分别为Δa,Δb,ΔC ,证明⾯积的误差Δs 满⾜s a b C s ab C≤++ .1.15 设P ∈R n ×n 且⾮奇异,⼜设‖x ‖为R n 上的⼀种向量范数,定义p=xP x.试证明‖x‖P 是R n 上的⼀种向量范数.1.16 设A ∈R n ×n 为对称正定矩阵,定义()12,A=xA x x .试证明‖x‖A 为R n 上的⼀种向量范数.1.17 设矩阵0.60.50.10.3??=2F≤≤AA,并说明‖A ‖F 与‖x‖2相容.1.19 设P ∈Rn ×n且⾮奇异,⼜设‖x‖为R n上的⼀种向量范数,定义范数‖x‖P =‖P x ‖.证明对应于‖x‖P 的算⼦范数1 p-=APAP.1.20 设A 为⾮奇异矩阵,求证:11m iny ∞-≠∞∞=A y yA.。

数值计算方法在工程结构仿真中的应用

数值计算方法在工程结构仿真中的应用

数值计算方法在工程结构仿真中的应用第一章:引言数值计算方法是一种利用计算机进行数学计算和仿真的技术方法。

在过去的几十年里,数值计算方法在工程结构仿真方面得到了广泛应用。

本文将着重探讨数值计算方法在工程结构仿真中的应用,包括数值求解方法、分析模型、优化方法等。

第二章:数值求解方法数值求解方法是数值计算方法的核心。

在工程结构仿真中,常用的数值求解方法包括有限元方法、边界元方法和网格方法。

有限元方法是一种基于微分方程的数值求解方法,广泛应用于弹性力学、热传导等领域。

边界元方法是一种基于边界条件的数值求解方法,广泛应用于电磁、声学等领域。

网格方法则是一种基于离散化的数值求解方法,广泛应用于流体力学、结构力学等领域。

第三章:分析模型分析模型是工程结构仿真中的重要组成部分。

合理的分析模型可以提高仿真结果的精度和可靠性。

在工程结构仿真中,常用的分析模型包括线性模型、非线性模型、动力学模型等。

线性模型适用于高度规律的结构,而非线性模型则适用于存在变形和特殊情况的结构。

动力学模型则适用于受外部载荷影响的结构。

第四章:优化方法优化方法是工程结构仿真中的关键环节。

通过选择合适的优化方法,可以在保证结构的安全性和稳定性的前提下,达到最优结构的目的。

常见的优化方法包括遗传算法、粒子群算法、模拟退火算法等。

这些方法在工程结构设计中被广泛应用。

第五章:实例分析实例分析是本文的重点,通过实例分析可以更好地了解数值计算方法在工程结构仿真中的应用。

下面以桥梁设计为例进行分析。

桥梁是典型的工程结构,其安全性和稳定性对交通运输及其相关事业的发展至关重要。

在桥梁设计过程中,需要进行力学分析和优化设计,而数值计算方法则是解决这些问题的核心技术。

通过数值计算方法,可以得到桥梁的受力状态、应力分布、变形情况等重要参数,从而为优化设计提供理论基础。

同时,优化设计也可以通过数值计算方法进行验证和评估,从而确保设计合理性和安全性。

第六章:总结本文主要探讨了数值计算方法在工程结构仿真中的应用,包括数值求解方法、分析模型、优化方法等。

(完整word版)《数值计算方法》复习资料全

(完整word版)《数值计算方法》复习资料全

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

数值计算方法(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)

数值计算方法(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)

第一章测试1.数值计算方法研究的误差有()A:截断误差;B:观测误差;C: 模型误差;D:舍入误差.答案:AD2.A:只有模型误差、截断误差与观测误差。

B: 只有舍入误差、截断误差与观测误差;C:只有模型误差、观测误差与舍入误差;D:只有模型误差、截断误差与舍入误差;答案:C3.A:4位B:5位C:3位D:2位答案:A4.对于下列表达式,用浮点数运算,精度较高是A:B:C:D:答案:A5.A:B:C:D:答案:B第二章测试1.A:0.5000B:0.6250C:0.5625D:0.6875答案:C2.A:B:C:D:答案:CD3.关于Steffensen(斯蒂芬森)迭代方法,下列命题中正确的是:A:Steffensen迭代法使得收敛的迭代格式加速收敛,发散的迭代格式更快发散。

B:Steffensen迭代法使得某些发散的迭代格式变为收敛。

C:Steffensen迭代法使得任何收敛的迭代格式加速收敛。

D:Steffensen迭代法使得某些收敛的迭代格式加速收敛。

答案:BD4.关于Newton迭代法,下列命题中正确的是:A:求解任一方程的Newton迭代法都是2阶收敛的。

B:Newton迭代格式若收敛,则一定是超线性收敛的。

C:D:Newton迭代格式可能收敛也可能发散。

答案:CD5.A:6B:3C:5D:4答案:A第三章测试1.A:若求解失败,则说明矩阵A奇异。

B:算法的计算量与近似成正比。

C:若A的对角线元素的绝对值都大于1,则求解结果的精度一定较高。

D:只要A非奇异,则求解结果的精度一定较高。

答案:B2.列主元Gauss消去法与Gauss顺序消元法相比,优点是:A:提高了稳定性,减少了误差的影响。

B:方程组的系数矩阵奇异时也可以求解。

C:能求出方程组的精确解。

D:减少了计算量。

答案:A3.A:平方根法与Gauss列主元消去法相比,提高了稳定性,但增加了计算量。

B:只要是对称正定矩阵,就可用平方根法求解。

数值计算方法复习要点

数值计算方法复习要点

第一章引论计算方法解决问题的主要思想计算方法的精髓:以直代曲、化繁为简1、采用“构造性”方法构造性方法是指具体地把问题的计算公式构造出来。

这种方法不但证明了问题的存在性,而且有了具体的计算公式,就便于编制程序上机计算。

2、采用“离散化”方法把连续变量问题转为求离散变量问题。

例:把定积分离散成求和,把微分方程离散成差分方程。

3、采用“递推化”方法将复杂的计算过程归结为简单过程的多次重复。

由于递推算法便于编写程序,所以数值计算中常采用“递推化”方法。

4、采用“近似代替”方法计算机运算必须在有限次停止,所以数值方法常表现为一个无穷过程的截断,把一个无限过程的数学问题,转化为满足一定误差要求的有限步来近似替代。

算法的可行性分析时间复杂度、空间复杂度分析算法的复杂性(包含时间复杂性和空间复杂性)。

时间复杂度是算法耗费时间的度量。

算法的空间复杂度是指算法需占用存储空间的量度算法的可靠性分析良态算法、病态算法一个算法若运算过程中舍入误差的积累对最后计算结果影响很大,则称该算法是不稳定的或病态算法,反之称为稳定算法或良态算法。

误差的来源1、模型误差我们所建立的数学模型是对实际问题进行抽象简化而得到的。

因而总是近似的,这就产生了误差。

这种数学模型解与实际问题的解之间出现的误差,称为模型误差。

2、观测误差观测到的数据与实际数据之差。

3、截断误差数学模型的准确解与计算方法的准确解之间的误差。

4、舍入误差由于计算机字长有限,原始数据在计算机上表示会产生误差,每次计算又会产生新的误差,这种误差称为舍入误差。

绝对误差、相对误差定义2 记x*为x的近似数,称E(x)=x-x*为近似数x*的绝对误差,|E(x)|为绝对误差限。

定义3 称Er(x)=(x-x*)/x为近似数x*的相对误差。

实际运算时也将Er*(x)=(x-x*)/x*称为近似数x*的相对误差。

“四舍五入”:即尾数是4或以下则舍去,尾数是6或以上则进1,如果尾数是5,则规定:前面一位数字是偶数则舍去,奇数则进1。

数值计算方法教案

数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。

数值计算方法复习知识点

数值计算方法复习知识点

数值计算方法复习知识点2015计算方法复习1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss-Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报—校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。

(二) 复习要求1.了解数值分析的研究对象与特点。

2.了解误差来源与分类,会求有效数字; 会简单误差估计。

3.了解误差的定性分析及避免误差危害。

(三)例题例1. 设x =0.231是精确值x *=0.229的近似值,则x 有2位有效数字。

例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x 。

例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法。

(二) 复习要求1.了解求根问题和二分法。

2.了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。

3.理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。

4.掌握牛顿法及其收敛性、下山法, 了解重根情形。

5.了解弦截法。

(三)例题1.为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)11,1112-=-=+k k x x x x 迭代公式21211,11kk x x x x +=+=+迭代公式(C)(D)迭代公式解:在(A)中,=1.076 故迭代发散。

数值计算方法 第5章复习

数值计算方法 第5章复习

第五章 常微分方程数值解法一、考核知识点:欧拉法,改进欧拉法,龙格-库塔法。

二、考核要求:1.熟练掌握用欧拉法,改进欧拉法求微分方程近似解的方法。

2.了解龙格-库塔法的基本思想;掌握用龙格-库塔法求微分方程近似解的方法。

3.了解稳定性。

三、重、难点分析例1 用欧拉法,预估——校正法求一阶微分方程初值问题⎩⎨⎧=-='1)0(y y x y ,在0=x (0.1)0,1近似解 解 (1)用1.0=h 欧拉法计算公式n n n n n n x y y x y y 1.09.0)(1.01+=-+=+,01n =,计算得 9.01=y 82.01.01.09.09.02=⨯+⨯=y(2)用预估—校正法计算公式1,0)(05.01.09.0)0(111)0(1=⎩⎨⎧-+-+=+=++++n y x y x y y x y y n n n n n n n n n计算得91.01=y ,83805.02=y例2、取0.1h =, 用改进欧拉法预测-校正公式求初值问题⎩⎨⎧=++='1)0(12y y x y 在0.10.2x =,处的近似值. 计算过程保留3位小数.解:改进欧拉法预测-校正公式为2n 12211111(,)(1)[(,)(,)](2)22n n n n n n n n n n n n n n n n n y y hf x y y h x y h h y y f x y f x y y x y x y ++++++⎧=+=+++⎪⎨=++=+++++⎪⎩,由h =0.1,x 0=0,y 0=1,x 1=0.1,有 ⎪⎩⎪⎨⎧=+++++==+++=227.1)2.11.0102(21.012.1)101(1.0122121y y , 由h =0.1,x 1=0.1,y 1=1.227,x 2=0.2,有 ⎪⎩⎪⎨⎧=+++++==+++=528.1)488.12.0227.11.02(21.0227.1488.1)227.11.01(1.0227.122222y y , 故,所求y (0.1)≈y 1=1.227 y (0.2)≈y 2=1.528。

数值计算方法第05章插值法

数值计算方法第05章插值法
(n+1)个, 恰好给出(n+1)个方程.
n( x0 ) a0 a1 x0 a2 x02 an x0n y0
n
(
x1
)
a0
a1 x1
a2 x12
an x1n
y1
n( xn ) a0 a1 xn a2 xn2 an xnn yn
17
1 x0 x02 x0n a0 f ( x0 )
一次
二次
三次 15
➢ 三个基本问题
插值多项式n(x)是否存在唯一? 若n(x)存在, 截断误差 f (x)-n(x)=? 如何求n(x)?
16
➢ 插值多项式n(x)的存在唯一性
n 次多项式n(x)有(n+1)个待定系数ai (i=0, 1, 2, …, n), 插值条件 n(xi)= f (xi)= yi (i=0, 1, 2, …, n)也是
表2.1.1 刹车距离实验数据
v 20 25 30 35 40 45 50
d 42 56 73.5 91.5 116 142.5 173
v 55 60 65 70 75 80
d 209.5 248 292.5 343 401 464
插值法是一种古老的数学方法。早在1000 多年前,我国历法上已经记载了应用一次插值 和二次插值的实例。
伟大的数学家:拉格朗日(Lagrange)、牛顿 Newton)、埃尔米特(Hermite)等人分别给出了 不同的解决方法。
生产实践中常常出现这样的问题:给出一批 离散样点,要求作出一条通过这些点的光滑 曲线,以便满足设计要求或进行加工。反映 在数学上,即已知函数在一些点上的值,寻 求它的分析表达式。因为由函数的表格形式 不能直接得出表中未列点处的函数值,也不 便于研究函数的性质。此外,有些函数虽有 表达式,但因式子复杂,不容易算其值和进 行理论分析,也需要构造一个简单函数来近 似它。

数值计算方法(宋岱才版)课后答案

数值计算方法(宋岱才版)课后答案

第一章 绪论一 本章的学习要求(1)会求有效数字。

(2)会求函数的误差及误差限。

(3)能根据要求进行误差分析。

二 本章应掌握的重点公式(1)绝对误差:设x 为精确值,x *为x 的一个近似值,称e x x **=-为x *的绝对误差。

(2)相对误差:r e e x***=。

(3)绝对误差限:e x x ε***==-。

(4)相对误差限:r x x xxεε*****-==。

(5)一元函数的绝对误差限:设一元函数()()()0,df f x f x dx εε***⎛⎫==⋅ ⎪⎝⎭则。

(6)一元函数的相对误差限:()()1r df f x dx f εε****⎛⎫=⋅ ⎪⎝⎭。

(7)二元函数的绝对误差限:设一元函数()()(),0,f f x y f y y εε***⎛⎫∂==⋅ ⎪∂⎝⎭则。

(8)二元函数的相对误差限:()()()1r f f f x y x y f εεε******⎡⎤⎛⎫∂∂⎛⎫⎢⎥=⋅+⋅ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦。

三 本章习题解析1. 下列各数都是经过四舍五入得到的近似值,(1)试指出它们有几位有效数字,(2)分别估计1123A X X X ***=及224X A X **=的相对误差限。

12341.1021,0.031,385.6,56.430x x x x ****====解:(1)1x *有5位有效数字,2x *有2位有效数字,3x *有4位有效数字,4x *有5位有效数字。

(2)1111123231312123,,,,A A AA x x x x x x x x x x x x ∂∂∂====∂∂∂由题可知:1A *为1A 的近似值,123,,x x x ***分别为123,,x x x 近似值。

所以()()111rA A Aεε***=()()()12311111123A A A x x x A X X X εεε*******⎡⎤⎢⎥=++⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫∂∂∂ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭43123131212311111010100.215222x x x x x x x x x **-**-**-***⎡⎤=⨯⨯+⨯⨯+⨯⨯=⎢⎥⎣⎦()222222424441,,,X A Ax A X x x x x ∂∂===-∂∂则有同理有2A *为2A 的近似值,2x *,4x *为2x ,4x 的近似值,代入相对误差限公式:()()222rA A Aεε***=()()24212224A A X X A X X εε*****⎡⎤⎢⎥=+⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫∂∂ ⎪ ⎪∂∂⎝⎭⎝⎭()33542224411*********X X X X X **--***⎡⎤⎢⎥=⨯⨯+⨯⨯=⎢⎥⎣⎦2. 正方形的边长大约为100cm ,怎样测量才能使其面积误差不超过21cm ? 解:设正方形的边长为x ,则面积为2S x =,2dsx dx=,在这里设x *为边长的近似值,S *为面积的近似值:由题可知:()()1ds s x dx εε***=≤⎛⎫ ⎪⎝⎭即:()21x x ε**⋅≤ 推出:()10.005200xcm ε*≤=。

数值计算方法复习知识点

数值计算方法复习知识点

数值计算方法复习知识点数值计算方法是研究计算数值解的方法和数值计算的理论。

它是计算数学的一个分支,主要用于解决无法用解析方法求解的数学模型问题。

本文将综述数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。

一、插值与逼近1.插值:插值是利用已知数据点构造一个函数,使得该函数在给定的数据点上与已知函数完全相等。

常见的插值方法有拉格朗日插值和牛顿插值。

2. 逼近:逼近是从已知数据点构造一个函数,使得该函数在给定的数据点附近与已知函数近似相等。

逼近常用的方法有最小二乘逼近和Chebyshev逼近。

二、数值微分与数值积分1.数值微分:数值微分是通过计算差分商来近似计算函数的导数。

常见的数值微分方法有前向差分、后向差分和中心差分。

2.数值积分:数值积分是通过近似计算定积分的值。

常见的数值积分方法有中矩形法、梯形法和辛普森法。

三、线性方程组的直接解法与迭代解法1.直接解法:直接解法是通过一系列数学运算直接计算线性方程组的解。

常见的直接解法有高斯消元法和LU分解法。

2. 迭代解法:迭代解法是通过迭代计算逼近线性方程组的解的方法。

常见的迭代解法有Jacobi迭代法和Gauss-Seidel迭代法。

四、常微分方程的数值解法1.常微分方程:常微分方程是描述动力系统的数学模型,常用来描述物理系统、生物系统等。

常微分方程的数值解法主要包括初始值问题的一阶常微分方程和常微分方程组的数值解法。

2.常微分方程的数值解法:常微分方程的数值解法有欧拉方法、改进的欧拉方法、龙格-库塔方法等。

这些方法都是将微分方程转化为递推方程,通过迭代计算逼近微分方程的解。

总结:数值计算方法是求解数学模型的重要工具,在科学计算、工程设计和经济管理等领域有广泛的应用。

本文回顾了数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法复习提纲PPT

数值计算方法复习提纲PPT
a) ρ( A) ≤||A||
b) 若矩阵 A 对某个算子范数满足 ||A|| < 1,则 必有: I±A可逆、 I A 1 1
1|| A||
4) 矩阵的条件数: cond(A)=||A||||A-1||
-7-
17:40
❖ 迭代法原理及收敛条件:求解 Ax=b (★)
1) 充分条件: x=Bx+f, ||B||<1
第6章 数值积分
基本概念:
❖ 数值积分(机械求积公式)的一般形式 ❖ 求积公式的代数精度(计算、证明)
Akba
插值型求积公式:
❖ 插值求积公式的构造方法(★) 1) n+1积分结点的插值型求积公式至少具有n次代数精度 2) n+1个积分结点构造n阶Newton-Cotes积分公式,若n为偶数则具有 n+1次代数精度
1) 步骤
2) 估算某点的近似值:
❖ Nn(x)=f(x0)+f[x0,x1](x-x0)+…+f[x0,x1,…,xn] (x-x0)(x-x1)…(x-xn-1)
-11-
17:40
Hermit插值
❖ 基本思想 ❖ 插值多项式的构造方法
1) Lagrange型构造法(基函数构造法) 2) Newton型构造法(重节点的差商)
2) f[x 0 , ,x n ] i n 0 (x i x 0 ) (x i x i f 1 ( )x i x ) i( x i 1 ) (x i x n )
f[x0,,xn]
f
(n)()
(n)!
❖ Ne推 wton插值论 f 公(x 式)的 构: P n 造(x ()★f,若 [ )x 0, ,x k] a 0 n ,,k k n n

数值计算方法复习提纲

数值计算方法复习提纲

数值计算方法复习提纲第一章 数值计算中的误差分析 1.了解误差及其主要来源,误差估计;2.了解误差(绝对误差、相对误差)和有效数字的概念及其关系;3.掌握算法及其稳定性,设计算法遵循的原则。

1、 误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字绝对误差 E (x )=x-x *绝对误差限ε εε+≤≤-**x x x相对误差 ***/)(/)()(x x x x x x x E r -≈-=有效数字m n a a a x 10.....021*⨯±=若n m x x -⨯≤-1021*,称*x 有n 位有效数字。

有效数字与误差关系(1) m 一定时,有效数字n 越多,绝对误差限越小; (2)*x 有n 位有效数字,则相对误差限为)1(11021)(--⨯≤n r a x E 。

选择算法应遵循的原则1、 选用数值稳定的算法,控制误差传播; 例 ⎰=101dx e x eI xn n eI nI I n n11101-=-=- △!n x n=△x 02、 简化计算步骤,减少运算次数;3、 避免两个相近数相减,和接近零的数作分母; 避免第二章 线性方程组的数值解法1.了解Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解;Crout 分解;Cholesky 分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与Gauss-Seidel 迭代法;4.掌握向量与矩阵的范数及其性质,迭代法的收敛性及其判定 。

本章主要解决线性方程组求解问题,假设n 行n 列线性方程组有唯一解,如何得到其解?⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112222212111212111)两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。

数值计算方法(第5章)1 深圳大学 科学与工程计算 数值分析 PPT课件

数值计算方法(第5章)1 深圳大学 科学与工程计算 数值分析 PPT课件

5
1 19, 75,50,50, 75,19 288
6
1 41, 216, 27, 272, 27, 216, 41 840
7
1 751,3577,1323, 2989, 2989,1323,3577, 751 17280
8
1 989,5888, 928,10496, 4540,10496, 928,5888,989 28350
其中
RT
[
f
]
(b a)3 12
f
'' (
)
(a,b)
y f (x)
f (x) Ln (x) Rn (x)
由Lagrannge插值,任何一的函数

L可n (x以) 近似l的j (x表) y示j是成f (x)的Lagrage插值多项式。
j0
其中
为简便起见,取节点为等分
h ba,x
25几个常用的求积公式的代数精度几个常用的求积公式的代数精度1t公式的代数精度公式具有一次的代数精所以xdxdxs公式的代数精度成立所以xdxdx27精确成立28精确成立同理可得n公式具有三次代数精度c公式具有五次代数精度
第5章 数值积分
引言
在数学分析中,我们学习过微积分基
本定理 Newton-Leibniz 公式:
Newton Cotes积分公式
定义 设f (x)是[a, b]上的连续函数,将
[a, b]区间等分n等分,取h
ba n
, xj
a kh
( j 0,1,2..., n), 记f (x j ) f j ,以{x j }0n 为节点作
f (x)的lagrage插值多项式,即
f (x) Ln (x) Rn (x)

2019年数值计算方法复习提纲

2019年数值计算方法复习提纲
2) 算法步骤(★ ★ ★ )
-5-
00:02
列主元Gauss消元法(★)
1) 选主元的必要性
2) 算法的改进
Gauss-Jordan 消元法
1) 思想、方法
2) Gauss-Jordan消元法的应用:求矩阵的逆矩阵
三角分解法
1) Doolittle分解(★)
2) Crout分解(★)
00:02
第3章 线性方程组求解
线性方程组的求解方法: (★)
直接法 迭代法
直接法:(各种方法的适用条件、手工计算)
Guass顺序消元法
1) 适用条件: a) 系数矩阵A是严格对角占优的矩阵
n
||aii| |aij|,A的每行主对值 角同 元行 的其 绝余 对元之 素和 的绝 ji i1 b) 顺序阶主子式为正
-16-
00:02
重点例题、习题
第一章:
例:1-1、1-2、1-14、 习题:2、8、17
第二章:
例:2-3、2-5、2-15、
第三章:
例:3-29
习题:1,分别用高斯顺序消元法、列选主元高斯消元 法、杜利特尔分解法、克劳特分解法、雅可比迭代法、 高斯-塞德尔迭代法求解
d) 方程组Ax=b的系数矩阵A(非迭代矩阵):对称正定
e) 若方程组的Jacobi迭代收敛并且||J||<q1,则该方程组 的Gauss-Seidel迭代也收敛
3) 能写出其迭代矩阵(★)
-9-
00:02
第4章 插值法
插值的基本概念:
插值条件、插值点
插值多项式
插值多项式的存在、唯一性:
二分法求根
基本原理 误差估计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( )
yp = y1 + h − y1 − y12 sin x1
( )
= 0.715489 + 0.2 −0.715489 − 0.7154892 sin1.2 ≈ 0.476964
( )

yc
=
y1 + h

y
p

y
2 p
sin
x2
( )
= 0.715489 + 0.2 −0.476964 − 0.4769642 sin1.4 ≈ 0.575259
这就是欧拉法的计算公式,h称为步长
3
例题
例5.2.1:用欧拉法求解初值问题

y'=

y

2x , y
y(0) = 1
0≤ x ≤1
解:求解该方程的欧拉公式为
yn+1
=
yn
+
h( yn

2xn yn
)
取步长h=0.1,n=0, 1, …, 9时,有
4
例题
n=0 n =1
y1
=
( ) ( ) yc =y0 + h

y
p−y源自2 psinx1
=1+ 0.2
−0.631706 − 0.6317062 sin1.2
≈ 0.799272
( )
y1=
1 2
yp + yc =
1 (0.631706 + 0.799272) ≈ 0.715489
2
21
改进欧拉法
n=1时
k2 = hf (xn + h, yn + k1)
= hf [xn + h, y(xn ) + k1]
= h f [xn ,

y(
xn
)]
+
h
∂ ∂x
f [xn ,
y(xn )] + k1
∂ ∂y
f [xn , y(xn )] +

= hf [xn ,
y(
xn
)]
+
h
2

∂ ∂x
f [xn ,
y(xn )]+
y'
(
xn
)
∂ ∂y
f [xn ,
y(xn )] +

= hy'(xn ) + h2 y′′(xn ) +
14
改进欧拉法
代入,可得
yn+1
=
yn
+
h 2
y'(xn ) +
h 2
y'(xn ) +
h2 2
y′′( xn ) +
=
y( xn ) + hy'( xn ) +
(xn+ p = xn + ph; yn+ p = yn + phk1)
从公式中可以看出,先计算k1,再计算yn+p,也就是 先算预报斜率,再算校正斜率,因此,可得下述计
算公式
yn+1 = yn + h(λ1k1 + λ2k2 )
k1 = f (xn , yn ) k2 = f (xn + ph, yn + phk1)
0
1
1
1
0.1
1.1
1.095909
1.095445
0.2 1.191818 1.184096
1.183216
0.3 1.277438 1.260201
1.264911
0.4 1.358213 1.343360
1.341641
0.5 1.435133 1.416102
1.414214
0.6 1.508966 1.482956


yn+1

=
1 2
(
yp
+
yc
)
y p = yn + hf (xn , yn )

yc
=
yn
+ hf
(xn+1, y p )

改进欧拉法的程序流程图
13
改进欧拉法
改进欧拉公式的截断误差
由于
k1 = hf ( xn , yn ) = hf ( xn , y( xn )) = hy'( xn )
y'+ y + y 2 sin x = 0 y(1) = 1
要求步长h =0.2,计算y(1.2),y(1.4)的近似值
19
改进欧拉法
解:由题意知 f (x, y) = − y − y 2 sin x ,改进欧拉法
的具体形式为
( )
y p = yn + h − yn − yn2 sin xn
h2 2
y′′(xn ) +
y(xn+1)的二阶泰勒展开式为
y(xn+1 )
=
y(xn
)
+
hy ' ( xn
)
+
1 2
h2
y''(xn )
+
O(h3 )
因此有
y(xn+1) − yn+1 = O(h3 )
15
改进欧拉法
例5.2.4:用欧拉法和改进欧拉法求
dy

dx
=
y

2x y
y0
+
h( y0

2x0 y0
)
= 1+ 0.1(1− 2× 0) = 1.1 1
y2
=
y1
+
h( y1

2 x1 y1
)
= 1.1+ 0.1(1.1− 2× 0.1) ≈ 1.191818 1.1
5
例题
xn
yn
y(xn)
xn
yn
y(xn)
0.1 1.100000 1.095445 0.6 1.508966 1.483240
预报-校正系统
在实际上,当h取值较小时,让梯形法的迭代公式 只迭代一次就结束
先用欧拉公式求得一个初步近似值 yn+1 ,称之为
预报值
11
改进欧拉法
预报值的精度不高,用它替代梯形法右端的yn+1,再 直接计算得出yn+1,并称之为校正值,这时得到预报 -校正公式

y
n+=1
yn + h f (xn , yn )
1.483240
0.7 1.580338 1.552515
1.549193
0.8 1.649783 1.616476
1.612452
0.9 1.717779 1.678168
1.673320
1.0 1.784770 1.737869
1.732051
1.1 1.85118 1.795822
1.788854
xn

xn
+
p
xn+ p = xn + ph (0 ≤ p ≤ 1)
如果两点的斜率分别为k1与k2,则通过线性组合, 可得到如下的预报-校正系统
23
二阶龙格-库塔法
ky1n+=1
= f
yn + h(λ1k1
(xn , yn )
+
λ2k2
)
k2 = f (xn+ p , yn+ p )
数值计算方法
第五章 常微分方程的数值解法
欧拉公式的导出
由于y (x0) = y0已给定,因而可以算出
y'(x0 ) = f (x0, y0 )
设x1 –x0= h充分小,则近似地有
y(x1 ) − h
y(x0 )

y'(x0 ) =
f (x0 , y0 )

yi = y(xi ) i = 0,1,,n
二阶龙格-库塔法
将k1,k2的表达式代入
yn+1 = yn + (λ1k1 + λ2k2 )h = y(xn ) + h[λ1 y'(xn ) + λ2 y'(xn ) + λ2 phy''(xn ) + λ2O(h2 )] = y(xn ) + h(λ1 + λ2 ) y'(xn ) + λ2 ph2 y''(xn ) + O(h3 )
0.06 0.9489 0.9503
0.0014
4
0.08 0.9336 0.9354
0.0018
5
0.10 0.9192 0.923
0.0021
8
例题
例5.2.3:取步长 h=0.2 ,用欧拉法解初值问题
y' = − y − xy 2 y(0) = 1
x ∈ [0,0.6]
9
例题
yn+1
= yn + h2 [ f (xn ,
yn ) +
f
(xn+1, yn+1)]
将预报-校正公式称为改进欧拉公式 ,这个公式还 可写为
12
改进欧拉法

yn+1

=
yn
+
1 2
k1
相关文档
最新文档