泰和县第四中学2018-2019学年高二上学期第二次月考试卷数学

合集下载

泰和县二中2018-2019学年高二上学期第二次月考试卷数学

泰和县二中2018-2019学年高二上学期第二次月考试卷数学

泰和县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.2. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .63. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15C .10,10,30D .10,20,204. 在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0B .C .D .5. 函数f (x )在x=x 0处导数存在,若p :f ′(x 0)=0:q :x=x 0是f (x )的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件6. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π107. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°8. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣19. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3 )D .(3,4)10.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于( )A .5B .6C .7D .811.已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为A 、B 、2C 、3D 、412.已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或C .或D .0或二、填空题13.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .14.定积分sintcostdt= .15.已知x 是400和1600的等差中项,则x= .16.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .17.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .18.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)三、解答题19.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.20.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.21.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.22.已知△ABC的顶点A(3,1),B(﹣1,3)C(2,﹣1)求:(1)AB边上的中线所在的直线方程;(2)AC边上的高BH所在的直线方程.23.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α24.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.泰和县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】根据复数的运算可知43)2()2(22--=--=-=i i i ii z ,可知z 的共轭复数为43z i =-+,故选A.2. 【答案】C【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2=4x 的焦点坐标, 设A (x 1,y 1) B (x 2,y 2)抛物y 2=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,∴|AB|=|AF|+|BF|=x 1+x 2+2=8, 故选:C .【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.3. 【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B .【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.4. 【答案】C【解析】解:根据题意,如图,设O (0,0)、A (1,0)、B (1,1)、C (0,1),分析可得区域表示的区域为以正方形OABC 的内部及边界,其面积为1;x 2+y 2<1表示圆心在原点,半径为1的圆,在正方形OABC 的内部的面积为=,由几何概型的计算公式,可得点P (x ,y )满足x 2+y 2<1的概率是=;故选C .【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.5.【答案】C【解析】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.6.【答案】B【解析】考点:球与几何体7.【答案】B【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.8. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0, ∴a=2×0+1=1. 故选:B .9. 【答案】A【解析】解:函数f (x )=()x﹣x ,可得f (0)=1>0,f (1)=﹣<0.f (2)=﹣<0, 函数的零点在(0,1).故选:A .10.【答案】B【解析】解:由题意可得抛物线的轴为x 轴,F (2,0), ∴MP 所在的直线方程为y=4在抛物线方程y 2=8x 中,令y=4可得x=2,即P (2,4) 从而可得Q (2,﹣4),N (6,﹣4)∵经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M , ∴直线MN 的方程为x=6 故选:B .【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用.11.【答案】D【解析】{|(1)(2)0,}{1,2}A x x x x =--=∈=R , {}{}|05,1,2,3,4=<<∈=N B x x x . ∵⊆⊆A C B ,∴C 可以为{}1,2,{}1,2,3,{}1,2,4,{}1,2,3,4. 12.【答案】D【解析】解:∵f (x )是定义在R 上的偶函数,当0≤x ≤1时,f (x )=x 2,∴当﹣1≤x ≤0时,0≤﹣x ≤1,f (﹣x )=(﹣x )2=x 2=f (x ),又f (x+2)=f (x ),∴f (x )是周期为2的函数,又直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或0故选D.二、填空题13.【答案】5﹣4.【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:﹣4=5﹣4.故答案为:5﹣4.【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.14.【答案】 .【解析】解: 0sintcostdt=0sin2td (2t )=(﹣cos2t )|=×(1+1)=.故答案为:15.【答案】 1000 .【解析】解:∵x 是400和1600的等差中项,∴x==1000.故答案为:1000.16.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0, 故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.17.【答案】+=1 .【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,∵圆B经过点A(4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,∴点B的轨迹是以A、C为焦点的椭圆,设方程为(a>b>0),可得2a=10,c=4,∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.故答案为:+=1.18.【答案】10cm【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A′,则A′A=4cm,BC=6cm,∴A′C=8cm,∴A′B==10cm.故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.三、解答题19.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.20.【答案】【解析】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.21.【答案】【解析】解:(1)∵ABC﹣A1B1C1为直三棱柱,∴CC1⊥平面ABC,AC⊂平面ABC,∴CC1⊥AC…∵AC=3,BC=4,AB=5,∴AB2=AC2+BC2,∴AC⊥CB …又C1C∩CB=C,∴AC⊥平面C1CB1B,又BC1⊂平面C1CB1B,∴AC⊥BC1…(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点…又D为AB中点,∴AC1∥DE…DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1…【点评】本题考查直线与平面垂直,直线与直线垂直,直线与平面平行的证明,考查逻辑推理能力.22.【答案】【解析】解:(1)∵A(3,1),B(﹣1,3),C(2,﹣1),∴AB的中点M(1,2),∴直线CM的方程为=∴AB边上的中线所在的直线方程为3x+y﹣5=0;(2)∵直线AC的斜率为=2,∴直线BH的斜率为:﹣,∴AC边上的高BH所在的直线方程为y﹣3=﹣(x+1),化为一般式可得x+2y﹣5=023.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.24.【答案】【解析】解:(Ⅰ)∵{a n}为等比数列,a1=1,a6=243,∴1×q5=243,解得q=3,∴.∵S n为等差数列{b n}的前n项和,b1=3,S5=35.∴5×3+d=35,解得d=2,b n=3+(n﹣1)×2=2n+1.(Ⅱ)∵T n=a1b1+a2b2+…+a n b n,∴①②①﹣②得:,整理得:.【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.。

江西省吉安市泰和第四中学2018年高二数学文模拟试题含解析

江西省吉安市泰和第四中学2018年高二数学文模拟试题含解析

江西省吉安市泰和第四中学2018年高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 不等式的解集为()A. B. C. D.参考答案:A2. 若函数,则A.B.C.3 D.4参考答案:C3. 有如下几个说法:①如果, 是方程的两个实根且,那么不等式的解集为{x∣};②当Δ=时,二次不等式的解集为;③与不等式的解集相同;④与的解集相同.其中正确说法的个数是( )A.3 B.2 C.1D.0参考答案:D4. 设a、b、c是空间中的三条直线,给出以下三个命题:①若,,则;②若a和b共面,b和c共面,则a和c也共面;③若,,则.其中正确命题的个数是()A 0 B. 1 C. 2 D. 3参考答案:B【分析】根据两两垂直可能存在的位置关系可判断①;在正方体中举出特例可判断②;根据空间平行线的传递性可判断③;【详解】与可能垂直,还可能平行或异面,故①错误;在正方体中,与共面,与共面,但与不共面,故②错误;由空间平行线的传递性可知③正确.故选:B.【点睛】本题考查了直线与直线的位置关系,考查了空间想象能力,属于基础题.5. 设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为()A.(,,)B.(,,)C.(,,)D.(,,)参考答案:A【考点】空间向量的加减法.【专题】计算题;待定系数法.【分析】由题意推出,使得它用,,,来表示,从而求出x,y,z的值,得到正确选项.【解答】解:∵==(+)=+? [(+)]=+ [(﹣)+(﹣)]=++,而=x+y+z,∴x=,y=,z=.故选A.【点评】本题考查空间向量的加减法,考查待定系数法,是基础题.6. 已知双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x 轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为()A.B.C.2D.参考答案:D【考点】KC:双曲线的简单性质.【分析】由题意,△ABF2的周长为24,利用双曲线的定义,可得=24﹣4a,进而转化,利用导数的方法,即可得出结论.【解答】解:由题意,△ABF2的周长为24,∵|AF2|+|BF2|+|AB|=24,∵|AF2|+|BF2|﹣|AB|=4a,|AB|=,∴=24﹣4a,∴b2=a(6﹣a),∴y=a2b2=a3(6﹣a),∴y′=2a2(9﹣2a),0<a<4.5,y′>0,a>4.5,y′<0,∴a=4.5时,y=a2b2取得最大值,此时ab取得最大值,b=,∴c=3,∴e==,故选:D.7. 已知全集,,,则等于()A. B. C. D .参考答案:C8. (理科)正方体ABCD-A1B1C1D1中,E为A1C1的中点,则直线CE垂直于 ( )A、直线ACB、直线A1AC、直线A1D1D、直线B1D1参考答案:D略9. 若则等于( )A. B. C.D.参考答案:D略10. 已知函数f(x)=,则f[f(﹣2)]的值为()A.1 B.2 C.4 D.5参考答案:D【考点】3T:函数的值;3B:分段函数的解析式求法及其图象的作法.【分析】﹣2在x<0这段上代入这段的解析式,将4代入x≥0段的解析式,求出函数值.【解答】解:f(﹣2)=4f[f(﹣2)]=f(4)=4+1=5故选D【点评】本题考查求分段函数的函数值:据自变量所属范围,分段代入求.二、填空题:本大题共7小题,每小题4分,共28分11. 在数列{a n}中,a1=1,(n≥2),则a5= .参考答案:【考点】数列递推式.【分析】由已知条件,利用递推公式依次求出a2,a3,a4,a5.【解答】解:∵在数列{a n}中,a1=1,(n≥2),∴,a3=1+=,a4=1+=3,a5=1+=.故答案为:.【点评】本题考查数列的第5项的求法,是基础题,解题时要认真审题,注意递推思想的合理运用.12. 如图是某学校抽取的个学生体重的频率分布直方图,已知图中从左到右的前个小组的频率之比为,第小组的频数为,则的值是.参考答案:4813. 不等式的解集是参考答案:解析:整理,不等式化成设,且不等式化为∵是R上的增函数,故,得故不等式的解集为{x|x>-1,x∈R}14. 已知函数(e为自然对数的底数),若,使得成立,则a的取值范围为_____.参考答案:【分析】由,要满足,使,可得函数为减函数或函数存在极值点,对求导,可得不恒成立,即不是减函数,可得存在极值点,有解,可得a的取值范围.【详解】解:∵;∴要满足,使,则:函数为减函数或函数存在极值点;∵;时,不恒成立,即不是减函数;∴只能存在极值点,∴有解,即有解;∴;故答案为:.【点睛】本题考查了导数的综合应用,利用导数求函数的单调区间,考查利用导数求函数的极值等,属于中档题.15. 已知a.b为正实数,则的大小关系为。

泰和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学

泰和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学

泰和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( )A .2B .8C .﹣2或8D .2或82. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是()A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}3. 已知集合,且使中元素和中的元素{}{}421,2,3,,4,7,,3A k B a a a ==+*,,a N x A y B ∈∈∈B 31y x =+A 对应,则的值分别为( )x ,a k A . B . C . D .2,33,43,52,54. 设集合,,则( ){}|22A x R x =∈-≤≤{}|10B x x =-≥()R A B = ðA.B.C.D. {}|12x x <≤{}|21x x -≤<{}|21x x -≤≤{}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.5. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=06. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是()A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%7. 函数f (x )=﹣lnx 的零点个数为( )A .0B .1C .2D .38. 已知抛物线28y x =与双曲线的一个交点为M ,F 为抛物线的焦点,若,则该双曲2221x y a-=5MF =线的渐近线方程为A 、B 、C 、D 、530x y ±=350x y ±=450x y ±=540x y ±=9. 设曲线在点处的切线的斜率为,则函数的部分图象2()1f x x =+(,())x f x ()g x ()cos y g x x =可以为()A .B .C. D .10.下列结论正确的是()A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α11.如图甲所示, 三棱锥 的高 ,分别在P ABC -8,3,30PO AC BC ACB ===∠=,M N BC和上,且,图乙的四个图象大致描绘了三棱锥的体积与PO (),203CM x PN x x ==∈(,N AMC -y 的变化关系,其中正确的是()A .B . C. D .1111]12.已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( )A .5B .18C .24D .36二、填空题13.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 . 14.已知α为钝角,sin (+α)=,则sin (﹣α)= .15.已知函数f (x )=,则关于函数F (x )=f (f (x ))的零点个数,正确的结论是 .(写出你认为正确的所有结论的序号)①k=0时,F (x )恰有一个零点.②k <0时,F (x )恰有2个零点.③k >0时,F (x )恰有3个零点.④k >0时,F (x )恰有4个零点. 16.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .17.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .18.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .三、解答题19.已知﹣2≤x ≤2,﹣2≤y ≤2,点P 的坐标为(x ,y )(1)求当x ,y ∈Z 时,点P 满足(x ﹣2)2+(y ﹣2)2≤4的概率;(2)求当x ,y ∈R 时,点P 满足(x ﹣2)2+(y ﹣2)2≤4的概率.20.(本小题满分12分)设03πα⎛⎫∈ ⎪⎝⎭,αα+=(1)求cos 6πα⎛⎫+ ⎪⎝⎭的值;(2)求cos 212πα⎛⎫+ ⎪⎝⎭的值.21.已知是等差数列,是等比数列,为数列的前项和,,且,{}n a {}n b n S {}n a 111a b ==3336b S =().228b S =*n N ∈(1)求和;n a n b (2)若,求数列的前项和.1n n a a +<11n n a a +⎧⎫⎨⎬⎩⎭n T22.函数。

泰和县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

泰和县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

泰和县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 把函数y=sin (2x﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x2. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=3. 对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g(x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2﹣3x+4与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A .[3,4]B .[2,4]C .[1,4]D .[2,3]4. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )= C .f (x )=ln e x 与g (x )=e lnx D .f (x )=(x ﹣1)0与g (x )=5. 已知双曲线C :﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( ) A. B. C .2 D.6. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠,A=,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个7. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形, 则该几何体的体积为( )A .64B .32C .643 D .3238. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log zz -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z << 9. 设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1B .2C .3D .410.“x 2﹣4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <411.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)12.i 是虚数单位,=( )A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i二、填空题13.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .14.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________. 15.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 .16.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .17.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 18.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .三、解答题19.函数f (x )=Asin (ωx+φ)(A >0,ω>0,|φ|<)的一段图象如图所示.(1)求f (x )的解析式;(2)求f (x )的单调减区间,并指出f (x )的最大值及取到最大值时x 的集合;(3)把f (x )的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.20.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围.21.本小题满分12分如图,在边长为4的菱形ABCD 中,60BAD ∠=,点E 、F 分别在边CD 、CB 上.点E 与点C 、D 不重合,EF AC ⊥,EF AC O =,沿EF 将CEF ∆翻折到PEF ∆的位置,使平面PEF ⊥平面ABFED .Ⅰ求证:BD ⊥平面POA ;Ⅱ记三棱锥P ABD -的体积为1V ,四棱锥P BDEF -的体积为2V ,且1243V V =,求此时线段PO 的长.22.(本题满分12分)如图1在直角三角形ABC 中,∠A=90°,AB=2,AC=4,D ,E 分别是AC ,BC 边上的中点,M 为CD 的中点,现将△CDE 沿DE 折起,使点A 在平面CDE 内的射影恰好为M . (I )求AM 的长;(Ⅱ)求面DCE 与面BCE 夹角的余弦值.PABCDOEF FEO DCBA23.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.24.已知定义域为R的函数f(x)=是奇函数.(Ⅰ)求b的值;(Ⅱ)判断函数f(x)的单调性;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.泰和县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】D【解析】解:把函数y=sin (2x ﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x ﹣)﹣]=sin (2x ﹣π)=﹣sin2x .故选D . 【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x 加与减,上下平移,y 的另一侧加与减.2. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y -+-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .3. 【答案】D【解析】解:∵m (x )=x 2﹣3x+4与n (x )=2x ﹣3,∴m (x )﹣n (x )=(x 2﹣3x+4)﹣(2x ﹣3)=x 2﹣5x+7.令﹣1≤x 2﹣5x+7≤1,则有,∴2≤x ≤3. 故答案为D .【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题.4. 【答案】D【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数;对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数;对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;故选:D .【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题. 5. 【答案】D【解析】解:设F 1(﹣c ,0),F 2(c ,0),则l 的方程为x=﹣c ,双曲线的渐近线方程为y=±x ,所以A (﹣c , c )B (﹣c ,﹣ c ) ∵AB 为直径的圆恰过点F 2 ∴F 1是这个圆的圆心 ∴AF 1=F 1F 2=2c ∴c=2c ,解得b=2a∴离心率为==故选D .【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式.6. 【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]7. 【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:144432⨯⨯⨯=,故选B.2考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8.【答案】A【解析】考点:对数函数,指数函数性质.9.【答案】B【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)|}将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M∩N中元素的个数为2个,故选B.【点评】本题既是交集运算,又是函数图形求交点个数问题10.【答案】B【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0∴不等式的解集为A={x|0<x<4},因此,不等式x2﹣4x<0成立的一个充分不必要条件,对应的x 范围应该是集合A 的真子集.写出一个使不等式x 2﹣4x <0成立的充分不必要条件可以是:0<x <2,故选:B .11.【答案】B【解析】解:∵函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数, ∴f (π)=f (6﹣π),f (5)=f (1), ∵f (6﹣π)<f (2)<f (1), ∴f (π)<f (2)<f (5) 故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.12.【答案】D【解析】解:,故选D .【点评】本小题考查复数代数形式的乘除运算,基础题.二、填空题13.【答案】 (﹣1,1] .【解析】解:在同一坐标系中画出函数f (x )和函数y=log 2(x+1)的图象,如图所示:由图可得不等式f (x )≥log 2(x+1)的解集是:(﹣1,1],. 故答案为:(﹣1,1]14.【答案】②④ 【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换. 15.【答案】 9 .【解析】解:由题意可得:a+b=p ,ab=q , ∵p >0,q >0, 可得a >0,b >0,又a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4, 则p+q=9. 故答案为:9.16.【答案】【解析】解:法1:取A 1C 1的中点D ,连接DM ,则DM ∥C 1B 1,在在直三棱柱中,∠ACB=90°, ∴DM ⊥平面AA 1C 1C ,则∠MAD 是AM 与平面AA 1C 1C 所的成角,则DM=,AD===,则tan ∠MAD=.法2:以C 1点坐标原点,C 1A 1,C 1B 1,C 1C 分别为X ,Y ,Z 轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA1=,M 为A 1B 1的中点,∴=(﹣,,﹣),=(0,﹣1,0)为平面AA 1C 1C 的一个法向量设AM 与平面AA 1C 1C 所成角为θ,则sin θ=||=则tan θ= 故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.17.【答案】2300 【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 18.【答案】98 【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好.三、解答题19.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z.函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin(x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.20.【答案】【解析】解:若命题p是真命题:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”,则<1,解得1﹣;若命题q是真命题:“方程x2﹣x+m﹣4=0的两根异号”,则m﹣4<0,解得m<4.若p∨q为真,¬p为真,则p为假命题,q为真命题.∴.∴实数m的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】Ⅰ证明:在菱形ABCD 中, ∵BD AC ⊥,∴BD AO ⊥. ∵EF AC ⊥,∴PO EF ⊥, ∵平面PEF ⊥平面ABFED ,平面PEF 平面ABFED EF =,且PO ⊂平面PEF ,∴PO ⊥平面ABFED ,∵BD ⊂平面ABFED ,∴PO BD ⊥.∵AO PO O =,∴BD ⊥平面POA .Ⅱ设AOBD H =.由Ⅰ知,PO ⊥平面ABFED ,∴PO 为三棱锥P ABD -及四棱锥P BDEF -的高,∴1211,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形,∵1243V V =,∴3344ABD CBD BFED S S S ∆∆==梯形,∴14CEF CBD S S ∆∆=,∵,BD AC EF AC ⊥⊥,∴//EF BD ,∴CEF ∆∽CBD ∆. ∴21()4CEF CBD S CO CH S ∆∆==,∴111222CO CH AH ===⨯∴PO OC ==22.【答案】解:(I )由已知可得AM ⊥CD ,又M 为CD 的中点, ∴; 3分(II )在平面ABED 内,过AD 的中点O 作AD 的垂线OF ,交BE 于F 点, 以OA 为x 轴,OF 为y 轴,OC 为z 轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE 与面BCE夹角的余弦值为4分23.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.24.【答案】【解析】解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即⇒b=1,∴.(Ⅱ)由(Ⅰ)知,设x1<x2则f(x1)﹣f(x2)=﹣=因为函数y=2x在R上是增函数且x1<x2∴f(x1)﹣f(x2)=>0即f(x1)>f(x2)∴f(x)在(﹣∞,+∞)上为减函数(III)f(x)在(﹣∞,+∞)上为减函数,又因为f(x)是奇函数,所以f(t2﹣2t)+f(2t2﹣k)<0等价于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),因为f(x)为减函数,由上式可得:t2﹣2t>k﹣2t2.即对一切t∈R有:3t2﹣2t﹣k>0,从而判别式.所以k的取值范围是k<﹣.【点评】本题主要考查函数奇偶性与单调性的综合应用;同时考查一元二次不等式恒成立问题的解决策略,是一道综合题.。

2018-2019学年高二数学上学期第二次月考(期中)试题 文

2018-2019学年高二数学上学期第二次月考(期中)试题 文

2018-2019学年高二数学上学期第二次月考(期中)试题 文一、选择题(本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.)1.直线MN 的斜率为2,其中点()11N -,,点M 在直线1y x =+上,则( )A. ()57M ,B. ()45M ,C. ()21M ,D. ()23M ,2.超市为了检查货架上的奶粉是否合格,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( ) A .6,12,18,24,30 B .2,4,8,16,32 C .2,12,23,35,48D .7,17,27,37,473.在长方体1111ABCD A B C D -中,1AB BC ==,1AC 与1BB 所成的角为30︒,则1AA =( )A .3B .3C .5D .64.总体由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为( ) A .20B .16C .17D .185.在等比数列}{n a 中,已知343a a =,则=+++nn a aa a a a a a 2362412 A.233--n B.2331--n C.233-n D.2331-+n6.如图,正方体1111D C B A ABCD -中,E 为棱1BB 的中点,用过点1,,C E A 的平面截去该正方体的上半部分,则剩余几何体的左视图为( )7.已知正数,a b 满足21a b +=,则23a b+的最小值为( ) A. 843+B. 8C. 823+D. 208.某几何体的三视图如右图所示,则该几何体的体积为( )A .12B .18C .24D .369.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①l m αβ⊥⇒∥;②l m αβ⇒⊥∥; ③l m αβ⊥⇒∥;④l m αβ⇒⊥∥;其中正确命题的序号是( ) A .①②③B .②③④C .①③D .②④10.点()1,2A -在直线2140ax by -+=(0,0)a b >>上,且该点始终落在圆()()221225x a y b -+++-=的内部或圆上,那么ba的取值范围是( ) A . 34,43⎡⎤⎢⎥⎣⎦B . 34,43⎡⎫⎪⎢⎣⎭C . 34,43⎛⎤ ⎥⎝⎦D . 34,43⎛⎫⎪⎝⎭11.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若2sin sin a b c B A +=,则A 的大小是( ) A.2πB.3πC. 4πD. 6π12.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 是棱BC 、1CC 的中点,P 是底面ABCD 上(含边界)一动点,满足1A P EF ⊥,则线段1A P 长度的取值范围是( ) A .51,2⎡⎤⎢⎥⎢⎥⎣⎦B .2,3⎡⎤⎣⎦C .1,3⎡⎤⎣⎦D .53,22⎡⎤⎢⎥⎢⎥⎣⎦二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置)13.在等差数列{}n a 中,若43574,15a a a a =++=,则前10项和10S = __________. 14.空间直角坐标系中与点()2,3,5P 关于yOz 平面对称的点为'P ,则点'P 的坐标为________.15.为了研究某种细菌在特定环境下,随时间变化繁殖规律,得到如下实验数据,计算得回归直线方程为0.950.15y x =-.由以上信息,得到下表中c 的值为__________.天数x (天) 3 4 5 6 7繁殖个数y (千个)2345c16.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面,,SCB SA AC SB BC ==,三棱锥S ABC -的体积为9,则球O 的表面积为________. 三、解答题(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.) 17.( 本小题满分10分)某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.(1)求a 的值及样本中男生身高在[185,195](单位:cm )的人数.(2)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.18.( 本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知223b c a a ⎫+=+⎪⎪⎝⎭. (1)证明:23cos a A =; (2)若,36A B ππ==,求ABC ∆的面积.19. ( 本小题满分12分)如图,PA ⊥平面ABCD ,AD //BC ,2AD BC =,AB BC ⊥,点E 为PD 中点. (1)求证:AB PD ⊥; (2)求证:CE //平面PAB .20.( 本小题满分12分)设n S 为数列{}n a 的前n 项和,已知10a ≠,112n n a a S S -=⋅,n *∈N . (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和.21.( 本小题满分12分)如图,在直三棱柱111ABC A B C -中,底面ABC △是边长为2的等边三角形,D 为BC 的中点,侧棱13AA =,点E 在1BB 上,点F 在1CC 上,且1BE =,2CF =.(1)证明:平面CAE ⊥平面ADF ; (2)求点D 到平面AEF 的距离.22. ( 本小题满分12分)已知圆C 的圆心在坐标原点,且与直线1:220l x y --=相切. (1)求圆C 的方程;(2)过点()1,3G 作两条与圆C 相切的直线,切点分别为,,M N 求直线MN 的方程; (3)若与直线1l 垂直的直线l 与圆C 交于不同的两点,P Q ,若POQ ∠为钝角,求直线l 在y 轴上的截距的取值范围.南康中学xx ~xx 第一学期高二第二次大考数学(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDBDAACDACB二、填空题13、55 14、()2,3,5- 15、9 16、36π 三、解答题17.解:(1)由题意:0.10.040.0250.020.0050.01a =----=,身高在的频率为,人数为.----------5分(2)设样本中男生身高的平均值为,则:,所以,估计该校全体男生的平均身高为.----------10分18.证明:(1)∵22233b c abc a +=+ ∴2223b c a +-=, 由余弦定理可得2222cos b c a bc A +-=∴32cos bc A =, ∴23cos a A =.----------6分 (2)∵3A π=∴23cos 3a A =,由正弦定理得sin sin a b A B= ∴3sin sin 61sin sin3a Bb Aππ===,又2C A B ππ=--=∴13sin 2ABC S ab C ∆==分 19.证:(1)因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA AB ⊥,又因为AB BC ⊥,AD BC ∥,所以AB AD ⊥, 又因为PA AB ⊥,PAAD A =,所以AB ⊥平面PAD所以AB PD ⊥.----------6分 (2)取PA 的中点F ,连接EF ,BF ,又因为点E 为PD 中点,所以EF AD ∥,12EF AD =,又AD BC ∥,2AD BC =,所以EF BC ∥,EF BC =, 所以四边形BCEF 是平行四边形,因此EC BF ∥,又因为EC ⊄平面PAB ,BF ⊂平面PAB ,所以CE ∥平面PAB .----------12分 20.解:(1)令1=n ,得21112a a a =-,因为01≠a ,所以11=a ,当2≥n 时,由21n n a S -=,1121n n a S ---=,两式相减,整理得12-=n n a a , 于是数列{}n a 是首项为1,公比为2的等比数列,所以12-=n na .----------6分(2)由(2)知12-=n n n na ,记其前n 项和为n T , 于是21122322n n T n -=+⨯+⨯++⨯① 2321222322n n T n =⨯+⨯+⨯++⨯②①-②得2112222212n n n n n T n n --=++++-⨯=--⨯从而1(1)2n n T n =+-⋅.----------12分21.解:(1)∵ABC △是等边三角形,D 为BC 的中点,∴AD BC ⊥,∴AD ⊥平面11BCC B ,得AD CE ⊥.① 在侧面11BCC B 中,1tan 2CD CFD CF ∠==,1tan 2BE BCE BC ∠==, ∴tan tan CFD BCE ∠=∠,CFD BCE∠=∠∴90BCE FDC CFD FDC ∠+∠=∠+∠=︒,∴CE DF ⊥.② 结合①②,又∵ADDF D =,∴CE ⊥平面ADF ,又∵CE ⊂平面CAE ,∴平面CAE ⊥平面ADF .----------6分(2)FDE △中,易求FD FE ==DE 1322FDE S ==△,EFA △中,易求EA EF ==AF =,得12EFA S =⨯=△设三棱锥D AEF -的体积为V ,点D 到平面AEF 的距离为h ,则1133FDE EFA V S AD S h ==△△,得32=,h =.---------12分22. (1)由题意得:圆心()0,0到直线1:0l x y --=的距离为圆的半径,2r ==,所以圆C 的标准方程为:224x y +=----------3分(2)因为点()1,3G ,所以OG ==,GM ==所以以G 点为圆心,线段GM 长为半径的圆G 方程:()()22136x y -+-=(1) 又圆C 方程为:224x y +=(2),由()()12-得直线MN 方程:340x y +-=----------7分(3)设直线l 的方程为:y x b =-+联立224x y +=得:222240x bx b -+-=,设直线l 与圆的交点()()1122,,,P x y Q x y ,由()()222840b b ∆=--->,得28b <,212124,2b x x b x x -+=⋅=(3)因为POQ ∠为钝角,所以0OP OQ ⋅<,即满足12120x x y y +<,且OP 与OQ 不是反向共线,又1122,y x b y x b =-+=-+,所以()21212121220x x y y x x b x x b +=-++<(4)由(3)(4)得24b <,满足0∆>,即22b -<<,当OP 与OQ 反向共线时,直线y x b =-+过原点,此时0b =,不满足题意,故直线l 在y 轴上的截距的取值范围是22b -<<,且0b ≠----------12分资料仅供参考!!!。

太和县第四中学2018-2019学年高二上学期第二次月考试卷数学

太和县第四中学2018-2019学年高二上学期第二次月考试卷数学

太和县第四中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 记,那么ABC D2. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或3. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于( )A .B .C .D .4. 已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a5. 复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 已知a ,b 都是实数,那么“>”是“lna >lnb ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .B .C .D .8. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3D .﹣1或﹣39.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为()A.B.C.D.10.一个几何体的三视图是一个正方形,一个矩形,一个半圈,尺寸大小如图所示,则该几何体的表面积是()A.πB.3π+4 C.π+4 D.2π+411.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a,b不能被5整除 D.a,b有1个不能被5整除12.如图,空间四边形ABCD中,M、G分别是BC、CD的中点,则等()A.B.C.D.二、填空题13.若函数f(x)=3sinx﹣4cosx,则f′()=.14.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是.(填上所有正确结论的序号)①﹣,1是函数g(x)=2x2﹣1有两个不动点;②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点; ④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同. 15.= .16.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.17.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答) 18.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .三、解答题19.如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,PD=DC=BC=1,AB=2,AB ∥DC ,∠BCD=90°. (1)求证:PC ⊥BC ;(2)求点A 到平面PBC 的距离.20.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.21.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.22.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣) (1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.23.24.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cosθ的值.太和县第四中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】【解析1】,所以【解析2】,2. 【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。

泰和实验中学2018-2019学年高二上学期第二次月考试卷数学

泰和实验中学2018-2019学年高二上学期第二次月考试卷数学

泰和县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 2. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )A .112B .114C .116D .1203. 双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离心率为( )A .2B .C .4D .4. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C .2D .45. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位6. 函数f (x )=tan (2x+),则( )A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数C .函数最小正周期为π,且在(,)是减函数 D.函数最小正周期为,且在(,)是增函数7. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( ) A .4 B .2 C. D .2 8. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2- B.1- C. 1 D. 2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力. 9.是首项,公差的等差数列,如果,则序号等于( )A .667B .668C .669D .67010.已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( ) A .1 B. C .e ﹣1 D .e+111.“a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要12.设a ,b ,c ,∈R +,则“abc=1”是“”的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件二、填空题13.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.14.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 15.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= . 16.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .17.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.18.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .三、解答题19.19.已知函数f (x )=ln .20.(本小题满分12分)如图ABC ∆中,已知点D 在BC 边上,且0AD AC ⋅=,22sin 3BAC ∠=,32AB =,3BD =. (Ⅰ)求AD 的长; (Ⅱ)求cos C .21.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值;(3)当0m =时,试比较()2f x e -与()g x 的大小.22.已知函数f (x )=cos (ωx+),(ω>0,0<φ<π),其中x ∈R 且图象相邻两对称轴之间的距离为;(1)求f (x )的对称轴方程和单调递增区间;(2)求f (x )的最大值、最小值,并指出f (x )取得最大值、最小值时所对应的x 的集合.23.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.24.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式(2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。

泰和县外国语学校2018-2019学年高二上学期第二次月考试卷数学

泰和县外国语学校2018-2019学年高二上学期第二次月考试卷数学

泰和县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心2. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A .B .C .D .3. 已知双曲线C :﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( )A .B .C .2D .4. 在等差数列中,已知,则( )A .12B .24C .36D .485. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .6. 抛物线y 2=2x 的焦点到直线x ﹣y=0的距离是( )A .B .C .D .7. 已知向量=(2,1),=10,|+|=,则||=( )A .B .C .5D .258. 半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 39. 函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)10.如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( ) A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣311.直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心 12.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)二、填空题13.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.14.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= . 15.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.16.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________.17.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .18.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.三、解答题19.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。

泰和县三中2018-2019学年高二上学期第二次月考试卷数学

泰和县三中2018-2019学年高二上学期第二次月考试卷数学

泰和县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )A .①B .②C .③D .④2. “”是“一元二次方程x 2+x+m=0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件3. 如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .04. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a5. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )6. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)7.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%8.设函数y=的定义域为M,集合N={y|y=x2,x∈R},则M∩N=()A.∅B.N C.[1,+∞)D.M9.若yx,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-3333yyxyx,则当31++xy取最大值时,yx+的值为()A.1-B.C.3-D.3 10.下列命题的说法错误的是()A.若复合命题p∧q为假命题,则p,q都是假命题B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”11.若函数21,1,()ln,1,x xf xx x⎧-≤=⎨>⎩则函数31()2y f x x=-+的零点个数为()A.1 B.2 C.3 D.4 12.图1是由哪个平面图形旋转得到的()A.B.C.D.二、填空题13.已知函数f(x)=sinx﹣cosx,则=.14.17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.15.长方体ABCD﹣A1B1C1D1的棱AB=AD=4cm,AA1=2cm,则点A1到平面AB1D1的距离等于cm.16.若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则m的取值范围是.17.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是.O A B C的边长为1cm,它是水平放置的一个平面图形的直观图,则原图的18.如图,正方形''''周长为.1111]三、解答题19.设数列{a n}的前n项和为S n,a1=1,S n=na n﹣n(n﹣1).(1)求证:数列{a n}为等差数列,并分别求出a n的表达式;(2)设数列的前n项和为P n,求证:P n<;(3)设C n=,T n=C1+C2+…+C n,试比较T n与的大小.20.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.21.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.22.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.23.设,证明:(Ⅰ)当x>1时,f(x)<(x﹣1);(Ⅱ)当1<x<3时,.24.已知函数f(x)=和直线l:y=m(x﹣1).(1)当曲线y=f(x)在点(1,f(1))处的切线与直线l垂直时,求原点O到直线l的距离;(2)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;(3)求证:ln<(n∈N+)泰和县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有④符合.故选:D.【点评】本题考查了幂函数的图象与性质,属于基础题.2.【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.3.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.4.【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a <1,b <0,c >1,∴b <a <c . 故选:C .【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键. 5. 【答案】C 【解析】试题分析:由题意得,当01t <≤时,()2122f t t t t =⋅⋅=,当12t <≤时, ()112(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符合,故选C.考点:分段函数的解析式与图象. 6. 【答案】C【解析】解:=﹣=﹣f ′(x 0),故选C .7. 【答案】C【解析】解:∵概率P (K 2≥6.635)≈0.01, ∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C .【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.8. 【答案】B【解析】解:根据题意得:x+1≥0,解得x ≥﹣1, ∴函数的定义域M={x|x ≥﹣1};∵集合N 中的函数y=x 2≥0,∴集合N={y|y ≥0}, 则M ∩N={y|y ≥0}=N .故选B9.【答案】D【解析】考点:简单线性规划.10.【答案】A【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.故选:A.11.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.12.【答案】A 【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.二、填空题13.【答案】 .【解析】解:∵函数f (x )=sinx ﹣cosx=sin (x ﹣),则=sin (﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.14.【答案】【解析】解:∵f (x )=a xg (x )(a >0且a ≠1),∴=a x , 又∵f ′(x )g (x )>f (x )g ′(x ),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.15.【答案】【解析】解:由题意可得三棱锥B1﹣AA1D1的体积是=,三角形ABD1的面积为4,设点A1到平面AB1D1的距离等于h,则,1则h=故点A1到平面AB1D1的距离为.故答案为:.16.【答案】m>1.【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则命题“∀x∈R,x2﹣2x+m>0”是真命题,即判别式△=4﹣4m<0,解得m>1,故答案为:m>117.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.18.【答案】8cm【解析】考点:平面图形的直观图.三、解答题19.【答案】【解析】解:(1)证明:∵S n=na n﹣n(n﹣1)∴S n+1=(n+1)a n+1﹣(n+1)n…∴a n+1=S n+1﹣S n=(n+1)a n+1﹣na n﹣2n…∴na n+1﹣na n﹣2n=0∴a n+1﹣a n=2,∴{a n}是以首项为a1=1,公差为2的等差数列…由等差数列的通项公式可知:a n=1+(n﹣1)×2=2n﹣1,数列{a n}通项公式a n=2n﹣1;…(2)证明:由(1)可得,…=…(3)∴,=,两式相减得…=,=,=,=,∴…∴…∵n∈N*,∴2n>1,∴,∴…20.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f(x)=令(k∈Z)即:所以:函数f(x)在[0,π]上的单调区间为:(Ⅱ)因为x0∈(π,2π),则:2x0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.21.【答案】【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.22.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC中,根据勾股定理得:AC1=2,1则圆C1方程为:(x﹣2)2+(y﹣2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),在直角三角形A′B′C中,根据勾股定理得:A′C2=2,2则圆C1方程为:(x+2)2+(y+2)2=8,∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.23.【答案】【解析】证明:(Ⅰ)(证法一):记g(x)=lnx+﹣1﹣(x﹣1),则当x>1时,g′(x)=+﹣<0,又g(1)=0,有g(x)<0,即f(x)<(x﹣1);…4′(证法二)由均值不等式,当x>1时,2<x+1,故<+.①令k(x)=lnx﹣x+1,则k(1)=0,k′(x)=﹣1<0,故k(x)<0,即lnx<x﹣1②由①②得当x>1时,f(x)<(x﹣1);(Ⅱ)记h(x)=f(x)﹣,由(Ⅰ)得,h′(x)=+﹣=﹣<﹣=,令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,∴h′(x)<0,…10′因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,于是,当1<x<3时,f(x)<…12′24.【答案】【解析】(Ⅰ)解:由f(x)=,得,∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.原点O到直线l的距离为;(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立..①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,当△≤0,即m时,g′(x)≤0,∴g(x)在(1,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),,,当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.综上所述,m;(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.不妨令,∴ln,(k∈N*).∴..….累加可得:,(n∈N*).即ln<(n∈N*).【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式压轴题.。

泰和县第二中学2018-2019学年高二上学期第二次月考试卷数学

泰和县第二中学2018-2019学年高二上学期第二次月考试卷数学

泰和县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 不等式的解集为( )A .或B .C .或D .2. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直3. 函数y=sin (2x+)图象的一条对称轴方程为( )A .x=﹣B .x=﹣C .x=D .x=4. 已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(-∞B .(-∞C .D .)+∞5. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .486. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅7. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .8. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0)9. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A.B.C.D.610.已知抛物线x2=﹣2y的一条弦AB的中点坐标为(﹣1,﹣5),则这条弦AB所在的直线方程是()A.y=x﹣4 B.y=2x﹣3 C.y=﹣x﹣6 D.y=3x﹣211.用秦九韶算法求多项式f(x)=x6﹣5x5+6x4+x2+0.3x+2,当x=﹣2时,v1的值为()A.1 B.7 C.﹣7 D.﹣512.某程序框图如图所示,则输出的n的值是()A.21 B.22 C.23 D.24二、填空题13.已知函数f(x)=x2+x﹣b+(a,b为正实数)只有一个零点,则+的最小值为.14.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为(用数字作答)15.曲线在点(3,3)处的切线与轴x的交点的坐标为.16.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.17.过抛物线y2=4x的焦点作一条直线交抛物线于A,B两点,若线段AB的中点M的横坐标为2,则|AB|等于.18.用描述法表示图中阴影部分的点(含边界)的坐标的集合为.三、解答题19.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.20.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.21.22.证明:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.23.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.24.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值.(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.泰和县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A 【解析】令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A2. 【答案】A【解析】解:由题意可得直线l 1的斜率k 1==1,又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1, 显然满足k 1•k 2=﹣1,∴l 1与l 2垂直 故选A3. 【答案】A【解析】解:对于函数y=sin (2x+),令2x+=k π+,k ∈z , 求得x=π,可得它的图象的对称轴方程为x=π,k ∈z , 故选:A .【点评】本题主要考查正弦函数的图象的对称性,属于基础题.4. 【答案】B 【解析】试题分析:因为函数()xF x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022xxx xe ee e a--+--≥恒成立, ()2222x x x xx xx xe e e ea e e e e -----++∴≤=--()2x x x xe e e e --=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,22t e e -∴<≤-, 此时不等式2tt +≥当且仅当2t t=,即t =, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.5. 【答案】C【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,由双曲线的性质知,解得x=6.∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°,∴△PF 1F 2的面积=. 故选C .【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.6. 【答案】A【解析】解:∵A={x|a ﹣1≤x ≤a+2} B={x|3<x <5} ∵A ∩B=B ∴A ⊇B∴解得:3≤a ≤4 故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.7. 【答案】 D【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;① 又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C的实轴长为2m,焦距为2n,2则2m=|AF|﹣|AF1|=y﹣x=2,2n=2c=2,2∴双曲线C2的离心率e===.故选D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.8.【答案】A【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,则函数f(x)过定点(1,5).故选A.9.【答案】C.【解析】解:∵2a=3b=m,∴a=log2m,b=log3m,∵a,ab,b成等差数列,∴2ab=a+b,∵ab≠0,∴+=2,∴=log m2,=log m3,∴log m2+log m3=log m6=2,解得m=.故选C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.10.【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)∴直线AB的斜率k=1,∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.故选A,11.【答案】C【解析】解:∵f(x)=x6﹣5x5+6x4+x2+0.3x+2=(((((x﹣5)x+6)x+0)x+2)x+0.3)x+2,∴v0=a6=1,v1=v0x+a5=1×(﹣2)﹣5=﹣7,故选C.12.【答案】C【解析】解:执行程序框图,有p=1,n=2第1次执行循环体,有n=5,p=11不满足条件p>40,第2次执行循环体,有n=11,p=33不满足条件p>40,第3次执行循环体,有n=23,p=79满足条件p>40,输出n的值为23.故选:C.【点评】本题主要考察了程序框图和算法,属于基础题.二、填空题13.【答案】9+4.【解析】解:∵函数f(x)=x2+x﹣b+只有一个零点,∴△=a﹣4(﹣b+)=0,∴a+4b=1,∵a,b为正实数,∴+=(+)(a+4b)=9++≥9+2=9+4当且仅当=,即a=b时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.14.【答案】15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.15.【答案】(,0).【解析】解:y′=﹣,∴斜率k=y′|x=3=﹣2,∴切线方程是:y﹣3=﹣2(x﹣3),整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.16.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.17.【答案】6.【解析】解:由抛物线y2=4x可得p=2.设A(x1,y1),B(x2,y2).∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.∵直线AB过焦点F,∴|AB|=x1+x2+p=4+2=6.故答案为:6.【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.18.【答案】{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.【解析】解:图中的阴影部分的点设为(x,y)则{x,y)|﹣1≤x≤0,﹣≤y≤0或0≤x≤2,0≤y≤1}={(x,y)|xy>0且﹣1≤x≤2,﹣≤y≤1}故答案为:{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.三、解答题19.【答案】【解析】解:由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程可得,4x2+(4﹣2p)x+1=0则,,y1﹣y2=2(x1﹣x2)====解得p=6或p=﹣2∴抛物线的方程为y2=12x或y2=﹣4x【点评】本题主要考查了抛物线的标准方程.解题的关键是对抛物线基本性质和标准方程的熟练应用20.【答案】【解析】设f(x)=x2﹣ax+2.当x∈,则t=,∴对称轴m=∈(0,],且开口向下;∴时,t取得最小值,此时x=9∴税率t的最小值为.【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位!21.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可.(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可.【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,),X=0,1,2,3;P(X=0)=×()3=;P(X=1)=×()2×=;P(X=2)=×()×()2=;P(X=3)=×()3=,∴X的分布列为:即E(X)=0×=.【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力22.【答案】【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.23.【答案】【解析】解:(1)∵y=+,∴,解得x≥﹣2且x≠﹣2且x≠3,∴函数y的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x≤4且x≠1且x≠3,∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].24.【答案】【解析】【专题】计算题.【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.∵m∈N*,∴m=5时,x2的系数取得最小值22,此时n=3.(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2++a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=﹣1,a0﹣a1+a2﹣a3+a4﹣a5=﹣1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30.【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.。

泰和县民族中学2018-2019学年上学期高二数学12月月考试题含解析

泰和县民族中学2018-2019学年上学期高二数学12月月考试题含解析

7. 已知全集为 R ,集合 A x | x 2或x 3 , B 2, 0, 2, 4 ,则 (ð R A) B ( B. 2, 2, 4 C. 2, 0,3


) D. 0, 2, 4
内的任意一点,当该区域的面积为 4 时,z=2x﹣y 的最大值是
第 1 页,共 19 页
二、填空题
13.把函数 y=sin2x 的图象向左平移 个单位长度,再把所得图象上所有点的横坐标伸长到原来的 2 倍(纵
坐标不变),所得函数图象的解析式为 . 14.等比数列{an}的前 n 项和 Sn=k1+k2·2n(k1,k2 为常数) ,且 a2,a3,a4-2 成等差数列,则 an=________. 15.在 ABC 中, C 90 , BC 2 , M 为 BC 的中点, sin BAM
13 1 ; 23 3 5 ; 33 7 9 11 ; 43 13 15 17 19 ;…
若 m ( m N ) 的分解中最小的数为 91 ,则 m 的值为
3
.
【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度 中等.
第 8 页,共 19 页
精选高中模拟试卷
由于 13.11>6.635,故有 99%的把握认为含杂质的高低与设备是否改造是有关的. 【点评】本题考查独立性检验,考查写出列联表,这是一个基础题. 4. 【答案】B 【解析】解:y/=3x2﹣2,切线的斜率 k=3×12﹣2=1.故倾斜角为 45°. 故选 B. 【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题. 5. 【答案】A 【解析】解:根据题意,可作出函数图象: ∴不等式 f(x)<0 的解集是(﹣∞,﹣1)∪(0,1) 故选 A.

泰和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

泰和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(1)

泰和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}2. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( )A .B .C .D .3. 在下面程序框图中,输入,则输出的的值是( )44N S A .B .C .D .251253255260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.4. 如图,在棱长为1的正方体中,为棱中点,点在侧面内运动,若1111ABCD A B C D -P 11A B Q 11DCC D ,则动点的轨迹所在曲线为( )1PBQ PBD ∠=∠QA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.5. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,﹣4)C .(4,﹣2)D .(4,2)6. 若函数f (x )=2sin (ωx+φ)对任意x 都有f (+x )=f (﹣x ),则f ()=()A .2或0B .0C .﹣2或0D .﹣2或27. 设双曲线=1(a >0,b >0)的渐近线方程为y=x ,则该双曲线的离心率为()A .B .2C .D .8. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( )A .4B .5C .6D .99. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q 是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )A .①④B .②③C .③④D .②④10.方程x 2+2ax+y 2=0(a ≠0)表示的圆( )A .关于x 轴对称B .关于y 轴对称C .关于直线y=x 轴对称D .关于直线y=﹣x 轴对称11.定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( )A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)12.若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是()A .∀x ∈R ,2x 2﹣1<0B .∀x ∈R ,2x 2﹣1≤0C .∃x ∈R ,2x 2﹣1≤0D .∃x ∈R ,2x 2﹣1>0二、填空题13.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .14.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 . 15.某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为 升.16.已知两个单位向量满足:,向量与的夹角为,则.,a b 12a b ∙=- 2a b - cos θ=17.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”) 18.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.三、解答题19.已知等差数列的公差,,.(Ⅰ)求数列的通项公式;(Ⅱ)设,记数列前n 项的乘积为,求的最大值.20.(本小题满分10分)已知函数.()2f x x a x =++-(1)若求不等式的解集;4a =-()6f x ≥(2)若的解集包含,求实数的取值范围.()3f x x ≤-[]0,121.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x a -=)cos sin ,(cos x x x b +=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆22.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.(1)若cos ∠ADC=,求AB 的值;(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?23.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:节能意识弱节能意识强总计20至50岁45954大于50岁103646总计5545100(1)由表中数据直观分析,节能意识强弱是否与人的年龄有关?(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.24.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=(a1x xe .∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间;(Ⅱ)若函数f (x )在上无零点,求a 的最小值;10,2⎛⎫⎪⎝⎭(Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.泰和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:∵M ∪N=M ,∴N ⊆M ,∴集合N 不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础. 2. 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。

泰和县第二中学校2018-2019学年高二上学期第二次月考试卷数学

泰和县第二中学校2018-2019学年高二上学期第二次月考试卷数学

泰和县第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若,则等于( )A .B .C .D .2. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=03. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)4. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )A .2017B .﹣8C .D .5. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .6. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 27. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.9. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个10.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D211.下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 12.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对二、填空题13.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .14.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]15.方程(x+y ﹣1)=0所表示的曲线是 .16.设函数则______;若,,则的大小关系是______.17.如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60°方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为km.18.若x,y满足线性约束条件,则z=2x+4y的最大值为.三、解答题19.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.20.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.21.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.(Ⅰ)求B;(Ⅱ)若△ABC的面积为,b=2求a,c的值.22.已知函数f (x )=Asin (ωx+φ)(x ∈R ,A >0,ω>0,0<φ<)图象如图,P 是图象的最高点,Q 为图象与x 轴的交点,O 为原点.且|OQ|=2,|OP|=,|PQ|=.(Ⅰ)求函数y=f (x )的解析式;(Ⅱ)将函数y=f (x )图象向右平移1个单位后得到函数y=g (x )的图象,当x ∈[0,2]时,求函数h (x )=f (x )•g (x )的最大值.23.已知函数322()1f x x ax a x =+--,0a >.(1)当2a =时,求函数()f x 的单调区间;(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.24.已知函数f (x )=sinx ﹣2sin 2(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.泰和县第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵,∴,∴(﹣1,2)=m(1,1)+n(1,﹣1)=(m+n,m﹣n)∴m+n=﹣1,m﹣n=2,∴m=,n=﹣,∴故选B.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.2.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.3.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.4.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.5.【答案】D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是减函数,D正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.6.【答案】A【解析】解:∵a <b <0, ∴﹣a >﹣b >0,∴|a|>|b|,a 2>b 2,即,可知:B ,C ,D 都正确,因此A 不正确. 故选:A .【点评】本题考查了不等式的基本性质,属于基础题.7. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立. 当x >0时,一定有x ≠0成立, ∴“x ≠0”是“x >0”是的必要不充分条件. 故选:B .8. 【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。

太和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学卷

太和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学卷

对于 P2,函数 y=sin(x﹣
对于 P3,由于 cosx∈[﹣1,1],
∉[﹣1,1],则 P3 为假命题;
对于 P4,函数 y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x), 则 f(x)的最小正周期为 π,则 P4 为假命题. 故选 D. 【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式 以及周期函数的定义是解题的关键,属于基础题和易错题. 3. 【答案】 B 【解析】解:由题意,不等式 f(x)<g(x)在[1,e]上有解, ∴mx<2lnx,即 < 令 h(x)= 在[1,e]上有解, ,
(Ⅱ)当 x∈[2,+∞)时,求 f(x)的最小值.
21.已知复数 z=m(m﹣1)+(m2+2m﹣3)i(m∈R) (1)若 z 是实数,求 m 的值; (2)若 z 是纯虚数,求 m 的值; (3)若在复平面 C 内,z 所对应的点在第四象限,求 m 的取值范围.
22.【南师附中 2017 届高三模拟二】如下图扇形 AOB 是一个观光区的平面示意图,其中 AOB 为
2
好为递增的等比数列 {an } 的前三项,为 ,
1 1 1 1 1 , ,公比为,数列 是以为首项, 为公比的等比数列,则 8 4 2 2 an
1 1 1 2n 8 1 n 1 1 1 2 等价为 8 不等式 a1 a2 an ,整理,得 1 1 2 a1 a2 an 1 2 n 7 2 2 ,1 n 7, n N ,故选 C. 1
3. 已知函数 f(x)=m(x﹣ )﹣2lnx(m∈R) ,g(x)=﹣ ,若至少存在一个 x0∈[1,e],使得 f(x0)<g(x0) 成立,则实数 m 的范围是( A.(﹣∞, ] B.(﹣∞, ) ) C.(﹣∞,0] D.(﹣∞,0) )

泰和县实验中学2018-2019学年上学期高二数学12月月考试题含解析

泰和县实验中学2018-2019学年上学期高二数学12月月考试题含解析

泰和县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )A .20B .24C .30D .362. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A .B .C .D .3. 已知函数关于直线对称 , 且,则的最小值为()sin f x a x x =6x π=-12()()4f x f x ⋅=-12x x +A 、 B 、C 、D 、6π3π56π23π4. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A . B . C . D .5. 函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}6. 已知三棱锥外接球的表面积为32,,三棱锥的三视图如图S ABC -π090ABC ∠=S ABC -所示,则其侧视图的面积的最大值为()A .4B .C .8D .7. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .8. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)9. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=()A .2B .4C .8D .1610.已知命题p :存在x 0>0,使2<1,则¬p 是()A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1D .存在x 0≤0,使2<111.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( )A .1个 B .2个C .3个D .4个12.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .二、填空题13.如果实数满足等式,那么的最大值是 .,x y ()2223x y -+=yx14.在数列中,则实数a= ,b= .15.已知正整数的3次幂有如下分解规律:m ;;;;…113=5323+=119733++=1917151343+++=若的分解中最小的数为,则的值为.)(3+∈N m m 91m 【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.16.已知函数,则__________;的最小值为__________.17.若函数的定义域为,则函数的定义域是 .()f x []1,2-(32)f x -18.已知线性回归方程=9,则b= .三、解答题19.己知函数f (x )=lnx ﹣ax+1(a >0).(1)试探究函数f (x )的零点个数;(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0. 20.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.21.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.22.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.23.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.24.(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都C 022=++++F Ey Dx y x 2C 043=+y x y 相切.(1)求;F E D 、、(2)若直线与圆交于两点,求.022=+-y x C B A 、||AB泰和县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r •x 12﹣3r ,令12﹣3r=3,求得r=3,故展开式中含x 3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x 3项的系数之和为20,故选:A .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 2. 【答案】B【解析】解:∵y=f (|x|)是偶函数,∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,x <0部分的图象关于y 轴对称而得到的.故选B .【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题. 3. 【答案】D 【解析】:()sin )(tan f x a x x x ϕϕ==-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=- 对称轴为112212min522,2,663x k x k x x πππππ∴=-+=+∴+=4. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B若O ,A ,B 三点共线,有:-m=4,m=-4.故要使O ,A ,B 三点不共线,则。

泰和县高中2018-2019学年上学期高二数学12月月考试题含解析

泰和县高中2018-2019学年上学期高二数学12月月考试题含解析

泰和县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知集合(其中为虚数单位),,则( )23111{1,(),,}122i A i i i i -=-+-+2{1}B x x =<A B =A .B .C . {1}-{1}{-D .2. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )3. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案4. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A .1B .C .2D .45.已知,若圆:,圆:2->a 1O 01582222=---++a ay x y x 2O 恒有公共点,则的取值范围为( ).04422222=--+-++a a ay ax y x a A . B . C . D .),3[]1,2(+∞-- ),3()1,35(+∞-- ),3[]1,35[+∞-- ),3()1,2(+∞-- 6. 直线:(为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心7. 已知函数,其中,为自然对数的底数.当时,函数()e sin xf x x =x ∈R e 2.71828= [0,]2x π∈()y f x =的图象不在直线的下方,则实数的取值范围()y kx =k A . B . C . D .(,1)-∞(,1]-∞2(,e )π-∞2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.8. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N9. 在下面程序框图中,输入,则输出的的值是( )44N S A .B .C .D .251253255260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.10.定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .1211.若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ()A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]12.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系()A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a二、填空题13.设变量满足约束条件,则的最小值是,则实数y x ,22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩22(1)3(1)z a x a y =+-+20-a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.14.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .15.已知满足,则的取值范围为____________.,x y 41y xx y x ≥⎧⎪+≤⎨⎪≥⎩22223y xy x x -+16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 . 17.已知α为钝角,sin (+α)=,则sin (﹣α)= .18.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 . 三、解答题19.已知函数f (x )=|x ﹣m|,关于x 的不等式f (x )≤3的解集为[﹣1,5].(1)求实数m 的值;(2)已知a ,b ,c ∈R ,且a ﹣2b+2c=m ,求a 2+b 2+c 2的最小值.20.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.21.已知奇函数f(x)=(c∈R).(Ⅰ)求c的值;(Ⅱ)当x∈[2,+∞)时,求f(x)的最小值.22.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.23.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.24.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)泰和县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算2.【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q≠1,则A=S n=,B=S2n=,C=S3n=,B(B﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A(C﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n);故B(B﹣A)=A(C﹣A);故选:C.【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力. 3.【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。

太和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学

太和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学

太和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()A.0 B.1 C.2 D.32.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织()尺布.A.B.C.D.3.已知α是三角形的一个内角,且,则这个三角形是()A.钝角三角形B.锐角三角形C.不等腰的直角三角形D.等腰直角三角形4.在△ABC中,,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角 D.等腰或直角三角形5.已知f(x)是R上的偶函数,且在(﹣∞,0)上是增函数,设,b=f(log43),c=f(0.4﹣1.2)则a,b,c的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.c<b<a6.已知函数f(x)=3cos(2x﹣),则下列结论正确的是()A.导函数为B.函数f(x)的图象关于直线对称C.函数f(x)在区间(﹣,)上是增函数D.函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到7.将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中的任意两个数a、b(a>b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为()A .B .C .2D .38. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8B .10C .6D .49. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A .B .C .2D .310.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( )A .B .C .4D .11.已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a12.设函数,则有( )A .f (x )是奇函数,B .f (x )是奇函数, y=b xC .f (x )是偶函数D .f (x )是偶函数,二、填空题13.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.14.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .15.若函数f (x )=﹣m 在x=1处取得极值,则实数m 的值是 .16.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .18.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .三、解答题19.甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数ξ的数学期望;(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望.20.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.21.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.22.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.23.已知数列{a n }的首项为1,前n 项和S n 满足=+1(n ≥2).(Ⅰ)求S n 与数列{a n }的通项公式;(Ⅱ)设b n =(n ∈N *),求使不等式b 1+b 2+…+b n >成立的最小正整数n .24.已知函数f (x )=2sin (ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f (x )的图象向左平移θ(θ>0)个单位长度,得到y=g (x )的图象,若y=g (x )图象的一个对称点为(,0),求θ的最小值.(3)对任意的x ∈[,]时,方程f (x )=m 有两个不等根,求m 的取值范围.太和县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”,∴命题P是真命题,∴命题P的逆否命题是真命题;¬P:“若直线m不垂直于α,则m不垂直于l”,∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.故选:B.2.【答案】D【解析】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.故选:D.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.3.【答案】A【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,∵α是三角形的一个内角,则sinα>0,∴cosα<0,∴α为钝角,∴这个三角形为钝角三角形.故选A.【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.4.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.5.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C6.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.7.【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B.【点评】题考查类比推理和归纳推理,属基础题.8.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=2﹣(x1+x2),又x1+x2=﹣6∴∴|AB|=2﹣(x1+x2)=8故选A9.【答案】D【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.10.【答案】B【解析】解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p>0)∵点M(2,y0)到该抛物线焦点的距离为3,∴2+=3∴p=2∴抛物线方程为y2=4x∵M(2,y0)∴∴|OM|=故选B.【点评】本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.11.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.12.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.二、填空题-13.【答案】[]1,1【解析】考点:向量运算.【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决. 14.【答案】 64 .【解析】解:由图可知甲的得分共有9个,中位数为28 ∴甲的中位数为28乙的得分共有9个,中位数为36 ∴乙的中位数为36则甲乙两人比赛得分的中位数之和是64 故答案为:64.【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.15.【答案】﹣2【解析】解:函数f (x )=﹣m 的导数为f ′(x )=mx 2+2x ,由函数f (x )=﹣m 在x=1处取得极值,即有f ′(1)=0,即m+2=0,解得m=﹣2,即有f ′(x )=﹣2x 2+2x=﹣2(x ﹣1)x ,可得x=1处附近导数左正右负,为极大值点.故答案为:﹣2.【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题.16.【答案】2a ≥ 【解析】试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10af x x=-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题. 17.【答案】 ①④⑤【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π∴tan(A+B)=tan(π﹣C)=﹣tanC,又∵tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,此时sin2C=,sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣cos2A=sin(2A﹣30°)≤,则sin2C≥sinA•sinB.故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.18.【答案】②③.【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx是偶函数,故②正确,③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.三、解答题19.【答案】【解析】解:(Ⅰ)∵抽样比f==,∴甲地区抽取人数==55人,乙地区抽取人数==50人,∴由频数分布表知:解得x=6,y=7.(Ⅱ)由频数分布表知甲地区优秀率==,乙地区优秀率==,现从乙地区所有学生中随机抽取3人,抽取出的优秀学生人数ξ的可能取值为0,1,2,3,ξ~B (3,),∴E ξ=3×=.(Ⅲ)从样本中优秀的学生中随机抽取3人,抽取出的甲地区学生人数η的可能取值为0,1,2,3,P (η=0)==,P (η=1)==,P (η=2)==,P (η=3)==,∴η的分布列为:Eη==1.【点评】本题考查频数分布表的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型.20.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;21.【答案】【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,且事件C与事件D相互独立.…记甲按AB顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P(ξ=0)=P()=,P(ξ=100)=P()=,P(ξ=400)=P(CD)=.所以甲按AB顺序获得奖品价值的数学期望.…记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.P(η=0)=P()=,P(η=300)=P()=,P(η=400)=P(DC)=,η所以甲按BA顺序获得奖品价值的数学期望.…因为Eξ>Eη,所以甲应选择AB的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.22.【答案】【解析】解:(Ⅰ)证明:正方形ABCD中,CD BA,正方形ABEF中,EF BA.…∴EF CD,∴四边形EFDC为平行四边形,∴CE∥DF.…又DF⊂平面ADF,CE⊄平面ADF,∴CE∥平面ADF.…(Ⅱ)解:∵BE=BC=2,CE=,∴CE2=BC2+BE2.∴△BCE为直角三角形,BE⊥BC,…又BE⊥BA,BC∩BA=B,BC、BA⊂平面ABCD,∴BE⊥平面ABCD.…以B为原点,、、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2).设K(0,0,m),平面BDF的一个法向量为=(x,y,z).由,,得可取=(1,﹣1,1),…又=(0,﹣2,m),于是sinφ==,∵30°≤φ≤45°,∴,即…结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.23.【答案】【解析】解:(Ⅰ)因为=+1(n≥2),所以是首项为1,公差为1的等差数列,…则=1+(n﹣1)1=n,…从而S n=n2.…当n=1时,a1=S1=1,当n>1时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1.因为a1=1也符合上式,所以a n=2n﹣1.…(Ⅱ)由(Ⅰ)知b n===,…所以b1+b2+…+b n===,…由,解得n>12.…所以使不等式成立的最小正整数为13.…【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想24.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f (x )的图象向左平移θ(θ>0)个单位长度,得到y=g (x )=2sin=2sin (2x+2θ﹣)的图象,∵y=g (x )图象的一个对称点为(,0),∴2•+2θ﹣=k π,k ∈Z ,∴θ=﹣,故θ的最小正值为.(3)对任意的x ∈[,]时,2x ﹣∈[,],sin (2x ﹣)∈,即f (x )∈,∵方程f (x )=m 有两个不等根,结合函数f (x ),x ∈[,]时的图象可得,1≤m <2.。

泰和县高级中学2018-2019学年高二上学期第二次月考试卷数学

泰和县高级中学2018-2019学年高二上学期第二次月考试卷数学

泰和县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数f (x )=的定义域为( )A .(﹣∞,﹣2)∪(1,+∞)B .(﹣2,1)C .(﹣∞,﹣1)∪(2,+∞)D .(1,2)2. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .23. 函数y=(x 2﹣5x+6)的单调减区间为( )A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)4. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )5. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣26. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条7. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 8. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,49. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .10.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日C .6日和11日D .2日和11日11.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.12.已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°二、填空题13.已知一个算法,其流程图如图,则输出结果是 .14.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .15.多面体的三视图如图所示,则该多面体体积为(单位cm ) .16.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .17.直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,则实数a的值为.18.已知面积为的△ABC中,∠A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为.三、解答题19.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.20.在平面直角坐标系中,已知M(﹣a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线;②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.21.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?22.已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.(Ⅰ)求实数a的取值集合A(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.23..已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.24.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.泰和县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由题意得:,解得:1<x<2,故选:D.2.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.3.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.4.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.5.【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A.6.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.7.【答案】B【解析】8.【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.9.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h (x )=,有无数个交点, 由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.10.【答案】C【解析】解:由题意,1至12的和为78, 因为三人各自值班的日期之和相等, 所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日, 故选:C .【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.11.【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 12.【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30° 故选D .【点评】本题主要考查正弦定理的应用.属基础题.二、填空题13.【答案】 5 .【解析】解:模拟执行程序框图,可得 a=1,a=2不满足条件a 2>4a+1,a=3不满足条件a 2>4a+1,a=4 不满足条件a 2>4a+1,a=5满足条件a 2>4a+1,退出循环,输出a 的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a 的值是解题的关键,属于基本知识的考查.14.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.15.【答案】 cm 3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P ﹣ABC .该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.16.【答案】.【解析】解:设大小正方形的边长分别为x,y,(x,y>0).则+x+y+=3+,化为:x+y=3.则x2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.17.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.【解答】解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,∴,解得a=1.故答案为1.18.【答案】.【解析】解:AD取最小时即AD⊥BC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(﹣2x,0),B(x,0)(其中x>0),则=(﹣2x,﹣y),=(x,﹣y),∵△ABC的面积为,∴⇒=18,∵=cos=9,∴﹣2x2+y2=9,∵AD⊥BC,∴S=••=⇒xy=3,由得:x=,故答案为:.【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.三、解答题19.【答案】【解析】解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.…当直线l的斜率存在时,设直线l的方程为y﹣2=k(x﹣1),代入C的方程,并整理得(2﹣k2)x2+2(k2﹣2k)x﹣k2+4k﹣6=0 (*)(ⅰ)当2﹣k2=0,即k=±时,方程(*)有一个根,l与C有一个交点所以l的方程为…(ⅱ)当2﹣k2≠0,即k≠±时△=[2(k2﹣2k)]2﹣4(2﹣k2)(﹣k2+4k﹣6)=16(3﹣2k),①当△=0,即3﹣2k=0,k=时,方程(*)有一个实根,l与C有一个交点.所以l的方程为3x﹣2y+1=0…综上知:l的方程为x=1或或3x﹣2y+1=0…(2)假设以P为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12﹣y12=2,2x22﹣y22=2,两式相减得2(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2)…又∵x1+x2=2,y1+y2=4,∴2(x1﹣x2)=4(y1﹣y2)即k AB==,…∴直线AB的方程为y﹣2=(x﹣1),…代入双曲线方程2x2﹣y2=2,可得,15y2﹣48y+34=0,由于判别式为482﹣4×15×34>0,则该直线AB存在.…【点评】本题考查了直线和曲线的交点问题,考查直线方程问题,考查分类讨论思想,是一道中档题.20.【答案】①②③【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;④当a=0时,点M与N重合为(0,0),|PM|+|PN|=10=2|PM|,点P在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.故答案为:①②③.【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泰和县第四中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若抛物线y2=2px的焦点与双曲线﹣=1的右焦点重合,则p的值为()A.﹣2B.2C.﹣4D.42.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11?B.12?C.13?D.14?3.已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,若双曲线右支上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为()A.1<e<B.e>C.e>D.1<e<4.全称命题:∀x∈R,x2>0的否定是()A.∀x∈R,x2≤0B.∃x∈R,x2>0C.∃x∈R,x2<0D.∃x∈R,x2≤05.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10]B.(5,10)C.[3,12]D.(3,12)6.已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(ax+1)≤f(x﹣2)对任意都成立,则实数a的取值范围为()A.[﹣2,0]B.[﹣3,﹣1]C.[﹣5,1]D.[﹣2,1)7. 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则y x ,⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y mx y z -=)3,1(实数的取值范围是( )m A .B .C .D .1-<m 10<<m 1>m 1≥m 【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.8. 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-12z z ()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.9. 设、是两个命题,若是真命题,p q ()p q ⌝∨那么()A .是真命题且是假命题 p q B .是真命题且是真命题 p q C .是假命题且是真命题 p q D .是假命题且是假命题 p q 10.在△ABC 中,b=,c=3,B=30°,则a=()A .B .2C .或2D .211.已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x +sinx ,则()A .B .C .D .12.在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a =133(,)n a a=-且,则的最小值为( )0m n ×=2163n n S a ++A .B .C .D .43292【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.二、填空题13.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________14.已知正四棱锥的体积为,O ABCD 2则该正四棱锥的外接球的半径为_________15.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π;②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题;④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 . 16.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .17.某几何体的三视图如图所示,则该几何体的体积为 18.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .三、解答题19.已知二次函数f (x )=x 2+bx+c ,其中常数b ,c ∈R .(Ⅰ)若任意的x ∈[﹣1,1],f (x )≥0,f (2+x )≤0,试求实数c 的取值范围;(Ⅱ)若对任意的x 1,x 2∈[﹣1,1],有|f (x 1)﹣f (x 2)|≤4,试求实数b 的取值范围.20.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.21.等差数列{a n} 中,a1=1,前n项和S n满足条件,(Ⅰ)求数列{a n} 的通项公式和S n;(Ⅱ)记b n=a n2n﹣1,求数列{b n}的前n项和T n.22.如图,在平面直角坐标系xOy中,以x为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两点.已知A,B的横坐标分别为,.(1)求tan(α+β)的值;(2)求2α+β的值.23.某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率. 24.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.泰和县第四中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),∴=2,∴p=4.故选D.【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.2.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.3.【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO==c,∠MF1F2=60°,∠PF1F2=30°,设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,则方程有两个异号实数根,则有3b2﹣a2>0,即有3b2=3c2﹣3a2>a2,即c>a,则有e=>.故选:B.4.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.5.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.6.【答案】A【解析】解:∵偶函数f(x)在[0,+∞)上是增函数,则f(x)在(﹣∞,0)上是减函数,则f(x﹣2)在区间[,1]上的最小值为f(﹣1)=f(1)若f(ax+1)≤f(x﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax≤0恒成立则﹣2≤a ≤0故选A 7. 【答案】C【解析】画出可行域如图所示,,要使目标函数取得最大值时有唯一的最优解,则需)3,1(A mx y z -=)3,1(直线过点时截距最大,即最大,此时即可.l A z 1>l k8. 【答案】B 【解析】9. 【答案】D 10.【答案】C 【解析】解:∵b=,c=3,B=30°,∴由余弦定理b 2=a 2+c 2﹣2accosB ,可得:3=9+a 2﹣3,整理可得:a 2﹣3a+6=0,∴解得:a=或2.故选:C . 11.【答案】D【解析】解:由f (x )=f (π﹣x )知,∴f ()=f (π﹣)=f (),∵当x ∈(﹣,)时,f (x )=e x +sinx 为增函数∵<<<,∴f ()<f ()<f (),∴f ()<f ()<f (),故选:D 12.【答案】A【解析】二、填空题13.【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:14.【答案】118【解析】因为正四棱锥的体积为,所以锥高为2,设外接球的半径为,依轴O ABCD -2R截面的图形可知:22211(2)8R R R =-+∴=15.【答案】 ①③④ .【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x2﹣4x﹣5=0,但当x2﹣4x﹣5=0时,不能推出x一定等于5,故“x=5”是“x2﹣4x﹣5=0”成立的充分不必要条件,故②错误;③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正确;④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④.16.【答案】 .【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况∴所求概率为=.故答案为:.17.【答案】 26 【解析】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.【点评】本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.18.【答案】 16 .【解析】解:∵等比数列{a n}的前n项积为Πn,∴Π8=a1•a2a3•a4•a5a6•a7•a8=(a4•a5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.三、解答题19.【答案】【解析】解:(Ⅰ)因为x∈[﹣1,1],则2+x∈[1,3],由已知,有对任意的x∈[﹣1,1],f(x)≥0恒成立,任意的x∈[1,3],f(x)≤0恒成立,故f(1)=0,即1为函数函数f(x)的一个零点.由韦达定理,可得函数f(x)的另一个零点,又由任意的x∈[1,3],f(x)≤0恒成立,∴[1,3]⊆[1,c],即c≥3(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,即f(x)max﹣f(x)min≤4,记f(x)max﹣f(x)min=M,则M≤4.当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=﹣f()=(1+)2≤4,解得:|b|≤2,即﹣2≤b≤2,综上,b的取值范围为﹣2≤b≤2.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.20.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.21.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1=2×﹣(2n﹣1)2n﹣1=2n(3﹣2n)﹣3.∴T n=(2n﹣3)2n+3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.22.【答案】【解析】解:(1)由已知得:.∵α,β为锐角,∴.∴.∴.(2)∵,∴.∵α,β为锐角,∴,∴.23.【答案】【解析】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率p=.【点评】本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题. 24.【答案】【解析】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.。

相关文档
最新文档