北师大版七年级数学下册第2章+相交线与平行线练习题
北师大版七年级数学下册第二章相交线与平行线同步测试试题(含答案及详细解析)
北师大版七年级数学下册第二章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100°B.140°C.160°D.105°3、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A .①B .③C .①②D .②③4、下列关于画图的语句正确的是( ).A .画直线8cm AB =B .画射线8cm OA =C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一直线与AB 平行5、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'6、下列说法中,正确的是( )A .从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B .互相垂直的两条直线不一定相交C .直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cmD .过一点有且只有一条直线垂直于已知直线7、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°8、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°9、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .10、如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .180°-∠2+∠1B .180°-∠1-∠2C .∠2=2∠1D .∠1+∠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.2、(1)已知α∠与β∠互余,且3518α'∠=︒,则β∠=________.(2)82325'''︒+________=180°.(3)若27m n a b -+与443a b -是同类项,则m +n =________.3、如图,点O 在直线AB 上,OD ⊥OE ,垂足为O .OC 是∠DOB 的平分线,若∠AOD =70°,则∠COE =__________度.4、已知∠1=71°,则∠1的补角等于__________度.5、已知一个角的补角是这个角的余角的3倍,则这个角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB,CD相交于点O,90∠.∠=︒,OF平分AOEFOD(1)写出图中所有与AOD∠互补的角;(2)若120∠的度数.AOE∠=︒,求BOD2、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.3、如图,已知AB CD∠,求证1290∠,CE平分BCD∥,BE平分ABC∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.4、(感知)已知:如图①,点E在AB上,且CE平分ACD∠,12∠=∠.求证:AB CD∥.将下列证明过程补充完整:证明:∵CE平分ACD∠(已知),∴2∠=∠__________(角平分线的定义),∵12∠=∠(已知),∴1∠=∠___________(等量代换),∴AB CD ∥(______________).(探究)已知:如图②,点E 在AB 上,且CE 平分ACD ∠,AB CD ∥.求证:12∠=∠.(应用)如图③,BE 平分DBC ∠,点A 是BD 上一点,过点A 作AE BC ∥交BE 于点E ,:4:5ABC BAE ∠∠=,直接写出E ∠的度数.5、如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.-参考答案-一、单选题1、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.2、B【分析】BAD CAE DAE再利用角的和差关系可得答案. 根据方位角的含义先求解,,,【详解】解:如图,标注字母,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.3、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.故选:D.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.4、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A 、画直线AB =8cm ,直线没有长度,故此选项错误;B 、画射线OA =8cm ,射线没有长度,故此选项错误;C 、已知A 、B 、C 三点,过这三点画一条直线或2条、三条直线,故此选项错误;D 、过直线AB 外一点画一直线与AB 平行,正确.故选:D .【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.5、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.6、C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.7、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角8、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.9、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD ,∠ECD +∠2=180°,∴∠BCE =∠BCD +∠ECD =180°-∠2+∠1,故选A .【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.二、填空题1、40°【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2、5442'︒ 972755'''︒ 3【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m 、n 的值,然后代值计算即可.【详解】解:(1)α∠与β∠互余,且3518α'∠=︒,∴90=903518=5442βα'∠=︒-︒-︒'︒∠;故答案为:5442'︒;(2)18082325=972755''''''︒-︒︒;故答案为:972755'''︒;(3)∵27m n a b -+与443a b -是同类项,∴2474m n -=⎧⎨+=⎩, ∴63m n =⎧⎨=-⎩, ∴()633m n +=+-=.故答案为:3.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.3、35【分析】根据补角的性质,可得∠BOD =110°,再由OC 是∠DOB 的平分线,可得1552COD BOC BOD ∠=∠=∠=︒ ,又由OD ⊥OE ,可得到∠BOE =20°,即可求解. 【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴1552COD BOC BOD∠=∠=∠=︒,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.4、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.5、45︒【分析】设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒ 根据等量关系一个角的补角是这个角的余角的3倍,列方程()180390x x -=-,解方程可得.【详解】解:设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒()180390x x ∴-=-,1802703x x ∴-=- ,290x ∴=,45x ∴=,答:这个角为45︒.故答案为:45︒.【点睛】本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.三、解答题1、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.2、(1)∠AOC 的对顶角是∠BOD ,∠EOB 的对顶角是∠AOF ,.∠AOC 的邻补角是∠AOD ,∠BOC ;(2)共有6对对顶角,它们分别是∠AOC 与∠BOD ,∠AOE 与∠BOF ,∠AOF 与∠BOE ,∠AOD 与∠BOC ,∠EOD 与∠COF ,∠EOC 与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC 的对顶角是∠BOD ,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.3、12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∴∠1+∠2=90°.故答案为:12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由∠∠=即可求得∠ABC的度数,从而可求得∠E的度数.ABC BAE:4:5【详解】感知∵CE平分ACD∠(已知),∴2=ECD(角平分线的定义),∵12∠=∠(已知),∴1∠=∠ECD(等量代换),∴AB CD∥(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分ACD∠,∴2ECD∠=∠,∵AB CD∥,∴l ECD∠=∠,∵12∠=∠.应用∵BE 平分∠DBC , ∴12ABE CBE ABC ∠=∠=∠,∵AE ∥BC ,∴∠CBE =∠E ,∠BAE +∠ABC =180゜,∴∠E =∠ABE ,∵:4:5ABC BAE ∠∠=,∴∠ABC =80゜∴40ABE ∠=︒∴40E ∠=︒【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键. 5、22︒【分析】根据90EOC ∠=︒、34COF ∠=︒可得56EOF ∠=︒,OF 是∠AOE 的角平分线,可得56AOF EOF ∠=∠=︒,所以22AOC AOF COF ∠=∠-∠=︒,再根据对顶角相等,即可求解.【详解】解:∵90EOC ∠=︒、34COF ∠=︒,∴56EOF ∠=︒,∵OF 是∠AOE 的角平分线,∴56AOF EOF ∠=∠=︒,∴22AOC AOF COF ∠=∠-∠=︒,∴22BOD AOC ∠=∠=︒,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.。
北师大版七年级数学下册第二章 相交线与平行线练习(含答案)
第二章 相交线与平行线一、单选题1.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒2.如图CD⊥AB,⊥C=90°,线段AC 、BC 、CD 中最短的是( )A .ACB .BC C .CD D .不能确定 3.如图,下列说法正确的是( )A .A ∠与⊥1与是内错角B .A ∠与2∠是同旁内角C .⊥1与2∠是内错角D .A ∠与3∠是同位角4.下列说法正确的是( )A .一条直线的平行线有且只有一条B .经过一点有且只有一条直线与已知直线平行C .经过一点有两条直线与已知直线平行D .过直线外一点有且只有一条直线与已知直线平行5.如图,能判定EB ⊥AC 的条件是( )A .⊥C =⊥ABEB .⊥A =⊥EBDC .⊥C =⊥ABCD .⊥A =⊥ABE 6.如图,点E 在AD 的延长线上,下列条件中能判断AB ⊥CD 的是( )A .⊥3=⊥4B .⊥1=⊥2C .⊥C =⊥CDED .⊥C +⊥ADC =180° 7.AF 是BAC ∠的平分线,//,DF AC 若70,BAC ∠=︒则1∠的度数为( )A .17.5B .35C .55D .708.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒ 9.下列对尺规作图步骤的描述不准确的是( )A .作ABC ∠,使ABC αβ∠=∠+∠B .作AOB ∠,使2AOB α∠=∠C .以点A 为圆心,线段a 的长为半径作弧D .以点O 为圆心作弧10.如图,已知直线AB 、CD 被直线AC 所截,AB⊥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设⊥BAE=α,⊥DCE=β.下列各式:⊥α+β,⊥α﹣β,⊥β﹣α,⊥360°﹣α﹣β,⊥AEC 的度数可能是( )A .⊥⊥⊥B .⊥⊥⊥C .⊥⊥⊥D .⊥⊥⊥⊥二、填空题 11.如图,直线AB 、CD 相交于点O ,OA 平分⊥EOC ,⊥EOC=80°,则⊥BOD=_____.12.如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是___.13.如图,已知AB ,CD ,EF 互相平行,且⊥ABE =70°,⊥ECD =150°,则⊥BEC =________°.14.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .三、解答题15.如图,直线AB ,CD 相交于点O ,OE AB ⊥,垂足为O .(1)直接写出图中AOC ∠的对顶角为 ,BOD ∠的邻补角为 ; (2)若:1:2BOD COE ∠∠=,求AOD ∠的度数.16.如图,已知四边形ABCD ,AB⊥CD ,点E 是BC 延长线上一点,连接AC 、AE ,AE 交CD 于点F ,⊥1=⊥2,⊥3=⊥4.证明:(1)⊥BAE=⊥DAC;(2)⊥3=⊥BAE;(3)AD⊥BE.17.如图,已知AB⊥CD,⊥B=60°,CM平分⊥ECB,⊥MCN=90°,求⊥DCN的度数.18.如图,已知BC⊥GE,AF⊥DE,点D在直线BC上,点F在直线GE上,且⊥1=50°.(1)求⊥AFG的度数;(2)若AQ平分⊥FAC,交直线BC于点Q,且⊥Q=18°,则⊥ACB的度数为______°.(直接写出答案)答案1.A2.C3.D4.D5.D6.B7.B8.A9.D10.D11.40°12.内错角13.4014.12515.(1)⊥AOC 的对顶角为:⊥BOD⊥BOD 的邻补角为:⊥BOC ,⊥AOD(2)⊥:1:2BOD COE ∠∠=设⊥BOD=x,则⊥COE=2x⊥OE⊥AB⊥⊥EOB=90°⊥⊥COE+⊥BOD=90°,即x+2x=90°解得:x=30°⊥⊥BOD=⊥COA=30°⊥⊥AOD=150°16.证明:(1)⊥⊥1=⊥2,⊥⊥1+⊥CAE=⊥2+⊥CAE,即⊥BAE=⊥DAC;(2)⊥AB⊥CD,⊥⊥4=⊥BAE,⊥⊥3=⊥4,⊥⊥3=⊥BAE;(3)⊥⊥3=⊥BAE,⊥BAE=⊥DAC,⊥⊥3=⊥DAC,⊥AD⊥BE.17.⊥AB⊥CD,⊥⊥B+⊥BCE=180°,⊥BCD=⊥B,⊥⊥B=60°,⊥⊥BCE=120°,⊥BCD=60°,⊥CM平分⊥BCE,⊥⊥ECM=12⊥BCE=60°,⊥⊥MCN=90°,⊥⊥DCN=180°-60°-90°=30°.18.(1)⊥BC⊥EG,⊥⊥E=⊥1=50°.⊥AF⊥DE,⊥⊥AFG=⊥E=50°;(2)作AM⊥BC,⊥BC⊥EG,⊥AM⊥EG,⊥⊥FAM=⊥AFG=50°.⊥AM⊥BC,⊥⊥QAM=⊥Q=18°,⊥⊥FAQ=⊥FAM+⊥QAM=68°.⊥AQ平分⊥FAC,⊥⊥QAC=⊥FAQ=68°,⊥⊥MAC=⊥QAC+⊥QAM=86°.⊥AM⊥BC,⊥⊥ACB=⊥MAC=86°故答案为:86。
北师大版七年级下册数学第二章相交线与平行线测试题(附答案)
北师大版七年级下册数学第二章相交线与平行线测试题(附答案)北师大版七年级下册数学第二章相交线与平行线测试题(附答案)一、单选题1.如图,已知直线l1∥l2,将一块直角三角板ABC按如图所示方式放置,若∠1=39°,则∠2等于()A。
39° B。
45° C。
50° D。
51°2.如图.直线a∥b,直线L与a、b分别交于点A,B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A。
130° B。
50° C。
40° D。
25°3.如图,三点共线A、B、C,D、E、F三点共线,且AD∥CF,BE∥CD,下列结论错误的是()A。
∠ABE=∠XXX∠ABE=∠CDEC。
∠ABE=∠XXX∠ABE=∠BDF4.如图,平行线AB∥CD,EF⊥CD,垂足为G,图中∠AGE=()A。
90° B。
45° C。
30° D。
60°5.如图,互余的角有()A。
1个 B。
2个 C。
3个 D。
4个6.如图,AB∥CD,EF∥GH,则下列等式正确的是()A。
∠AEF=∠GHF B。
∠AEF=∠HGFC。
∠XXX∠GHF D。
∠XXX∠HGF7.已知同一平面内的三条直线AB,CD,EF,AB∥CD,CD∥EF,则下列结论错误的是()A。
AB∥EF B。
AB∥CD C。
EF∥CD D。
AB∥EF8.如果a<b,且a+b=5c,如果c<a,b<c,比a与b 的和的3倍少2,那么a与b的位置关系是()A。
a<b B。
a>b C。
a=b D.无法确定9.如图,已知AB∥CD,AE=2cm,EC=3cm,则图中互相平行的线段是()A。
AB//CD B。
AE//DC C。
BE//CD D。
AB//EC10.如图,AB∥CD,点E在直线AD上,且∠AEC=34°,则∠BED的大小为()A。
北师大版七年级数学下册第二章《相交线与平行线》考试卷附解析版)
(3)利用上述结论解决问题:如图已知 , 和 的平分线相交于 , ,求 的度数.
22.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(1)如图,一束光线 射到平面镜 上,被 反射到平面镜 上,又被 反射,若被 反射出的光线 与光线 平行,且 ,则 _________, ________.
4.如图, , ,则图中与 相等 角(不含 )有______个;若 ,则 ________.
5.在 、 两座工厂之间要修建一条笔直的公路,从 地测得 地的走向是南偏东 ,现 、 两地要同时开工,若干天后,公路准确对接,则 地所修公路的走向应该是( )
A.北偏西 B.南偏东 C.西偏北 D.北偏西
6.如图,直线l//m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()
【答案】95°
【解析】
【详解】如图,作EF∥AB,则EF∥CD,
∴∠ABE+∠BEF=180°,∵∠ABE=120°,∴∠BEF=60°,
∵∠DCE=∠FEC=35°,∴∠BEC=∠BEF+∠FEC=95°.
故答案为95°.
点睛:本题关键在于构造平行线,再利用平行线的性质解题.
13.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是________.①第一次向左拐 ,第二次向右拐 ;②第一次向右拐 ,第二次向左拐 ;③第一次向右拐 ,第二次向左拐 ;④第一次向左拐 ,第二次向左拐 .
A. 20°B. 25°C. 30°D. 35°
【答案】A
【解析】
【详解】如图,过点B作BD//l,
北师大版七年级数学下册第二章相交线和平行线练习(含答案)
第二章相交线与平行线、单选题1如图,直线AB,CD相交于点O, AOC 50,OE AB,则C. 70 D• 902. 如图CD丄AB, / C=90° ,线段AC?BC?CD中最短的是()3. 如图,下列说法正确的是()A . A与/ 1与是内错角C .Z 1与2是内错角4. 在下列图形中,由/ 1 =Z 2能得到AB // CD的是(DOE的大小是(A. ACB. BC C . CD D .不能确定B . A与2是同旁内角D. A与3是同位角A •两直线平行,同位角相等B. 两直线平行,内错角相等C. 同位角相等,两直线平行D. 内错角相等,两直线平行6.如图,AB// DE , // B+// C+//D=(C. 540 °D. 27045。
角的直角三角尺放在两条平行线m、n上,已知/ a=120 °,则/ 3 7.如图,将一个含有的度数是()9.下列属于尺规作图的是()A .用刻度尺和圆规作△ ABCB .用量角器画一个 300的角C .用圆规画半径2cm 的圆D .作一条线段等于已知线段10 .如图, AB // CD , BF,DF 分另U 平分/ABE 和/ CDE , BF // DE ,/ F 与/ ABE 互补,则A . 30 °B . 35C . 36D .45 B . 60 C . 65 °D . 75 8如图,将一张矩形纸片折叠,若/1 = 80°,则/ 2的度数是(A . 50°B . 60C . 70°D . 80°、填空题11 •同一平面内,两条直线的位置关系有_____________________________12•如图,AB//ED,贝U A C D ______________ •13. 如图,直线a、b都与直线c相交,给出下列条件:① 1③ 2= 8 :④ 5+ 8 = 180°,其中能判断a// b的条件是: _______________________ .(把你认为正确的序号全部填在空格内)、14. 一副三角尺按如图所示叠放在一起,其中点B,D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有______________ 次出现三角形ACD的一边与三角形AOB 的某一边平行.三、解答题15. 如图1,/ AOC和/ BOD都是直角.2 ;② 1 +3 = 180°;1 图2(1)若/ DOC 28,则/ AOB= ____________ 度;(2)__________________________________________ 写出图1中所有相等的角:;(3)若/ DOC逐渐变小,则/ AOB将如何变化?答: _______________________________________________ ;(4)在图2中利用画直角的工具再画一个与/ COB相等的角.16. 如图,已知AB// DC , AE平分/ BAD , CD与AE相交于点F,/ CFE = Z E.试说明AD // BC,并写出每一步的根据.A DA/丄/\_£—E17.填空:如图,AD BC 于点D, EF BC 于点E, 1 2 , BAC 70,求AGD的度数.B D E解:••• AD BC, EF BC (已知)ADC 90 FEC 90 ( )ADC FEC ( )()//()( )1 ( )( )1 2( )2 DAC ( )()//()( )AGD BAC 180 ( )BAC70 ( )AGD180 ()=( )(等式性质)18•如图,AB// CD,定点E, F分别在直线AB, CD上,平行线AB , CD之间有一动点P .(1) 如图1,当P点在EF的左侧时,/ AEP,/ EPF , / PFC满足数量关系为___________________ 如图2,当P点在EF的右侧时,/ AEP,/ EPF,/ PFC满足数量关系为_______________________ •(2) 如图3,当/ EPF = 90°, FP平分/ EFC时,求证:EP平分/ AEF ;(3) 如图4, QE , QF分别平分/ PEB和/PFD,且点P在EF左侧.//若/ EPF = 60°,则/ EQF//猜想/ EPF与/ EQF的数量关系,并说明理由BF 却D%1:l>D答案1.A 2.C3.D 4.B5. C6.B7.D8.A9.D10.C11.相交或平行12.360°13•①④14.815. (1 )•••/ AOC 和/BOD 都是直角,•••/ AOC = Z BOD = 90°•••/ DOC = 28°•••/ AOD = 90° 28°= 62°•••/ AOB = Z AOD +/ BOD = 90°+ 62° = 152 故答案为:152°;(2)•••/ AOC =Z BOD = 90°•••/ AOD +Z COD = Z BOC + Z COD , •••/ AOD =Z BOC故答案为:/ AOD =Z BOC;(3)Z DOC变小,则/ AOB变大;•••/ AOD +/ DOC + / DOC + / BOC = 180°•••/ AOB + / DOC = 180°•••当/ DOC变小,则/ AOB变大故答案为:/ DOC变小,则/ AOB变大;(4)如图所示:/ AOD为所求.16. 证明:T AB // DC (已知)•••/ 1 = Z CFE (两直线平行,同位角相等)•/ AE平分/ BAD (已知)•••/ 1 = 7 2 (角平分线的定义)•••/ CFE = 7 2 (等量代换)•••/ CFE = 7 E (已知)•••7 2=7 E (等量代换)• AD // BC (内错角相等,两直线平行).17. 解:// AD BC , EF BC (已知)// ADC 90 FEC 90 (垂直定义)// ADC FEC (等角的定义) // (AD )// (EF)(同位角相等,两直线平行)// 1 (DAC )(两直线平行,同位角相等)// 1 2 (已知)// 2 DAC (等量代换)// (GD)// (AC)(内错角相等,两直线平行)// AGD BAC 180 (两直线平行,同旁内角互补)// BAC 70 (已知)// AGD 180 (BAC )= (110 ° (等式性质)18. (1)如下图,过点P作PQ// AB•/ PQ // AB , AB // CD ,••• PQ // CD•••/ AEP/ EPQ,/ QPF/ PFC又•••/ EPF=// EPQ/ QPF.•./ EPF=// AEP+/ PFC如下图,过点P作PQ// AB同理,AB // QP // CD•••/ AEP+/ QPE=180 ,/ QPF+/ PFC=180•••/ AEP+/ EPF+// PFC/ AEP+/ EPQ+/ QPF+/ PFC=360(2)根据(1)的结论知:/ AEP+/ PFC=/ EPF=90•/ PF是/ CFE的角平分线,•/ PFC/ PFE在^ PEF 中,I/ EPF=90,•/ PEF+// PFE=90•••/ PEF+// PFE= / AEP+/ PFC•••/ PEF=/ AEP ,••• PE 是/ AEF 的角平分线(3) //根据(1)的结论知:/ AEP+/ PFC/ EPF=60•••/ BEP+/ PFD=180 -/ AEP+180 -/ PFC=300••• EQ、QF分别是/ PEB和/ PFD的角平分线•••/ PEQ=QEB,/ PFQ/ QFD•••/ PEQ+/ PFQ=150在四边形PEQF 中,/ EQF=360 -/ EPF —(/ PEQ+/ PFQ)=360 —60 ° —150 ° =150°②根据(1)的结论知:/ AEP+/ PFC/ EPF•••/ BEP+/ PFD=180 —/ AEP+180 —/ PFC=360 —/ EPF••• EQ、QF分别是/ PEB和/ PFD的角平分线2•••/ PEQ=/ QEB ,/ PFQ=/ QFD1 1 •••/ PEQ+/ PFQ= _ 360 — EPF =180 °—— EPF2 2•••在四边形PEQF 中:1 -EPF / EQF=360 —Z EPF — (/ PEQ+/ PFQ)=360 EPF — (180。
北师大版七年级下册数学 第二章 相交线与平行线 单元测试卷(含答案)
第二章相交线与平行线单元测试卷一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.下列说法正确的是().A.相等的角是对顶角.B.两条直线被第三条直线所截,内错角相等.C.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.D.若两个角的和为180°,则这两个角互为余角.4.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50° C.40° D.30°5.用尺规作图,已知三边作三角形,用到的基本作图是().A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如图,∠1和∠2互补,∠3=130°,那么∠4的度数是( ).A. 50°B. 60°C.70°D.80°二、填空题9. 如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.如图所示,已知BC∥DE,则∠ACB+∠AOE=.11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. 如图所示,请写出能判断CE∥AB的一个条件,这个条件是:①:________ ②:________ ③:________13.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.14.如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD= ,∠AOC=,∠BOC=.15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.北北甲乙16.阅读下面材料:在数学课上,老师提出如下问题:小聪、小明、小敏三位同学在黑板上分别画出了设计方案:根据以上信息,你认为同学的方案最节省材料,理由是.三、解答题17.如图所示,直线AB、CD、EF相交于点O,若∠1+∠2=90°,∠3=40°,求∠1的度数,并说明理由.18.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.19. 如图所示,已知∠1=50°,∠2=130°,∠4=50°,∠6=130°,试说明a∥b,b∥c,d∥e,a∥c.20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗? 为什么?参考答案一、选择题1. 【答案】A;【解析】只有第三个图中的∠1与∠2是对顶角.2. 【答案】B;【解析】同位角的特征:在截线同旁,在两条被截直线同一方向上.3. 【答案】C;【解析】一个角的平分线分得两个角相等,但不是对顶角,A错误;内错角相等的前提必须是两条直线平行,B错误;若两个角的和为180°,这两个角互为补角,D错误;C是平行公理的推论,正确.4. 【答案】C;【解析】∵FE⊥DB,∴∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选C.5. 【答案】C;【解析】根据三边做三角形用到的基本作图是:作一条线段等于已知线段.故选C.6. 【答案】C;【解析】根据直线平行,内错角相等,从A点北偏东60°方向等于从B点南偏西60°,再从B点向南偏西15°方向到C点,∠ABC应等于这两个角的差,故C正确.7.【答案】C;【解析】应是过一点画线段所在直线的垂线,不能是画线段的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点与AB垂直的直线上,或Q 点不在过P点与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;只有C是垂线的性质,故C正确.8.【答案】A;【解析】平行线的判定与性质综合应用.二、填空题9.【答案】50°;【解析】因为AB∥CD,所以∠1=∠AGF,因为∠AGF与∠EGB是对顶角,所以∠EGB =∠AGF,故∠EGB=50°.10.【答案】180°;【解析】由BC∥DE可知∠ACB=∠EOC,又因为∠AOE+∠EOC=180°,故可得解.11.【答案】向西,750米;【解析】移动的方向是起点到终点的方向,移动的距离是起点到终点的线段的长度. 12.【答案】∠DCE=∠A,∠ECB=∠B,∠A+∠ACE=180°;【解析】根据平行线的判定,CE∥AB成立的条件可以是∠DCE=∠A或∠ECB=∠B 或∠A+∠ACE=180°.13.【答案】90°;【解析】∠BAC+∠ACD=180°,11BAC+ ACD22∠∠=90°,即∠1+∠2=90°.14.【答案】115°,115°,65°;【解析】邻补角或对顶角的性质进行求解.15.【答案】48°;【解析】内错角相等,两直线平行.16.【答案】小聪;两点之间线段最短;点到直线垂线段最短;【解析】小明与小聪的方案比较:在小明的方案中∵AD+BD>AB,∴小聪的方案比小明的节省材料;小聪与小敏的方案比较:小聪方案中AC<小敏的方案中AC∴小聪同学的方案最节省材料,理由:两点之间线段最短;点到直线垂线段最短.三、解答题17.【解析】解:因为∠2=∠3(对顶角相等),∠3=40°(已知),所以∠2=40°(等量代换).又因为∠1+∠2=90°(已知),所以∠1=90°-∠2=50°.18.【解析】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.19.【解析】解:因为∠1=50°,∠2=130°(已知),所以∠1+∠2=180°.所以a∥b(同旁内角互补,两直线平行).所以∠3=∠1=50°(两直线平行,同位角相等).又因为∠4=50°(已知),所以∠3=∠4(等量代换).所以d∥e(同位角相等,两直线平行).因为∠5+∠6=180°(平角定义),∠6=130°(已知),所以∠5=50°(等式的性质).所以∠4=∠5(等量代换).所以b∥c(内错角相等,两直线平行).因为a∥b,b∥c(已知),所以a∥c(平行于同一直线的两直线平行).20.【解析】解:如图所示,(1)①直线PD即为所求;②直线PE、PF即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF =∠B(等量代换).。
北师大版七年级下册第二章-平行线与相交线同步练习题(含答案)
第二章 平行线与相交线同步练习题2.1两条直线的位置关系一、选择题(共18小题) 1 .下列说法正确的是( )A .两条不相交的线段叫平行线B .过一点有且只有一条直线与已知直线平行 C. 线段与直线不平行就相交D. 与同一条直线相交的两条直线有可能平行2 .如果线段AB 与线段CD 没有交点,则( A .线段AB 与线段CD 一定平行 C .线段AB 与线段CD 可能平行3.如图,在方格纸上给出的线中,平行的有( )4.已知Z1 + Z 2=90° Z3+)B .线段AB 与线段CD 一定不平行 D .以上说法都不正确0=180 °下列说法正确的是()A. Z1是余角C. Z1是的余角 D . Z3和也都是补角5. 下列说法错误的是()题(含答案)6. 下列说法正确的是()A.两个互补的角中必有一个是钝角B . 一个锐角的余角一定小于这个角的补角C. 一个角的补角一定比这个角大D. 一个角的余角一定比这个角小7. 如果Z aZ =90°,而/与/互余,那么/o与/Y勺关系为()A.互余 B .互补C.相等9.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B .有公共顶点并且相等的两个角是对顶角C.如果两个角不相等,那么这两个角不是对顶角D .以上说法都不对A •两个互余的角相加等于90°C.互为补角的两个角不可能都是钝角B .钝角的平分线把钝角分为两个锐角D .两个锐角的和必定是直角或钝角D .不能确定A. 60 ° B . 45 C. 30° D . 90°8—个角的余角是它的补角的11.(2007?济南)已知:如图,AB J CD ,垂足为O,EF 为过点O 的一条直线,则J 与的关系一定成立的是 ( )12. (2003?杭州)如图所示立方体中,过棱 BB 1和平面CD 1垂直的平面有(C . 3个15. 如图,已知 0A J m , OB J m ,所以OA 与OB 重合,其理由是□EmC .互补D .互为对顶角ZPQR 等于 138° SQ J QR , QTZPQ .贝U zSQT 等于(B . 64 °C . 48°D . 24°14. (2005?哈尔滨)过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°则此钝角为( 140° B . 160° C . 120° D . 110°A •相等A . 1个B •过一点只能作一条垂线C. 经过一点只有一条直线垂直于已知直线D. 垂线段最短16. 如图,ZBAC=90 ° AD ZBC,则下列的结论中正确的个数是()①点B到AC的垂线段是线段AB ;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.C. 3个17. 如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,A.垂线最短B .过一点确定一条直线与已知直线垂盲C. 垂线段最短D. 以上说法都不对18 .已知线段AB=10cm,点A , B至煩线I的距离分别为6cm, 4cm .符合条件的直线I有()C. 3条、填空题(共12小题)19.已知Z1=43°7',则Z1的余角是_____________ ,补角是20.若一个角的余角是30°则这个角的补角为_________________21•两个角互余或互补,与它们的位置 ________________ (填有”或无”)关.22. 一个角的补角是它的余角的4倍,则这个角等于_______________ 度.23•若/o和/匝为余角,并且/a匕/大20° /和/互为补角,贝y Z = _______________________ , Z= _____________ ,那么,/ 丫 / = ______________ .24.如图,已知ZCOE= ZBOD= zAOC=90 °则图中与ZBOC相等的角为_________________ ,与ZBOC互补的角为—___________ ,与ZBOC互余的角为______________ .O,左OC=6O ° OA平分zEOC,那么ZBOD的度数是26. (2006?宁波)如图,直线azb, Z=50° 则/2= _ _ 度.27.如图,点 A ,B ,C 在一条直线上,已知 21=53° Z2=37°贝U CD 与CE 的位置关系是 ____________________28 .老师在黑板上随便画了两条直线 AB , CD 相交于点0,还作/BOC 的平分线0E 和CD 的垂线OF (如图),量得zDOE 被一直线分成2: 3两部分,小颖同学马上就知道 2AOF 等于 __ .30. 如图,已知 BA zBD , CB 2CD , AD=8 , BC=6,则线段 BD长的取值范围是29 .如图,2ADB=90 ° 贝^ AD ____________ B D ;用 匕”连接AB , AC , AD ,结果是三、解答题(共9小题)31. 已知一个角的补角加上 10。
北师大七年级下数学第二章相交线与平行线单元测试(含答案)
第二章订交线与平行线一、选择题1.以下作图语句正确的选项是()A. 延伸线段AB 到 C,使 AB=BCB. 延伸射线ABC. 过点 A 作 AB∥ CD∥EF D作.∠ AOB 的均分线 OC2.以下四幅图中,∠ 1 和∠ 2 是同位角的是()A. ⑴⑵B. ⑶⑷C. ⑴⑵⑶D. ⑵、⑶⑷3.假如一个角的补角是150 °,那么这个角的余角的度数是()A.30 °B.60 °C.90 °D.120 °4.如图,以下说法错误的选项是()A. ∠A 与∠ EDC是同位角B∠. A 与∠ ABF 是内错角C. ∠ A 与∠ ADC是同旁内角D∠. A 与∠ C 是同旁内角5. 两条平行线被第三条直线所截,一对同旁内角的比为2: 7,则这两个角中较大的角的度数为()A.40 °B.70 °C. 100 °D. 140 °6. 以下说法正确的有 ( ) ① 对顶角相等;② 相等的角是对顶角;③ 若两个角不相等,则这两个角必定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A. 1 个B. 个2C.个3D. 个47.如图, AB∥CD,则图中∠ 1、∠ 2、∠ 3关系必定建立的是()A. ∠1+∠ 2+∠ 3= 180 °B. ∠1+∠ 2+∠ 3= 360 °8.以下说法:①在同一平面内,不订交的两条线段叫做平行线;知直线;③ 两条平行直线被第三条直线所截,同位角相等;有()个.C.∠ 1+∠ 3=2∠ 2D.∠ 1+∠ 3=∠ 2② 过一点,有且只有一条直线平行于已④ 同旁内角相等,两直线平行.正确的个数9.如图,直线a, b 订交于点O, OE⊥ a 于点 O, OF⊥ b 于点 O,若∠ 1=40 °,则以下结论正确的选项是()A. ∠2=∠ 3=50 °B.∠ 2=∠ 3=40 °C.∠ 2=40 °,∠ 3=50 °D.∠2=50 °, 3=40 °10.如图,给出了过直线外一点作已知直线的平行线的方法,其依照是()A. 同位角相等,两直线平行B内.错角相等,两直线平行C. 同旁内角互补,两直线平行D. 两直线平行,同位角相等11.如图,已知∠1=∠ 2=∠ 3=∠ 4,则图形中全部平行的是()A. AB∥ CD∥ EFB. CD∥ EFC. AB∥EFD. AB∥ CD∥ EF, BC∥DE12.如图, AB∥ CD,∠ 1=58 °, FG 均分∠ EFD,则∠ FGB的度数等于()A. 122 °B. 151C. 116 °D. 97 °°二、填空题, b, c 是直线,且 a∥b ,b∥ c,则 ________ .14. 两个角的两边分别平行,此中一个角比另一个角的 4 倍少 30°,这两个角是 ________.15. 一个正方体中有一条棱是a,与 a 平行棱长有 ________ 条,与 a 垂直并订交的棱长有________ 条.16. 如图,∠ 1=75 °,∠ 2=120 °,∠ 3=75 °,则∠ 4=________17.如图,直线l1∥ l2,而且被直线l 3,l4所截,则∠ α=________18.图中的内错角是________ .19.假如一个角的余角是30°,那么这个角是________ .20.已知∠α的补角是它的 3 倍,则∠α=________.21.已知∠ A 与∠ B 互余,若∠ A=20° 15,′则∠ B 的度数为 ________ .22.如下图,已知AB∥ DC, AE 均分∠ BAD, CD 与 AE 订交于点F,∠ CFE=∠ E.试说明AD∥BC.达成推理过程:∵ AB∥ DC(已知)∴∠ 1=∠ CFE( ________)∵AE 均分∠ BAD(已知)∴∠ 1=∠ 2 (角均分线的定义)∵∠ CFE=∠ E(已知)∴∠ 2=________(等量代换)∴ AD∥ BC ( ________)三、解答题23.如下图, L1,L2,L3交于点O,∠ 1=∠ 2,∠ 3:∠ 1=8:1,求∠ 4的度数.24.一个角的补角加上24°,恰巧等于这个角的 5 倍,求这个角的度数.25.如图,已知射线AB 与直线 CD交于点 O, OF 均分∠ BOC, OG⊥ OF 于 O, AE∥ OF,且∠ A=30°.(1)求∠ DOF的度数;(2)试说明 OD 均分∠ AOG.26.如图 1, CE均分∠ ACD, AE 均分∠ BAC,∠ EAC+∠ ACE=90°( 1)请判断AB 与 CD 的地点关系并说明原因;( 2)如图 2,在( 1)的结论下,当∠E=90°保持不变,挪动直角极点点挪动时,问∠BAE与∠ MCD 能否存在确立的数目关系?E,使∠MCE=∠ ECD,当直角极点 E( 3)如图运动时(点3,在( 1)的结论下, P 为线段 AC 上必定点,点C 除外)∠ CPQ+∠CQP与∠ BAC 有何数目关系?Q 为直线( 2、3CD上一动点,当点 Q 在射线小题只要选一题说明原因)CD 上参照答案一、选择题D A B D D B D A C A D B二、填空题13.a ∥ c14.42°, 138 °或 10°, 10°15.3; 416.60°17.64°18.∠ A 与∠ AEC;∠ B 与∠ BED19.60°20.45°21.69.75 °22.两直线平行,同位角相等;∠ E;内错角相等,两直线平行三、解答题23.解:设∠ 1=x,则∠ 2=x,∠ 3=8x,依题意有x+x+8x=180 ,°解得 x=18°,则∠ 4=18°+18°=36°.故∠ 4 的度数是36°.24.解:设这个角的度数为 x°,180﹣ x+24=5x,解得, x=34.∴这个角的度数是34°.25.解:( 1)∵ AE∥ OF,∴∠ FOB=∠ A=30°,∵ OF 均分∠ BOC,∴∠ COF=∠ FOB=30°,∴∠ DOF=180°﹣∠ COF=150°;(2)∵ OF⊥OG,∴∠ FOG=90°,∴∠ DOG=∠ DOF﹣∠ FOG=150°﹣90°=60°,∵∠ AOD=∠ COB=∠ COF+∠FOB=60°,∴∠ AOD=∠ DOG,∴ OD 均分∠ AOG.26. ( 1)解:∵ CE均分∠ ACD,AE 均分∠ BAC,∴∠ BAC=2∠ EAC,∠ ACD=2∠ ACE,∵∠ EAC+∠ ACE=90°,∴∠ BAC+∠ ACD=180°,∴AB∥ CD;( 2)∠ BAE+∠ MCD=90° ;过E作EF∥ AB,∵AB∥ CD,∴EF∥ AB∥CD,∴∠ BAE=∠ AEF,∠ FEC=∠DCE,∵∠ E=90°,∴∠ BAE+∠ ECD=90°,∵∠ MCE=∠ ECD,∴∠ BAE+∠ MCD=90° ;( 3)∵ AB∥CD,∴∠ BAC+∠ ACD=180°,∵∠ QPC+∠ PQC+∠ PCQ=180°,∴∠ BAC=∠ PQC+∠ QPC.。
北师大版七年级数学下册第二章《相交线与平行线》单元同步练习题(含答案)
北师大版七年级数学下册第二章《相交线与平行线》同步练习题(含答案)一、选择题1、如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为( ) A .108°B .114°C .118°D .122°2、如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为( ) A .90°-αB .90°+αC .90°-α2D .90°+α23、如图,在长方形纸片ABCD 中,在AD 边上取一点E ,沿BE 折叠,使点C ,D 分别落在点C 1,D 1处,且点A 刚好落在C 1D 1上.若∠ABC 1=45°,则∠BED =( ) A .112.5°B .135°C .125°D .100.5°4、如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若CD ∥BE ,∠1=40°,则∠2的度数是( ) A .90°B .100°C .105°D .110°5、如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为( ) A .70°B .65°C .35°D .5°6、如图,直线AB ∥CD ,AE ⊥CE 于点E.若∠EAB =120°,则∠ECD 的度数是( ) A .120°B .100°C .150°D .160°二、填空题7、如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处.若∠AEH =30°,则∠EFC等于______.8、如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG=______.度,再沿BF折叠成图c.则图中的∠CFE=______度.9、已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=______度.10、如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=______.11、如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=______.12、如图是我们生活中经常接触的小刀,刀片的外壳是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=______.三、解答题13、如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°.点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,当旋转了多少秒时,边CD恰好与边AB平行?14、问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为______度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P 在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系.15、已知AM∥CN,点B为平面内一点,AB⊥BC于点B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.参考答案一、选择题1、如图,将一张长方形纸条折叠,如果∠2比∠1大6°,则∠2的度数为(D) A .108°B .114°C .118°D .122°2、如图,将一块长方形纸条折成如图的形状,若已知∠1=α,则∠2的度数为(C) A .90°-αB .90°+αC .90°-α2D .90°+α23、如图,在长方形纸片ABCD 中,在AD 边上取一点E ,沿BE 折叠,使点C ,D 分别落在点C 1,D 1处,且点A 刚好落在C 1D 1上.若∠ABC 1=45°,则∠BED =(A) A .112.5°B .135°C .125°D .100.5°4、如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若CD ∥BE ,∠1=40°,则∠2的度数是(B) A .90°B .100°C .105°D .110°5、如图,已知AB ∥DE ,∠1=30°,∠2=35°,则∠BCE 的度数为(B) A .70°B .65°C .35°D .5°6、如图,直线AB ∥CD ,AE ⊥CE 于点E.若∠EAB =120°,则∠ECD 的度数是(C) A .120°B .100°C .150°D .160°二、填空题7、如图,将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处.若∠AEH =30°,则∠EFC等于105°.8、如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG=150度,再沿BF折叠成图c.则图中的∠CFE=135度.9、已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=30度.10、如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.11、如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=125°.12、如图是我们生活中经常接触的小刀,刀片的外壳是一个直角梯形,刀片上、下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=90°.三、解答题13、如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°.点D 在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,当旋转了多少秒时,边CD恰好与边AB平行?解:分两种情况:当两三角形在点O的同侧时,如图1,设CD与OB相交于点E.∵AB∥CD,∴∠CEO=∠B=40°.∵∠C=60°,∴∠OOE=180°-60°-40°-80°.∴∠DOE=∠COD-∠COE=10°.∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°.∵每秒旋转10°,∴旋转的时间为100÷10=10(秒).当两三角形在点O的异侧时,如图2,延长BO与CD相交于点E.∵AB∥CD,∴∠CEO=∠B=40°.∵∠C=60°,∴∠COE=180°-60°-40°=80°.∴旋转角为360°-∠COE=360°-80°=280°.∵每秒旋转10°,∴旋转的时间为280÷10=28(秒).综上所述,当旋转了10秒或28秒时,边CD恰好与边AB平行.14、问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为110度;(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P 在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合),请直接写出∠APC与α,β之间的数量关系.图1 图2解:∠APC=α+β.理由:过点P作PE∥AB交AC于点E,∵AB∥CD,∴AB∥PE∥CD.∴α=∠APE,β=∠CPE.∴∠APC=∠APE+∠CPE=α+β.(3)如图3,当P在BD延长线上时,∠CPA=α-β;如图4,当P在DB延长线上时,∠CPA=β-α.图3 图415、已知AM∥CN,点B为平面内一点,AB⊥BC于点B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.解:(1)∠A+∠C=90°(2)过点B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°.又∵AB⊥BC,∴∠CBG+∠ABG=90°.∴∠ABD=∠CBG.∵AM∥CN,BG∥AM,∴CN∥BG.∴∠C=∠CBG.∴∠ABD=∠C.∴∠C+∠BAD=90°.(3)过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG.∴∠ABF=∠GBF.设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC =5∠DBE=5α,∴∠AFC=5α+β.∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β.在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°.①由AB⊥BC,可得β+β+2α=90°.②由①②联立方程组,解得α=9°.∴∠ABE=9°.∴∠EBC=∠ABE+∠ABC=9°+90°=99°.。
北师大版七年级下册数学第二章 相交线与平行线含答案【通用】
北师大版七年级下册数学第二章相交线与平行线含答案一、单选题(共15题,共计45分)1、已知两个角的两边分别平行,并且这两个角的差是90°,则这两个角分别等于()A.60°,150°B.20°,110°C.30°,120°D.45°,135°2、如图,AB//CD,∠1+∠2=110°,则∠GEF+∠GFE的度数为()A.110°B.70°C.80°D.90°3、下列命题是真命题的是()A.邻补角相等B.对顶角相等C.内错角相等D.同位角相等4、下列命题中,是假命题的是().A.在同一平面内,过一点有且只有一条直线与已知直线垂直.B.同旁内角互补,两直线平行.C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.D.两条直线被第三条直线所截,同位角相等.5、如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD的度数等于()A.20°B.25°C.35°D.50°6、如图,给出如下推理:①∠1=∠3.∴AD∥BC;②∠A+∠1+∠2=180°,∴AB∥CD;③∠A+∠3+∠4=180°,∴AB∥CD;④∠2=∠4,∴AD∥BC其中正确的推理有()A.①②B.③④C.①③D.②④7、如图,BC⊥AE于点C,CD∥AB,∠B=60°,则∠1等于()A.30°B.40°C.50°D.60°8、如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°9、如图,梯形ABCD中,AD∥BC,AB=,BC=4,连结BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为()A. B. C. D.1210、如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是( )A.40°B.60°C.80°D.120°11、如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°12、下列条件不能够证明a∥b的是()A.∠2+∠3=180°B.∠1=∠4C.∠2+∠4=180°D.∠2=∠313、下列命题中,为真命题的是()A. 是13的算术平方根B.三角形的一个外角大于任何一个内角C. 是最简二次根式D.两条直线被第三条直线所截,内错角相等14、将一副三角板和一张对边平行的纸条按图所示方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则的度数是()度A.5B.10C.15D.2015、如图是一张足够长的长方形纸条ABCD,沿点A所在直线折叠纸条,使点B 落在边AD上,折痕与边BC交于点E;然后将其展平,再沿点E所在直线折叠纸条,使点A落在边BC上,折痕EF交边AD于点F,则∠AFE的大小是( )A.22.5°B.45°C.60°D.67.5°二、填空题(共10题,共计30分)16、某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是________.17、如图所示,已知∠A=∠F,∠C=∠D,把下面的空填写完整.解:因为∠A=∠F(已知)所以DF∥AC(________)所以∠D=∠ABD(________)又因为∠D=∠C(已知)所以∠C=∠ABD(________)所以________∥________(________)18、如图,直线AB、CD相交于点O,∠COE是直角,OF平分∠AOD,若∠BOE=42°,则∠AOF的度数是________.19、小明在玩“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题,如图,若AB∥CD,∠BAE=92°,∠DCE=121°,则∠AEC=________°。
北师大版七年级数学下册第二章相交线和平行线专题练习(含答案)
第二章相交线与平行线专题练习一、选择题1.下列说法中正确的个数有( )①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内,两条直线的位置关系只有两种:平行或相交.A.1个B.2个C.3 个D.4个2.如图,AB∥CD,AD=CD,∠1=50°,则∠2的度数是( )A .55° B.60° C.65° D.70°3.如图,直线a∥b,将一块含30°角(∠ BAC=30°)的直角三角=20°,则∠ 2的度数为( )A .20° B.30° C.40 D.50尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1A .20° B.30° C.40 D.504.如图,直线AB,CD 相交于点O,OD 平分∠ BOF,OE⊥CD于点O.若∠ EOF=α,下列说法:①∠ AOC=α-90° ②∠ EOB =180°-α ③∠ AOF=360°-2α,其中正确的是( )5.如图,AB∥CD,∠ B=75°,∠ E=27°,则∠ D 的度数为()A .45° B.48° C.50° D.586.如图,点 E 是BA延长线上一点,在下列条件中:①∠1=∠3 ②∠2=∠ 4 ③∠5=∠ D ④∠ BAD =∠ BCD ⑤∠B+∠ BCD=180°,能判定 AB ∥DC 的有 ( )二、填空题8.如图,∠ AOB 的一边 OA 为平面镜,∠ AOB =37°,在 OB 上 有一点 E ,从点 E 射出一束光线经 OA 上一点 D 反射,此时∠ ODE =∠ ADC ,且反射光线 DC 恰好与 OB 平行,则∠ DEB 的度数是A .1个B .2个C .3 个D .4个7.如图,小明从 A 处出发,沿北偏东 40°方向行走至 B 处,又从 点 B 处沿东偏南 20°方向行走至 C 处,则∠ ABC 等于 (A . 130D .100C .110 B .180°,能判定 AB ∥DC 的有 ( )9.如图,将一条直的等宽纸带按如图的方式折叠时,则图中∠α10.如图是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN 分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺的另一边过点 B 画直线,若所画直线与BA重合,则这块木板的对边MN 与PQ是平行的,其理论依据是__ .11.如图,点 E 在AD 的延长线上,有下列四个条件:①∠ 1=∠ 2;②∠ 3=∠ 4;③∠ A=∠ CDE;④∠ C+∠ ABC=180°.其中能判定AB∥CD 的是___________ .(填写正确的序号即可)三、解答题12.如图,直线AB,CD 相交于点O,OA 平分∠ EOC,FO⊥AB.若∠ DOE=3∠EOA,求∠ DOF 的度数.13.如图,已知∠ DAB=65°,∠1=∠ C.(1) 在图中画出∠DAB 的对顶角;(2) 写出∠ 1 的同位角;(3) 写出∠C 的同旁内角;(4) 求∠B 的度数.14.如图,直线AB,CD 相交于点O,OE 平分∠BOD.(1) 若∠EOF=55°,OD⊥OF,求∠AOC 的度数;(2) 若OF 平分∠COE,∠BOF=15°,求∠DOE 的度数.15.如图:已知∠ 1+∠ 2= 180°,∠ 3=∠ B ,问 AB 与 DE 是否平行?并说明理由16.如图①, AB ∥ CD ,点 P 在 AB 与 CD 之间,可得结论:+ ∠APC + ∠PCD = 360 .°理由如下:过点 P 作 PQ ∥AB.∴∠ BAP +∠ APQ = 180°.∵ AB ∥CD ,∴PQ ∥CD.∴∠ PCD +∠ CPQ = 180°.【阅读材料】在“相交线与平 有这样∠BAP 行线”的学习中,∴∠ BAP+∠ APC+∠ PCD=∠ BAP+∠ APQ+∠ CPQ+∠ PCD=180°+180°=360°.【问题解决】(1) ________________________________________ 如图②,AB∥ CD,点P 在AB 与CD 之间,可得∠ BAP,∠ APC,∠ PCD 间的等量关系是___________________________ 只( 写结论);(2) 如图③,AB∥CD,点P,E 在AB 与CD 之间,AE 平分∠ BAP,CE 平分∠ DCP.写出∠ AEC 与∠ APC间的等量关系,并写出理由;结论:∠ APC=2∠AEC.理由:图③中,设∠ EAB=∠ EAP=x,∠ ECD=∠ ECP=y.由(1)可知:∠ AEC=x+y,∠APC=2x+2y,∴∠ APC=2∠AEC.1(3) 如图④,AB∥CD,点P,E在AB与CD之间,∠ BAE=3∠1BAP,∠ DCE=3∠DCP,可得∠ AEC 与∠ APC 间的等量关系是____________________ 只(写结论).参考答案、选择题1.A提①正确,②③④⑤⑥错误.示:2.C3.C4.D5.B6.C7.C、填空题8.74°9.75°10.内错角相等,两直线平行三、解答题12.解设∠AOE=∵OA 平分∠EOC,∴∠AOC=∠AOE=x°.∵∠DOE=3∠EOA,∴∠DOE=3x°. ∵∠BOD=∠AOC=x°,∴由∠AOE+∠ DOE+∠ BOD=180 °,得x+3x+x=180,解得x=36,∴∠BOD=36 °.∵FO⊥AB,∴∠BOF=90 °,∴∠DOF=∠BOF-∠BOD=54 °.13.11.①③④解:(1)如答图,∠GAH 即为所求.(2)∠1的同位角是∠DAB.(3) ∠C的同旁内角是∠B 和∠ADC.(4) ∵∠1=∠C,∴AE∥BC,∴∠DAB+∠ B=180 .°又∵∠ DAB=65 °,∴∠B=115 .°14.解:(1)∵OE 平分∠ BOD,∴∠BOE=∠DOE.∵∠EOF=55 °,OD⊥OF,∴∠DOE=35 °,∴∠BOD=70 °,∴∠AOC=70 °.(2)∵OF 平分∠COE,∴∠COF=∠EOF. 设∠DOE=∠BOE=x.∵∠BOF=15 °,∴∠COF=∠EOF=x+15°. ∵∠COD=∠COF+∠EOF+∠DOE=180 °,∴x+15°+x+15°+x=180 ,°解得x=50°,故∠DOE 的度数为50°.15.解:AB∥ DE.理由:∵∠ 1+∠ADC=180 (°平角的定义),且∠1+∠2=180 (°已知),∴∠ADC=∠ 2(等量代换),∴EF∥DC(同位角相等,两直线平行).∴∠3=∠EDC(两直线平行,内错角相等),又∵∠3=∠B (已知),∴∠EDC=∠ B(等量代换),∴AB∥DE(同位角相等,两直线平行).16.(1)∠ APC=∠ A+∠ C(2)结论:∠ APC=2∠AEC.理由:图③中,设∠ EAB=∠ EAP=x,∠ ECD=∠ ECP=y.由(1)可知:∠ AEC=x+y,∠APC=2x+2y,∴∠ APC=2∠AEC.(3) ∠APC+3∠AEC=360。
北师大版七年级下册数学第二章 相交线与平行线含答案(汇总)
北师大版七年级下册数学第二章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,AB=AC,AF∥BC,∠FAC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°2、如图,在下列条件中,不能判定AB∥DF的是()A. B. C. D.3、如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=115°,则∠4的度数为( )A.55°B.60°C.65°D.75°4、如图,AB是⊙O的直径,点C,D在⊙O上,且点C,D在AB的异侧,连接AD,BD,OD,OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°5、如图,直线,点A在直线上,以点A为圆心,适当长度为半径画弧,分别交直线、于B、C两点,连结AC、BC.若,则的大小为()A. B. C. D.6、如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°7、如果a∥b,b∥c,d⊥a,那么()A.b⊥dB.a⊥cC.b∥dD.c∥d8、如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线 FG交AB于点H,则结论正确的是()A.∠AFG=70°B.∠AFG>∠AGFC.∠FHB=100°D.∠CFH =2∠EFG9、如图,a∥b,∠1是∠2的3倍,则∠2等于()A.45°B.90°C.135°D.150°10、如图,直线c与直线a相交于点A,与直线b相交于点B,,,若要使直线,则将直线a绕点A按如图所示的方向至少旋转()A. B. C. D.11、如图,由已知条件推出结论正确的是()A.由,可以推出B.由,可以推出C.由,可以推出D.由,可以推出12、将一块三角板如图放置,∠ACB=90°,∠ABC=60°,点B,C分别在PQ,MN上,若PQ∥MN,∠ACM=42°,则∠ABP的度数为()A.45°B.42°C.21°D.12°13、已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥cB.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥cD.如果b⊥a,c⊥a,那么b∥c14、如图,下列条件中不能判定AB∥CD的是()A.∠3=∠5B.∠1=∠5C.∠1+∠4=180°D.∠3=∠415、如图,若∠1+∠2=180°,则( )A.c∥dB.a∥bC.c∥d且a∥bD.∠3=∠2二、填空题(共10题,共计30分)16、如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:解:∵AD∥BC(已知),∴∠1=∠3(________).∵∠1=∠2(已知),∴∠2=∠3.∴BE∥________(________).∴∠3+∠4=180°(________).17、如图,在中,CD平分∠ACB,DE∥BC,DE交AC于E,若DE=7,AE=5,则AC=________。
北师大版七年级下册数学第二章相交线与平行线 测试题及答案
16.一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=_____度.
17.如图,AB∥CD,∠E=60°,则∠B+∠F+∠C=_____°.
18.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.
23.如图,已知AB∥CD∥EF,GC⊥CF,∠ABC=65º,∠EFC=40º,求∠BCG的度数.
24.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC =70°.
(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);
【详解】
(1)因为AC′∥BD′,所以∠C′EF=∠EFB,
因为∠EFB=32°,所以∠C′EF=32°,则(1)正确;
(2)根据折叠的性质,∠CEC′=2∠C′EF=2×32°=64°,
所以∠AEC=180°-∠CEC′=180°-64°=116°,则(2)错误;
(3)因为AC′∥BD′,所以∠C′EC=∠BGE,
评卷人
得分
三、解答题
19.已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.
20.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.试说明:AB∥CD.
21.如图, , , ,试说明 .
22.如图,已知CD⊥AB,GF⊥AB,∠B=∠ADE.试说明∠1=∠2.
B、由内错角相等,两直线平行可知,如果∠1=∠3,那么AD∥BC,原来的说法是错误的,符合题意;
北师大版七年级数学下册第2章相交线与平行线练习题
北师大版七年级数学下册第2章+相交线与平行线练习题第二章相交线与平行线练习题(带解析)考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一二三四五总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)1、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=500,则∠2等于【】A.600B.500C.400D.3002、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE与∠DCF的位置与大小关系是()A.是同位角且相等B.不是同位角但相等; C.是同位角但不等D.不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补4、下列说法中,为平行线特征的是()①两条直线平行,同旁内角互补; ②同位角相等,两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A.①B.②③C.④D.②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF =150°,则∠BCE=()A.60°B.50°C.30°D.20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为()A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°8、如图,由AC∥ED,可知相等的角有()A.6对B.5对C.4对D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )更多功能介绍/zt/A.互余B.对顶角C.互补 D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( )A .50°、40°B .60°、30°C .50°、130°D .60°、120°11、下列语句正确的是( )A .一个角小于它的补角B .相等的角是对顶角C .同位角互补,两直线平行D .同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是()A .2个B .3个C .4个D .5个13、如图,直线AB 和CD 相交于点O ,∠AOD 和∠BOC 的和为202°,那么∠AOC 的度数为()A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b 的条件的序号是( )A.①②B.①③C.①④D.③④分卷II分卷II 注释评卷得分二、填空题(注释)人16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC=___°,∠CDB=____°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章相交线与平行线练习题(带解析)考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________ 题号一二三四五总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)1、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=500,则∠2等于【】A.600B.500C.400D.3002、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE与∠DCF的位置与大小关系是()A.是同位角且相等B.不是同位角但相等;C.是同位角但不等D.不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补4、下列说法中,为平行线特征的是()①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A.①B.②③C.④D.②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=()A.60°B.50°C.30°D.20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为()A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°8、如图,由AC∥ED,可知相等的角有()A.6对B.5对C.4对D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )更多功能介绍/zt/A.互余B.对顶角C.互补D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( ) A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( ) A.①②B.①③C.①④D.③④分卷II分卷II 注释评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC =___°,∠CDB=____°。
17、如图,BA∥DE,∠B=150°,∠D=130°,则∠C的度数是__________。
18、如图,AD∥BC,∠A是∠ABC的2倍,(1)∠A=____度;(2)若BD平分∠ABC,则∠ADB=____。
19、如图,DH∥EG∥BC,DC∥EF,图中与∠1相等的角有________________________。
20、如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=_________。
21、如图,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有___个,它们分别是____。
22、如图,AB∥CD,AF分别交AB、CD于A、C,CE平分∠DCF,∠1=100 °,则∠2=_____.毛23、如图,∠1与∠4是_____角,∠1与∠3是_____角,∠3与∠5是_____角,∠3与∠4是_____角.24、如图,∠1的同旁内角是_____,∠2的内错角是_____.25、如图,已知∠2=∠3,那么_____∥_____,若∠1=∠4,则_____∥_____.26、如图,若∠1=∠2,则_____∥_____.若∠3+∠4=180°,则_____∥_____.27、如图,已知直线AB、CD交于点O,OE为射线,若∠1+∠2=90°,∠1=65°,则∠3=_____.28、看图填空:∵直线AB、CD相交于点O,∴∠1与_____是对顶角,∠2与_____是对顶角,∴∠1=_____,∠2=_____.理由是:29、如图,直线a,b相交,∠1=55°,则∠2=_____,∠3=_____,∠4=_____.30、若∠A与∠B互余,则∠A+∠B=_____;若∠A与∠B互补,则∠A+∠B=_____.31、如图,三条直线交于同一点,则∠1+∠2+∠3=_____.32、如果∠α与∠β是对顶角,∠α=30°,则∠β=_____.评卷人得分三、计算题(注释)评卷人得分四、解答题(注释)33、如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的关系。
34、如图,AB∥CD,∠1=∠2,∠BDF与∠EFC相等吗?为什么?35、如图,∠1=∠2,∠C=∠D,那么∠A=∠F,为什么?36、如图,DE∥CB,试证明∠AED=∠A+∠B。
37、如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME 的度数.38、已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数。
39、如图,∠ABD= 90°,∠BDC=90°,∠1+∠2=180°,CD与EF平行吗?为什么?40、如图,EF交AD于O,AB交AD于A,CD交AD于D,∠1=∠2,∠3=∠4,试判AB 和CD的位置关系,并说明为什么.41、已知直线a、b、c两两相交,∠1=2∠3,∠2=40°,求∠4.试卷答案1.【解析】∵c⊥a,c⊥b,∴a∥b。
∵∠1=500,∴∠2=∠1=500。
故选B。
2.【解析】试题分析:由AB⊥BC,BC⊥CD,∠EBC=∠BCF,即可判断∠ABE与∠DCF的大小关系,根据同位角的特征即可判断∠ABE与∠DCF的位置关系,从而得到结论.∵AB⊥BC,BC⊥CD,∠EBC=∠BCF,∴∠ABE=∠DCF,∴∠ABE与∠DCF的位置与大小关系是不是同位角但相等,故选B.考点:本题考查的是同位角点评:准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.3.【解析】试题分析:根据平行线的性质即可得到结果.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角相等或互补,故选C.考点:本题考查的是平行线的性质点评:解答本题的关键是熟记如果两个角的一边在同一直线上,另一边互相平行,那么这两个角相等或互补.4.【解析】试题分析:根据平行线的性质依次分析各小题即可.为平行线特征的是①两条直线平行,同旁内角互补,②同位角相等,两条直线平行;③内错角相等,两条直线平行;④垂直于同一条直线的两条直线平行,均为平行线的判定,故选A.考点:本题考查的是平行线的性质点评:解答本题的关键是熟练掌握平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两条直线平行,同旁内角互补.5.【解析】试题分析:根据两直线平行,内错角相等求出∠BCD等于55°;两直线平行,同旁内角互补求出∠ECD等于30°,∠BCE的度数即可求出.∵AB∥CD,∠ABC=50°,∴∠BCD=∠ABC=50°,∵EF∥CD,∴∠ECD+∠CEF=180°,∵∠CEF=150°,∴∠ECD=180°-∠CEF=180°-150°=30°,∴∠BCE=∠BCD-∠ECD=50°-30°=20°.考点:此题考查了平行线的性质点评:解题的关键是注意掌握两直线平行,同旁内角互补,两直线平行,内错角相等.6.【解析】试题分析:首先过点E作EF∥AB,由AB∥CD,即可得EF∥AB∥CD,根据两直线平行,同旁内角互补与两直线平行,内错角相等,即可求得∠α+∠1=180°,∠2=∠γ,继而求得α+β-γ=180°.过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠α+∠1=180°,∠2=∠γ,∵∠β=∠1+∠2=180°-∠α+∠γ,∴α+β-γ=180°.故选C.考点:此题考查了平行线的性质点评:解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意辅助线的作法.7.【解析】试题分析:根据方位角的概念和三角形的内角和即可得到结果.根据方位角的概念,由A测B的方向是南偏东90°-30°=60°,故选B.考点:本题考查的是方位角,三角形的内角和点评:解答本题的关键是要求同学们熟练掌握方位角的概念,再结合三角形的角的关系求解.8.【解析】试题分析:根据平行线的性质,对顶角相等即可判断.根据平行线的性质,对顶角相等可知相等的角有5对,故选B.考点:本题考查的是平行线的性质,对顶角相等点评:解答本题的关键是熟练掌握两直线平行,同位角相等;两直线平行,内错角相等. 9.【解析】试题分析:根据EO⊥AB结合平角的定义即可得到结果.∵EO⊥AB,∴∠1+∠2=90°,故选A.考点:本题考查的是平角的定义,互余的定义点评:解答本题的关键是熟记和为90°的两个角互余,平角等于180°.10.【解析】试题分析:先根据互补的定义求得∠1,再根据互余的定义求得∠2.∵∠1与∠3互补,∠3=120°,∴∠1=180°-∠3=60°,∵∠1和∠2互余,∴∠2=90°-∠1=30°,故选B.若∠A与∠B互余,则∠A+∠B=90°;若∠A与∠B互补,则∠A+∠B=180°.考点:本题考查的是互余,互补点评:解答本题的关键是熟记和为90°的两个角互余,和为180°的两个角互补.11.【解析】试题分析:根据补角的性质,对顶角的性质,平行线的判定定理依次分析各项即可.A、直角的补角是直角,故本选项错误;B、直角都相等,但不一定是对顶角,故本选项错误;C、同位角相等,两直线平行,故本选项错误;D、同旁内角互补,两直线平行,本选项正确;故选D.考点:本题考查的是补角,对顶角,平行线的判定点评:解答本题的关键是熟记同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.12.【解析】试题分析:根据同内错角的概念即可判断.与∠1是内错角的角的个数是3个,故选B.考点:本题考查的是内错角的概念点评:准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.13.【解析】试题分析:根据对顶角相等及∠AOD和∠BOC的和为202°,即可求得结果.由图可知∠AOD=∠BOC,而∠AOD+∠BOC=202°,∴∠AOD=101°,∴∠AOC=180°-∠AOD=79°,故选C.考点:本题考查的是对顶角,邻补角点评:解答本题的关键是熟练掌握对顶角相等,邻补角之和等于180°.14.【解析】试题分析:根据对顶角的定义依次分析各个图形即可求得结果.是对顶角的图形只有③,故选A.考点:本题考查的是对顶角点评:解答本题的关键是熟练掌握对顶角的定义:两条直线相交形成的没有公共边的一对角叫对顶角.15.【解析】试题分析:根据平行线的判定定理即可得到结果.能判定a∥b的条件是①∠1=∠5,②∠1=∠7,故选A.考点:本题考查的是平行线的判定点评:解答本题的关键是熟记同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.16.【解析】试题分析:由∠ACD=∠BCD,∠ACB=60°,根据DE∥BC,即可求得∠EDC的度数,再根据三角形的内角和定理即可求得∠BDC的度数.∵∠ACD=∠BCD,∠ACB=60°,∴∠ACD=∠BCD=30°,∵DE∥BC,∴∠EDC=∠BCD=30°,∴∠CDB=180°-∠BCD-∠B=76°.考点:此题考查了平行线的性质点评:解答本题的关键是熟练掌握两直线平行,内错角相等,三角形的内角和为180°.17.【解析】试题分析:过C作CF∥AB,把∠C分成两个角,根据平行线的性质即可求出两个角,相加就可以得到所求值.如图:过C作CF∥AB,则AB∥DE∥CF,∠1=180°-∠B=180°-150°=30°,∠2=180°-∠D=180°-130°=50°∴∠BCD=∠1+∠2=30°+50°=80°.考点:本题考查的是平行线的性质点评:通过作辅助线,找出∠B、∠D与∠C的关系是解答本题的关键.18.【解析】试题分析:根据平行线的性质,角平分线的性质即可得到结果.∵AD∥BC,∴∠A+∠ABC=180°;∵∠A:∠ABC=2:1,∴∠A=120°,∠ABC=60°;∵BD平分∠ABC,∴∠DBC=30°,∵AD∥BC,∴∠ADB=30°.考点:本题考查的是平行线的性质,角平分线的性质点评:解答本题的关键是熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补.19.【解析】试题分析:根据两直线平行,同位角相等,内错角相等,找出∠1的同位角与内错角以及与∠1相等的角的同位角与内错角,从而得解.根据平行线的性质,与∠1相等的角有∠FEK,∠DCF,∠CKG,∠EKD,∠KDH.考点:本题考查的是平行线的性质点评:解答本题的关键是熟练掌握两直线平行,同位角相等;两直线平行,内错角相等;在图中标注上角更形象直观.20.【解析】试题分析:两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.∵AB∥CD,∴∠BEF=180°-∠1=180°-72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=54°,∴∠2=∠BEG=54°.考点:本题考查的是平行线的性质,角平分线的性质点评:解答本题的关键是熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补.21.【解析】试题分析:由AB⊥EF,CD⊥EF,∠1=∠F=45°,根据三角形的内角和为180°,平角的定义即可得到结果.∵AB⊥EF,CD⊥EF,∠1=∠F=45°,∴∠A=∠ABG=∠FCD=45°,∴与∠FCD相等的角有4个,它们分别是∠F,∠1,∠FAB,∠ABG.考点:本题考查的是三角形的内角和点评:解答本题的关键是熟练掌握三角形的内角和为180°,平角等于180°.22.【解析】试题分析:先根据平行线的性质求得∠DCF的度数,再根据角平分线的性质即可求得结果. ∵AB∥CD,∴∠DCF=∠1=100 °,∵CE平分∠DCF,∴∠2=50°.考点:本题考查的是平行线的性质,角平分线的性质点评:解答本题的关键是熟练掌握两直线平行,同位角相等.23.【解析】试题分析:根据同位角、内错角、同旁内角的概念即可判断.∠1与∠4是同位角,∠1与∠3是对顶角,∠3与∠5是同旁内角,∠3与∠4是内错角.考点:本题考查的是同位角、内错角、同旁内角的概念点评:准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.24.【解析】试题分析:根据同旁内角、内错角的特征即可判断.∠1的同旁内角是∠B、∠C,∠2的内错角是∠C.考点:本题考查的是同位角、内错角、同旁内角的概念点评:准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.25.【解析】试题分析:根据平行线的判定定理即可得到结果.若∠2=∠3,则AB∥CD;若∠1=∠4,则AD∥BC.考点:本题考查的是平行线的判定点评:解答本题的关键是熟记内错角相等,两直线平行.26.【解析】试题分析:根据平行线的判定定理即可得到结果.若∠1=∠2,则DE∥BC;若∠3+∠4=180°,则DE∥BC.考点:本题考查的是平行线的判定点评:解答本题的关键是熟记同位角相等,两直线平行;同旁内角互补,两直线平行.27.【解析】试题分析:先求出∠2的度数,再根据对顶角相等即可得到结果.∵∠1+∠2=90°,∠1=65°,∴∠2=25°,∴∠3=∠2=25°.考点:本题考查的是对顶角点评:解答本题的关键是熟练掌握对顶角相等.28.【解析】试题分析:根据对顶角的定义及对顶角相等即可求得结果.∵直线AB、CD相交于点O,∴∠1与∠BOD是对顶角,∠2与∠AOD是对顶角,∴∠1=∠BOD,∠2=∠AOD,理由是:对顶角相等.考点:本题考查的是对顶角点评:解答本题的关键是熟练掌握对顶角的定义:两条直线相交形成的没有公共边的一对角叫对顶角,同时熟记对顶角相等.29.【解析】试题分析:根据对顶角相等及平角的定义即可得到结果.∵∠1=55°,∴∠2=125°,∠3=55°,∠4=125°.考点:本题考查的是对顶角,平角的定义点评:解答本题的关键是熟练掌握对顶角相等,平角等于180°.30.【解析】试题分析:根据互余,互补的定义即可得到结果.若∠A与∠B互余,则∠A+∠B=90°;若∠A与∠B互补,则∠A+∠B=180°.考点:本题考查的是互余,互补点评:解答本题的关键是熟记和为90°的两个角互余,和为180°的两个角互补.31.【解析】试题分析:根据对顶角相等及平角的定义即可得到结果.由图可知∠1+∠2+∠3=180°.考点:本题考查的是对顶角,平角的定义点评:解答本题的关键是熟练掌握对顶角相等,平角等于180°.32.【解析】试题分析:根据对顶角相等即可得到结果。