江苏省沭阳县2018-2019学年八年级上期期末考试数学试题(精品解析)

合集下载

2018-2019学年苏科版八年级数学上学期末测试卷含答案 doc

2018-2019学年苏科版八年级数学上学期末测试卷含答案 doc

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共24分,每题中只有一个正确选项)1.下列各组数中,能构成直角三角形的是()A.1,B.6,8,10C.4,5,9D.5,12,182.下列、0、0.565656…、、﹣0.010010001…(每两个1之间增加1个0)各数中,无理数的个数为()A.1B.2C.3D.43.下列奥运会会徽,是轴对称图形的是()A.B.C.D.4.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.5.由四舍五入得到的近似数8.01×104,精确到()A.10 000B.100C.0.01D.0.000 16.在平面直角坐标系中,点P(﹣2,﹣3)向右移动3个单位长度后的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(1,0)D.(﹣2,0)7.已知等腰三角形的两边长为4,5,则它的周长为()A.13B.14C.15D.13或148.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是()A.m>0B.m<0C.m>1D.m<1二、填空题(本大题共10小题,每小题4分,共40分)9.点(2,3)在哪个象限.10.4是的算术平方根.11.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.12.点P(﹣4,2)关于x轴对称的点Q的坐标.13.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是.14.当直线y=kx+b与直线y=2x﹣2平行,且经过点(3,2)时,则直线y=kx+b为.15.如图,已知AB=AC,用“ASA”定理证明△ABD≌△ACE,还需添加条件.16.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.17.如图,每个小正方形的边长都为1,则△ABC的三边长a、b、c的大小关系是.18.已知如图,在平面直角坐标系中,x轴上的动点P(x,0)到定点A(0,2)、B(3,1)的距离分别为PA和PB,求PA+PB的最小值为.三、解答题(本大题共9小题,共86分.解答时应写出文字说明、证明过程或演算步骤) 19.(8分)求下列各式中x的值.(1)x2=3(2)x3=﹣6420.(6分)在数轴上画出表示的点.21.(8分)已知如图:AB∥CD,AB=CD,BF=CE,点B、F、E、C在一条直线上,求证:(1)△ABE≌△DCF;(2)AE∥FD.22.(8分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.23.(8分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?24.(10分)(1)请在所给的平面直角坐标系中画出一次函数y1=x﹣1和y2=﹣2x+5画出函数的图象;(2)根据图象直接写出的解为;(3)利用图象求两条直线与x轴所围成图形的面积.25.(10分)甲汽车出租公司按每100千米150元收取租车费;乙汽车出租公司按每100千米50元收取租车费,另加管理费800元设甲家收取租车费y1元、乙家收取的租车费y2元.(1)分别求出y1元、y2元与所使用的里程x千米之间的函数关系式;(2)判断x在什么范围内,乙家收取的租车费y2元较甲家y元较少.26.(14分)已知一辆快车与一辆慢车沿着相同路线从甲地到乙地,同起点同方向,所行路程与所用的时间的函数图象如图所示:y表示离开出发点的距离.(单位:千米)(1)快车比慢车迟出发小时,早到小时;(2)求两车的速度;(3)求甲乙两地的距离;(4)求图中图中直线AB的解析式,并说出点C表示的实际意义.27.(14分)活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,找出图中的全等三角形,并说明理由;活动三:已知如图,点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.参考答案与试题解析一、选择题(每题3分,共24分,每题中只有一个正确选项)1.下列各组数中,能构成直角三角形的是()A.1,B.6,8,10C.4,5,9D.5,12,18【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、12+()2≠()2,故不是直角三角形;B、62+82=102,能构成直角三角形;C、42+52≠92,故不是直角三角形;D、52+122≠182,故不是直角三角形.故选:B.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.下列、0、0.565656…、、﹣0.010010001…(每两个1之间增加1个0)各数中,无理数的个数为()A.1B.2C.3D.4【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.【解答】解:、0、0.565656…、、﹣0.010010001…(每两个1之间增加1个0)各数中,无理数有:、﹣0.010010001…(每两个1之间增加1个0),共2个.故选:B.【点评】本题考查了无理数,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.下列奥运会会徽,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,即可判断出.【解答】解:∵A.此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;B:此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;C.此图形一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项正确;D:此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形的定义,根据定义得出图形形状是解决问题的关键.4.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.【分析】认真观察图形,可以看出选项中只有C中的两个可以平移后重合,其它三个大小或形状不一致.【解答】解:由全等形的概念可知:A、B中的两个图形大小不同,D中的形状不同,C 则完全相同,故选:C.【点评】本题考查的是全等形的识别,做题时要注意运用定义,注意观察题中图形,属于较容易的基础题.5.由四舍五入得到的近似数8.01×104,精确到()A.10 000B.100C.0.01D.0.000 1【分析】根据近似数的精确度求解.【解答】解:近似数8.01×104精确到百位.故选:B.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.在平面直角坐标系中,点P(﹣2,﹣3)向右移动3个单位长度后的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(1,0)D.(﹣2,0)【分析】让点P的横坐标加3,纵坐标不变即可.【解答】解:平移后点P的横坐标为﹣2+3=1,纵坐标不变为﹣3;所以点P(﹣2,﹣3)向右平移3个单位长度后的坐标为(1,﹣3).故选:B.【点评】本题考查了坐标与图形的变化﹣﹣平移,平移变换是中考的常考点,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.已知等腰三角形的两边长为4,5,则它的周长为()A.13B.14C.15D.13或14【分析】分情况考虑:当4是腰时或当5是腰时,然后分别求出两种情况下的周长.【解答】解:当4是腰时,能组成三角形,周长为4×2+5=13;当5是腰时,则三角形的周长是4+5×2=14.故选:D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.8.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是()A.m>0B.m<0C.m>1D.m<1【分析】根据一次函数的增减性可求解.【解答】解:∵一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),且x1>x2时,有y1<y2∴m﹣1<0∴m<1故选:D.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数增减性解决问题是本题的关键.二、填空题(本大题共10小题,每小题4分,共40分)9.点(2,3)在哪个象限第一象限.【分析】直接利用点的坐标特点进而得出答案.【解答】解:点(2,3)在第一象限.故答案为:第一象限.【点评】此题主要考查了点的坐标,正确记忆点的坐标特点是解题关键.10.4是16的算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.11.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为B10.【分析】明确对应关系,然后解答.【解答】解:小刚家位于某住宅楼A座16层,记为:A16,按这种方法,那么小红家住B座10层,可记为B10.故答案填:B10.【点评】本题较为简单,主要是参照小刚家命名的方式来解决.12.点P(﹣4,2)关于x轴对称的点Q的坐标(﹣4,﹣2).【分析】直接利用关于x轴对称点的性质得出答案.【解答】解:点P(﹣4,2)关于x轴对称的点Q的坐标为:(﹣4,﹣2).故答案为:(﹣4,﹣2).【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.13.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是(1,﹣2).【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:由用(﹣2,﹣1)表示白棋①的位置,用(﹣1,﹣3)表示白棋③的位置知,y轴为从左向数的第四条竖直直线,且向上为正方向,x轴是从下往上数第五条水平直线,这两条直线交点为坐标原点.那么黑棋②的位置为(1,﹣2).故答案填:(1,﹣2).【点评】解题的关键是确定坐标原点和x,y轴的位置及方向,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.14.当直线y=kx+b与直线y=2x﹣2平行,且经过点(3,2)时,则直线y=kx+b为y=2x ﹣4.【分析】先根据两直线平行即可得到k=2,然后把(3,2)代入y=2x+b中,求出b即可.【解答】解:∵直线y=kx+b与y=2x﹣2平行,∴k=2,把(3,2)代入y=2x+b,得6+b=2,解得b=﹣4,∴y=kx+b的表达式是y=2x﹣4.故答案为:y=2x﹣4.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.如图,已知AB=AC,用“ASA”定理证明△ABD≌△ACE,还需添加条件∠B=∠C..【分析】由图形可知∠A为公共角,则需要再添加∠B=∠C.【解答】解:∵在△ABD和△ACE中,有AB=AC,且∠A=∠A,∴当利用ASA来证明时,还需要添加∠B=∠C,故答案为:∠B=∠C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS、SAS、ASA、AAS和HL.16.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.17.如图,每个小正方形的边长都为1,则△ABC的三边长a、b、c的大小关系是c <a<b.【分析】观察图形根据勾股定理分别计算出a、b、c的值,因为a、b、c大于0,所以分别求a2、b2、c2比较大小即可比较a、b、c的大小.【解答】解:在图中,每个小正方形的边长为1,则a==,c=4,b==5,c2=16,a2=17,b2=25,c2<a2<b2,故c<a<b,故答案为c<a<b.【点评】本题考查了勾股定理的灵活运用,考查了实数大小的比较,本题中正确的把比较a、b、c的值转化为比较c2、a2、b2的值是解题的关键.18.已知如图,在平面直角坐标系中,x轴上的动点P(x,0)到定点A(0,2)、B(3,1)的距离分别为PA和PB,求PA+PB的最小值为3.【分析】作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小.【解答】解:作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小.∵PA+PB=PA+PB′=AB′==3,故答案为3.【点评】本题考查轴对称﹣最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.三、解答题(本大题共9小题,共86分.解答时应写出文字说明、证明过程或演算步骤) 19.(8分)求下列各式中x的值.(1)x2=3(2)x3=﹣64【分析】利用平方根,立方根定义计算即可求出值.【解答】解:(1)x2=3,开方得:x=±;(2)x3=﹣64,开立方得:x=﹣4.【点评】此题考查了立方根,以及平方根,熟练掌握各自的性质是解本题的关键.20.(6分)在数轴上画出表示的点.【分析】作一个直角三角形,两直角边长分别是1和2,这个直角三角形的斜边长就是,然后在数轴上表示出即可.【解答】解:如图所示:首先过O作垂线,再截取AO=2,然后连接A和表示1的点B,再以O为圆心,AB长为半径画弧,与原点右边的坐标轴的交点为.【点评】此题主要考查了勾股定理的应用,关键是找出以为斜边的直角三角形的直角边长.21.(8分)已知如图:AB∥CD,AB=CD,BF=CE,点B、F、E、C在一条直线上,求证:(1)△ABE≌△DCF;(2)AE∥FD.【分析】(1)根据平行线性质求出∠B=∠C,求出BE=CF,根据SAS推出两三角形全等即可;(2)根据全等三角形的性质和平行线的判定证明即可.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BF=CE,∴BF﹣EF=CE﹣EF,即BE=CF,在△ABE和△DCF中,∴△ABE≌△DCF;(2)由(1)得△ABE≌△DCF,∴∠AEB=∠DFE,∴AE∥DF.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.22.(8分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.【分析】(1)由OB=OC,即可求得∠OBC=∠OCB,又由,锐角△ABC的两条高BD、CE 相交于点O,根据三角形的内角和等于180°,即可证得△ABC是等腰三角形;(2)首先连接AO并延长交BC于F,通过证△AOB≌△AOC(SSS),得到∠BAF=∠CAF,即点O在∠BAC的角平分线上.【解答】(1)证明:∵OB=OC,∴∠OBC=∠OCB,∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠CDB=90°,∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:点O在∠BAC的角平分线上.理由:连接AO并延长交BC于F,在△AOB和△AOC中,∴△AOB≌△AOC(SSS).∴∠BAF=∠CAF,∴点O在∠BAC的角平分线上.【点评】此题考查了等腰三角形的性质与判定,以及角平分线的判定等知识.此题难度不大,注意等角对等边与三线合一定理的应用.23.(8分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?【分析】仔细分析该题,可画出草图,关键是旗杆高度、绳子长及绳子下端距离旗杆底部8米这三线段长可构成一直角三角形,解此直角三角形即可.【解答】解:设旗杆高度为AC=h米,则绳子长为AB=h+2米,BC=8米,根据勾股定理有:h2+82=(h+2)2,解得h=15米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.24.(10分)(1)请在所给的平面直角坐标系中画出一次函数y 1=x ﹣1和y 2=﹣2x +5画出函数的图象;(2)根据图象直接写出的解为 ;(3)利用图象求两条直线与x 轴所围成图形的面积.【分析】(1)利用描点法画出一次函数y 1=x ﹣1和y 2=﹣2x +5的图象;(2)找出两函数图象的交点坐标即可;(3)先计算出两条直线与x 轴的交点坐标,然后利用三角形面积公式求解.【解答】解:(1)如图,(2)的解为;故答案为;(3)解方程﹣2x +5=0得x=,则直线y=﹣2x +5与x 轴的交点坐标为(,0), 解方程x ﹣1=0得x=1,则直线y=x ﹣1与x 轴的交点坐标为(1,0),所以两条直线与x 轴所围成图形的面积=×(﹣1)×1=.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.25.(10分)甲汽车出租公司按每100千米150元收取租车费;乙汽车出租公司按每100千米50元收取租车费,另加管理费800元设甲家收取租车费y1元、乙家收取的租车费y2元.(1)分别求出y1元、y2元与所使用的里程x千米之间的函数关系式;(2)判断x在什么范围内,乙家收取的租车费y2元较甲家y元较少.【分析】(1)根据题意,即可求得两种方式所付费用y(元)与租用路程x千米之间的函数关系式;(2)由y1<y2时,可得出不等式,解不等式即可求得答案.【解答】解:(1)y1=1.5x,y2=0.5x+800;(2)当y2<y1时,乙家收取的租车费y2元较甲家y1元较少;1.5x<0.5x+800解得x<800;答:当汽车行驶路程为小于800千米时,乙家收取的租车费y2元较甲家y元较少.【点评】此题考查了一次函数的实际应用.此题难度适中,解题的关键是理解题意,找到等量关系求得函数解析式,注意不等式思想的应用.26.(14分)已知一辆快车与一辆慢车沿着相同路线从甲地到乙地,同起点同方向,所行路程与所用的时间的函数图象如图所示:y表示离开出发点的距离.(单位:千米)(1)快车比慢车迟出发2小时,早到4小时;(2)求两车的速度;(3)求甲乙两地的距离;(4)求图中图中直线AB的解析式,并说出点C表示的实际意义.【分析】(1)根据图中,快,慢车的函数图象可得出结果.(2)求出的快车追上慢车时走的时间,可知道慢车和快车在相遇时分别用了多少小时,已知这段路程是276千米,因此根据速度=路程÷时间,即可求出两车的速度.(3)求出的两车的速度,从图中又知道了两车走完全程用的时间,因此,可以得出甲乙两地的路程.(4)结合图象解答即可.【解答】解:(1)慢车比快车早出发2小时,快车比慢车早4小时到达;故答案为:2;4;(2)设快车追上慢车时,慢车行驶了x小时,则慢车的速度可以表示为千米/小时,快车的速度为千米/小时,根据两车行驶的路程相等,可以列出方程,解得x=6(小时).所以慢车的速度为千米/小时,快车的速度为千米/小时;(3)两地间的路程为70×18=1260千米.(4)设直线AB的解析式为:y=kx+b,可得:,解得:,所以直线AB的解析式为:y=105x﹣210,点C表示的实际意义是两车在420千米处相遇.【点评】此题考查一次函数的应用,关键是通过考查一次函数的应用来考查从图象上获取信息的能力.27.(14分)活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,找出图中的全等三角形,并说明理由;活动三:已知如图,点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.【分析】活动一:利用同角的余角相等,证明∠B=∠ECD,根据ASA即可证明;活动二:结论:△ACB≌△CBM.根据ASA即可证明;活动三:作AH⊥y轴于H.只要证明△ACH≌△CBO,可得AH=OC=2,推出点A到y的距离为定值,推出点A在平行于y轴的射线上运动,射线与y轴之间的距离为2(如图中虚线);【解答】活动一:证明:如图1中,∵AB⊥AD,DE⊥AD,BC⊥CE,∴∠A=∠D=∠BCE=90°,∴∠B+∠ACB=90°,∠ACB+∠ECD=90°,∴∠B=∠ECD,∵AB=CD,∴△ABC≌△DCE.活动二:解:结论:△ACB≌△CBM.理由:∵∠CNM=90°,∠CMN=30°,∴∠MCN=60°,∵∠BCN=15°,∴∠MCB=45°,∵∠A=45°,∴∠A=∠BCM,∵AB=CM,AC=CB,∴△ACB≌△CBM(ASA).活动三:解:作AH⊥y轴于H.∵C(0,2),∴OC=2,∵∠AHC=∠COB=∠ACB=90°,∴∠HAC+∠ACH=90°,∠ACH+∠BCO=90°,∴∠HAC=∠BCO,∵AC=CB,∴△ACH≌△CBO,∴AH=OC=2,∴点A到y的距离为定值,∴点A在平行于y轴的射线上运动,射线与y轴之间的距离为2(如图中虚线);【点评】本题考查了三角形综合题,全等三角形的判定及性质、坐标与图形性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2019-2020学年江苏省宿迁市沭阳县八年级(上)期末数学试卷 及答案解析

2019-2020学年江苏省宿迁市沭阳县八年级(上)期末数学试卷 及答案解析

2019-2020学年江苏省宿迁市沭阳县八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 下列图形,其中是轴对称图形的个数为( )A. 1B. 2C. 3D. 42. 下列说法中正确的是( )A. √16的算术平方根是±4B. 12是144的平方根C. √25的平方根是±5D. a 2的算术平方根是a 3. 在下列各数3π、0、0.2、227、0.601600160001、13111、√27,无理数的个数是( )A. 4B. 3C. 2D. 14. 如果a −b <0,且ab <0,那么点(a,b )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限.5. 点P(−2,3)关于y 轴的对称点的坐标是( )A. (2,3 )B. (−2,−3)C. (−2,3)D. (−3,2)6. 若一次函数y =(4−2m)x −2的函数值y 随x 的增大而减小,则m 的取值范围( )A. m <0B. m >0C. m >2D. m <27. 如图,在△ABC 中,AC 的垂直平分线分别交AB 、AC 于点D 、E ,EC =5,△ABC 的周长为26,则△BDC 的周长为( )A. 14B. 16C. 18D. 198.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是()A. (2018,1)B. (2018,0)C. (2018,2)D. (2019,0)二、填空题(本大题共10小题,共30.0分)9.若一个等腰三角形的底角等于50°,则它的顶角等于__________.10.函数y=√4−2x的自变量x的取值范围是______.11.设地面气温为20℃,如果每升高1千米,气温下降6℃,在这个变化过程中,自变量是______ ,因变量是______ ,如果高度用ℎ(千米)表示,气温用t(℃)表示,那么t随h的变化而变化的关系式为______ .12.将一次函数y=x的图象向上平移2个单位长度,所得的函数解析式为______.13.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和6,则c的面积为______ .14.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于M,交AC于N,若BM+CN=11,则线段MN的长为______.15.一次函数y=kx+3与y=3x+6的图象的交点在x轴上,则k=______ .16.(−√9)2的平方根是x,64的立方根是y,则x+y的值为______.17.已知一次函数y=kx+b的图象如图,当x<0时,y的取值范围是______.18. 如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图所示,那么△ABC 的面积是____.三、解答题(本大题共10小题,共96.0分)19. 18.(1) 9(x −3)2=64.(2) (2x −1)3=−8.20. 计算:√83+√0−√14.21.如图所示,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.22.如图实数在数轴上表示为:化简:√a2−|a−b|−|c−a|+√(b−c)2.23.已知一次函数y=kx+2,当x=−1时,y=1,求此函数的解析式,并在平面直角坐标系中画出此函数图象.24.如图,一副直角三角板有一条直角边相等,如图放置,已知∠A=30°,∠B=45°,AC=2√3,求AB和BC的长.25.已知一次函数y=(2a+1)x+a−3(1)若函数图象经过原点,求a的值;(2)若函数图象与y轴的交点坐标为(0,−2),求a的值;(3)若y随着x的增大而增大,求a的取值范围;(4)若函数图象经过第一、三,四象限,求a的取值范围.26.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.27.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(ℎ)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)描述乙队在0~6(ℎ)内所挖河渠的长度变化情况;(2)请你求出:乙队在2≤x≤6的时段内,y与x之间的函数关系式;(3)当x为何值时,甲队在施工过程中所挖河渠的长度y的值在30和50之间变化?28.已知直线y=kx+b经过点A(3,4),B(−2,0).(1)求直线AB的解析式;(2)若直线y=−x+2与直线AB相交于点C,求点C的坐标.-------- 答案与解析 --------1.答案:C解析:解:第一个是轴对称图形;第二个不是轴对称图形;第三个是轴对称图形;第四个是轴对称图形;共3个轴对称图形.故选C.根据轴对称图形的概念求解.本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.答案:B解析:此题主要考查了算术平方根以及平方根的定义,正确把握相关定义是解题关键,直接利用算术平方根以及平方根的定义分别分析得出答案.解:A、√16=4,4的算术平方根是2,故此选项错误;B、12是144的平方根,故此选项正确;C、√25=5,5的平方根是±√5,故此选项错误;D、a2的算术平方根是|a|,故此选项错误.故选:B.3.答案:C解析:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.解:√27=3√3,则无理数有:3π、√27,共2个.4.答案:B解析:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).根据有理数的加法运算法则以及同号得正、异号得负判断出a<0,b>0,再根据各象限内点的坐标特征解答.解:∵ab<0,∴a、b异号,∵a−b<0,∴a<b,∴a<0,b>0,∴点(a,b)在第二象限.故选B.5.答案:A解析:解:点P(−2,3)关于y轴的对称点的坐标是(2,3),故选:A.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.6.答案:C解析:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.解:∵一次函数y=(4−2m)x−2的函数值y随x的增大而减小,∴4−2m<0,∴m>2.7.答案:B解析:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.根据线段的垂直平分线的性质得到DA=DC,AC=2EC=10,根据三角形的周长公式计算即可.解:∵DE是AC的垂直平分线,∴DA=DC,AC=2EC=10,∵△ABC的周长为26,∴AB+AC+BC=26,∴AB+BC=16,∴△BDC的周长为:BD+CD+BC=BD+AD+BC=AB+BC=16.故选B.8.答案:B解析:解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2018= 504×4+2所以,前504次循环运动点P共向右运动504×4=2016个单位,剩余两次运动向右走2个单位,且在x轴上.故点P坐标为(2018,0)故选:B.分析点P的运动规律找到循环规律即可.本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.9.答案:80°解析:本题考查了等腰三角形两底角相等的性质以及三角形内角和定理;题目比较简单,属于基础题.根据三角形的内角和是180°以及等腰三角形的两个底角相等进行分析即可.解:由题意得,顶角=180°−50°×2=80°.故答案为80°.10.答案:x≤2解析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.解:根据题意得:4−2x≥0,解得x≤2.故答案为x≤2.11.答案:高度;气温;t=−6ℎ+20解析:本题考查了函数关系式,利用气温与高度的变化规律是解题关键,根据气温与高度的关系,可得函数关系式.解:设地面气温为20℃,如果每升高1千米,气温下降6℃,在这个变化过程中,自变量是高度,因变量是气温,如果高度用ℎ(千米)表示,气温用t(℃)表示,那么t随h的变化而变化的关系式为t=20−6ℎ.故答案为高度;气温;t=−6ℎ+20.12.答案:y=x+2解析:解:将一次函数y=x的图象向上平移2个单位长度后得到的解析是y=x+2,故答案为:y=x+2.根据一函数图象的平移规律,可得答案.本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,属于基础题.13.答案:1解析:解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC,在△ABC和△CDE中,{∠ABC=∠CDE ∠ACB=∠DEC AC=CE,∴△ABC≌△CDE,∴BC=DE,∴AC2=AB2+BC2=AB2+DE2,根据勾股定理的几何意义,b的面积=a的面积+c的面积,∴c的面积=b的面积−a的面积=6−5=1.故答案为:1.根据已知及全等三角形的判定可得到△ABC≌△CDE,从而得到c的面积=b的面积−a的面积,由此得解.本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.14.答案:11解析:解:∵MN//BC,∴∠MEB=∠EBC,∠NEC=∠ECB,∵∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠ECB,∴∠MEB=∠MBE,∠NEC=∠NCE,∴ME=BM,EN=CN,∵BM+CN=11,∴EM+EN=11,即MN=11,故答案为:11.根据平行线的性质得出∠MEB=∠EBC,∠NEC=∠ECB,根据角平分线定义得出∠MBE=∠EBC,∠NCE=∠ECB,求出∠MEB=∠MBE,∠NEC=∠NCE,推出ME=BM,EN=CN即可.本题考查了等腰三角形的判定、平行线的性质、角平分线定义等知识点,能求出ME=BM和EN=CN 是解此题的关键.15.答案:32解析:解:在y=3x+6中,令y=0,得:x=−2;则交点坐标为(−2,0);将(−2,0)代入y=kx+3中,=−2,得:−2k+3=0,−3k解得:k=3.2根据一次函数y=3x+6可求出交点坐标,然后将其代入一次函数y=kx+3中,可求出k的值.本题主要考查了一次函数解析式的确定,根据已知的一次函数解析式确定出交点的坐标是解答本题的关键.16.答案:7或1解析:此题考查了平方根和立方根,熟练掌握平方根和立方根的定义是解本题的关键.利用平方根及立方根的定义求出x与y的值,即可确定出x+y的值.解:∵(−√9)2=9,9的平方根x=±3,∵64的立方根是y,∴y=4,∴x+y=3+4=7,或x+y=−3+4=1.故答案为7或1.17.答案:y<−2解析:解:根据图象和数据可知,当x<0即图象在y轴左侧时,y的取值范围是y<−2.当x<0时,图象在x轴的下方,此时y<−2.本题考查一次函数的图象,考查学生的分析能力和读图能力.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.18.答案:10解析:本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出线段的长度从而得出三角形的面积是本题的关键.根据函数的图象、结合图形求出AB、BC的值,根据三角形的面积公式得出△ABC的面积.解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9−4=5,∴AB=5,BC=4,∴△ABC的面积是:12×4×5=10.故答案为10.19.答案:(1)x=173,或x=13;(2)x=−12.解析:(1)利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可.【详解】(1)(x−3)2=649,则x−3=±83,即x =173或x =13; (2)(2x −1)3=−8,2x −1=−2,∴x =−12.本题考查了利用平方根定义以及立方根定义解方程,熟练掌握相关定义是解题的关键.20.答案:解:√83+√0−√14=2+0−12=32.解析:首先化简二次根式,然后按照实数的运算法则依次计算.此题主要考查了实数的运算,解题需注意区分三次方根和平方根.21.答案:证明:在△AED 和△CEB 中,{AE =CE ∠AED =∠CEB DE =BE,∴△AED≌△CEB(SAS),∴∠A =∠C(全等三角形对应角相等).解析:本题考查的是全等三角形的判定与性质有关知识,根据AE =EC ,DE =BE ,∠AED 和∠CEB 是对顶角,利用SAS 证明△ADE≌△CBE ,再利用全等三角形的性质即可.22.答案:解:由数轴可知:a <b <0<c ,∴a −b <0,c −a >0,b −c <0,原式=|a|−|a −b|−|c −a|+|b −c|=−a −(b −a)−c +a +c −b=−a −b +a −c +a +c −b=a −2b .解析:根据数轴上点的位置,可化简二次根式,绝对值,根据整式的加减,可得答案.本题考查了二次根式的性质与化简,利用数轴上点的位置化简二次根式,绝对值是解题关键.23.答案:解:将x=−1,y=1代入一次函数解析式y=kx+2,可得1=−k+2,解得k=1,一次函数的解析式为y=x+2;当x=0时,y=2;当y=0时,x=−2;所以函数图象经过点(0,2),(−2,0);此函数图象如图所示.解析:本题主要考查待定系数法求函数解析式和利用两点法作一次函数图象根据两点确定一条直线作出图象是解答此题的关键.(1)把点的坐标代入函数解析式得到一元一次方程.求解即可得到k的值,写出解析式即可;(2)先求出与两坐标轴的交点再根据两点确定一条直线作出图象.24.答案:解:如图,在Rt△ACD中,∵∠A=30°,AC=2√3,AC=√3,∴CD=12在Rt△ACD中,由勾股定理,得AD=√AC2−CD2=3,在Rt△BCD中,∠B=45°,则BD=CD=√3,∴AB=AD+BD=3+√3;由勾股定理可得:BC=√CD2+BD2=√6.AC求出CD,再由勾股定理求解析:本题考查解直角三角形.在Rt△ACD中,由∠A=30°,则CD=12出AD长,最后由BD=CD,则AB=AD+BD即可得出答案AB长;在Rt△BCD中,由勾股定理求出BC长即可.25.答案:解:(1)把(0,0)代入y=(2a+1)x+a−3得a−3=0,解得a=3;(2)把x=0代入y=(2a+1)x+a−3得y=a−3,∴直线y=(2a+1)x+a−3与y轴的交点坐标为(0,a−3),所以a−3=−2,解得a=1;(3)∵y随着x的增大而增大,∴2a+1>0,解得:a>−0.5;2a+1>0,(4)由题意可得:{a−3<0解得:−0.5<a<3,即当−0.5<a<3时函数图象经过第一、三,四象限.解析:本题考查了一次函数上点的坐标特征:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,此直线上的点的坐标满足其解析式.也考查了一次函数的性质的问题.(1)把原点坐标代入函数y=(2a+1)x+a−3可解出a;(2)先确定直线y=(2a+1)x+a−3与y轴的交点坐标,再根据题意得到m−3=−2,然后解方程;(3)根据y随着x的增大而增大,得出a的不等式解答即可;(4)根据函数图象经过第一、三,四象限,得出a的不等式组解答即可.26.答案:解:(1)长方形ABCD中,AD=BC=5,∠D=∠B=∠C=90°,∵△AEF是△ADF沿折痕AF折叠得到的,∴AE=AD=BC=5,∴BE=√AE2−AB2=√52−42=3;(2)由(1)知BE=3,∴CE=BC−BE=2,∵△AEF是△ADF沿折痕AF折叠得到的,∴EF=DF=4−CF,∵EF2=CE2+CF2,∴(4−CF)2=22+CF2,.解得:CF=32解析:(1)根据矩形的性质得到AD=BC=5,∠D=∠B=∠C=90°,由折叠的性质得到AE=AD= BC=5,根据勾股定理即可得到结果;(2)由(1)知BE=3,于是得到CE=BC−BE=2,根据折叠的性质得到EF=DF=4−CF,根据勾股定理即可得到结论.本题主要考查了图形的翻折变换,以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.27.答案:解:(1)如图,乙队从挖河渠开始至2时,长度由0米增加到30米,从第2时至6时,长度由30米增加到60米.(2)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b ,由图可知,函数图象过点(2,30)、(6,50),∴{2k +b =306k +b =50, 解得{k =5b =20, ∴y =5x +20;(3)设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式y =kx ,由图可知,函数图象过点(6,60),∴6k =60,解得k =10,∴y =10x .当y =30时,x =3;当y =50时,x =5.∴当3≤x ≤5时,甲队所挖河渠的长度y 的值在30和50之间变化.解析:本题主要考查学生对函数图象掌握情况及利用待定系数法求一次函数关系式.理解题意是解题的关键.(1)根据河渠的长度y(m)与挖掘时间x(ℎ)之间的图象关系即可作出描述.(2)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b ,根据函数过点(2,30)、(6,50),可求出k 与b 的值,进而确定关系式.(3)设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式y =kx ,由图可知,函数图象过点(6,60),从而解出k 的值,然后根据30≤y ≤50可得出x 的范围.28.答案:解:(1)∵直线y =kx +b 经过点A(3,4),B(−2,0),∴{4=3k +b 0=−2k +b,解得{k =45b =85, ∴直线AB 的解析式为:y =45x +85;(2)∵若直线y =−x +2与直线AB 相交于点C ,∴{y =45x +85y =−x +2, 解得{x =29y =169, ∴点C (29,169).解析:本题主要考查了待定系数法求一次函数解析式,一次函数的交点以及一次函数与二元一次方程组的关系.(1)利用待定系数法把点A(3,4),B(−2,0)代入y =kx +b 可得关于k 、b 的方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可.。

2018-2019学年八年级上期末数学试卷(含答案解析)

2018-2019学年八年级上期末数学试卷(含答案解析)

2018-2019学年八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2B.2C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5B.3,4,5C.5,6,7D.6,7,84.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2B.=3C.=﹣3D.=﹣37.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A.3B.1C.2D.4二、填空题:(共8小题,每题3分,共24分。

将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.11.函数y=kx的图象过点(﹣1,2),那么k=.12.取=1.4142135623731…的近似值,若要求精确到0.01,则=.13.如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是.14.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为.三、解答题(共10小题,共102分。

2018-2019学年苏科版数学八年级上册期末试卷含答案解析

2018-2019学年苏科版数学八年级上册期末试卷含答案解析

2018-2019学年八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)2.一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,正确的是()A.=±2B.=3C.=﹣3D.=﹣34.4的平方根是()A.±2B.2C.±D.5.下列图形中,不是轴对称图形的是()A.B.C.D.6.下列各组数中,可以构成直角三角形的是()A.2,3,5B.3,4,5C.5,6,7D.6,7,87.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A.3B.1C.2D.4二、填空题:(共8小题,每题3分,共24分。

将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.11.函数y=kx的图象过点(﹣1,2),那么k=.12.取=1.4142135623731…的近似值,若要求精确到0.01,则=.13.如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是.14.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为.三、解答题(共10小题,共102分。

2018~2019(上)初二数学期末考试试题解析

2018~2019(上)初二数学期末考试试题解析

(1) 求证:CD⊥AB; (2) 求 AC 的长. 【考点】勾股定理及其逆定理
【难度星级】★★
【答案】(1)证明:在 BCD 中, BD 1, CD 2 , BC 5 ,
∴ BD2 +CD2 12 22 5 , BC 2 5 ∴ BD2 +CD2 BC2 ∴ BCD 是直角三角形,且 CDB 90 ∴CD⊥AB. (2)解:由(1)知 CD⊥AB,∴ ADC 90 ∵ AB 4 , BD 1,∴ AD AB DB 3 在 RtACD 中, CD 2 , AD 3
【考点】函数与方程 【难度星级】★ 【答案】B 【解析】 2x 3y 6,整理可得y 2 x 2 ,图象过一、三、四象限.
3
-1-
-1--1-
4.如图,将含 30°角的直角三角板 ABC 的直角顶点 C 放在直尺的一边上,已知 A 30,1 40 ,则 2 的度数为( )
A.55°
B.60°
一个角的两边,那么这两个角相等.其中是真命题的有( )
A.0 个
B.1 个
C.2 个
D.3 个
【考点】真命题与假命题的判定 【难度星级】★ 【答案】C 【解析】③如果一个角的两边分别平行于另一个角的两边,那么这两个角可能相等也可能互补.真命题个 数有 2 个.
-3-
-3--3-
9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出 八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 钱, 还多 3 钱;每人出 7 钱,则差 4 钱.求物品的价格和共同购买该物品的人数.设该物品的价格是 x 钱,共同 购买该物品的有 y 人,则根据题意,列出的方程组是()

江苏省沭阳县联考2019年数学八上期末检测试题

江苏省沭阳县联考2019年数学八上期末检测试题

江苏省沭阳县联考2019年数学八上期末检测试题一、选择题1.下列各式从左到右的变形正确的是( )A .22()()a b a b -+-=1B .221188a a a a ---=-++ C .22x y x y ++=x+y D .0.52520.11y yx x++=-++2.世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g 的,这个数值用科学计数法表示为( ) A .7710-⨯B .8710-⨯C .9710-⨯D .10710-⨯3.PM2.5是大气中直径小于或等于0.0000025m 的颗粒物,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量有较大的影响.在这里将数字0.0000025用科学计数法表示为( ) A .0.25×10﹣5B .0.25×10﹣6C .2.5×10﹣5D .2.5×10﹣64.下列运算中正确的是( )A .x 2÷x 8=x ﹣4B .a•a 2=a 2C .(a 3)2=a 6D .(3a )3=9a 35.下列各等式中,从左到右的变形是因式分解的是( ) A.()2x x y x xy ⋅-=-B.()23131x x x x +-=+-C.()22()2x y y x x y --=-D.222x x x x ⎛⎫-=- ⎪⎝⎭6.已知a 2+b 2=12,ab =﹣3,则(a+b)2的值为( ) A .3B .6C .12D .187.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F ,则下列结论成立的是( )A .EC =EFB .FE =FC C .CE =CFD .CE =CF =EF8.下列图案是轴对称图形的有( )A.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD 中,130A ∠=︒,在AD 上取DE DC =,则ECB ∠的度数是( )A .60︒B .65︒C .70︒D .75︒10.如图所示,点A 在DE 上,点F 在AB 上,且AC =CE ,∠1=∠2=∠3,则DE 的长等于( )A.ACB.BCC.AB +ACD.AB11.如图,已知ABC DCB ∠=∠,下列所给的条件不能证明ABC DCB △≌△的是( )A.A D ∠=∠B.AC BD =C.ACB DBC ∠=∠D.AB DC =12.如图,在Rt ABC ∆中, 090BAC ∠=.ED 是BC 的垂直平分线,BD 平分ABC ∠,3AD =.则CD 的长为( )A .6B .5C .4D .313.如图,将纸片沿折叠,则( )A. B.C.D.14.七边形的七个内角与它的一个外角的度数和可能是( ) A .800° B.900° C.1000° D.1100°15.若一个三角形的两边长分别为3和7,则第三边长可能是( ) A .2 B .3 C .4 D .5 二、填空题16.数据0.0000032用科学记数法表示为______________. 17.若m -n =2,则m 2-2mn +n 2=__________.18.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,BD :DC=3:2,点D 到AB 的距离为4,则BC 等于_____.19.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________。

2018-2019学年江苏省宿迁市沭阳县八年级(上)期末数学试卷-普通用卷

2018-2019学年江苏省宿迁市沭阳县八年级(上)期末数学试卷-普通用卷

2018-2019学年江苏省宿迁市沭阳县八年级(上)期末数学试卷副标题一、选择题(本大题共8小题,共24.0分)1.下面的四幅简笔画是从文化活动中抽象出来的,其中是轴对称图形的是()A. B. C. D.2.下列各数中,-,0.131131113……,-π,,-,无理数的个数有()A. 1个B. 2个C. 3个D. 4个3.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A. ,B. ,C. ,D. ,4.下列条件中,不能判断△ABC是直角三角形的是()A. a:b::4:5B. :::4:5C. D. a:b::2:5.直线y=2x向下平移2个单位长度得到的直线是()A. B. C. D.6.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 107.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A. 它精确到百位B. 它精确到C. 它精确到千分位D. 它精确到千位8.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x-2,2x+1,若这两个三角形全等,则x的值为()A. 2B. 2或C. 或D. 2或或二、填空题(本大题共10小题,共30.0分)9.16的算术平方根是______.10.若点(m,n)在函数y=2x+1的图象上,则2m-n的值是______.11.若的值在两个整数a与a+1之间,则a=______.12.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为______.13.在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD=______.14.已知一次函数y=ax+b和y=kx的图象交于点P(-4,2),则关于x、y的二元一次方程组的解是______.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为______.16.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.17.如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是______.18.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点,已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m,当m=3时,则点B的横坐标是______.三、计算题(本大题共3小题,共26.0分)19.求出下列x的值:(1)4x2-81=0;(2)8(x+1)3=27.20.已知某正数的两个平方根分别是a+3和2a-15,b的立方根是-2,求a+b值.21.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动.甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4副,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式.(2)就乒乓球盒数讨论去哪家商店买合算?四、解答题(本大题共7小题,共70.0分)22.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.23.如图,一次函数y=kx+b图象经过点(0,3)和(4,0).(1)求这个一次函数的关系式;(2)当x______时,y>0.24.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM=2,CN=3,求线段MN的长.25.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.26.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.27.如图,直角坐标系xOy中,一次函数y=-x+5的图象l1分别与x、y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC:S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.28.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=______°,∠DEC=______°;点D从B向C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.答案和解析1.【答案】C【解析】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】B【解析】解:-=-2,=5,-,是有理数,0.131131113……,-π,是无理数,故选:B.根据立方根的概念、算术平方根的概念、无理数的概念判断即可.本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.3.【答案】D【解析】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=-5,b=-1.故选:D.根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.4.【答案】B【解析】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.5.【答案】C【解析】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x-2.故选:C.据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x-2.本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.6.【答案】C【解析】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:C.根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.7.【答案】D【解析】解:1.36×105精确到千位.故选:D.根据近似数的精确度求解.本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.8.【答案】A【解析】解:∵△ABC与△DEF全等,当3x-2=5,2x+1=4,x=,把x=代入2x+1中,2x-1≠4,∴3x-2与5不是对应边,当3x-2=4时,x=2,把x=2代入2x+1中,2x+1=5,故选:A.首先根据全等三角形的性质:全等三角形的对应边相等可得:3x-2与5是对应边,或3x-2与7是对应边,计算发现,3x-2=5时,2x-1≠7,故3x-2与5不是对应边.此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.9.【答案】4【解析】解:∵42=16,∴=4.故答案为:4.根据算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.10.【答案】-1【解析】解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m-n=-1.故答案为:-1.直接把点(m,n)代入函数y=2x+1即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.【答案】2【解析】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.利用"夹逼法"得出的范围,继而也可得出a的值.此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.12.【答案】(1,2)【解析】解:点A(-1,0)向右跳2个单位长度,即-1+2=1,向上2个单位,即:0+2=2,∴点A′的坐标为(1,2).故答案为:(1,2).根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.13.【答案】5【解析】解:∵∠ACB=90°,CD是AB边上的中线,∴CD=AB=×10=5.故答案为:5.根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.【答案】【解析】解:函数y=ax+b和y=kx的图象交于点P(-4,2),即x=-4,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.根据两个一次函数的交点坐标为(-4,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.【答案】4【解析】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,∴点D到AB的距离为4.故答案为:4.直接根据角平分线的性质可得出结论.本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.16.【答案】36【解析】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.17.【答案】19【解析】解:∵AE⊥BE,∴∠AEB=90°,在Rt△ABE中,AE=3,BE=4,根据勾股定理得:AB==5,则S阴影=S正方形-S△ABE=52-×3×4=25-6=19,故答案为:19.在直角三角形ABE中,由AE与BE的长,利用勾股定理求出AB的长,由正方形面积减去直角三角形面积求出阴影部分面积即可.此题考查了勾股定理,以及正方形的性质,熟练掌握勾股定理是解本题的关键.18.【答案】3或4【解析】解:如图所示:当△AOB内部(不包括边界)的整点个数为m,m=3,点B的横坐标是:3或4.故答案为:3或4.直接利用已知画出符合题意的三角形进而得出答案.此题主要考查了坐标与图形的性质,正确画出三角形是解题关键.19.【答案】解:(1)∵4x2-81=0,∴4x2=81,则x2=,∴x=±;(2)∵8(x+1)3=27,∴(x+1)3=,则x+1=,解得x=.【解析】(1)先将x2的系数化为1,再利用平方根的定义计算可得;(2)两边都除以8,再利用立方根的定义得出x+1的值,从而得出答案.本题考查立方根、平方很,解答本题的关键是明确它们各自的含义.20.【答案】解:根据题意知a+3+2a-15=0,且b=(-2)3,∴a=4,b=-8,则a+b=4+(-8)=-4.【解析】根据一个正数的两个平方根互为相反数可以求得a的值,根据b的立方根是-2,可以求得b的值,从而可以求得a+b的值.本题考查立方根、平方根,解答本题的关键是明确它们各自的含义.21.【答案】解:(1)甲:y甲=20×4+5(x-4)=60+5x(x≥4);乙:y乙=4.5x+72(x≥4).(2)y甲=y乙时,60+5x=4.5x+72,解得x=24,即当x=24时,到两店一样合算;y甲>y乙时,60+5x>4.5x+72,解得x>24,即当x>24时,到乙店合算;y甲<y乙时,60+5x<4.5x+72,x≥4,解得4≤x<24,即当4≤x<24时,到甲店合算.【解析】(1)直接根据题中甲乙两店的促销方式列式即可;(2)分别根据y甲=y乙时,y甲>y乙时,y甲<y乙时列出对应式子求解即可.解答这类问题时,先建立函数关系式,然后再分类讨论.22.【答案】解:(1)如图1所示:正方形ABCD即为所求;(2)如图2所示:三角形ABC即为所求.【解析】(1)直接利用勾股定理结合网格得出符合题意的答案;(2)直接利用勾股定理结合网格得出符合题意的答案.此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.23.【答案】<4【解析】解:(1)∵一次函数y=kx+b图象经过点(0,3)和(4,0)∴b=3,且4k+b=0,∴k=-,∴该函数的关系式为y=-x+3;(2)x<4时,y>0;故答案为:<4.(1)利用待定系数法求一次函数解析式解答;(2)根据函数图象写出x轴上方部分的x的取值范围即可.本题考查了待定系数法求一次函数解析式,综合掌握一次函数的性质是解题的关键.24.【答案】解:∵MN∥BC,∴∠MEB=∠CBE,∠NEC=∠BCE,∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE,∴∠MEB=∠MBE,∠NEC=∠NCE,∴ME=MB,NE=NC,∴MN=ME+NE=BM+CN=5,故线段MN的长为5.【解析】先根据平行线的性质,得出∠MEB=∠CBE,∠NEC=∠BCE,再根据∠ABC和∠ACB的平分线交于点E,得出∠MBE=∠EBC,∠NCE=∠BCE,最后根据ME=MB,NE=NC,求得MN的长即可.本题主要考查了平行线的性质以及等腰三角形的判定,解题时注意:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.【答案】证明:∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE,即∠ACB=∠ECD,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴BC=DC.【解析】先求出∠ACB=∠ECD,再利用“角边角”证明△ABC和△EDC全等,然后根据全等三角形对应边相等证明即可.本题考查了全等三角形的判定与性质,求出相等的角∠ACB=∠ECD是解题的关键,也是本题的难点.26.【答案】解:(1)△AEF如图所示;(2)重叠部分的面积=×4×4-×2×2=8-2=6.【解析】(1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AF、EF即可;(2)根据图形,重叠部分为两个直角三角形的面积的差,列式计算即可得解.本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.27.【答案】解:(1)把C(m,4)代入一次函数y=-x+5,可得4=-m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=-x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC-S△BOC=(×10×4):(×5×2)=20:5=4:1;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=-;故k的值为或2或-.【解析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B (0,5),可得AO=10,BO=5,进而得出S△AOC-S△BOC的值;(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=-;于是得到结论.本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.28.【答案】30 110 小【解析】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°-∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°-∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°-∠ADE-∠EDC=180°-40°-30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°-∠ADE-∠EDC=180°-40°-60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形(1)由平角的定义和三角形外角的性质可求∠EDC,∠DEC的度数,由三角形内角和定理可判断∠BDA的变化;(2)当DC=2时,由“AAS”可证△ABD≌△DCE;(3)分AD=DE,DE=AE两种情况讨论,由三角形内角和和三角形外角的性质可求∠BDA的度数.本题是三角形综合题,考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,灵活运用相关的性质定理、综合运用知识是解题的关键,注意分情况讨论思想的应用.。

2018-2019学年最新苏教版数学八年级上学期期末模拟试卷及答案解析-精编试题

2018-2019学年最新苏教版数学八年级上学期期末模拟试卷及答案解析-精编试题

苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共有6小题,每小题3分,共18分)1.以下问题,不适合用全面调查的是 ( ▲ ) A .了解全班同学每周体育锻炼的时间 B .某书中的印刷错误C .了解一批电视机的使用寿命D .旅客上飞机前的安检2.下列图形中,不是轴对称图形的是 ( ▲ )A. B. C. D.3.在3.14、722、2-这3个数中,无理数有 ( ▲ ) A .0个 B .1个 C .2个 D .3个4. 如果点P(m ,1-2m)在第一象限,那么m 的取值范围是 ( ▲ ) A .0<m<12 B .-12<m<0 C .m<0 D . m>125.下列函数中,其图像不经过第一象限的函数是 ( ▲ ) A.12--=x y B.12+-=x y C.12-=x y D.12+=x y 6.若坐标系中某图形上所有点的横坐标、纵坐标都变为原来的相反数,图形的大小、形状和位置不变,则这个图形不可能是 ( ▲ ) A .平行四边形 B .圆 C .线段 D .等边三角形二、填空题(本大题共10小题,每小题3分,共30分) 7.9的平方根是 ▲ .8.等腰三角形中一个内角是100 ,则底角为 ▲ .9.将函数y = 3 x 的图像向上平移2个单位所得函数图像的解析式为 ▲ . 10.正方形有 ▲ 条对称轴.11.已知点(-1,y 1),(2,y 2)都在直线y = x+2上,则y 1与 y 2大小关系是 ▲ . 12.点P(3,a )与点Q ( b ,2)关于y 轴对称, 则a + b= ▲ .13.在边长为16cm 的正方形铁皮上剪去一个圆,则剩下的铁皮的面积S (cm 2)与圆的半径r (cm )之间的函数表达式为 ▲ (不要求写自变量的取值范围). 14.已知平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,且AE=2,DE=1,则平行四边形ABCD 的周长等于 ▲ .15.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,过点E 作EF∥AB,交BC 于点F .当△ABC 满足条件 ▲ 时,四边形DBFE 是菱形.16.如图,已知矩形ABCD ,BC 在x 轴上,AB=2,BC=3,点A 的坐标为(-1,2),过原点的直线平分矩形ABCD 的面积,则此直线的解析式为 ▲ .FEDCB AEDCB Ay xABODC(第14题图)(第15题图)(第16题图)三、解答题(本大题共有10小题,共102分,请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分8分)求下列各式的值:(1) 3848+-; (2)41227)2(32+-+-. 18.(本题满分8分)求x 的值:(1) 13132=+x ; (2) 8(x -1)3=27.19.(本题满分10分) 如图,在△ABC 中,已知AB =AC =5,AD 平分∠BAC ,E 是AC 边的中点. (1)求DE 的长;(2)若AD 的长为4,求△DEC 的面积.20.(本题满分10分)已知:如图,平行四边形ABCD 中,AB⊥AC,对角线AC 、BD 交于O 点,将直线AC 绕点O 顺时针旋转,分别交BC 、AD 于点E 、F . (1) 当旋转角为90°时,求证:四边形ABEF 是平行四边形;(2) 求证:在旋转过程中,AF=EC .DABCEOFA BCDE21.(本题满分10分) 如图,已知6×6的正方形网格中,每一个小正方形的边长为1,△ABC 的顶点A 、B 、C 都在小正方形的顶点上. (1)△ABC 的周长为 ;(2)在方格纸上画出一个格点三角形,使其与△ABC 全等且有一个公共顶点B ; (3)画111C B A ,使它与△ABC 关于直线l 对称.22. (本题满分10分) 在我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:人数(单位:人)项目50403020108284428%8%44%DCBA ABC D(1)样本中喜欢B 项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ; (2)把条形统计图补充完整;(3)已知该校有750人,估计全校喜欢乒乓球的人数是多少?23.(本题满分10分)已知四边形ABCD 是矩形,对角线AC 和BD 相交于点P ,若在矩形的上方加一个△DEA ,且使DE ∥AC ,AE ∥BD .(1)求证:四边形DEAP 是菱形; (2)若AE=CD ,求∠DPC 的度数.24.(本题满分10分)如图,公路上有A 、B 、C 三个汽车站,一辆汽车8︰00从离A 站10km 的P 地出发,向C 站匀速行驶,15min 后离A 站30km . (1)设出发x h 后,汽车离A 站y km ,写出y 与x 之间的函数表达式;E AD CBP(2)当汽车行驶到离A 站250km 的B 站时,接到通知要在12︰00前赶到离B 站60km的C 站.汽车按原速行驶,能否准时到达?如果能,那么汽车何时到达C 站?C25.(本题满分12分)如图,已知直线1l :33+-=x y 与直线2l :y = mx -4m 的图像的交点C 在第四象限,且点C 到y 轴的距离为2. (1)求直线2l 的解析式; (2)求△ADC 的面积;(3)在第一象限的角平分线上是否存在点P ,使得△ADP 的面积是△ADC 的面积的2倍?如果存在,求出点P 的坐标,如果不存在,请说明理由.xyDO l 2l 1A C26.(本题满分14分)如图,矩形ABCD 中,AD=5,AB=8,点E 为射线DC 上一个动点,把△ADE 沿AE 折叠,点D 的对应点为D′.(1)求点D′刚好落在对角线AC 上时,线段D′C 的长; (2)求点D′刚好落在线段BC 的垂直平分线上时,DE 的长; (3)求点D′ 刚好落在线段AB 的垂直平分线上时,DE 的长.D′ECBD八年级数学期末试卷参考答案与评分标准一、选择题(每题3分)1. C2. C3. B4.A5.A6.D 二、填空题(每题3分)7. 3±; 8.40°; 9. 23+=x y ; 10.4;11.21y y <;12.-1; 13. 2256r S π-=; 14.10; 15. AB=BC (或∠A =∠C 等); 16.x y 2=.三、解答题(下列答案仅供参考........,学生如有其它答案或解法...........,请参照标准给分........) 17.(本题8分)(1) 原式=228+-(3分)=8(4分); (2) 原式=2332+-(3分)=21(4分) .18.(本题8分)(1) 1232=x (1分), 42=x (2分), 2±=x (4分);(2) 827)1(3=-x (1分),231=-x (3分),25=x (4分).19.(本题10分)(1) (本小题5分) ∵AB =AC ,AD 平分∠BAC,∴AD⊥BC(2分),∵点E 为AC 的中点,∴DE =21AC =2.5(5分);(2) (本小题5分) 在直角△ADC 中,由勾股定理得DC=3(2分),∴△ADC 的面积为6,∴△DEC 的面积为3(5分).20.(本题10分)(1)(本小题5分)∵∠AOF=90°, AB ⊥AC ,∴AB ∥EF(2分),∵ABCD 是平行四边形,∴AF ∥BE(4分),∴ABEF 是平行四边形(5分);(2)(本小题5分)∵ABCD 是平行四边形,∴AF ∥BE ,AO=CO(2分),∴∠FAO=∠ECO ,又∵∠AOF=∠COE ,∴△AOF ≌△COE(4分),∴AF=CE(5分) .21.(本题10分)(1)(本小题4分)523++; (2)(本小题3分)图略; (3)(本小题3分)图略. 22.(本题10分)(1)(本小题4分)20%;72°; (2)(本小题3分)图略; (3)(本小题3分)750×44%=330. 23.(本题10分)(1)(本小题5分)∵DE ∥AC ,AE ∥BD ,∴四边形DEAP 为平行四边形(2分),∵ABCD 为矩形,∴AP =21AC ,DP =21BD ,AC =BD ,∴AP =PD ,PD =CP(4分),∴四边形DEAP 为菱形(5分);(2)(本小题5分)∵四边形DEAP 为菱形,∴AE =PD ,∵AE =CD ,∴PD =CD(2分),∵PD =CP(上小题已证),∴△PDC 为等边三角形(4分),∴∠DPC=60°(5分).24.(本题10分)(1)(本小题5分)汽车速度为(30-10)÷15×60=80km/h(2分),函数表达式为x y 8010+=(5分);(2)(本小题5分)由250=10+80x ,得x =3,即到达B 站时为11点(2分),如果按原速行驶,那么汽车11点45分到达C 站(5分).25.(本题12分)(1) (本小题4分)∵点C 到y 轴距离为2,点C 在直线1l 上,∴点C (2,-3)(2分),∵点C 在直线2l 上,把C 的坐标代入y=mx-4m ,得m =23,∴2l 的解析式为623-=x y (4分);(2) (本小题4分)易求点D 为(1,0),点A 为(4,0)(2分),∴△ADC 的面积为21×(4-1)×3=29(4分); (3) (本小题4分)∵点P 在第一象限的角平分线上,∴设点P 为(x ,x ),∵△ADP 的面积是△ADC的面积的2倍等于9(2分),∴21×3 x =9,x =6,∴点P 的坐标为(6,6)(4分) .26.(本题14分)(1)(本小题4分)如右图,∵点A 、D ′、C 在同一直线上,∴ D ′C =AC -AD ′=AC -AD =589-(4分) ;(2)(本小题4分)连接D ′D ,∵点D ′在BC 的垂直平分线上,∴点D ′在AD 的垂直平分线上,∴D ′D =AD ′=AD(2分),设DE 为x ,易得AE =2x ,由勾股定理得:2225)2(=-x x ,∴x=325(或335)(4分) ; (3)(本小题6分)分两种情况讨论:①当点D′在矩形内部时,如下左图,连接D′B,∵点D′在AB 的垂直平分线上,∴AN =4,∵AD′=5,由勾股定理得D′N=3,∴D′M=2,设DE 为y ,∴EM =4-y ,D′E =y ,在△EMD ′中,由勾股定理得:2222)4(+-=y y ,∴y =25,即DE 的长为25(3分); 26题(1)小题答案图D′ECBAD26题(2)小题答案图DABCED′#精品期末模拟试题# ②当点D′在矩形外部时,如下右图,连接D′B,同①的方法可得D′N=3,∴D′M=8,设DE 为z ,∴EM =z -4,D′E =z ,在△EMD ′中,由勾股定理得:2228)4(+-=z z ,∴z =10 ,即DE 的长为10(6分).综上所述,点D′ 刚好落在线段AB 的垂直平分线上时,DE 的长为25或10. NM 26题(3)小题答案图1D A B C E D′26题(3)小题答案图2M N D′E CB A D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年江苏省宿迁市沭阳县八年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)下面的四幅简笔画是从文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.2.(3分)下列各数中,﹣,0.131131113……,﹣π,,﹣,无理数的个数有()A.1个B.2个C.3个D.4个3.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣14.(3分)下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:5.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+26.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.107.(3分)某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位8.(3分)已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2B.2或C.或D.2或或二、填空题(每小题3分,共30分)9.(3分)16的算术平方根是.10.(3分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是.11.(3分)若的值在两个整数a与a+1之间,则a=.12.(3分)在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为.13.(3分)在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD=.14.(3分)已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,2),则关于x、y的二元一次方程组的解是.15.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为.16.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.17.(3分)如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是.18.(3分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点,已知点A(0,4),点B 是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m,当m=3时,则点B的横坐标是.三、解答题(共96分)19.(8分)求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.20.(8分)已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2,求a+b值.21.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.22.(8分)如图,一次函数y=kx+b图象经过点(0,3)和(4,0).(1)求这个一次函数的关系式;(2)当x时,y>0.23.(10分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC 于N,若BM=2,CN=3,求线段MN的长.24.(10分)如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.25.(10分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动.甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4副,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x (盒),在甲店购买的付款数为y 甲(元),在乙店购买的付款数为y 乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x 之间的函数关系式. (2)就乒乓球盒数讨论去哪家商店买合算?26.(10分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的顶点上,点E 在BC 边上,且点E 在小正方形的顶点上,连接AE .(1)在图中画出△AEF ,使△AEF 与△AEB 关于直线AE 对称,点F 与点B 是对称点; (2)请直接写出△AEF 与四边形ABCD 重叠部分的面积.27.(12分)如图,直角坐标系xOy 中,一次函数y =﹣x +5的图象l 1分别与x 、y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC :S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.28.(12分)如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .(1)当∠BDA =110°时,∠EDC = °,∠DEC = °;点D 从B 向C 的运动过程中,∠BDA 逐渐变 (填“大”或“小”);(2)当DC 等于多少时,△ABD ≌△DCE ,请说明理由.(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数,若不可以,请说明理由.2018-2019学年江苏省宿迁市沭阳县八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下面的四幅简笔画是从文化活动中抽象出来的,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)下列各数中,﹣,0.131131113……,﹣π,,﹣,无理数的个数有()A.1个B.2个C.3个D.4个【分析】根据立方根的概念、算术平方根的概念、无理数的概念判断即可.【解答】解:﹣=﹣2,=5,﹣,是有理数,0.131131113……,﹣π,是无理数,故选:B.【点评】本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.3.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1B.a=﹣5,b=1C.a=5,b=﹣1D.a=﹣5,b=﹣1【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选:D.【点评】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.4.(3分)下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.5.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+2【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.【解答】解:直线y=2x向下平移2个单位得到的函数解析式为y=2x﹣2.故选:C.【点评】本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+m.6.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.10【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:C.【点评】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.7.(3分)某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位【分析】根据近似数的精确度求解.【解答】解:1.36×105精确到千位.故选:D.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.8.(3分)已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2B.2或C.或D.2或或【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x﹣2与5是对应边,或3x﹣2与7是对应边,计算发现,3x﹣2=5时,2x﹣1≠7,故3x﹣2与5不是对应边.【解答】解:∵△ABC与△DEF全等,当3x﹣2=5,2x+1=4,x=,把x=代入2x+1中,2x﹣1≠4,∴3x﹣2与5不是对应边,当3x﹣2=4时,x=2,把x=2代入2x+1中,2x+1=5,故选:A.【点评】此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.二、填空题(每小题3分,共30分)9.(3分)16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.10.(3分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是﹣1.【分析】直接把点(m,n)代入函数y=2x+1即可得出结论.【解答】解:∵点(m,n)在函数y=2x+1的图象上,∴2m+1=n,即2m﹣n=﹣1.故答案为:﹣1.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.(3分)若的值在两个整数a与a+1之间,则a=2.【分析】利用”夹逼法“得出的范围,继而也可得出a的值.【解答】解:∵2=<=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.12.(3分)在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为(1,2).【分析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.【解答】解:点A(﹣1,0)向右跳2个单位长度,即﹣1+2=1,向上2个单位,即:0+2=2,∴点A′的坐标为(1,2).故答案为:(1,2).【点评】本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.13.(3分)在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD=5.【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:∵∠ACB=90°,CD是AB边上的中线,∴CD=AB=×10=5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.14.(3分)已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,2),则关于x、y的二元一次方程组的解是.【分析】根据两个一次函数的交点坐标为(﹣4,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,2),即x=﹣4,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为4.【分析】直接根据角平分线的性质可得出结论.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,∴点D到AB的距离为4.故答案为:4.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.16.(3分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.17.(3分)如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是19.【分析】在直角三角形ABE中,由AE与BE的长,利用勾股定理求出AB的长,由正方形面积减去直角三角形面积求出阴影部分面积即可.【解答】解:∵AE⊥BE,∴∠AEB=90°,在Rt△ABE中,AE=3,BE=4,根据勾股定理得:AB ==5,则S 阴影=S 正方形﹣S △ABE =52﹣×3×4=25﹣6=19, 故答案为:19.【点评】此题考查了勾股定理,以及正方形的性质,熟练掌握勾股定理是解本题的关键.18.(3分)在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m ,当m =3时,则点B 的横坐标是 3或4 .【分析】直接利用已知画出符合题意的三角形进而得出答案.【解答】解:如图所示:当△AOB 内部(不包括边界)的整点个数为m , m =3,点B 的横坐标是:3或4. 故答案为:3或4.【点评】此题主要考查了坐标与图形的性质,正确画出三角形是解题关键. 三、解答题(共96分) 19.(8分)求出下列x 的值: (1)4x 2﹣81=0; (2)8(x +1)3=27.【分析】(1)先将x 2的系数化为1,再利用平方根的定义计算可得; (2)两边都除以8,再利用立方根的定义得出x +1的值,从而得出答案. 【解答】解:(1)∵4x 2﹣81=0, ∴4x 2=81,则x2=,∴x=±;(2)∵8(x+1)3=27,∴(x+1)3=,则x+1=,解得x=.【点评】本题考查立方根、平方很,解答本题的关键是明确它们各自的含义.20.(8分)已知某正数的两个平方根分别是a+3和2a﹣15,b的立方根是﹣2,求a+b值.【分析】根据一个正数的两个平方根互为相反数可以求得a的值,根据b的立方根是﹣2,可以求得b的值,从而可以求得a+b的值.【解答】解:根据题意知a+3+2a﹣15=0,且b=(﹣2)3,∴a=4,b=﹣8,则a+b=4+(﹣8)=﹣4.【点评】本题考查立方根、平方根,解答本题的关键是明确它们各自的含义.21.(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.【分析】(1)直接利用勾股定理结合网格得出符合题意的答案;(2)直接利用勾股定理结合网格得出符合题意的答案.【解答】解:(1)如图1所示:正方形ABCD即为所求;(2)如图2所示:三角形ABC即为所求.【点评】此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.22.(8分)如图,一次函数y=kx+b图象经过点(0,3)和(4,0).(1)求这个一次函数的关系式;(2)当x<4时,y>0.【分析】(1)利用待定系数法求一次函数解析式解答;(2)根据函数图象写出x轴上方部分的x的取值范围即可.【解答】解:(1)∵一次函数y=kx+b图象经过点(0,3)和(4,0)∴b=3,且4k+b=0,∴k=﹣,∴该函数的关系式为y=﹣x+3;(2)x<4时,y>0;故答案为:<4.【点评】本题考查了待定系数法求一次函数解析式,综合掌握一次函数的性质是解题的关键.23.(10分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC 于N,若BM=2,CN=3,求线段MN的长.【分析】先根据平行线的性质,得出∠MEB=∠CBE,∠NEC=∠BCE,再根据∠ABC和∠ACB的平分线交于点E,得出∠MBE=∠EBC,∠NCE=∠BCE,最后根据ME=MB,NE=NC,求得MN的长即可.【解答】解:∵MN∥BC,∴∠MEB=∠CBE,∠NEC=∠BCE,∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE,∴∠MEB=∠MBE,∠NEC=∠NCE,∴ME=MB,NE=NC,∴MN=ME+NE=BM+CN=5,故线段MN的长为5.【点评】本题主要考查了平行线的性质以及等腰三角形的判定,解题时注意:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.24.(10分)如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.【分析】先求出∠ACB=∠ECD,再利用“角边角”证明△ABC和△EDC全等,然后根据全等三角形对应边相等证明即可.【解答】证明:∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE,即∠ACB=∠ECD,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴BC=DC.【点评】本题考查了全等三角形的判定与性质,求出相等的角∠ACB=∠ECD是解题的关键,也是本题的难点.25.(10分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动.甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4副,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x (盒),在甲店购买的付款数为y 甲(元),在乙店购买的付款数为y 乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x 之间的函数关系式. (2)就乒乓球盒数讨论去哪家商店买合算?【分析】(1)直接根据题中甲乙两店的促销方式列式即可;(2)分别根据y 甲=y 乙时,y 甲>y 乙时,y 甲<y 乙时列出对应式子求解即可. 【解答】解:(1)甲:y 甲=20×4+5(x ﹣4)=60+5x (x ≥4); 乙:y 乙=4.5x +72(x ≥4).(2)y 甲=y 乙时,60+5x =4.5x +72,解得x =24,即当x =24时,到两店一样合算; y 甲>y 乙时,60+5x >4.5x +72,解得x >24,即当x >24时,到乙店合算;y 甲<y 乙时,60+5x <4.5x +72,x ≥4,解得4≤x <24,即当4≤x <24时,到甲店合算. 【点评】解答这类问题时,先建立函数关系式,然后再分类讨论.26.(10分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的顶点上,点E 在BC 边上,且点E 在小正方形的顶点上,连接AE .(1)在图中画出△AEF ,使△AEF 与△AEB 关于直线AE 对称,点F 与点B 是对称点; (2)请直接写出△AEF 与四边形ABCD 重叠部分的面积.【分析】(1)根据AE 为网格正方形的对角线,作出点B 关于AE 的对称点F ,然后连接AF 、EF 即可; (2)根据图形,重叠部分为两个直角三角形的面积的差,列式计算即可得解. 【解答】解:(1)△AEF 如图所示;(2)重叠部分的面积=×4×4﹣×2×2 =8﹣2 =6.【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.27.(12分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x、y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC :S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC ﹣S△BOC的值;(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;于是得到结论.【解答】解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣x +5,令x =0,则y =5;令y =0,则x =10, ∴A (10,0),B (0,5), ∴AO =10,BO =5,∴S △AOC ﹣S △BOC =(×10×4):(×5×2)=20:5=4:1;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =; 当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣;故k 的值为或2或﹣.【点评】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.28.(12分)如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .(1)当∠BDA =110°时,∠EDC = 30 °,∠DEC = 110 °;点D 从B 向C 的运动过程中,∠BDA 逐渐变 小 (填“大”或“小”);(2)当DC 等于多少时,△ABD ≌△DCE ,请说明理由.(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数,若不可以,请说明理由.【分析】(1)由平角的定义和三角形外角的性质可求∠EDC,∠DEC的度数,由三角形内角和定理可判断∠BDA的变化;(2)当DC=2时,由“AAS”可证△ABD≌△DCE;(3)分AD=DE,DE=AE两种情况讨论,由三角形内角和和三角形外角的性质可求∠BDA的度数.【解答】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形【点评】本题是三角形综合题,考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,灵活运用相关的性质定理、综合运用知识是解题的关键,注意分情况讨论思想的应用.。

相关文档
最新文档