神木县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
神木县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
神木县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假设的内容应为( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 、b 不都能被5整除D .a 不能被5整除 2. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C.()D.()3. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.4. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( ) A .y=x ﹣4 B .y=2x ﹣3 C .y=﹣x ﹣6 D .y=3x ﹣25. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .B .C .D .6. 利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度,如果k >5.024,那么就有把握认为“X 和Y 有关系”的百分比为( )P (K 2>k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.7081.3232.072 2.7063.8415.0246.6357.879 10.828A .25%B .75%C .2.5%D .97.5%7. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( )A .1-B .C .1-或D .1-或2-DABCO8. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)9. 设a ,b ∈R 且a+b=3,b >0,则当+取得最小值时,实数a 的值是( )A .B .C .或 D .310.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .11.若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .212.下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=二、填空题13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.方程(x+y ﹣1)=0所表示的曲线是 .15.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .16.命题p :∀x ∈R ,函数的否定为 .17.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .18.在(x 2﹣)9的二项展开式中,常数项的值为 .三、解答题19.已知全集U=R ,集合A={x|x 2﹣4x ﹣5≤0},B={x|x <4},C={x|x ≥a}.(Ⅰ)求A ∩(∁U B ); (Ⅱ)若A ⊆C ,求a 的取值范围.20.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.21.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.22.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.23.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式 (2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。
神木县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
神木县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A .B .C .D .2. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .303. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A .B .C .1:D (1 4. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .45. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力. 6. 下列函数中哪个与函数y=x 相等( )A .y=()2B .y=C .y=D .y=7. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3 D .﹣1或﹣38. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -9. 函数是( )A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数10.下列命题中正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”C.“”是“”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是“”11.直线在平面外是指()A.直线与平面没有公共点B.直线与平面相交C.直线与平面平行D.直线与平面最多只有一个公共点12.已知直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8平行,则实数m的值为()A.﹣7 B.﹣1 C.﹣1或﹣7 D.二、填空题13.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为.14.(lg2)2+lg2•lg5+的值为.15.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.16.若实数x,y满足x2+y2﹣2x+4y=0,则x﹣2y的最大值为.17.若双曲线的方程为4x2﹣9y2=36,则其实轴长为.18.若x,y满足线性约束条件,则z=2x+4y的最大值为.三、解答题19.计算:(1)8+(﹣)0﹣;(2)lg25+lg2﹣log29×log32.20.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.(1)证明:BC 1∥平面ACD 1.(2)当时,求三棱锥E ﹣ACD 1的体积.21.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.22.已知函数f(x)=,求不等式f(x)<4的解集.23.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.(1)求B;(2)若b=2,求△ABC面积的最大值.24.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α神木县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C 选项. 故选:C .【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.2. 【答案】D 【解析】试题分析:分段间隔为50301500,故选D. 考点:系统抽样 3. 【答案】D 【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 4. 【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C .5. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .6. 【答案】B【解析】解:A .函数的定义域为{x|x ≥0},两个函数的定义域不同. B .函数的定义域为R ,两个函数的定义域和对应关系相同,是同一函数.C .函数的定义域为R ,y=|x|,对应关系不一致.D .函数的定义域为{x|x ≠0},两个函数的定义域不同.故选B .【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.7. 【答案】A【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得 a=﹣3,或a=1. 故选:A .8. 【答案】A 【解析】试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z +=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算. 9. 【答案】B【解析】解:因为==cos (2x+)=﹣sin2x .所以函数的周期为: =π. 因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.故选B .【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.10.【答案】 D【解析】解:若命题p 为真命题,命题q 为假命题,则命题“p ∧q ”为假命题,故A 不正确; 命题“若xy=0,则x=0”的否命题为:“若xy ≠0,则x ≠0”,故B 不正确;“”⇒“+2k π,或,k ∈Z ”,“”⇒“”,故“”是“”的必要不充分条件,故C 不正确;命题“∀x ∈R ,2x>0”的否定是“”,故D 正确.故选D .【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.11.【答案】D【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,∴直线在平面外,则直线与平面最多只有一个公共点.故选D.12.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.二、填空题13.【答案】.【解析】解:∵a是甲抛掷一枚骰子得到的点数,∴试验发生包含的事件数6,∵方程x2+ax+a=0 有两个不等实根,∴a2﹣4a>0,解得a>4,∵a是正整数,∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.14.【答案】1.【解析】解:(lg2)2+lg2•lg5+=lg2(lg2+lg5)+lg5=lg2+lg5=1,故答案为:1.15.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.16.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y过图形上的点A的坐标,即可求解.【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,即圆心为(1,﹣2),半径为的圆,(如图)设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.故答案为:10.17.【答案】6.【解析】解:双曲线的方程为4x2﹣9y2=36,即为:﹣=1,可得a=3,则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.18.【答案】38.【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=2×3+4×8=6+32=32,故答案为:38三、解答题19.【答案】【解析】解:(1)8+(﹣)0﹣=2﹣1+1﹣(3﹣e ) =e ﹣.(2)lg25+lg2﹣log 29×log 32 ===1﹣2=﹣1.…(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.20.【答案】【解析】(1)证明:∵AB ∥C 1D 1,AB=C 1D 1,∴四边形ABC 1D 1是平行四边形,∴BC 1∥AD 1,又∵AD 1⊂平面ACD 1,BC 1⊄平面ACD 1, ∴BC 1∥平面ACD 1.(2)解:S △ACE =AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.21.【答案】【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,∴EDEPEF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 29=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .∴415=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2∴)29427(4152+⨯=PA ,解得4315=PA .……………………10分22.【答案】【解析】解:函数f(x)=,不等式f(x)<4,当x≥﹣1时,2x+4<4,解得﹣1≤x<0;当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1.综上x∈(﹣3,0).不等式的解集为:(﹣3,0).23.【答案】【解析】(本小题满分12分)解:(1)∵bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,∴B=…(2)△ABC的面积.由已知及余弦定理,得.又a2+c2≥2ac,故ac≤4,当且仅当a=c时,等号成立.因此△ABC面积的最大值为…24.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.。
神木县外国语学校2018-2019学年上学期高二数学12月月考试题含解析
神木县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)2. sin 3sin1.5cos8.5,,的大小关系为( ) A .sin1.5sin 3cos8.5<< B .cos8.5sin 3sin1.5<< C.sin1.5cos8.5sin 3<<D .cos8.5sin1.5sin 3<<3. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( ) A .1 B. C.D.4. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 5. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α6. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .2015227. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)8. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|9. 已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值等于( ) A .0.1 B .0.2 C .0.4 D .0.610.设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题. 11.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( ) A. B. C.D.12.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内二、填空题13.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .14.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 15.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .16.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.17.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .18.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考的好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的两人说对了.三、解答题19.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C1的直角坐标方程和C2的普通方程;(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.20.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()ABCD21.已知函数f(x)=(log2x﹣2)(log4x﹣)(1)当x∈[2,4]时,求该函数的值域;(2)若f(x)>mlog2x对于x∈[4,16]恒成立,求m的取值范围.22.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.23.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,(Ⅰ)求数列{b n}的通项公式;(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.24.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1C;(2)求二面角C1﹣AB﹣C的余弦值.神木县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.2. 【答案】B 【解析】试题分析:由于()cos8.5cos 8.52π=-,因为8.522πππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,∴cos8.5sin 3sin1.5<<. 考点:实数的大小比较.3. 【答案】D【解析】解:设函数y=f (x )﹣g (x )=x 2﹣lnx ,求导数得=当时,y ′<0,函数在上为单调减函数,当时,y ′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t 的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x 2>lnx 恒成立,问题转化为求两个函数差的最小值对应的自变量x 的值.4. 【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 5. 【答案】D【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线; 故选:D .6. 【答案】C 【解析】试题分析:因为函数22()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()1010f f -≤⎧⎪⎨≤⎪⎩,解得3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等比数列,T 122015...a a a =,201521...T a a a =,两式相乘,根据等比数列的性质得()()2015201521201513T a a ==⨯,T =201523,故选C.考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.7. 【答案】C【解析】解:由f (x )=x 2﹣6x+7=(x ﹣3)2﹣2,x ∈(2,5]. ∴当x=3时,f (x )min =﹣2.当x=5时,.∴函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是[﹣2,2]. 故选:C .8. 【答案】D【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.9. 【答案】A【解析】解:∵随机变量ξ服从正态分布N (2,o 2), ∴正态曲线的对称轴是x=2 P (0<X <4)=0.8,∴P (X >4)=(1﹣0.8)=0.1, 故选A .10.【答案】D【解析】由绝对值的定义及||2x ≤,得22x -≤≤,则{}|22A x x =-≤≤,所以{}1,2A B =,故选D.11.【答案】 C【解析】解:设四面体的内切球的球心为O , 则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).12.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.二、填空题13.【答案】①③④.【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x2﹣4x﹣5=0,但当x2﹣4x﹣5=0时,不能推出x一定等于5,故“x=5”是“x2﹣4x﹣5=0”成立的充分不必要条件,故②错误;③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正确;④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④.14.【答案】(﹣4,0].【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.15.【答案】±(7﹣i).【解析】解:设z=a+bi(a,b∈R),∵(1+3i)z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===,|ω|=,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i).故答案为±(7﹣i).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.16.【答案】【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,∴m=4.答案:417.【答案】70.【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C8r x8﹣2r令8﹣2r=0得r=4则其常数项为C84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.18.【答案】乙,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。
神木县第二中学2018-2019学年上学期高二数学12月月考试题含解析
神木县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.一个椭圆的半焦距为2,离心率e=,则它的短轴长是()A.3 B.C.2D.62.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2 C.3 D.63.若全集U={﹣1,0,1,2},P={x∈Z|x2<2},则∁U P=()A.{2} B.{0,2} C.{﹣1,2} D.{﹣1,0,2}4.已知函数f(x)=3cos(2x﹣),则下列结论正确的是()A.导函数为B.函数f(x)的图象关于直线对称C.函数f(x)在区间(﹣,)上是增函数D.函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到5.已知向量=(1,),=(,x)共线,则实数x的值为()A.1 B.C.tan35°D.tan35°6.设a∈R,且(a﹣i)•2i(i为虚数单位)为正实数,则a等于()A.1 B.0 C.﹣1 D.0或﹣17.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于()A.7 B.9 C.11 D.138.如图所示,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则()A .x=﹣B .x=C .x=﹣D .x=9. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C .2D .110.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.11.若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、7812.有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25B .20,15,15C .10,10,30D .10,20,20二、填空题13.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是14.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .15.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n =,则循环小数0. 的分数形式是 .16.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1); ②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx ﹣2)+f (x )<0恒成立,则x 的取值范围为_____. 18.△ABC 中,,BC=3,,则∠C=.三、解答题19.已知,且.(1)求sin α,cos α的值;(2)若,求sin β的值.20.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.21.已知函数f (x )=log a (x 2+2),若f (5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).22.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.23.双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线.求双曲线C的方程.24.设0<a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.(1)求集合D(用区间表示)(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.神木县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.2.【答案】D【解析】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.3.【答案】A【解析】解:∵x2<2∴﹣<x<∴P={x∈Z|x2<2}={x|﹣<x<,x∈Z|}={﹣1,0,1},又∵全集U={﹣1,0,1,2},∴∁U P={2}故选:A.4.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.5.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.6.【答案】B【解析】解:∵(a﹣i)•2i=2ai+2为正实数,∴2a=0,解得a=0.故选:B.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.7.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.8.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=, 故选:A .【点评】本题考查了空间向量的应用问题,是基础题目.9. 【答案】【解析】选C.由题意得log 2(a +6)+2log 26=9. 即log 2(a +6)=3,∴a +6=23=8,∴a =2,故选C. 10.【答案】A. 【解析】11.【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-12.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B .【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.二、填空题13.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x ,使得在直线的下方.因为,故当时,,函数单调递减;当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.14.【答案】 38 .【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y 得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A 时,直线y=﹣x+的截距最大,此时z 最大,由,解得,即A (3,8),此时z=2×3+4×8=6+32=32, 故答案为:3815.【答案】 .【解析】解:0. = ++…+==,故答案为:.【点评】本题考查数列的极限,考查学生的计算能力,比较基础.16.【答案】 .【解析】解:由得,所以.又由f (x )g'(x )>f'(x )g (x ),即f (x )g'(x )﹣f'(x )g (x )>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.17.【答案】2 2,3⎛⎫-⎪⎝⎭【解析】18.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C 为三角形的内角,且c <a , ∴0<∠C <,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C 的范围.三、解答题19.【答案】【解析】解:(1)将sin +cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos 2=1+sin α=,∴sin α=,∵α∈(,π),∴cos α=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin (α+β)=﹣<0,∴α+β∈(π,),∴cos (α+β)=﹣=﹣,则sin β=sin=sin (α+β)cos α﹣cos (α+β)sin α=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.20.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解.21.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…22.【答案】【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.23.【答案】【解析】解:设双曲线方程为(a>0,b>0)由椭圆+=1,求得两焦点为(﹣2,0),(2,0),∴对于双曲线C:c=2.又y=x为双曲线C的一条渐近线,∴=解得a=1,b=,∴双曲线C的方程为.24.【答案】【解析】解:(1)令g(x)=2x2﹣3(1+a)x+6a,△=9(1+a)2﹣48a=9a2﹣30a+9=3(3a﹣1)(a﹣3).①当时,△≥0,方程g(x)=0的两个根分别为,所以g(x)>0的解集为因为x1,x2>0,所以D=A∩B=②当时,△<0,则g(x)>0恒成立,所以D=A∩B=(0,+∞)综上所述,当时,D=;当时,D=(0,+∞).(2)f′(x)=6x2﹣6(1+a)x+6a=6(x﹣a)(x﹣1),令f′(x)=0,得x=a或x=1,①当时,由(1)知D=(0,x1)∪(x2,+∞)因为g(a)=2a2﹣3(1+a)a+6a=a(3﹣a)>0,g(1)=2﹣3(1+a)+6a=3a﹣1≤0所以0<a<x1<1≤x2,②当时,由(1)知D=(0,+∞)综上所述,当时,f(x)有一个极大值点x=a,没有极小值点;当时,f(x)有一个极大值点x=a,一个极小值点x=1.。
2018-2019学年度第二学期陕西省榆林市神木中学高二数学理科第四次阶段测试(含答案)
2018-2019学年度第二学期神木中学高二年级第四次阶段测试数学(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A={y|y=x 2},集合B ={x|y=1-x 2},则A∩B 等于( )A .(0,1)B .[0,1]C .[0,+∞)D .[-1,1] 2.lg2−lg 15−e ln2-1214-⎛⎫⎪⎝⎭的值为( )A .-1B .12C .-3D .-53.已知集合A 到B 的映射f :x→y=x 2+1,则集合B 中像5在A 中对应的原像是( )A .26B .2C .-2D .±24.下列选项中,两个函数表示同一函数的是( )A .y=xx,y=1 B .y=x ,y=|x|C .y=x ,y=lne xD .y=(x-1)2,y=3(x-1)3 5.下列求导运算正确的是( )A .(cosx )'=sinxB .(3x )'=x•3x-1C .(xlnx )'=lnx+1D .(sin π3)′=cos π36.函数y=e x +e -xx2的图像大致为( )A .B .C .D .7.已知函数f (x )=x 2-ax+2(a ∈R )在区间[1,+∞)上单调递增,则a 的取值范围为( )A .(2,+∞)B .[2,+∞)C .(-∞,2)D .(-∞,2]8.设函数f (x )的定义域为R ,则“函数y=|f (x )|的图像关于y 轴对称”是“函数f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.设函数f (x )在R 上可导,其导函数为f '(x ),且函数f (x )在x=-2处取得极小值,则函数y=x•f '(x )的图像可能是( )A .B .C .D .10.下列有关命题的叙述错误..的是( ) A .命题“∀x ∈(0,+∞),x-lnx >0”的否定是“∃x 0∈(0,+∞),x 0-lnx 0≤0”B .命题“x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”C .若“¬(p ∧q )”为真命题,则命题p 、q 中至多有一个为真命题D .命题“∀x ∈R ,x 2+3x+1>0”是真命题11.已知f (x )=21,1242,1x x x x x ⎧⎛⎫≤⎪ ⎪⎨⎝⎭⎪-+->⎩,若关于x 的方程f(x)=a 恰有两个不同的实根,则实数a 的取值范围是( )A .(-∞,12)∪[1,2)B .(0,12)∪[1,2) C .(1,2) D .[1,2)12.已知函数y=f (x-1)的图像关于点(1,0)对称,当x ∈(0,+∞)时,f (x )+xf ′(x )<0成立,若a=20.2f (20.2),b=ln2f (ln2),c=12log 4f (12log 4),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .b >a >cD .a >c >b二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.若函数g (x )是f (x )=log 2x 的反函数,则f (g (2))= .14.已知函数f (x )=xlnx+a 的图像在x=e 处的切线经过原点,则实数f (1)= . 15.若函数f (x )=e x -ax 在[0,1]上单调递减,则实数a 的取值范围是 . 16.已知定义在R 上的函数f (x )满足f (x+6)=f (x ).当-3≤x <-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x .则f (1)+f (2)+…+f (2 019)= .三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合M={x|-2≤x≤5},N={x|a+1≤x≤2a -1}. (Ⅰ)若a=3,求M ∪(∁R N );(Ⅱ)若N ⊆M ,求实数a 的取值范围.18.(本小题满分12分)已知函数f(x)=a x-2(a>0,且a≠1)的图像经过点(3,0.5).(Ⅰ)求a的值;(Ⅱ)求函数f(x)=a x-2(x≥0)的值域.19.(本小题满分12分)已知函数f(x)=x3-6x2+9x+a.(Ⅰ)求f(x)在区间[-2,2]上的最值;(Ⅱ)若f(x)有且只有两个零点,求实数a的值.20.(本小题满分12分)已知函数f(x)=log a(ax-1),a>0且a≠1.(Ⅰ)当a=3时,f(x)<1,求x的取值范围;(Ⅱ)若f(x)在[3,6]上的最大值大于0,求a的取值范围.21.(本小题满分12分)近年来,中美贸易摩擦不断,特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,而且海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万元,每生产x千部手机,需另投入成本R(x)万元,且R(x)=210100,040100007019450,40x x xx xx⎧+<<⎪⎨+-≥⎪⎩.由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润W(x)(万元)关于年产量x(千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年的产量为多少(千部)时,该企业所获利润最大?最大利润是多少?22.(本小题满分12分)已知函数f (x )=alnx+12x 2-(a+1)x (a ∈R ).(Ⅰ)当a=2时,求函数f (x )的单调区间;(Ⅱ)若f (x )≤0在[1,+∞)上有解,求a 的取值范围.附加题(10分)已知二次函数f (x )=ax 2+bx+c (a ,b ,c ∈R ),对任意实数x ,不等式2x≤f(x)≤12(x+1)2恒成立.(Ⅰ)求a 的取值范围;(Ⅱ)若对任意x 1,x 2∈[-3,-1],恒有|f (x 1)﹣f (x 2)|≤1,求a 的取值范围.参考答案一、选择题1.B2.C3.D4.C5.C6.A7.D8.B9.C 10.D 11.B 12.C二、填空题13.214.e15. [e,+∞)16.338三、解答题17.(本小题满分10分)解:(Ⅰ)当a=3时,N={x|4≤x≤5},∴∁R N={x|x<4或x>5},∴M∪(∁R N)=R.………………………………………………(5分)(Ⅱ)①当2a-1<a+1,即a<2时,N=∅,此时满足N⊆M;②当2a-1≥a+1,即a≥2时,N≠∅,由N⊆M,得12215aa+≥-⎧⎨-≤⎩,得-3≤a≤3,∴2≤a≤3.综上,实数a的取值范围为(-∞,3].…………………………(10分)18.(本小题满分12分)解:(Ⅰ)∵函数f(x)=a x-2的图像经过点(3,0.5),∴a3-2=0.5,得a=1 2.…………………………………………(6分)(Ⅱ)由(Ⅰ)可知,f(x)=(12)x−2,x≥0,∴f(x)在[0,+∞)上单调递减,∴f(x)max=f(0)=(12)−2=4,又∵f(x)>0,∴函数f(x)的值域为(0,4].…………………………(12分)19.(本小题满分12分)解:(Ⅰ)f '(x)=3x2-12x+9,令f '(x)=0,得x=1或x=3(舍去),∴f(x)在[-2,1)上单调递增,在(1,2]上单调递减,∵f(1)=4+a,f(-2)=-50+a,f(2)=2+a,∴在区间[-2,2]上,f(x)min=-50+a,f(x)max=4+a.……(6分)(Ⅱ)令f(x)=x3-6x2+9x+a=0,可得a=-x3+6x2-9x,设g(x)=-x3+6x2-9x,则g'(x)=-3x2+12x-9,令g'(x)=0,得x=1或x=3,列表如下:要使a=-x 3+6x 2-9x 有且只有两个零点,只需直线y=a 与g (x )的图像有两个不同的交点,∴实数a 的值为-4或0.………………………………………………(12分)20.(本小题满分12分) 解:(Ⅰ)当a=3时,f (x )<1可化为:log 3(3x-1)<1,即0<3x-1<3,解得:13<x <43,∴x 的取值范围为(13,43).……………………………………(6分)(Ⅱ)∵a >0且a≠1,∴y=ax-1在[3,6]上单调递增,当a >1时,函数f (x )=log a (ax-1)在[3,6]上单调递增,∴log a (6a-1)>0,即6a-1>1,解得a >13,∴a >1;当0<a <1时,函数f (x )=log a (ax-1)在[3,6]上单调递减, ∴log a (3a-1)>0,即0<3a-1<1,解得13<a <23,∴13<a <23. 综上可得:a 的取值范围为(13,23)∪(1,+∞).………(12分)21.(本小题满分12分) 解:(Ⅰ)当0<x <40时,W (x )=700x-(10x 2+100x )-250=-10x 2+600x-250,当x≥40时,W(x)=700x−(701x+10 000x −9 450)−250=−(x+10 000x)+9 200, ∴W(x)=210600250,040100009200,40x x x x x x ⎧-+-<<⎪⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩.…………………………(6分) (Ⅱ)若0<x <40,W (x )=-10(x-30)2+8 750,当x=30时,W (x )max =8 750万元,若x≥40,W(x)=−(x+10 000x)+9 200≤9 200−210 000=9 000,当且仅当x=10 000x时,即x=100时,等号成立, ∴2020年的产量为100千部时,该企业所获利润最大,最大利润是9 000万元. …………………………………………………………………………(12分)22. (本小题满分12分)解:(Ⅰ)f ′(x )=ax +x-(a+1)=(x-1)(x-a )x,当a=2时,f ′(x )=(x-1)(x-2)x ,令f ′(x )>0,得0<x <1或x >2, 令f ′(x )<0,得1<x <2,∴f (x )的单调递增区间为(0,1),(2,+∞),单调递减区间为(1,2). ………………………………………………………………………………(5分) (Ⅱ)f (x )≤0在[1,+∞)上有解,等价于在[1,+∞)上,f (x )min ≤0,f ′(x )=(x-1)(x-a )x,①当a≤1时,f ′(x )≥0,则f (x )在[1,+∞)上单调递增, ∴f (x )min =f (1)=-a-12≤0,得-12≤a≤1;②当a >1时,f (x )在[1,a]上单调递减,在[a ,+∞)上单调递增, ∴f (x )min =f (a )=alna-a 22-a≤0,令g (a )=alna-a 22-a ,则g'(a )=lna-a ,令h (a )=lna-a ,则h'(a )=1a-1<0(a >1),∴h'(a )<0恒成立,故h (a )在(1,+∞)上单调递减, ∴h (a )<h (1)=-1,即g′(a )<-1,∴g (a )在(1,+∞)上单调递减,∴g (a )<g (1)=-32,即当a >1时,f (x )min <-32≤0恒成立.综合①②知:a 的取值范围为[-12,+∞).…………………………(12分)附加题(10分)解:(Ⅰ)由题意可知f (1)≥2,f (1)≤2,∴f (1)=2,∴a+b+c=2,∵对任意实数x 都有f (x )≥2x ,即ax 2+(b-2)x+c≥0恒成立,∴()20240a b ac >⎧⎪⎨--≤⎪⎩, 又a+b+c=2,∴a=c ,b=2-2a ,此时f (x )-12(x+1)2=(a -12)(x -1)2,∵对任意实数x 都有f (x )≤12(x+1)2成立,∴0<a≤12.………………………………………………………(5分)(Ⅱ)对任意x 1,x 2∈[-3,-1]恒有|f (x 1)-f (x 2)|≤1等价于f (x )在[-3,-1]上的最大值与最小值之差M≤1,由(Ⅰ)知,f (x )=ax 2+2(1−a )x +a ,a ∈(0,12],即f (x )=a (x -a -1a )2+2-1a,∴f (x )图像的对称轴为x 0=1-1a∈(−∞,−1],(ⅰ)当-2<x 0≤-1,即13<a ≤12时,M =f (−3)−f (x 0)=16a +1a -8≤1,得13<a≤9+1732. (ⅱ)当-3<x 0≤-2,即14<a ≤13时,M =f (−1)−f (x 0)=4a +1a-4≤1恒成立.(ⅲ)当x 0≤-3,即0<a≤14时,M=f (-1)-f (-3)=4-12a≤1,得a=14.综上可知,14≤a≤9+1732.…………………………………………(10分)。
神木县外国语学校2018-2019学年高二上学期第二次月考试卷数学
神木县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 下列语句所表示的事件不具有相关关系的是( )A .瑞雪兆丰年B .名师出高徒C .吸烟有害健康D .喜鹊叫喜2. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12 D .T 8=T 113. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .4. 设,,a b c R ∈,且a b >,则( ) A .ac bc > B .11a b< C .22a b > D .33a b >5. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点6. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )A .B .C .2015D .7. 椭圆=1的离心率为( ) A .B .C .D .8. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .42C .8D .479. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.10.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >> 11.设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y=0,x ∈R ,y ∈R},则集合M ∩N 中元素的个数为( ) A .1 B .2C .3D .412.在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a二、填空题13.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .14.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .15.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .16.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .17.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .18.在中,角、、所对应的边分别为、、,若,则_________三、解答题19.已知{}n a 是等差数列,{}n b 是等比数列,n S 为数列{}n a 的前项和,111a b ==,且3336b S =,228b S =(*n N ∈).(1)求n a 和n b ; (2)若1n n a a +<,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前项和n T .20.已知p :,q :x 2﹣(a 2+1)x+a 2<0,若p 是q 的必要不充分条件,求实数a 的取值范围.21.数列{a n }的前n 项和为S n ,a 1=1,a n+1=2S n +1,等差数列{b n }满足b 3=3,b 5=9, (1)分别求数列{a n },{b n }的通项公式;(2)若对任意的n ∈N *,恒成立,求实数k 的取值范围.22.设,证明:(Ⅰ)当x >1时,f (x )<( x ﹣1);(Ⅱ)当1<x <3时,.23.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1xxe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.24.甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下:甲:78 76 74 90 82乙:90 70 75 85 80(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由.神木县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D.【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.2.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C3.【答案】C【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,故选C.【点评】本题主要考查不等式的基本性质的应用,属于基础题.4.【答案】D【解析】考点:不等式的恒等变换.5.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f(x)在(﹣1,0)上恰有一个零点;故选B.【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.6.【答案】D【解析】解:∵2S n=a n+,∴,解得a1=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.验证:2S=…+=,n==,因此满足2S n=a n+,∴.∴S n=.∴S2015=.故选:D.【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.7.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D .【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.8. 【答案】A 【解析】考点:三视图.【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图. 9. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.10.【答案】A 【解析】考点:棱锥的结构特征. 11.【答案】B【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)|}将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M∩N中元素的个数为2个,故选B.【点评】本题既是交集运算,又是函数图形求交点个数问题12.【答案】C【解析】考点:等差数列的通项公式.二、填空题13.【答案】2016.【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a2015=a1+2014e=2e+2014e=2016e.故答案为:2016e.【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.14.【答案】(﹣3,21).【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.15.【答案】6.【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,∴f(x)﹣2x=a,即f(x)=a+2x,∴当x=a时,又∵a+2a=6,∴a=2,∴f(x)=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.16.【答案】9.【解析】解:双曲线﹣=1的a=2,b=3,可得c2=a2+b2=13,又||MF|﹣|MF2||=2a=4,|F1F2|=2c=2,∠F1MF2=90°,1在△F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|﹣|MF2|)2+2|MF1||MF2|,即4c2=4a2+2|MF1||MF2|,可得|MF1||MF2|=2b2=18,即有△F1MF2的面积S=|MF1||MF2|sin∠F1MF2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.17.【答案】 63 .【解析】解:∵第一圈长为:1+1+2+2+1=7 第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23 …第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1 故n=8时,第8圈的长为63, 故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.18.【答案】【解析】 因为,所以,所以 ,所以答案:三、解答题19.【答案】(1)21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=;(2)21n n +. 【解析】试题解析:(1)设{}n a 的公差为d ,{}n b 的公比为,由题意得2(33)36,(2)8,q d q d ⎧+=⎨+=⎩解得2,2,d q =⎧⎨=⎩或2,36.d q ⎧=-⎪⎨⎪=⎩∴21n a n =-,12n n b -=或1(52)3n a n =-,16n n b -=.(2)若+1n n a a <,由(1)知21n a n =-,∴111111()(21)(21)22121n n a a n n n n +==--+-+, ∴111111(1)2335212121n nT n n n =-+-++-=-++….考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用. 20.【答案】【解析】解:由p:⇒﹣1≤x <2,方程x 2﹣(a 2+1)x+a 2=0的两个根为x=1或x=a 2,若|a|>1,则q :1<x <a 2,此时应满足a 2≤2,解得1<|a|≤,当|a|=1,q :x ∈∅,满足条件, 当|a|<1,则q :a 2<x <1,此时应满足|a|<1,综上﹣. 【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键.21.【答案】【解析】解:(1)由a n+1=2S n +1①得a n =2S n ﹣1+1②,①﹣②得a n+1﹣a n =2(S n ﹣S n ﹣1), ∴a n+1=3a n (n ≥2)又a 2=3,a 1=1也满足上式,∴a n =3n ﹣1;b 5﹣b 3=2d=6∴d=3∴b n =3+(n ﹣3)×3=3n ﹣6; (2),∴对n∈N*恒成立,∴对n∈N*恒成立,令,,当n≤3时,c n>c n﹣1,当n≥4时,c n<c n﹣1,,所以实数k的取值范围是【点评】已知数列的项与前n项和间的递推关系求数列的通项,一般通过仿写作差的方法得到数列的递推关系,再据递推关系选择合适的求通项方法.22.【答案】【解析】证明:(Ⅰ)(证法一):记g(x)=lnx+﹣1﹣(x﹣1),则当x>1时,g′(x)=+﹣<0,又g(1)=0,有g(x)<0,即f(x)<(x﹣1);…4′(证法二)由均值不等式,当x>1时,2<x+1,故<+.①令k(x)=lnx﹣x+1,则k(1)=0,k′(x)=﹣1<0,故k(x)<0,即lnx<x﹣1②由①②得当x>1时,f(x)<(x﹣1);(Ⅱ)记h(x)=f(x)﹣,由(Ⅰ)得,h′(x)=+﹣=﹣<﹣=,令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,∴h′(x)<0,…10′因此,h (x )在(1,3)内是递减函数,又由h (1)=0,得h (x )<0,于是,当1<x <3时,f (x )<…12′23.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,12)上无零点,只需要对x ∈(0,12)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;试题解析:(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f (x )>0恒成立,即对恒成立.令,则,再令,则,故m (x )在上为减函数,于是,从而,l (x )>0,于是l (x )在上为增函数,所以,故要使恒成立,只要a ∈[2﹣4ln2,+∞),综上,若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;当a ≠2时,f ′(x )=,x ∈(0,e]当x=时,f ′(x )=0.由题意得,f (x )在(0,e]上不单调,故,即①又因为,当x →0时,2﹣a >0,f (x )→+∞,,所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:即令h (a )=,则h,令h ′(a )=0,得a=0或a=2,故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;当时,h ′(a )<0,函数h (a )单调递减.所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:.④综合①④可知,当a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使f (x i )=g (x 0)成立. 24.【答案】【解析】解:(Ⅰ)用茎叶图表示如下:(Ⅱ)=,==80,= [(74﹣80)2+(76﹣80)2+(78﹣80)2+(82﹣80)2+(90﹣80)2]=32,= [(70﹣80)2+(75﹣80)2+(80﹣80)2+(85﹣80)2+(90﹣80)2]=50,∵=,,∴在平均数一样的条件下,甲的水平更为稳定,应该派甲去.。
【教育资料】2018—2019第一学期期末考试高二理科数学试卷学习精品
教育资源濉溪县2019—2019学年度第一学期期末考试高二理科数学试卷题号 一 二 三 总分得分一、选择题.本大题共有10道小题,每小题4分,共40分.在每小题给出的四个选项中 只有一个是正确的,选出你认为正确的答案代号,填入本大题最后的相应空格内. 1.在中,若225,,cos 43b B A π===则 a = A.B. C.D.2.“2x >”是“24x >”的A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 3.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是 A. a 与b 的和是偶数,则a, b 都是偶数 B. a 与b 的和不是偶数,则a, b 都不是偶数 C. a, b 不都是偶数,则a 与b 的和不是偶数 D. a 与b 的和不是偶数,则a, b 不都是偶数4.曲线221259x y +=与曲线22125-9-x y k k+=(k<9)的A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等5.已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为A .221916x y -=B .221169x y -=C .2212536x y -=D . 2212536y x -=6.抛物线24(0)y ax a =<的焦点坐标是A.(,0)aB.(,0)a -C.(0,)aD. (0,)a -教育资源7.不等式ax 2+bx+2>0的解集是,则a -b 等于A.-4B.14C.-10D.108.已知}{n a 是等差数列,.28,48721=+=+a a a a 则该数列的前10项之和为 A. 64 B. 100 C. 110 D. 1209.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为 A.63 B.108 C.75 D.83 10.已知a =(1,2,3),b =(3,0,-1),c =13,1,55⎛⎫-- ⎪⎝⎭给出下列等式:其中正确的个数是 A.1个 B.2个 C.3个 D.4个 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题.本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 11. 已知ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且A 、B 、C 成等差数列,ABC ∆的面积为23,则ac 的值为____________. 12. 已知x ,y 满足约束条件,则目标函数的取值范围为 .13. 在数列中,,且对于任意+∈N n ,都有,则= .14. 已知点M (1,-1,2),直线AB 过原点O, 且平行于向量(0,2,1),则点M 到直线AB 的距离为__________.15、已知正实数b a 、满足1=+b a ,且m ba ≥+21恒成立,则实数m 的最大值是________. 三、解答题.本题共5小题,满分60分.解答应写出必要的文字说明、演算步骤或证明过程. 16. (本题满分10分)教育资源ABC ∆中,A 、B 、C 的对边分别是a 、b 、c ,且bca B C -=3cos cos . (1)求B sin ; (2)若42,,b ac ABC ==∆求的面积. 17. (本题满分12分)当a ≥ 0时,解关于x 的不等式2(22)40ax a x -++>. 18.(本题满分12分) 已知数列的前n 项和.(1)求数列的通项公式;(2)设,求.19. (本题满分12分)设椭圆)0(1:2222>>=+b a by a x C 的一个顶点与抛物线y x C 34:2=的焦点重合,21,F F 分别是椭圆的左、右焦点,且离心率⋅=21e 且过椭圆右焦点2F 的直线l 与椭圆C 交于NM 、两点.(1)求椭圆C 的方程;(2)是否存在直线l ,使得2-=⋅ON OM .若存在,求出直线l 的方程;若不存在,说明理由.20、(本题满分14分)如图,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,4ABC π∠=, OA ⊥底面ABCD , OA =2,M 为OA 的中点,N 为BC 的中点,以A 为原点,建立适当的空间坐标系,利用空间向量解答以下问题:(Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.濉溪县2019—2019学年度第一学期期末考试高二理科数学试卷参考答案_N_ M_ A _B _D _C _O教育资源一、选择题.1—5 BBDDA 6—10 ACBAD二、填空题.11、2;12、[]4,0;13、4951;14、6;15、223+.三、解答题.16、解:(1)由题意BCA B C sin sin sin 3cos cos -=解得 322s i n 31c o s =∴=B B ……………………………………………………………5分 (2)312cos 222=-+=ac b c a B ,又24,==b c a ∴242=a 28s i n 21s i n212===∴∆B a B ac S ABC .................................10分 解:原不等式可化为(x – 2)(ax – 2) > 0, (2)分(1)当a = 0时,原不等式即为042>+-x ,解得x < 2;…………………………………4分(2)当a > 0时,0)2)(2(>--ax x ,……………………………………………………………5分①若22<a,即a > 1时,解得x <a 2或x >2;②若22>a ,即0<a <1时,解得x < 2或x >a2;…9分③若22=a ,即a =1时,解得x ≠2; ……………………………………………………………11分综上所述,原不等式的解集为:当a = 0时,{}2|<x x ;当0<a <1时,⎭⎬⎫⎩⎨⎧><a x x x 22|或;当a =1时,{}2|≠∈x R x x 且;当a > 1时,⎭⎬⎫⎩⎨⎧><22|x ax x 或.……………………………………………………12分18、解:(1)当时,①…………………………………………………………………………………………4分 当时,,也满足①式5分所以数列的通项公式为……………………………………………………6分教育资源xyz NMABD C OP(2) 10分…12分19、解:椭圆的顶点为)3,0(,即3=b ,22112c b e a a ==-=,解得2=a ,∴椭圆的标准方程为22143x y +=……………………………………………………… 5分 (2)由题可知,直线l 与椭圆必相交.①当直线斜率不存在时,经检验不合题意.……………………………………………………………………………………………6分②设存在直线l 为(1)(0)y k x k =-≠,且11(,)M x y ,22(,)N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, 2122834k x x k +=+212241234k x x k-⋅=+,…………………………………………………8分 所以2±=k ,故直线l 的方程为)1(2-=x y 或)1(2--=x y ………………………12分20、解: 作AP CD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系22222(0,0,0),(1,0,0),(0,,0),(,,0),(0,0,2),(0,0,1),(1,,0)22244A B P D O M N --,…3分 (1)22222(1,,1),(0,,2),(,,2)44222MN OP OD =--=-=-- ………5分 设平面OCD 的法向量为(,,)n x y z =,则0,0=⋅=⋅OD n OP n即 2202222022y z x y z ⎧-=⎪⎪⎨⎪-+-=⎪⎩取2z =,解得(0,4,2)n = ………………………7分MN OCD ∴平面‖ (9)分(2)设AB 与MD 所成的角为θ,22(1,0,0),(,,1)22AB MD ==--∵教育资源,3,21cos πθθ=∴=⋅⋅=∴MD AB MDAB AB 与MD 所成角的大小为3π………12分(3)设点B 到平面OCD 的距离为d ,则d 为OB 在向量(0,4,2)n =上的投影的绝对值, 由 (1,0,2)OB =-, 得23OB n d n⋅==.所以点B 到平面OCD 的距离为23…14分。
神木县第三中学2018-2019学年上学期高二数学12月月考试题含解析
神木县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设数集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b ﹣a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()A.B.C.D.2.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.203.若双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,则此双曲线的离心率等于()A.B.C.D.24.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.165.如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是()A.B.C.+D.++16.函数f(x)=x3﹣3x2+5的单调减区间是()A.(0,2)B.(0,3)C.(0,1) D.(0,5)7.设sin(+θ)=,则sin2θ=()A.﹣B.﹣C.D.8.如图,AB是半圆O的直径,AB=2,点P从A点沿半圆弧运动至B点,设∠AOP=x,将动点P到A,B 两点的距离之和表示为x的函数f(x),则y=f(x)的图象大致为()9.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P﹣DCE三棱锥的外接球的体积为()A.B.C.D.10.“”是“一元二次方程x2+x+m=0有实数解”的()A.充分非必要条件B.充分必要条件C.必要非充分条件D.非充分非必要条件11.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()A .﹣1B .2C .﹣5D .﹣3 12.命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥1二、填空题13.不等式()2110ax a x +++≥恒成立,则实数的值是__________.14.已知(1+x+x 2)(x )n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .15.计算:×5﹣1= .16.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的 两人说对了.17.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.18.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)三、解答题19.已知曲线y=Asin (ωx+φ)(A >0,ω>0)上的一个最高点的坐标为(,),由此点到相邻最低点间的曲线与x 轴交于点(π,0),φ∈(﹣,).(1)求这条曲线的函数解析式; (2)写出函数的单调区间.20.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .21.已知f (x )=lg (x+1)(1)若0<f (1﹣2x )﹣f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,g (x )=f (x ),求函数y=g (x )(x ∈[1,2])的反函数.22.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值.23.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名5595%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌3.841 6.635附:K2=.24.已知S n为数列{a n}的前n项和,且满足S n=2a n﹣n2+3n+2(n∈N*)(Ⅰ)求证:数列{a n+2n}是等比数列;(Ⅱ)设b n=a n sinπ,求数列{b n}的前n项和;(Ⅲ)设C n=﹣,数列{C n}的前n项和为P n,求证:P n<.神木县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.2.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.3.【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x﹣2)2+y2=2的圆心(2,0),半径为,双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,可得:,可得a2=b2,c=a,e==.故选:B.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.4.【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16.故选:D.5.【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的表面积S=S+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.△PAC故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.6.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.7.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.8.【答案】【解析】选B.取AP的中点M,则P A=2AM=2OA sin∠AOM=2sin x2,PB=2OM=2OA·cos∠AOM=2cos x2,∴y=f(x)=P A+PB=2sin x2+2cos x2=22sin(x2+π4),x∈[0,π],根据解析式可知,只有B选项符合要求,故选B.9.【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C.【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.10.【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.11.【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f (x )=ax 3+bx 2+cx+d , ∴f ′(x )=3ax 2+2bx+c , 由f ′(x )=3ax 2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a ,2b=﹣3a ,即f ′(x )=3ax 2+2bx+c=3ax 2﹣3ax ﹣6a=3a (x ﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.12.【答案】D 【解析】解:命题是特称命题,则命题的否定是∀x ∈R ,都有x ≤﹣1或x ≥1,故选:D .【点评】本题主要考查含有量词的命题的否定,比较基础.二、填空题13.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2(1)40a a a >⎧⎨∆=+-≤⎩,即20(1)0a a >⎧⎨-≤⎩,解得1a =.1考点:不等式的恒成立问题. 14.【答案】 5 .【解析】二项式定理. 【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x )n (n ∈N +)的展开式中无常数项、x ﹣1项、x ﹣2项,利用(x)n (n ∈N +)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.15.【答案】9.【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.16.【答案】乙,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。
陕西省神木中学2018-2019学年高三上学期第三次月考试卷数学含答案
陕西省神木中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,22)-∞B .(,22]-∞C .(0,22]D .(22,)+∞ 2. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数3. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直4. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )5. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.6. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 7. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣28. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或109. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 10.在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( )A .323π B .16π C.253π D .312π11.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111] 12.若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .14.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)15.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .16.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.三、解答题(本大共6小题,共70分。
神木县二中2018-2019学年上学期高二数学12月月考试题含解析
神木县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数 D.f(x)+1为偶函数2.设a,b∈R且a+b=3,b>0,则当+取得最小值时,实数a的值是()A.B. C.或D.33.设集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B=()A.{1,2} B.{﹣1,4} C.{﹣1,2} D.{2,4}4.数列{a n}的通项公式为a n=﹣n+p,数列{b n}的通项公式为b n=2n﹣5,设c n=,若在数列{c n}中c8>c n(n∈N*,n≠8),则实数p的取值范围是()A.(11,25)B.(12,16] C.(12,17)D.[16,17)5.已知正△ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.B.C.D.6.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.B.C.D.7.函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是()A .f (2)<f (π)<f (5)B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)8. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A9. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .510.设x ∈R ,则x >2的一个必要不充分条件是( ) A .x >1 B .x <1 C .x >3 D .x <311.已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°12.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )二、填空题13.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2m in{)(2x x x f -=的取值范围是 14.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________.16.命题p :∀x ∈R ,函数的否定为 .17.已知x 是400和1600的等差中项,则x= .18.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .三、解答题19.已知等差数列{a n },满足a 3=7,a 5+a 7=26. (Ⅰ)求数列{a n }的通项a n ;(Ⅱ)令b n =(n ∈N *),求数列{b n }的前n 项和S n .20.已知条件4:11p x ≤--,条件22:q x x a a +<-,且p 是的一个必要不充分条件,求实数 的取值范围.21.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.22.(本题满分13分)已知函数x x ax x f ln 221)(2-+=. (1)当0=a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大. 23.19.已知函数f (x )=ln .24.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.神木县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.2.【答案】C【解析】解:∵a+b=3,b>0,∴b=3﹣a>0,∴a<3,且a≠0.①当0<a<3时,+==+=f(a),f′(a)=+=,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f′(a)=﹣=﹣,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C.【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.3.【答案】A【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.故选:A.【点评】本题考查交集的运算法则的应用,是基础题.4.【答案】C【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,∵a n=﹣n+p,∴{a n}是递减数列,∵b n=2n﹣5,∴{b n}是递增数列,∵c8>c n(n≠8),∴c8是c n的最大者,则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,当n=7时,27﹣5<﹣7+p,∴p>11,n=9,10,11,…时,2n﹣5>﹣n+p总成立,当n=9时,29﹣5>﹣9+p,成立,∴p<25,而c8=a8或c8=b8,若a8≤b8,即23≥p﹣8,∴p≤16,则c8=a8=p﹣8,∴p﹣8>b7=27﹣5,∴p>12,故12<p≤16,若a8>b8,即p﹣8>28﹣5,∴p>16,∴c8=b8=23,那么c8>c9=a9,即8>p﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.5.【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.6.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.7.【答案】B【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,∴f(π)=f(6﹣π),f(5)=f(1),∵f(6﹣π)<f(2)<f(1),∴f(π)<f(2)<f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.8.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.9.【答案】B【解析】考点:三角恒等变换.10.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.11.【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30°故选D.【点评】本题主要考查正弦定理的应用.属基础题.12.【答案】D【解析】解:y=|x|(x∈R)是偶函数,不满足条件,y=(x≠0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(x∈R)是奇函数,在定义域上是增函数,不满足条件,y=﹣x3(x∈R)奇函数,在定义域上是减函数,满足条件,故选:D二、填空题-∞13.【答案】(],1试题分析:函数(){}2min 2,f x x x =-的图象如下图:观察上图可知:()f x 的取值范围是(],1-∞。
神木县第二中学2018-2019学年上学期高三数学10月月考试题
神木县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .2. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要4. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )A .﹣iB .﹣﹣iC . +iD .﹣ +i5. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点6. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化7. 已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D . 8. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣9. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D .10.已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )11.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .712.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对二、填空题13.(﹣2)7的展开式中,x 2的系数是 .14.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.15.已知实数x ,y 满足约束条,则z=的最小值为 .16.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b . 17.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .三、解答题18.(14分)已知函数1()ln ,()ex x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分19.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;20.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.21.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.22.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.23.如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M ,N 均在直线x=5上,圆弧C 1的圆心是坐标原点O ,半径为13;圆弧C 2过点A (29,0).(1)求圆弧C 2的方程;(2)曲线C 上是否存在点P ,满足?若存在,指出有几个这样的点;若不存在,请说明理由.神木县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A【解析】【知识点】空间几何体的表面积与体积 【试题解析】由题知:是直角三角形,又,所以。
2018-2019学年高二数学上学期期末考试试题(含解析)_2
2018-2019学年高二数学上学期期末考试试题(含解析)第I卷(选择题共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知命题,下列命题中正确的是( )A. B.C. D.【答案】C【解析】试题分析:命题,使的否定为,使,故选C.考点:特称命题的否定.2.抛物线的焦点坐标为A. B. C. D.【答案】A【解析】抛物线,开口向右且焦点在轴上,坐标为.故选A.3.“a>1”是“<1”的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】选A.因为a>1,所以<1.而a<0时,显然<1,故由<1推不出a>1.4. 已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为()A. 2B. 3C. 4D. 5【答案】B【解析】试题分析:由已知中△ABC三个顶点为A(3,3,2),B (4,-3,7),C(0,5,1),利用中点公式,求出BC边上中点D的坐标,代入空间两点间距公式,即可得到答案.解:∵B(4,-3,7),C(0,5,1),则BC的中点D的坐标为(2,1,4)则AD即为△ABC中BC边上的中线故选B.考点:空间中两点之间的距离点评:本题考查的知识点是空间中两点之间的距离,其中根据已知条件求出BC边上中点的坐标,是解答本题的关键.5.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。
其中正确的命题是()A. ①②B. ①③C. ②③D. ①②③【答案】C【解析】【分析】根据空间向量的基底判断②③的正误,找出反例判断①命题的正误,即可得到正确选项.【详解】解:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;所以不正确.反例:如果有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;这是正确的.③已知向量是空间的一个基底,则向量,也是空间的一个基底;因为三个向量非零不共线,正确.故选:C.【点睛】本题考查共线向量与共面向量,考查学生分析问题,解决问题的能力,是基础题.6.如图所示,在平行六面体中,为与的交点.若,,,则下列向量中与相等的向量是()A. B.C. D.【答案】A【解析】【分析】运用向量的加法、减法的几何意义,可以把用已知的一组基底表示.详解】.【点睛】本题考查了空间向量用一组已知基底进行表示.7.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A. (x≠0)B. (x≠0)C. (x≠0)D. (x≠0)【答案】B【解析】由于,所以到的距离之和为,满足椭圆的定义,其中,由于焦点在轴上,故选.点睛:本题主要考查椭圆的定义和标准方程. 涉及到动点到两定点距离之和为常数的问题,可直接用椭圆定义求解.涉及椭圆上点、焦点构成的三角形问题,往往利用椭圆定义、勾股定理或余弦定理求解. 求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).8.过抛物线的焦点作直线交抛物线于两点,如果,那么A. 6B. 8C. 9D. 10【答案】B【解析】【分析】根据抛物线的性质直接求解,即焦点弦长为.【详解】抛物线中,,∴,故选B.【点睛】是抛物线的焦点弦,,,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为.9.若直线与双曲线的右支交于不同的两点,则的取值范围是A. B. C. D.【答案】D【解析】【分析】由直线与双曲线联立得(1-k2)x2-4kx-10=0,由结合韦达定理可得解.【详解】解析:把y=kx+2代入x2-y2=6,得x2-(kx+2)2=6,化简得(1-k2)x2-4kx-10=0,由题意知即解得<k<-1.答案:D.【点睛】本题主要考查了直线与双曲线的位置关系,属于中档题.10.试在抛物线上求一点,使其到焦点距离与到的距离之和最小,则该点坐标为A. B. C. D.【答案】A【解析】由题意得抛物线的焦点为,准线方程为.过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时.故点的纵坐标为1,所以横坐标.即点P的坐标为.选A.点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.11.在长方体中,如果,,那么到直线的距离为A. B. C. D.【答案】C【解析】【分析】由题意可得:连接,AC,过A作,根据长方体得性质可得:平面ABCD,即可得到,,再根据等面积可得答案.【详解】由题意可得:连接,AC,过A作,如图所示:根据长方体得性质可得:平面ABCD.因为,,所以,,根据等面积可得:.故选:C.【点睛】本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题..12.已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于两点,若为正三角形,则该椭圆的离心率为()A. B. C. D.【答案】D【解析】在方程中,令,可得,∴.∵△ABF2为正三角形,∴,即,∴,∴,整理得,∴,解得或(舍去).选D.点睛:求椭圆离心率或其范围的方法(1)求的值,由直接求.(2)列出含有的方程(或不等式),借助于消去b,然后转化成关于e的方程(或不等式)求解.第Ⅱ卷(主观题共90分)二、填空题(每题5分,共20分,将答案写在答题纸上)13. 已知A(1,-2,11)、B(4,2,3)、C(x,y,15)三点共线,则xy=___________.【答案】2.【解析】试题分析:由三点共线得向量与共线,即,,,解得,,∴.考点:空间三点共线.14.已知抛物线型拱桥的顶点距水面米时,量得水面宽为米.则水面升高米后,水面宽是____________米(精确到米).【答案】【解析】试题分析:设抛物线方程为,当x=0时 c=2,当x=-4和x=4时y=0,求得, b=0,则,令y=1,得,所以水面宽.考点:抛物线方程.15.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是________【答案】 y=-0.5x+4【解析】设弦为,且,代入椭圆方程得,两式作差并化简得,即弦的斜率为,由点斜式得,化简得.16.①一个命题的逆命题为真,它的否命题一定也为真:②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件;④“”是“”的充分必要条件;以上说法中,判断错误的有_______________.【答案】③④【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若,则,有,则三个角成等差数列,反之若三个角成等差数列,有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.已知命题有两个不相等的负根,命题无实根,若为假,为真,求实数的取值范围.【答案】【解析】【分析】根据命题和的真假性,逐个判断.【详解】因为假,并且为真,故假,而真即不存在两个不等的负根,且无实根.所以,即,当时,不存在两个不等的负根,当时,存在两个不等的负根.所以的取值范围是【点睛】此题考查了常用的逻辑用语和一元二次方程的性质,属于基础题.18.已知椭圆C的两焦点分别为,长轴长为6。
神木县高中2018-2019学年高二上学期9月月考物理试卷含解析
通过其圆心 O,测得
线圈的导线所在处磁感应强度 B 的方向与水平线成 60°角,线圈中通过的电流为 0.1A,要使三条细线上的张
力为零,重力加速度 g 取 10m/s2.则磁感应强度 B 的大小应为
A. 4T B.
T C. 0.4 T D. 0.4T
6. 如右图为一质点作匀变速直线运动的 v t 图象,质点的质量为 2kg,在前 4s 内向东运动,由图线作出以
下判断正确的是( )
A.质点在 8s 内始终向东运动
B.质点在 8s 内的合外力先减小后增大
C.质点在 8s 内的加速度大小不变,方向始终向西
D.在 8s 内合外力对质点做功的大小为 200J
7. 小球从竖直砖墙某位置静止释放,用频闪照相机在同一底片上多次曝光,1、2、3、4、5……表示小球运
动过程中每次曝光的位置,如右图所示。若连续两次曝光的时间间隔为 T ,每块砖的厚度 均为 d 。根据图上的信息下列判断不正确的( )
程中空气的压强 p 和体积V 关系的是
。
12.在将空气压缩装入气瓶的过程中,温度保持不变,外界做了 24kJ 的功。现潜水员背着该气瓶缓慢地潜入
海底,若在此过程中,瓶中空气的质量保持不变,且放出了 5kJ 的热量。在上述两个过程中,空气的内能共
减小
kJ ,空气
(选填“吸收”或“放出”)
三、解答题
13.跳伞运动员做低空跳伞表演,当飞机在离地面 224m 高处水平飞行时,运动员离开飞机在竖直方向做自
A.θ 增大,E 增大
B.θ 增大,Ep 不变
C.θ 减小,Ep 增大
D.θ 减小,E 不变
5. 如图,用三条细线悬挂的水平圆形线圈共有 N 匝,线圈由粗
细均匀、单位长度
神木县二中2018-2019学年高二上学期第二次月考试卷数学
神木县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为()A .4B .8C .10D .132. 在三角形中,若,则的大小为( )A .B .C .D .3. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q4. 若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 5. 已知向量,,其中.则“”是“”成立的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件 6. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .7. “a ≠1”是“a 2≠1”的( ) A .充分不必条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件8. 已知ω>0,0<φ<π,直线x=和x=是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,则φ=( )A .B .C .D .9. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(-10.若cos (﹣α)=,则cos (+α)的值是( )A .B .﹣C .D .﹣11.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .12.已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .二、填空题13.不等式()2110ax a x +++≥恒成立,则实数的值是__________.14.计算sin43°cos13°﹣cos43°sin13°的值为 . 15.已知函数,则__________;的最小值为__________.16.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00ff y y=,则实数a 的取值范围为__________.17.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= .18.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .三、解答题19.已知椭圆C 1:+=1(a >b >0)的离心率为e=,直线l :y=x+2与以原点为圆心,以椭圆C 1的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程;(2)抛物线C 2:y 2=2px (p >0)与椭圆C 1有公共焦点,设C 2与x 轴交于点Q ,不同的两点R ,S 在C 2上(R ,S 与Q 不重合),且满足•=0,求||的取值范围.20.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为23π,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?21.(本小题满分10分)已知曲线22:149x yC+=,直线2,:22,x tly t=+⎧⎨=-⎩(为参数).(1)写出曲线C的参数方程,直线的普通方程;(2)过曲线C上任意一点P作与夹角为30的直线,交于点A,求||PA的最大值与最小值.22.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧的中点;(Ⅱ)求证:BF=FG.23.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB∥平面EFG;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.24.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.神木县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】 C【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),∵2tan =2,lg =﹣1,∴(2tan )⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne ⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10. 故选:C .2. 【答案】A【解析】 由正弦定理知,不妨设,,,则有,所以,故选A答案:A3. 【答案】D【解析】解:p :根据指数函数的性质可知,对任意x ∈R ,总有3x>0成立,即p 为真命题, q :“x >2”是“x >4”的必要不充分条件,即q 为假命题, 则p ∧¬q 为真命题, 故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础4. 【答案】B【解析】如图,当直线m x =经过函数x y 2=的图象 与直线03=-+y x 的交点时,函数x y 2=的图像仅有一个点P 在可行域内,由230y xx y=⎧⎨+-=⎩,得)2,1(P,∴1≤m.5.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。
2018_2019学年高二数学上学期期末考试试题理
2018—2019学年度第一学期期末考试试题高二(数学)(理)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“a ∉A 或b ∉B ”的否定形式是( )A .若a ∉A ,则b ∉B B .a ∈A 或b ∈BC .a ∉A 且b ∉BD .a ∈A 且b ∈B2.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.若椭圆x2a2+y2b2=1(a >b >0)的离心率为32,则双曲线x2a2-y2b2=1的离心率为( ) A.54 B.52 C.32 D.544.若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值是( ) A .-1 B .0 C .1 D .-25.下列说法正确的是( )A .“x 2=1”是“x =1”的充分不必要条件B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x 0∈R ,使得x 20+x 0+1<0”的否定是:“∀x ∈R ,均有x 2+x +1<0” D .命题“若α=β,则sin α=sin β”的逆否命题为真命题6.平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是( )A .x +y =4B .2x +y =4C .x +2y =4D .x +2y =17.如图1,在正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1、CC 1的中点,P 为AD 上一动点,记α为异面直线PM 与D 1N 所成的角,则α的集合是( )A.⎩⎨⎧⎭⎬⎫π2B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ π6≤α≤π2 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π4≤α≤π2 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π3≤α≤π2 图1 8.已知圆x 2+y 2+mx -14=0与抛物线y =14x 2的准线相切,则m =( )A .±2 2 B. 3 C. 2 D .± 39.给出两个命题:p :|x |=x 的充要条件是x 为正实数,q :不等式|x -y |≤|x |+|y |取等号的条件是xy <0,则下列命题是真命题的是( )A .p ∧qB .p ∨qC .(p )∧qD .(p )∨q10.直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足为P 、Q ,则梯形APQB 的面积为( )A .48B .56C .64D .7211.若点O 和点F 分别为椭圆x24+y23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .812.已知抛物线x 2=2py (p >0)的焦点为F ,过F 作倾斜角为30°的直线,与抛物线交于A ,B 两点,若|AF||BF|∈(0,1),则|AF||BF|=( )A.15B.14C.13D.12二、填空题(本大题共4小题,每小题5分,共20分.)13.已知双曲线x29-y2a =1的右焦点为(13,0),则该双曲线的渐近线方程为________.14.已知a ,b 是两个命题,如果a 是b 的充分条件,那么“a ”是“b ”的________条件. 15.已知正方体ABCD —A 1B 1C 1D 1,P 、M 为空间任意两点,如果有PM →=PB1→+6AA1→+7BA →+4A1D1→,那么M 点一定在平面________内.16.已知F 是双曲线x2a2-y2b2=1(a >0,b >0)的左焦点,E 是双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围为________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x2-4x +3<0,x2-6x +8<0,且q 是p 的必要条件,求实数a 的取值范围.18.(本小题满分12分)如图3,四边形MNPQ 是圆C 的内接等腰梯形,向量CM →与PN →的夹角为120°,QC →·QM →=2.(1)建立坐标系,求圆C 的方程;(2)求以M ,N 为焦点,过点P ,Q 的椭圆方程.图319.(本小题满分12分)如图4,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2,AB =1,BM ⊥PD 于点M .图4(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成的角的余弦值.20.(本小题满分12分)如图5,在四棱柱ABCD A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).图5(1)求证:CD ⊥平面ADD 1A 1.(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.21.(本小题满分12分)如图6,已知椭圆x2a2+y2b2=1(a >b >0)的离心率为22,以该椭圆上的点和椭圆的左、右焦点F 1、F 2为顶点的三角形的周长为4(2+1),一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D .图6(1)求椭圆和双曲线的标准方程;(2)设直线PF 1、PF 2的斜率分别为k 1、k 2,求证:k 1k 2=1.22.(本小题满分12分)图7如图,点P (0,-1)是椭圆C 1:x2a2+y2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.镇原二中高二数学上学期期末数学试题(理)(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“a ∉A 或b ∉B ”的否定形式是( )A .若a ∉A ,则b ∉B B .a ∈A 或b ∈BC .a ∉A 且b ∉BD .a ∈A 且b ∈B【解析】 “p 或q ”的否定为“非p 且非q ”,D 正确.【答案】 D2.已知a ∈R ,则“a <2”是“a 2<2a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【解析】∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件.【答案】 B3.若椭圆x2a2+y2b2=1(a >b >0)的离心率为32,则双曲线x2a2-y2b2=1的离心率为( )A.54B.52C.32D.54【解析】 由题意,1-b2a2=⎝ ⎛⎭⎪⎫322=34,∴b2a2=14,而双曲线的离心率e 2=1+b2a2=1+14=54,∴e =52. 【答案】 B4.若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值是( )A .-1B .0C .1D .-2【解析】∵a +λb =(0,1,-1)+(λ,λ,0)=(λ,1+λ,-1)∵(a +λb )⊥a ,∴(a +λb )·a =1+λ+1=0,∴λ=-2.【答案】 D5.下列说法正确的是( )A .“x 2=1”是“x =1”的充分不必要条件B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x 0∈R ,使得x 20+x 0+1<0”的否定是:“∀x ∈R ,均有x 2+x +1<0”D .命题“若α=β,则sin α=sin β”的逆否命题为真命题【解析】 “x 2=1”是“x =1”的必要不充分条件,“x =-1”是“x 2-5x -6=0”的充分不必要条件,A 、B 均不正确;C 中命题的否定应该为“∀x ∈R ,均有x 2+x +1≥0”,故C不正确.【答案】 D6.平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是( )A .x +y =4B .2x +y =4C .x +2y =4D .x +2y =1【解析】 由OP →=(x ,y ),OA →=(1,2)得OP →·OA →=(x ,y )·(1,2)=x +2y =4,x +2y =4即为所求轨迹方程,故选C.【答案】 C7.如图1,在正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1、CC 1的中点,P 为AD 上一动点,记α为异面直线PM 与D 1N 所成的角,则α的集合是( )图1A.⎩⎨⎧⎭⎬⎫π2B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π6≤α≤π2C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π4≤α≤π2 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪π3≤α≤π2【解析】 分别以DA 、DC 、DD 1所在的直线为x 、y 、z 轴,D 为原点建系,连结AM 、DM ,可以证明AM →⊥D1N →,DM →⊥D1N →,故D 1N ⊥平面ADM ,∴D 1N ⊥PM ,即α=π2.【答案】 A8.已知圆x 2+y 2+mx -14=0与抛物线y =14x 2的准线相切,则m =( )A .±22B.3 C.2D .±3【解析】 抛物线方程可化为x 2=4y ,∴其准线方程为y =-1,圆的方程可化为⎝ ⎛⎭⎪⎫x -m 22+y 2=14+m24,是以⎝ ⎛⎭⎪⎫m 2,0为圆心.m2+12为半径的圆,由题意知m2+12=1,∴m =± 3. 【答案】 D9.给出两个命题:p :|x |=x 的充要条件是x 为正实数,q :不等式|x -y |≤|x |+|y |取等号的条件是xy <0,则下列命题是真命题的是( )A .p ∧qB .p ∨qC .(p )∧qD .(p )∨q【解析】 命题p 为假,因为x =0时,也有|x |=x 成立;命题q 也为假,因为当x =0或y =0时,|x -y |≤|x |+|y |也成立,因此只有(p )∨q 为真命题.【答案】 D10.直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足为P 、Q ,则梯形APQB 的面积为( )A .48B .56C .64D .72【解析】 联立⎩⎪⎨⎪⎧y2=4xy =x -3可解得A (1,-2),B (9,6).∵抛物线准线为x =-1,∴|AP |=2,|BQ |=10,|PQ |=8,∴S =+2=48.【答案】 A11.若点O 和点F 分别为椭圆x24+y23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8【解析】 设椭圆上任意一点P (x 0,y 0),则有x204+y203=1,即y 20=3-34x 20,O (0,0),F (-1,0),则OP →·FP →=x 0(x 0+1)+y 20=14x 20+x 0+3=14(x 0+2)2+2.∵|x 0|≤2,∴当x 0=2时,OP →·FP →取得最大值为6.【答案】 C12.已知抛物线x 2=2py (p >0)的焦点为F ,过F 作倾斜角为30°的直线,与抛物线交于A ,B 两点,若|AF||BF|∈(0,1),则|AF||BF|=( ) A.15 B.14 C.13 D.12【解析】 因为抛物线的焦点为⎝ ⎛⎭⎪⎫0,p 2,直线方程为y =33x +p 2,与抛物线方程联立得x2-233px -p 2=0,解方程得x A =-33p ,x B =3p ,所以|AF||BF|=|xA||xB|=13.故选C.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.)13.已知双曲线x29-y2a=1的右焦点为(13,0),则该双曲线的渐近线方程为________.【解析】 由题意得:9+a =13,∴a =4,故渐近线方程为y =±23x .【答案】y =±23x14.已知a ,b 是两个命题,如果a 是b 的充分条件,那么“a ”是“b ”的________条件.【解析】 由题意a ⇒b 成立,故其逆否命题为b ⇒a 也成立.∴“a ”是“b ”的必要条件.【答案】 必要15.已知正方体ABCD —A 1B 1C 1D 1,P 、M 为空间任意两点,如果有PM →=PB1→+6AA1→+7BA →+4A1D1→,那么M 点一定在平面________内.【解析】∵B1M →=PM →-PB1→=BA →+6BA →+6AA1→+4A1D1→=BA →+6BA1→+4A1D1→ =B1A1→+2BA1→+4BD1→,∴B1M →-B1A1→=2BA1→+4BD1→,即A1M →=2BA1→+4BD1→.故A1M →,BA1→,BD1→共面,即M 点在平面A 1BCD 1内.【答案】A 1BCD 116.已知F 是双曲线x2a2-y2b2=1(a >0,b >0)的左焦点,E 是双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围为________.【解析】∵△ABE 为等腰三角形,可知只需∠AEF <45°即可,即|AF |<|EF |⇒b2a<a +c ,化简得e 2-e -2<0,又e >1,∴1<e <2,∴该双曲线的离心率e 的取值范围为(1,2).【答案】 (1,2)三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x2-4x +3<0,x2-6x +8<0,且q 是p 的必要条件,求实数a 的取值范围.【解】 由⎩⎪⎨⎪⎧x2-4x +3<0,x2-6x +8<0,得⎩⎪⎨⎪⎧1<x <3,2<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3},∵p ⇒q ,∴q ⇒p .∴BA .即2<x <3满足不等式2x 2-9x +a <0.设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0,需⎩⎪⎨⎪⎧,,即⎩⎪⎨⎪⎧8-18+a≤0,18-27+a≤0.∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}.18.(本小题满分12分)如图3,四边形MNPQ 是圆C 的内接等腰梯形,向量CM →与PN →的夹角为120°,QC →·QM →=2.(1)建立坐标系,求圆C 的方程;(2)求以M ,N 为焦点,过点P ,Q 的椭圆方程.图3【解】 (1)建立如图坐标系,由题意得:△CQM 为正三角形.∴QC →·QM →=r 2·cos 60°=2,∴r =2,∴圆C 的方程为:x 2+y 2=4.(2)M (2,0),N (-2,0),Q (1,3),2a =|QN |+|QM |=23+2.∴c =2,a =3+1,b 2=a 2-c 2=2 3.∴椭圆方程为:x24+23+y223=1.19.(本小题满分12分)如图4,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2,AB =1,BM ⊥PD 于点M .图4(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成的角的余弦值.【解】 (1)证明 ∵PA ⊥平面ABCD ,AB ⊆平面ABCD ,∴PA ⊥AB .∵AB ⊥AD ,AD ∩PA =A ,∴AB ⊥平面PAD . ∵PD ⊂平面PAD ,∴AB ⊥PD .∵BM ⊥PD ,AB ∩BM =B ,∴PD ⊥平面ABM .∵AM ⊂平面ABM ,∴AM ⊥PD .(2)如图所示,以点A 为坐标原点,建立空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),B (1,0,0),C (1,2,0),D (0,2,0),M (0,1,1),于是AC →=(1,2,0),AM →=(0,1,1),CD →=(-1,0,0).设平面ACM 的一个法向量为n =(x ,y ,z ),由n ⊥AC →,n ⊥AM →可得⎩⎪⎨⎪⎧x +2y =0,y +z =0.令z =1,得x =2,y =-1,于是n =(2,-1,1).设直线CD 与平面ACM 所成的角为α,则sin α=⎪⎪⎪⎪⎪⎪CD →·n |CD →||n|=63,cos α=33.故直线CD 与平面ACM 所成的角的余弦值为33. 20.(本小题满分12分)如图5,在四棱柱ABCD A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).图5(1)求证:CD ⊥平面ADD 1A 1.(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.图(1)【证明】 (1)取CD 的中点E ,连结BE ,如图(1).∵AB ∥DE ,AB =DE =3k ,∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD .又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.图(2)(2)以D 为原点,DA →,DC →,DD1→的方向为x ,y ,z 轴的正方向建立如图(2)所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),∴AC →=(-4k,6k,0),AB1→=(0,3k,1),AA1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎨⎧AC →·n=0,AB1→·n=0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ).设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA1→,n 〉|=⎪⎪⎪⎪⎪⎪AA1→·n |AA1→||n|=6k36k2+13=67,解得k =1,故所求k 的值为1.21.如图6,已知椭圆x2a2+y2b2=1(a >b >0)的离心率为22,以该椭圆上的点和椭圆的左、右焦点F 1、F 2为顶点的三角形的周长为4(2+1),一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D .图6(1)求椭圆和双曲线的标准方程;(2)设直线PF 1、PF 2的斜率分别为k 1、k 2,求证:k 1k 2=1.【解】 (1)设椭圆的半焦距为c ,由题意知c a =22,2a +2c =4(2+1),所以a =22,c =2.又a 2=b 2+c 2,因此b =2.故椭圆的标准方程为x28+y24=1.由题意设等轴双曲线的标准方程为x2m2-y2m2=1(m >0),因为等轴双曲线的顶点是椭圆的焦点,所以m =2,因此双曲线的标准方程为x24-y24=1.(2)设P (x 0,y 0),则k 1=y0x0+2,k 2=y0x0-2.因为点P 在双曲线x 2-y 2=4上,所以x 20-y 20=4.因此k 1k 2=y0x0+2·y0x0-2=y20x20-4=1,即k 1k 2=1. 22.(本小题满分12分)图7如图,点P (0,-1)是椭圆C 1:x2a2+y2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.【解】 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2. 所以椭圆C 的方程为x24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k2+1,所以|AB |=24-d2=24k2+3k2+1.又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x2+4y2=4消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k 4+k2,所以|PD |=8k2+14+k2.设△ABD 的面积为S ,则S =12|AB |·|PD |=84k2+34+k2,所以S =324k2+3+134k2+3≤3224k2+3·134k2+3=161313,当且仅当k =±102时取等号.10 2x-1.所以所求直线l1的方程为y=±。
神木县高级中学2018-2019学年上学期高二数学12月月考试题含解析
神木县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=2. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)3. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为( )A .M >N >PB .P <M <NC .N >P >M4. 已知2->a ,若圆1O :01582222=---++a ay x y x ,圆2O :04422222=--+-++a a ay ax y x 恒有公共点,则a 的取值范围为( ).A .),3[]1,2(+∞--B .),3()1,35(+∞-- C .),3[]1,35[+∞-- D .),3()1,2(+∞--5. 已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .6. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i7. 阅读下面的程序框图,则输出的S=( )A .14B .20C .30D .558. 设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111]9. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]10.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )A .1B .2C .3D .411.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+ B .12+23π C .12+24π D .12+π12.将y=cos (2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A.B.﹣C.﹣D.二、填空题13.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.14.已知,0()1,0x e x f x x ì³ï=í<ïî,则不等式2(2)()f x f x ->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 15.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力. 16.已知实数x ,y满足,则目标函数z=x ﹣3y 的最大值为17.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .18.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.三、解答题19.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,直线l的参数方程为(t 为参数),圆C 的极坐标方程为p 2+2psin (θ+)+1=r 2(r >0).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.20.若函数f(x)=sinωxcosωx+sin2ωx﹣(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.(Ⅰ)求ω及m的值;(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和.21.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.22.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.23.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .24.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.神木县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C 【解析】试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2xy -=为非奇非偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神木县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.设0<a<b且a+b=1,则下列四数中最大的是()A.a2+b2B.2ab C.a D.2.已知函数f(x)=a x﹣1+log a x在区间[1,2]上的最大值和最小值之和为a,则实数a为()A.B.C.2 D.43.函数y=+的定义域是()A.{x|x≥﹣1} B.{x|x>﹣1且x≠3} C.{x|x≠﹣1且x≠3} D.{x|x≥﹣1且x≠3}4.底面为矩形的四棱锥P-ABCD的顶点都在球O的表面上,且O在底面ABCD内,PO⊥平面ABCD,当四棱锥P-ABCD的体积的最大值为18时,球O的表面积为()A.36πB.48πC.60πD.72π5.若实数x,y满足不等式组则2x+4y的最小值是()A.6 B.﹣6 C.4 D.26.如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是直角三角形②不存在点D,使四面体ABCD是正三棱锥③存在点D,使CD与AB垂直并且相等④存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()A.①② B.②③ C.③D.③④7.lgx,lgy,lgz成等差数列是由y2=zx成立的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也不必要条件8. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或9. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .204810.已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题 11.如图,程序框图的运算结果为( )A .6B .24C .20D .12012.给出下列两个结论: ①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错二、填空题13.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)14.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF的重心到准线距离为 .15.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .16.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.17.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .18.如图,在棱长为的正方体1111D ABC A B C D 中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.三、解答题19.在直角坐标系xOy 中,过点P (2,﹣1)的直线l 的倾斜角为45°.以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cos θ,直线l 和曲线C 的交点为A ,B .(1)求曲线C 的直角坐标方程; (2)求|PA|•|PB|.20.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.21.(本题满分15分)若数列{}n x 满足:111n nd x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,123451111115a a a a a ++++=.(1)求数列{}n a 的通项n a ;(2)数列2{}nna 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.22.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)23.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.24.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.神木县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A2.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.3.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.4. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 5. 【答案】B【解析】解:作出不等式组对应的平面区域如图: 设z=2x+4y 得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C 时,直线y=﹣x+的截距最小,此时z 最小,由,解得,即C (3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6. 故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.6. 【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D7.【答案】A【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y2=zx,∴充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A.【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.8.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B9.【答案】D【解析】试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于20151>,则进行2y y =循环,最终可得输出结果为2048.1考点:程序框图. 10.【答案】C 【解析】]试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;()()p q ⌝∨⌝是假命题.故选C.考点:命题真假判断. 11.【答案】 B【解析】解:∵循环体中S=S ×n 可知程序的功能是: 计算并输出循环变量n 的累乘值,∵循环变量n 的初值为1,终值为4,累乘器S 的初值为1, 故输出S=1×2×3×4=24, 故选:B .【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.12.【答案】C 【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.②根据逆否命题的定义可知②正确. 故选C .【点评】考查特称命题,全称命题,和逆否命题的概念.二、填空题13.【答案】 24【解析】解:由题意,B 与C 必须相邻,利用捆绑法,可得=48种方法,因为A 必须在D 的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,故答案为:24.【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.14.【答案】.【解析】解:∵F 是抛物线y 2=4x 的焦点, ∴F (1,0),准线方程x=﹣1,设M(x1,y1),N(x2,y2),∴|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,∴△MNF的重心的横坐标为,∴△MNF的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.15.【答案】[4,16].【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanα•x+1;圆C的参数方程(θ为参数),化为普通方程是(x﹣2)2+(y﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.16.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.17.【答案】.【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.18.【答案】4⎡⎢⎣⎦ 【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.三、解答题19.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…20.【答案】【解析】解:(1)由题意,n=10,=xi=8,=y i=2,∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).21.【答案】(1)1nan,(2)详见解析.当8n =时911872222015S =⨯+>>,…………13分∴存在正整数n ,使得2015n S ≥的取值集合为{}*|8,n n n N ≥∈,…………15分22.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.23.【答案】【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直【试题解析】(Ⅰ)是等边三角形,为的中点,平面平面,是交线,平面平面.(Ⅱ)取的中点,底面是正方形,,两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,则,,,设平面的法向量为,,,,平面的法向量即为平面的法向量.由图形可知所求二面角为锐角,(Ⅲ)设在线段上存在点,,使线段与所在平面成角,平面的法向量为,,,解得,适合在线段上存在点,当线段时,与所在平面成角.24.【答案】【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),∴=0,+8=0,∴=,化为,代入=0,化为:+16﹣cos2θ,∴,∴θ=或.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.。