第 19 讲 两角和与差的三角函数

合集下载

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式

利用三角函数的倍角公式推导
总结词
通过三角函数的倍角公式,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的倍角公式指出,对于任意角度α, sin(2α)、cos(2α)和tan(2α)的值可以通过
sin(α)、cos(α)、tan(α)的函数关系来表达。 利用这个公式,我们可以推导出两角和与差
总结词
通过三角函数的减法定理,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的减法定理指出,对于任意角度α、 β,sin(α-β)、cos(α-β)和tan(α-β)的值可 以通过sin(α)、cos(α)、sin(β)、cos(β)、 tan(α)和tan(β)的函数关系来表达。利用这 个定理,我们可以推导出两角和与差的正弦、 余弦和正切公式。
地理学问题
在地理学中,很多问题涉及到地 球的自转、公转等角度计算,如 时差、太阳高度角等,利用三角 函数公式可以方便地计算。
经济学问题
在经济学中,很多问题涉及到利 率、汇率等与角度相关的问题, 利用三角函数公式可以方便地描 述这些变化规律。
04
三角函数公式的扩展
利用三角函数的和差化积公式扩展
总结词
利用三角函数的积化和差公式扩展
总结词
利用三角函数的积化和差公式,可以将两角和与差的 正弦、余弦和正切公式进行扩展,得到更一般化的公 式形式。
详细描述
三角函数的积化和差公式可以将两个角度的正弦或余 弦的乘积转化为其他角度的正弦、余弦和正切的和或 差的形式,从而扩展了原有的公式。例如,利用积化 和差公式,可以将两角和的余弦表示为单个角度余弦 的函数,进一步推导得到更一般化的公式。
VS
详细描述

两角和与差及二倍角的三角函数公式

两角和与差及二倍角的三角函数公式

两角和与差及二倍角的三角函数公式1.两角和公式:cos(A + B) = cos(A)cos(B) - sin(A)sin(B)sin(A + B) = sin(A)cos(B) + cos(A)sin(B)tan(A + B) = (tan(A) + tan(B))/(1 - tan(A)tan(B))这些公式表明,将两个角度的三角函数相加时,可以将它们的三角函数值相乘、相加或者相除,从而得到结果的三角函数值。

2.两角差公式:cos(A - B) = cos(A)cos(B) + sin(A)sin(B)sin(A - B) = sin(A)cos(B) - cos(A)sin(B)tan(A - B) = (tan(A) - tan(B))/(1 + tan(A)tan(B))这些公式表明,将两个角度的三角函数相减时,可以将其中的一个角度的三角函数值取相反数,并进行相乘、相加或者相除,从而得到结果的三角函数值。

3.二倍角公式:cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A) sin(2A) = 2sin(A)cos(A)tan(2A) = 2tan(A)/(1 - tan^2(A))这些公式表明,角度的两倍的三角函数值可以通过将角度的三角函数值平方、相乘、相加或者相除,并进行一些基本运算,从而得到结果的三角函数值。

这些公式在解决各种三角函数问题时非常有用。

它们可以帮助我们计算两个角度的和、差以及角度的两倍的三角函数值。

例如,当需要计算sin(75°)时,可以利用sin(45° + 30°)的两角和公式,以及sin(2 * 30°)的二倍角公式,从而得到sin(75°)的值。

此外,这些公式也有一些相关的推论:1.三角函数的积和商:sin(A)sin(B) = (cos(A - B) - cos(A + B))/2cos(A)cos(B) = (cos(A - B) + cos(A + B))/2sin(A)cos(B) = (sin(A + B) + sin(A - B))/22.三角函数的平方:sin^2(A) = (1 - cos(2A))/2。

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式是指在给定两个角的情况下,通过公式计算它们的和或差的三角函数值的关系式。

这些公式在解决三角函数的实际问题和简化计算中起着重要的作用。

本文将介绍两角和与差的三角函数公式的基本知识点,包括公式的推导、证明和应用。

一、两角和与差的三角函数公式的推导1.两角和的公式对于两个角A和B,其正弦、余弦和正切的和公式如下:sin(A+B) = sinAcosB + cosAsinBcos(A+B) = cosAcosB - sinAsinBtan(A+B) = (tanA + tanB) / (1 - tanAtanB)这些公式可以通过将和角的正弦、余弦和正切分别展开为各自的和差形式,然后进行合并得到。

以正弦和公式为例,我们可以化简如下:sin(A+B) = sinAcosB + cosAsinB由正弦的和差公式可得:sin(A+B) = sinAcosB + cosAsinB= (sinAcosB + cosAsinB)(cosAcosB – sinAsinB)/(cosAcosB –sinAsinB)= sinAcosBcosAcosB – sinAsinBcosAcosB + cosAsinBcosAcosB –cosAsinBsinAsinB/(cosAcosB – sinAsinB)= sinAcosBcosAcosB – sinAsinBcosAcosB + cosAsinBcosAcosB –cosAsinBsinAsinB/(cos^2A - sin^2B)= sinAcos^2B - sinAsin^2B + cos^2AsinB - cosBsinA/(cos^2A - sin^2B)= sinA(cos^2B - sin^2B) + cosA(sinBcosA - cosBsinA)/(cos^2A - sin^2B)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)/(cos^2A - sin^2B)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)2.两角差的公式对于两个角A和B,其正弦、余弦和正切的差公式如下:sin(A-B) = sinAcosB - cosAsinBcos(A-B) = cosAcosB + sinAsinBtan(A-B) = (tanA - tanB) / (1 + tanAtanB)同样,这些公式也可以通过将差角的正弦、余弦和正切展开为各自的差和比值形式,然后进行合并得到。

19.必修四数学两角和与差的三角函数

19.必修四数学两角和与差的三角函数

两角和与差的三角函数知识点:两角和与差的正弦、余弦、正切函数公式类型一、化简类问题化简类问题的基本思路1、化为特殊角的三角函数值;2、化为正负相消的项,消去求值;3、化为分子分母出现公约数,约分求值。

例1.求下列各式的值(1)(2)sin 13°cos 17°+sin 77°cos 73°-变式练习1、(1)sin cos; (2)-; (3)tan 72°-tan 42°-tan 72°tan 42°2、化简(1) (2)解决给值求值问题的关键1、寻求“已知角”与“所求角”之间的关系,用“已知角”表示“所求角”。

2、已知角为两个时,待求角一般表示为已知角的和与差;3、已知角为一个时,待求角一般与已知角成“倍数关系”或“互余关系”。

例2、已知,求的值。

变式练习1、已知α∈,且sin α=,tan β=,则tan(α+β)=.2、已知α为锐角,sin α=,β是第四象限角,cos β=,则sin(α+β)=.3、设α∈,若sin α=,则cos 等于() A. B. C.- D.-4、若tan α=3,tan β=,则tan (α-β)等于() A.-3 B.- C.3 D.5、已知sin,且<α<,求cos α的值.6.[2016·江西临川模考]已知,且,求.7、已知为第二象限角,求的值。

例3、已知α,β均为锐角,且sin α =,cos β=,求α-β的值。

例4、已知x,y∈,且cos x=,cos y=,求x+y.变式练习1、已知tan α,tan β是方程x2+3x+4=0的两根,且-<α<,-<β<,则α+β的值为()A. B.- C.-或 D.无法确定2.若A,B是△ABC的内角,且(1+tan A)(1+tan B)=2,则A+B等于.3、已知cos α=,cos(α-β)=,且0<β<α<,求β的值.4、如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两点,已知A,B的横坐标分别为.(1)求tan(α+β)的值;(2)求α+2β的值.课后作业1.sin -cos 的值是()A. B. C.- D.sin2.(2016•山东青岛平度四校联考)已知tan(α+β)=,tan-,那么tan等于()A. B. C. D.3.设α,β都为锐角,且cos α=,sin(α+β)=,则sin β等于()A. B. C. D.-或4.已知tan =2,则的值为.5.若cos =-,θ∈,则cos θ的值为.6.已知cos-+sin α=,则sin=.7.已知cos α=-,tan β= π<α<,0<β<,求α-β的值.8.(2016•广东揭阳惠来一中检测)已知函数f(x)=2sin-,x∈R.(1)求f的值;(2)设α,β∈,f,f(3β+2π)=,求cos(α+β)的值.9、已知<β<α<π cos(α-β)=,sin(α+β)=-,求cos 2α的值.。

两角和与差的正弦、余弦、正切公式

两角和与差的正弦、余弦、正切公式
tan tan tan( ) 1 tan tan
(T(-))
S(+)、C(+)、T(+) 为和角公式 S(-)、C(-)、T(-) 为差角公式
例题讲解 3 , cos , tan . 例 已知sin 5 ,是第四象限角, 求 sin 4 4 4 解: 是第四象限角,得
tan tan tan( ) 1 tan tan tan tan tan( ) 1 tan tan
( C(-) ) ( C(+) ) ( S ( + ) ) ( S ( - ) ) ( T(+) )
3 2 sin x cos x ; 4
2 cos x 6 x.
2 2 3原式 2 sin x cos x 2 sin x 2 4 2
1 3 3原式 2 2 cos x sin x 2 2 cos x 2 3 2
3.1.2 两角和与差的 正弦、余弦推导出两角和与 差的正弦、余弦、正切公式。
2、能灵活的运用公式化简三角函数和求值。
预习指导
cos cos - sin sin cos( )= sin( + )= sin cos cos sin sin( - )= sin cos cos sin tan tan tan( + )= 1 tan tan tan tan tan( - )=
探究一、两角和与差的正弦公式 思考:两角和与差的正弦公式是怎样的呢?
sin cos(

两角和的正弦公式

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式
❖ (1)确定角α所在的象限;
❖ (2)求对应的锐角α1.如函数值为正,求出 对应的锐角α1;如函数值为负,求出其绝 对值对应的锐角α1;
❖ (3)求出满足条件的角.首先根据角α所在 的象限,得出0~2π间的角.如果适合已 知条件的角在第二象限,则它是π-α1; 如果在第三或第四象限,则它是π+α ,
❖ 幂的变换(升幂缩角1+cos2α=2cos2α; 1-cos2α=2sin2α,降幂扩角 等);
❖ 1的代换(1=sin2α+cos2α=tanα·cotα=
❖ [例1] 计算(tan10°- )·sin40°.
❖ 三、已知三角函数值求角的步骤
❖ 已知角α的一个三角函数值求角α,应注 意所得的解不是惟一的,而是有无数多个, 其解法步骤是:
❖ 分析:条件式中含角α、β、γ,而待求式 中只有β与α,故可运用消元思想,先通 过sin2γ+cos2γ=1消去γ.
❖ 解析:由已知,得sinγ=sinβ-sinα, cosγ=cosα-cosβ.
❖ 平方相加得
❖ (sinβ-sinα)2+(cosα-cosβ)2=1.
❖ ∴-2cos(β-α)=-1,
❖ 答案:1
❖ [例3] 已知sin(α+β)= ,sin(α-β) = ,则tanαcotβ的值是________.
❖ 解析:据和角公式可知,已知条件是关于 sinαcosβ与cosαsinβ的二元一次方程组, 待求三角函数可化为

,故只要用加减消元法解方程
❖ 已知α、β、γ∈(0, ),sinα+sinγ=sinβ, cosβ+cosγ=cosα,则β-α的值为 ________.
❖ 解析:sin(2α+β)-2cos(α+β)sinα ❖ =sin[(α+β)+α]-2cos(α+β)sinα ❖ =sin(α+β)cosα+cos(α+β)sinα-

两角和与差的余弦、正弦、正切公式

两角和与差的余弦、正弦、正切公式
由β=α- ,得cosβ=cos =cosαcos +sinαsin
= × + × = = .∵0<β< ,所以β= .
变式3.(1)已知tanα=2,tanβ=3,且α,β都是锐角,求α+β;
(2)已知α,β均为锐角,sinα= ,cosβ= ,求α-β.
解析:(1)tan = = =-1.
∵α,β都是锐角,∴0<α+β<π,由上式知α+β= .
课堂练习:
练习1:cos(450+300)=
练习2:cos200cos700-sin200sin700=
练习3: 练习4:
1.下列式子中,正确的个数为()
①sin =sinα-sinβ;②cos =cosα-cosβ;
③sin =sinαcosβ-cosαsinβ;④cos =cosαcosβ+sinαsinβ.
解析:(1)原式=sin 14°cos 16°+cos 14°sin 16°=sin =sin 30°= .
(2)原式=sinxcos +cosxsin +2sinxcos -2cosxsin - cos cosx- sin sinx=3sinxcos -cosxsin - cos cosx- sin sinx= sinx- cosx
=- × + × =- ,故得-sin =- ,即sin = .
变式2.化简求值:
(1)sin 75°;(2)sin 15°;
(3)若α,β均为锐角,sinα= ,sin(α+β)= ,求cosβ.
解析:(1)原式=sin =sin 45°cos 30°+cos 45°sin 30°= × + × = .
课题
两角和与差的余弦、正弦、正切公式
1.注意到 ,由公式C(α+β).,可以推出:

两角和与差的三角函数公式推导

两角和与差的三角函数公式推导

两角和与差的三角函数公式推导
三角函数是数学中非常重要的概念,它们可以用来描述和分析几何形状的变化,有助于我们理解和推导几何图形的性质。

其中,两角和与差的三角函数公式是推导三角函数的基本方法。

两角和与差的三角函数公式推导的基本原理是:若两个角α和β的余弦值分别为cosα和cosβ,那么α+β和α-β的余弦值分别为cos(α+β)和cos(α-β),两者之间的关系可以用如下公式表示:
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
由此可以得到两角和与差的三角函数公式:
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
以上就是两角和与差的三角函数公式推导的基本原理和公式。

可以看出,这一公式的推导是基于两个角α和β的余弦值之间的关系,可以用来计算两个角的和与差的余弦值。

因此,它对于理解和推导三角函数有重要的意义。

两角和与差的三角函数

两角和与差的三角函数

例4 利用和、差角公式计算下列各式的值。 (2)cos20°cos70°-sin20°sin70°
解:由公式 C ,得 ( )
cos 20 cos 70 si n20 si n70 cos(20 70 ) cos90 0
天心一中江泽湘
两角和与差的正弦.余弦.正切公式
天心一中江泽湘






两角和与差的正弦.余弦.正切公式
1 若

4
,求( 1 tan ) (1 tan )的值。
解:( 1 tan ) (1 tan ) 1 tan tan tan tan 1 tan ( ) (1 tan tan ) tan tan
2 2 a2 b2 2 a b a sin x b cos x也 可 化 为 a b 2 cos(x )
( 其 中cos
a
, sin
b

(其 中sin
a a2 b2
, cos
b a2 b2
)
tan tan 得 (3)注意使用 tan( ) 1 tan tan 公式的变形 tan tan tan( )(1 tan tan )
1 tan15 ( 3) 1 tan15

解 : 由公式 T( ) 及 tan45 1, 得
1 t an1 5 1 t an1 5 t an 4 5 t an1 5 1 t an 4 5 t an1 5 tan(45 15 )
tan60 3
天心一中江泽湘
两角和与差的正弦.余弦.正切公式
例5、化简 1 3 (1) cos x sin x,(2) cos x 3 sin x 2 2 解:( 1)原式 sin cos x cos sin x sin( x ) 6 6 6

两角和与差及二倍角三角函数公式

两角和与差及二倍角三角函数公式
解。
05 公式的应用举例
在三角形中的应用
已知两边及夹角求第三边
求三角形的面积
利用两角和与差的余弦公式,结合三 角形的边长和角度关系,可以求出第 三边的长度。
在已知三角形的三边长度时,可以利 用海伦公式结合两角和与差的三角函 数公式求出三角形的面积。
判断三角形的形状
通过比较三角形的三个内角的余弦值, 可以判断三角形的形状(锐角、直角 或钝角^circ - 45^circ) = cos30^circcos45^circ + sin30^circsin45^circ = frac{sqrt{3}}{2} times frac{sqrt{2}}{2} + frac{1}{2} times frac{sqrt{2}}{2} = frac{sqrt{6} + sqrt{2}}{4}$。
二倍角公式允许我们将一个 角的二倍角的三角函数表达 式化简为单角的三角函数表 达式,这在解决一些特定问 题时非常有用,如求某些特 殊角的三角函数值或证明某 些恒等式。
公式在三角恒等 式证明中的应用
两角和与差及二倍角公式在 三角恒等式的证明中扮演着 重要角色。通过使用这些公 式,我们可以将复杂的三角 函数表达式化简为更简单的 形式,从而更容易地证明恒 等式。
04 公式推导与证明
两角和与差公式的推导
利用三角函数的和差化积公式, 将两角和与差的三角函数表达式 转化为单个角的三角函数表达式。
通过三角函数的加减变换,得到 两角和与差的正弦、余弦公式。
结合三角函数的周期性,将公式 扩展到任意角。
二倍角公式的推导
利用三角函数的倍角公式,将 二倍角的三角函数表达式转化 为单个角的三角函数表达式。
三角函数的性质

19《三角函数-两角和与差二倍角公式》

19《三角函数-两角和与差二倍角公式》

2 ,
(一)公式正用 例1、求值:
1sin555

5 2 cot 12
例2
P(53 例1)
1 2 设 . , sin , cos 2 9 2 3
50
3
求α+2β。
[点评] “给值求角”:求角的大小,常分两步 完成:第一步,先求出此角的某一三角函数 值;第二步,再根据此角的范围求出此角。 在确定角的范围时,要尽可能地将角的范围 缩小,否则易产生增解。
四.给式求值 例4:P(55例3)已知a为第二象限角,且
和sin2a+cos2a的值
5 cos sin 求 sin con 2 2 2 2 2
【作业布置】
三角函数的化简与证明
一、知识点 1、化简 (1)化简目标:项数习量少,次数尽量低,尽量 不含分母和根号 (2)化简三种基本类型: 1) 根式形式的三角函数式化简 2) 多项式形式的三角函数式化简 3)分式形式的三角函数式化简 (3)化简基本方法:用公式;异角化同角;异名 化同名;化切割为弦;特殊值与特殊角的三角函 数值互化。
一.给角求值. 例1、计算 sin 40 (tan 10
0 0
3 ) 的值。
练习:(全国高考)tan20°+4sin20°
[点评] “给角求值” 观察非特殊角的 特点,找出和特殊角之间的关系 注意特殊值象1、等,有时需将其转化 成某个角的三角函数,这种技巧在化 简求值中经常用到。
二.给值求值 例2、例2、(P(55) 已知
3 1 sin( x ) cos( x ) 4 4 4
求cos4x的值.

两角和与差的三角函数

两角和与差的三角函数

§1 两角和与差的三角函数知识梳理1.两角和与差的余弦公式(1)公式:cos(α-β)=cos αcos β+sin αsin β;cos(α+β)=cos αcos β-sin αsin β.(2)理解和记忆:①上述公式中的α、β都是任意角.②和差角的余弦公式不能按分配律展开,即cos(a±β)≠cos α±cos β.③公式使用时不仅要会正用,还要能够逆用公式,在很多时候,逆用更能简洁地处理问题.如由cos50°cos20°+sin50°sin20°能迅速地想到cos50°cos20°+sin50°sin20°=cos(50°-20°)= cos30°=21. ④第一章中所学的部分诱导公式可通过本节公式验证.⑤记忆:公式右端的两部分为同名三角函数积,连接符号与左边角的连接符号相反.2.两角和与差的正弦公式(1)公式:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cos αsin β.(2)理解和记忆:①上面公式中的α、β均为任意角.②与和差角的余弦公式一样,公式对分配律不成立,即sin(α±β)≠sin α±sin β.③和差公式是诱导公式的推广,诱导公式是和差公式的特例.如sin(2π-α)=sin2πcos α-cos2πsin α=0×cos α-1×sin α=-sin α.当α或β中有一个角是2π的整数倍时,通常使用诱导公式较为方便. ④使用公式时不仅要会正用,还要能够逆用公式,如化简sin(α+β)cos β-cos(α+β)sin β,不要将sin(α+β)和cos(α+β)展开,而采用整体思想,进行如下变形:sin(α+β)cos β-cos(α+β)sin β=sin [(α+β)-β]=sin α,这也体现了数学中的整体原则.⑤记忆时要与两角和与差的余弦公式区别开来,两角和与差的余弦公式的右端的两部分为同名三角函数积,连接符号与左边的连接符号相反;两角和与差的正弦公式的右端的两部分为异名三角函数积,连接符号与左边的连接符号相同.3.两角和与差的正切(1)公式:tan(α+β)=βαβαtan tan 1tan tan -+;tan(α-β)=βαβαtan tan 1tan tan +-. (2)理解和记忆:①公式成立的条件:α≠k π+2π,β≠k π+2π,α+β≠k π+2π或α-β≠k π+2π,以上k∈Z .当tan α、tan β、tan(α±β)不存在时,可以改用诱导公式解决.②两角和与差的正切同样不仅可以正用,而且可以逆用、变形用,逆用和变形用都是化简三角恒等式的重要手段,如tan α+tan β=tan(α+β)(1-tan αtan β)就可以解决诸如tan25°+tan20°+tan25°tan20°的问题.所以在处理问题时要注意观察式子的特点,巧妙运用公式或其变形,使变换过程简单明了.③与和差角的弦函数公式一样,公式对分配律不成立,即tan(α+β)≠tan α+tan β. 知识导学要学好本节有必要复习任意角的三角函数和平面向量的数量积;本节的重点是公式的应用,难点是公式的变形应用;在学习过程中,要善于应用联系的观点看待问题.难疑突破1.形如函数f (x)=asinx+bcosx(ab≠0)的最值是什么?剖析:受思维定势的影响,总是认为y=sinx 和y=cosx 的最大值都是1,它们的最小值都是-1,则函数f(x)的最大值是|a|+|b|,最小值是 -|a|-|b|,其实不然.其突破口是分析y=sinx 和y=cosx 取最值时,自变量x 取值情况.当x=2k π+2π (k∈Z )时,y=sinx 取最大值1,当x=2k π-2π (k∈Z )时,y=sinx 取最小值-1;当x=2k π(k∈Z )时,y=cosx 取最大值1,当x=2k π+π(k∈Z )时,y=cosx 取最小值-1;由此看y=sinx 取最值时,y=cosx=0,而y=cosx 取最值时,y=sinx=0.所以y=sinx 和y=cosx 不能同时取最值,因此这样求最值是错误的.求形如函数f(x)=asinx+bcosx(ab≠0)的最值,常用方法是化归为求y=Asin(ωx+φ)+b 的最值.例如:求函数f(x)=2sinx-32cosx ,x∈R 的最值.可将函数解析式化为y=Asin(ωx+φ)后,再求最值. f(x)=2sinx-32cosx =4(21sinx-23cosx) =4(sinxcos3π-cosxsin 3π) =4sin(x-3π), ∴函数f(x)的最大值是4,最小值是-4.很明显函数f(x)的最大值不是2±32,最小值不是-2-32.下面讨论函数f(x)=asinx+bcosx(ab≠0),x∈R 的最值. f(x)=asinx+bcosx=22b a +(22b a a+sinx+22b a b +cosx), ∵(22b a a+)2+(22b a b +)2=1, ∴可设cos θ=22b a a +,sin θ=22b a b +,则tan θ=ab (θ又称为辅助角). ∴f(x)= 22b a + (sinxcos θ+cosxsin θ)= 22b a +sin(x+θ).∴当x∈R 时, f(x)的最大值是22b a +,最小值是-22b a +.特别是当a b =±1,±3,±33时,θ是特殊角,此时θ常取4π,3π,6π. 对于形如y=asinx+bcosx(ab≠0)的式子引入辅助角化归为y=Asin(x+θ)的形式,可进行三角函数的化简,求周期、最值等,这是高考和模拟的必考内容之一.例如:2006江苏南京一模,7 若函数f(x)=sinax+cosax(a >0)的最小正周期为1,则它的图像的一个对称中心为( ) A.(8π-,0) B.(0,0) C.(-81,0) D.(81,0) 思路分析:化为y=Asin(ωx+θ)形式,再讨论其对称中心.f(x)=sinax+cosax=2sin(ax+4π)(a >0), ∴T=a π2=1.∴a=2π.∴f(x)=2sin(2πx+4π)(a >0).又∵f(x)与x 的交点是其对称中心,经验证仅有(-81,0)是函数f(x)的对称中心. 答案:C3.2 两角和与差的三角函数课堂导学三点剖析1.两角和与差的三角函数公式的简单运用【例1】 若sin α=55,sin β=1010且α、β是锐角,求α+β的值. 思路分析:可先求出α+β的某种三角函数值,然后再确定α+β的值.解:∵α、β是锐角,∴cos α=552)55(12=-,cos β=10103)1010(12=-. ∴sin(α+β)=sin αcos β+cos αsin β=22. 又∵sin α=55<21,sin β=1010<21, ∴0°<α<30°,0°<β<30°.∴0°<α+β<60°.∴α+β=45°.各个击破类题演练 1计算sin33°cos27°+sin57°cos63°的值.解析:原式=sin33°cos27°+cos33°sin27°=sin(33°+27°)=sin60°=23, 或:原式=cos57°cos27°+sin57°sin27°=cos(57°-27°)=cos30°=23. 变式提升 1sin163°sin223°+sin253°sin313°=___________.解析:原式=sin(180°-17°)·sin(180°+43°)+sin(270°-17°)+sin(270°+43°) =-sin17°sin43°+cos17°cos43° =cos(17°+43°)=cos60°=21. 答案:21 2.两角差的余弦公式的运用【例2】 已知cos(α+β)=31,cos(α-β)=51,求tan αtan β的值. 思路分析:题目中要求的是单角α与 β的函数值,所以自然要想到用和差公式分解,然后用商式求解. 解:由⎪⎪⎩⎪⎪⎨⎧=+=-⎪⎪⎩⎪⎪⎨⎧=-=+)2.(51sin sin cos cos )1(,31sin sin cos cos .51)cos(,31)cos(βαβαβαβαβαβα得 ①+②得cos αcos β=154, ②-①得sin αsin β=151-, ∴tan αtan β=βαβαcos cos sin sin =41-. 友情提示在利用两角和差公式的同时,运用同角三角函数关系,把不同类型的公式放在一起使用是本章题目的特点.类题演练 2设a∈(0,2π),若sin α=53,则2cos(α+4π)等于( ) A.57 B.51 C.57- D.-51 解析:∵α∈(0,2π),sin α=53,∴cos α=54, 又2cos(α+4π)=2(cos α·cos 4π-sin α·sin 4π) =cos α-sin α=51. 答案:B变式提升 2已知α、β为锐角,且cos α=71,cos(α+β)=1411-,求β的值. 解析:∵α是锐角,cos α=71,∴sin α=734)71(12=-. ∵α、β均为锐角,∴0<α+β<π.又cos(α+β)=1411-,∴sin(α+β)=1435)1411(12=--. ∴cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=(1411-)·71+7341435∙=21. 又∵β为锐角,∴β=3π. 3.两角和与差的三角函数的变式应用【例3】 已知α,β∈(-2π,2π),tan α,tan β是一元二次方程x 2+33x+4=0的两根,求 α+β.思路分析:由根与系数关系可得tan α+tan β、tan αtan β,因此可先求tan(α+β).解:由题意知tan α+tan β=-33,tan αtan β=4,①∴tan(α+β)=3tan tan 1tan tan =-+βαβα. 又∵α,β∈(-2π,2π) 且由①知α∈(-2π,0),β∈(-2π,0), ∴α+β∈(-π,0).∴α+β=32π-. 类题演练 3计算tan10°+tan50°+3tan10°tan50°的值.解析:原式=tan(10°+50°)(1-tan10°tan50°)+3tan10°tan50° =3(1-tan10°tan50°)+3tan10°tan50°=3.变式提升 3求值:tan10°tan20°+tan20°tan60°+tan60°tan10°.解析:原式=tan10°tan20°+3(tan10°+tan20°)=tan10°tan20°+3tan30°(1-tan10°tan20°)=1.。

两角和与差的三角函数课件

两角和与差的三角函数课件

[巧练模拟]———————(课堂突破保分题,分分必保!)
3.(2012·赣州模拟)已知sin α+π6+cos α=45 3,则sin α+π3
的值为
()
A.45
B.35
C.
3 2
D.
3 5
解析:由条件得 23sin α+32cos α=45 3,
即12sin α+ 23cos α=45. ∴sin α+π3=45.
[自主解答] (1)∵tan π4+α=2,
∴1t-antπ4a+nπ4ttaannαα=2,∴11+ -ttaann αα=2.
2 ∴tan α=13,∴tan 2α=1-2tatannα2α=1-3 19=34.
sinα+β-2sin αcos β (2)2sin αsin β+cosα+β
[冲关锦囊] (1)运用两角和与差的三角函数公式时,不但要熟练、准
确,而且要熟悉公式的逆用及变形,如tan α+tan β= tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种 变形等. (2)应熟悉公式的逆用和变形应用,公式的正用是常见的, 但逆用和变形应用则往往容易被忽视,公式的逆用和 变形应用更能开拓思路,培养从正向思维向逆向思维 转化的能力,只有熟悉了公式的逆用和变形应用后, 才能真正掌握公式的应用.
2.重视三角函数的“三变”:“三变”是指“变角、变名、 变式”;变角为:对角的分拆要尽可能化成同名、同 角、特殊角;变名:尽可能减少函数名称;变式:对 式子变形一般要尽可能有理化、整式化、降低次数 等.在解决求值、化简、证明问题时,一般是观察角 度、函数名、所求(或所证明)问题的整体形式中的差 异,再选择适当的三角公式恒等变形.
∵0<x<π2,∴-π3<2x-π3<23π.

三角函数两角和与差公式

三角函数两角和与差公式

三角函数两角和与差公式三角函数两角和与差公式_高中数学学好数学的关键是公式的掌握,数学能让我们思考任何问题的时候都比较缜密,而不至于思绪紊乱。

还能使我们的脑子反映灵活,对突发事件的处理手段也更理性。

下面是小编为大家整理的三角函数两角和与差公式,希望能帮助到大家!三角函数两角和与差公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)高三数学学习方法1、变介绍方法为选择方法高三学生的头脑中已经储存了很多解题方法和规律,如何提取运用是第二轮数学复习的关键。

“给出方法解题目”不可取,必须“给出习题选方法”。

选法是思维活动,只要在如何选上做文章,才能解决好学生自做不会,老师一讲就通的问题。

2、变全面覆盖为重点讲练第二轮数学复习仅有两个半月的时间,从面面俱到从头来过一遍是根本做不到。

要做到紧紧围绕重点方法,重要的知识点,重要的数学思想和方法以及近几年的重点题型,狠抓过关。

3、变以量为主为以质取胜高三数学复习中一切的讲练都是要围绕学生展开的,贪多嚼不烂,学生如果消化不了,那么,讲再多也没有用。

只有重质减量,才能有利于学生更好的掌握知识,减少练习量,不是指不做或是少做,而是要在精选上下功夫,要做到非重点的就少做甚至是不做。

4、变以“补弱”为主为“扬长补弱”并举虽然影响学生的数学成绩的因素很多,但是学习兴趣和爱好与成绩绝对是相辅相成的。

所以一味的强调“补弱”是不科学的,要因人而异,因成绩而异。

一般,成绩居中上游的学生,应以“扬长”为主,居下游的学生,应以补弱为主。

处理好扬长、补弱的关系,才是正确的做法。

高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。

第19讲 两角和与差的三角函数

第19讲 两角和与差的三角函数

第19讲 两角和与差的三角函数【考点解读】1.熟练记忆三角函数的两角和差的正弦公式和余弦公式、正切公式并能熟练运用;2.联系三角函数的有关的图像以及性质,往往先化简后,然后利用三角函数的性质求解。

【知识扫描】1.两角和的余弦公式的推导方法: 2.基本公式sin(α±β)=sinα cosβ±cosα sinβcos(α±β)= ; tan(α±β)= . 3.公式的变式tan α+tanβ=tan (α+β)(1-tanα tanβ) 1-tanα tanβ=)tan(tan tan βαβα++4.常见的角的变换: 2α=(α+β)+(α-β);α=2βα++2βα-α=(α+β)-β =(α-β)+β2βα+=(α-2β)-(2α-β); )4()4(x x ++-ππ=2π【考计点拨】牛刀小试1.若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A.103B.53C.23D .-2 解析:选A.3sin α+cos α=0,则tan α=-13,1cos 2α+sin2α=sin 2α+cos 2αcos 2α+2sin αcos α=tan 2α+11+2tan α=(-13)2+11+2×(-13)=103.2.若35sin ,,0,cos 524a πααπ⎛⎫⎛⎫=-∈-+ ⎪ ⎪⎝⎭⎝⎭则=( )A .BC . D3.若α∈(π2,π),且sin α=45,则sin(α+π4)-22cos α=( )A.225 B .-225C.425 D .-425解析:选A.sin(α+π4)-22cos α=sin αcos π4+cos αsin π4-22cos α=45×22=225.故选A.4.已知cos(α+π3)=sin(α-π3),则tan α=________.解析:∵cos(α+π3)=sin(α-π3),∴cos αcos π3-sin αsin π3=sin αcos π3-cos αsin π3,∴tan α=1. 答案:15.(江苏省淮阴中学、海门中学、天一中学2012届高三联考4)已知4cos 5α=-且(,)2παπ∈,则tan()4πα+= .【解析】4cos 5α=-且(,)2παπ∈,tan +tan3414sin =tan =-tan()53471-tan .tan 4παπαααπα∴∴∴+==. [典例分析]考点一:求三角函数值例1.求[2sin50°+sin10°(1+3tan10°)]· 80sin 22的值.解:原式=︒⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛︒︒+⨯︒+︒80sin 210cos 10sin 3110sin 50sin 2 =︒⋅︒︒+︒⨯︒+︒80sin 2)10cos 10sin 310cos 10sin 50sin 2(=︒⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡︒︒+︒⨯︒+︒10cos 210cos 10sin 2310cos 2110sin 250sin 2 =︒⋅⎪⎭⎫⎝⎛︒︒︒+︒10cos 210cos 40sin 10sin 250sin 2=︒=︒⋅︒︒60sin 2210cos 210cos 60sin 2=.62322=⨯变式训练1:(1)已知α∈(2π,π),sin α=53,则tan(4πα+)等于( )A.71B.7C.- 71D.-7 (2) sin163°sin223°+sin253°sin313°等于 ( ) A.-21 B.21C.-23D.23解:(1)A (2)B规律小结:在进行三角函数化简和三角恒等式的证明时,要细心观察题目的待征,灵活,恰当地选用公式,一般情况下是将切化弦。

两角和与差的三角函数二倍角公式ppt课件

两角和与差的三角函数二倍角公式ppt课件

答案
17 (1)18
5 (2)7
24 (3)25
规律方法 两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公 式在学习时应注意以下几点: (1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;
(2)善于拆角、拼角,如 α=(α+β)-β,2α=(α+β)+(α-β),2α+β=(α+β)+α 等; α
=scions((αα++ββ))ccooss((αα--ββ))++csoins((αα++ββ))ssiinn((αα--ββ))=1t+an(tanα(+αβ+)β+)ttaann((αα--ββ)). 将 tan(α+β)=2,tan(α-β)=3 代入,得原式=1+2+2×3 3=57.
(3)由 sinα+π6 =35,可得 cosα+π6 =±45, 当 cosα+π6 =-45时,cos α=cosα+π6 -π6 =3-140 3<0,与 α 是锐角矛盾, 所以 cosα+π6 =45, 从而 cos2α-π6 =cos2α+π6 -π2 =2sinα+π6 ·cosα+π6 =2×35×45=2245.
(3)(2017·如东中学调研)已知 α 为锐角,若 sinα+π6 =35,则 cos2α-π6 =________.
解析 (1)由 sin α+cos α=13两边平方得 1+sin 2α=19,解得 sin 2α=-89,所以 sin2π4 -α=1-cos2π2 -2α=1-si2n 2α=1+2 89=1178. (2)csoins 22αβ=csoins[[((αα++ββ))+-((αα--ββ))]]
10°·cos
10°+ 3sin cos 10°
10°·
2sin
80°=(2sin

第19讲 两角和与差的三角函数、二倍角公式

第19讲 两角和与差的三角函数、二倍角公式

( C)
A.
3 3
B.-
3 3
C.5 9 3
D.-
6 9
1.(2023·石家庄模拟)已知 sin α+π4=45,α∈π4,π2,则 cos α=
(Hale Waihona Puke )A.2 10B.3102
C.
2 2
2.已知 cos α+1π2=35,α∈0,π2,则 cos α+π3=
A.3-140 3
B.45
C.-
2 10
D.
2 10
D.7102 ()
3.(2023·邯郸期末)已知 cos x+1π2=45,则 sin 2x+23π=___27_5__.
目标 3 辅助角公式的应用
3 (1)(2023·泰州调研)已知 sin α-π6+cos α=35,则 cos 2α+π3= ( B )
A.-275
B.275
C.-2245
A.79
B.19
C.-19
D.-79
3.(2023·沈阳一模)已知向量 a=(cos α,-2),b=(sin α,1),且 a∥b,则 tan π4-α
=___3__.
4.已知 α,β∈-π2,0,且 tan α+tan β+ 3tan αtan β= 3,则 α+β=________.
目标 2 拆、配角问题
tan 2θ=-2
2

π 4

θ

π 2


2cos22θ-sinθ-1 2sin θ+π4

____________.
1.已知角 θ 的终边过点 A(-1,1),则 sin π6 -θ=
( D)
A.
2+ 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 19 讲 两角和与差的三角函数
(第课时)
两角和与差
⎪⎪

⎪⎪⎪⎪
⎪⎪⎩
⎪⎪


⎪⎪
⎪⎪⎪⎨⎧⎪⎩⎪
⎨⎧=-=+⎪⎪⎩⎪
⎪⎨⎧-=-=-=-==⎪⎪⎩⎪
⎪⎨⎧
∙±=±=±±=±2sin 2cos 12cos 2cos 1122sin 211cos 2sin cos 2cos cos sin 22sin 1)(sin sin cos cos )cos(sin cos cos sin )sin(2222222αααααααααααααααβαβαβαβ
αβαβαβαβαβα常用的公式变形倍角公式公式两角和与差的三角函数tg tg tg tg tg tg tg tg
重点: 1.两角和与差的三角函数公式;2.善于对公式加以变形以及灵活运用公式;3.应用公式化简三角函数式。

难点:1.灵活运用公式化简三角函数式和证明三角恒等式;2.给值求值中的角度变换。

正切公式;2.掌握二倍角的正弦、余弦、正切公式;3.能正确运用三角公式进行化简、求值和恒等式证明。

βαβαβαsin cos cos sin )sin(±=±, βαβαβαsin sin cos cos )cos( =±,
β
αβ
αβαtg tg tg tg tg ∙±=
± 1)(。

注意:一般情况下,βαβαsin sin )sin(±≠±。

2.二倍角的三角函数
αααcos sin 22sin = ,
ααααα2222sin 211cos 2sin cos 2cos -=-=-= ,
α
α
α2
122tg tg tg -=。

注意事项:
① 一般情况下,ααsin 22sin ≠。

② 常用的公式变形如下
由 1cos 22cos 2
-=αα 可得 :2
cos 2cos 12αα=+ ;
由 αα2
sin 212cos -= 可得 :2
sin 2cos 12α
α=- 。

③ 选用合适的公式。

例.已知 12
5
=
θtg ,求θ2cos 。

分析:要建立θ2cos 与θtg 之间的联系,有两种方法:
⑪ 利用,θθ2
1sec tg
+±= ; ⑫ 利用 2
121cos 2
2
θ
θθtg tg +-=。

如果我们走第一条路,因为根号前面有正负号,那么需要判别θ究竟在哪一象限。

而走第二条路,就不会有这种麻烦。

解:169119)12
5(1)
125(1112cos 22
22=+-=+-=
θθθtg tg 。

说明:2
121cos 2
2
θ
θ
θtg tg +-=
叫做万能代换公式(用正切来表示正弦或余弦)
,还有一个是 2
122sin 2
θ
θ
θtg tg
+=。

3.三角函数公式的内在联系
为了帮助记忆三角公式,有必要理解这些公式的内在联系。

基本公式有四个:1cos sin
22
=+αα ① α
ααcos sin =tg ②
α
αctg tg 1
=
③ βαβαβαsin cos cos sin )sin(+=+ ④
②代入③可得 αα
αsin cos =
ctg ⑤ ②代入①可得 αα2
2sec 1=+tg
⑤代入①可得 αα2
2csc 1=+ctg 由④利用 )](90sin[)cos(βαβα+-︒=+ 可得
βαβαβαsin sin cos cos )cos(-=+⑥
在④⑥中,若令0<β,可得 βαβαβαsin cos cos sin )sin(-=- ⑦
βαβαβαsin sin cos cos )cos(+=- ⑧
在④⑥中,若令βα=,可得 αααcos sin 22sin = ⑨
ααααα2
222sin 211cos 2sin cos 2cos -=-=-= ⑩
在⑩中,若令2
x
=α,可得 2cos 12sin αα-±=
2
cos 12cos α
α+±=
若把④⑦相加相减,可得和差化积与积化和差公式(此行不讲)。

两角和与差、倍角的三角函数
1 2 3 4 5 6 7 8 βαβαβαsin cos cos sin )sin(±=±
βαβαβαsin sin cos cos )cos( =±
√ β
αβ
αβαtg tg tg tg tg ∙±=
± 1)(
αααcos sin 22sin =

ααα22sin cos 2cos -=
αα22sin 211cos 2-=-=
α
α
α2122tg tg tg -=
公式变形
√ √
选用合适的公式
1.已知 a =θ2sin ,b =θ2cos ,4
0πθ<
< ,则 )4tan(π
θ+ 的值为 ( )
A .
a b +1; B . b a -1; C . a
b -1; D . b a
+1。

解:b
a +=+=++
-=
+
12cos 2sin 1)
2
2sin()
22cos(1)4tan(θθθπ
θπ
θ ,故应选D。

2.已知 61)4sin()4sin(=-+απαπ ,且 ),2
(ππ
α∈ ,求α4sin 。

解:∵ 2
)4
(
)4
(
π
απ
απ
=
-++ ,∴ )4
sin(
)4
cos(
απ
απ
+=- , )4sin(
)4sin(
)4cos(
)4cos(
)]4(
)4
cos[(
απ
απαπ
απ
απ
απ
-+--+=-++
61)4(2sin 2161)4sin()4cos(61)4cos()4cos(-+=-++=--+=απαπαπαπαπ
6
12cos 2161)22sin(21-=-+=ααπ 即 612cos 212cos -=απ ,即 31
2cos =α ,
∵ ),2(ππα∈ ,∴ )2,(2ππα∈ ,由 3
1
2cos =α 可知 )2,23(
2ππα∈ , ∴ 32
29112cos 12sin 2-=--=--=αα ,
∴ 9
2
43132222cos 2sin 24sin -
=∙-∙==ααα 。

相关文档
最新文档