炔烃课件
《烯烃炔烃》课件
详细描述
炔烃可以被酸性高锰酸钾 溶液、重铬酸钾溶液等氧 化剂氧化,生成酮、羧酸 或二氧化碳等物质。
举例
乙炔在酸性高锰酸钾溶液 中氧化得到二氧化碳和锰 离子。
炔烃的聚合反应
总结词
炔烃可以发生聚合反应, 生成高分子化合物。
详细描述
在催化剂的作用下,炔烃 可以发生聚合反应,生成 高分子链,如合成橡胶、 合成纤维等。
总结词
烯烃的氧化反应是指烯烃在一定条件下被氧化生成更复杂的有机物。
详细描述
烯烃的氧化反应可以通过多种方式进行,如空气氧化、臭氧氧化、过氧化氢氧 化等。在氧化过程中,烯烃的碳碳双键被氧化成羧基或酮基等含氧官能团,生 成相应的醛、酮、酸等化合物。
烯烃的聚合反应
总结词
烯烃的聚合反应是指多个烯烃分子相互结合形成高分 子化合物的过程。
《烯烃炔烃》ppt课件
目 录
• 烯烃炔烃的简介 • 烯烃的性质 • 炔烃的性质 • 烯烃与炔烃的鉴别 • 烯烃炔烃的应用 • 烯烃炔烃的未来发展
01
烯烃炔烃的简介
烯烃的定义与结构
烯烃的定义
烯烃是一种不饱和烃,其分子中 含有碳碳双键。
烯烃的结构
烯烃的分子结构由一个碳碳双键 和两个碳氢单键组成。
炔烃的定义与结构
炔烃的应用前景展望
炔烃作为一种重要的有机化合物,在合成高 分子材料、药物、农药等领域具有广泛的应 用前景。未来,炔烃有望在生物医用材料、 环保型农药等领域发挥重要作用,为解决人 类社会面临的资源、能源和环境问题提供新 的解决方案。
THANKS
感谢观看
烯烃炔烃在许多化学反应中用作反应剂和催 化剂,如烷基化反应、聚合反应等。
在生物医学领域中作为药 物和生物活性分子
炔烃的课件
HgSO4 CH (CH ) C CH CH3(CH2)5C CH + HOH 3 2 5 3 H2SO4 O
加水反应方程式的意义: 加水反应方程式的意义:
①烯醇式结构是不稳定结构,不能稳定存在; 烯醇式结构是不稳定结构,不能稳定存在; ②有机化学反应中存在分子结构的重排现象; 有机化学反应中存在分子结构的重排现象; ③炔烃加水产物的写法---乙炔加水生成乙醛。 炔烃加水产物的写法---乙炔加水生成乙醛。 ---乙炔加水生成乙醛
CH3(CH2)3C 过氧化物 Br CH3(CH2)3CH CH2 CHBr HBr HBr 过氧化物 CH3(CH2)3CBr2CH3 CH3(CH2)3CH2CHBr2
CH3(CH2)3C
CH
ቤተ መጻሕፍቲ ባይዱ
HBr
炔烃与HX作用,在一定的条件下可以停留在一分子加成阶段。 乙炔与一分子氯化氢作用生成氯乙烯,这是工业上生产氯乙烯的方法之一。
方程式的书写注意根据条件确定产物。
Ni,C2H5OH CH3CH2CH2CH3 CH 3C CCH 3 + 2H 2 25 C,5MPa
5 % Pd-BaSO4 R CH2 C C CH2 R 25℃,喹啉, 0。MPa CH2 C C CH2 R R HH
CH3 Pd-CaCO3 HC C C CHCH2CH2OH + H2
CH + NaNH 2 CH + NaNH 2
HC R C
液氨 液氨
HC R
CNa + NH3 C CNa + NH3
(2)炔氢的微弱酸性使它能被某些金属离子所取代生成金 )
属炔化物。反应非常灵敏,可被用来鉴别乙炔和端炔。 属炔化物。反应非常灵敏,可被用来鉴别乙炔和端炔。用 此法可鉴定炔烃中是否含有炔氢。 此法可鉴定炔烃中是否含有炔氢。 CH CH + 2Ag(NH3)2NO3 AgC CAg + 2NH4NO3 + 2NH3 乙炔银(白色)
大学有机化学课件炔烃
炔烃加水也符合马氏规则
O
R–C–CH3
甲基酮
只有乙炔水合得乙醛; 端基炔水合得甲基酮; 非末端炔烃 两种酮的混合物。
3、硼氢化反应 (了解)
炔烃的硼氢化反应, 可以停留在含双键的阶段为顺式构型。
CCHHH3C3
CCCHC3
(BCHH3)32
BCCHH33COCOH CCHC3 H3C BC
3H
H3
O CH3CH2C–CH3
CH≡CNa + CH3CH2Br
Na
CH≡CH
HBr
CH2=CH2
H2 林德拉催化剂
CH≡CH
7、聚合反应 (略)
CH2 CH CH C CH
7 6 54 3 2 1
CH2=CH-CH-CH=CH–CH =CH2
C CH3
C CH
CH2
5-乙炔基-1, 3, 6-庚三烯 2-甲基-3-乙炔基-1,4-戊二烯
二、物理性质
1、炔烃分子短小、细窄, 在液态及固态中彼此很靠近, 分子间作用力强, 故熔点、沸点和密度较大。
反应、聚合反应, 但也有一定特殊性。 CH3–CH3 50
sp杂化控制电子的能力更强, 亲电加成反应稍慢于双键.
1、还原反应
1)催化加氢 (不同催化剂, 不同产物)
① 高活性催化剂 (Ni、Pt、Pd等) (生成烷烃)
H2
H2
R C CH 催化剂 R CH CH2 催化剂 RCH2CH3
CH3CCCH3 +H2 Pt CH3CH2CH2CH3
CH3 H
硼氢化的产物用酸处理, 可得顺式烯烃。
末端炔硼氢化的产物用碱性过氧化氢氧化生成醛。
R
H
RC≡CH
炔烃的ppt课件
CH≡CH CH3C≡CH CH3CH2C≡CH CH3CH2CH2C≡CH CH3CH2C≡CCH3 CH3(CH2)3C≡CH CH3(CH2)4C≡CH CH3(CH2)15C≡CH
-81.8(891毫米) -101.5 -122.5 -98 -101 -124 -80.9 22.5
-83.4 -23.3 8.5 39.7 55.5 71.4 99.8 180(15毫米)
炔烃的
一、炔烃的结构特点
(1)碳原子的sp杂化 基态
2p
2s
激发态
2pΒιβλιοθήκη 2ssp杂化态2p
sp
1s
1s
1s
一个sp杂化碳原子
一个σ键,二个π键。
二个sp杂化碳原子和二个氢原子形成乙炔
H C C
炔的两个π键
二、炔 烃的命名
与烯相似,只将“烯”改为“炔”。
C H C H C H CC H 3 2 C H 3 4-甲基-1-戊炔
(4)加水
HgSO4 H OH SO C HC H+ 2 2 4
H2C CH 重 排 CH CH 3 OH
乙烯醇
O
CC H O
烯醇式(不稳定)
重 排
CC HO
酮式或醛式(稳定)
方程式的书写:写出最终产物即可。
HgSO4 C H ( C H ) CC H C H ( C H ) C C H + H O H 3 2 5 3 3 2 5 H2SO4 O
HBr CH CH (CH ) CBr CH CH (CH ) C 2 3 2 3 2 3 3 2 3
炔烃与HX作用,在一定的条件下可以停留在一分子加成阶段。 乙炔与一分子氯化氢作用生成氯乙烯,这是工业上生产氯乙烯的方法之一。
高中化学《炔烃-1》课件
R C CH + H Cl
sp2
R C CH2 + Cl
乙烯型碳正离子
乙烯型碳正离子的稳定性比烷基碳正离子的稳定性低。 根据气相中电离反应得出的碳正离子稳定性大小为
R3C+ >> R2CH+ > RCH2+ > RC+=CH2 > RCH=CH+
由于RC+=CH2比烷基碳正离子RCH2+的稳定性低,因 此炔烃的亲电加成比烯烃慢。又因为RC+=CH2 的稳定性 RCH=CH+的大,因此符合马氏规则。
(四) 硼氢化反应
特点1:炔烃的硼氢化反应可以停在烯烃衍生物一步,顺式 加成,马氏加成。
BH3-THF C2H5C CC2H5
C2H5 H
C2H5 B
3
特点2:进一步用酸处理生成顺式烯烃,用碱性H2O2氧化 时则生成酮。
C2H5 H
C2H5 H
C2H5 B
3
H2O2, OHC2H5
OH
AcOH
C2H5 H
(CH3)3C–C≡C–H (CH3)3C–C≡C–C(CH3)3 F3C–C≡C–H
叔丁基乙炔
二叔丁基乙炔
三氟甲基乙炔
2 炔烃的系统命名法和烯烃相似,只是将“烯”改为“炔”。
(CH3)3CC≡CCH3 4,4-二甲基-2-戊炔 3 炔基是炔分子从形式上去掉一个氢原子所留下的基团。
–C≡CH 乙炔基
其他炔烃水化生成酮。其中端基炔水化得到甲基 酮(CH3CO-),符合马氏规则:
O
C CH + H2O H+
CH3
对称的中间炔给出单一酮,而不对称的中间炔则 给出两种酮的混合物,没有制备价值。
炔烃 课件 高中化学课件
二、脂肪烃的来源及其应用 1.脂肪烃的来源及其应用 脂肪烃的来源有石油、天然气、煤等。石油中含有 1 ~ 50个碳原子的烷烃及环烷烃。石油通过常压分馏可以得到石 油气、汽油、煤油、柴油等;而减压分馏可以得到润滑油、 石蜡等分子量较大的烷烃;通过石油的催化裂化及裂解可以 得到较多的轻质油和气态烯烃,气态烯烃是最基本的化工原 料;而催化重整是获得芳香烃的主要途径。 天然气的化学组成主要是烃类气体,以甲烷为主(按体积 分数计约占80%~90%)。天然气是高效清洁燃料,也是重要 的化工原料。 煤也是获得有机化合物的源泉。通过煤焦油的分馏可以 获得各种芳香烃;通过煤的直接或间接液化,可以获得燃料 油及多种化工原料。
⑧乙炔制备的反应原理虽是“固+液→气”类型,但制
取乙炔不能用启普发生器或具有启普发生器原理的实验装 置,原因是: a .碳化钙吸水性强,与水反应剧烈,不能随 用、随停。 b .反应过程中放出大量的热,易使启普发生器 炸裂。c.生成的Ca(OH)2呈糊状,易堵塞球形漏斗。
⑨工业上用生石灰和焦炭在高压电弧作用下反应制备电
思维激活
我们常见到大货车在刚发动或爬坡的时候,排出的尾气 都是黑烟,而小汽车却没有这种现象,为什么?用来切割或 焊接金属的氧炔焰是利用了什么原理来切割或焊接金属的?
自学导引
一、炔烃 1.乙炔的组成和结构 乙炔的分子式:C2H2,电子式: , 结构式:H—C≡C—H,结构简式:CH≡CH。 注意:①从乙炔分子的电子式、结构式、结构简式可看 出,乙炔分子中含有—C≡C—结构,通常称它为碳碳三键。 ②从乙炔分子的两种模型可看出,乙炔分子里 4 个原子 均在同一条直线上。 ③从乙炔的分子组成与结构情况看,乙炔属于不饱和 烃。 ④常见的直线形分子有:所有双原子分子、CO2、 CS2、HC≡CH等。
炔烃和二烯烃课件
C H> C H> C H
sp
sp2
sp3
HC CH Na
HC CNa H2
生成旳炔钠是一种亲核试剂
RC CNa
R/X
这个反应能够用于制备高级炔烃
RC CR /
生成金属炔化物
NaNH2
R-CC Na
R-CCH
Ag (NH3)+2NO3 Cu (NH3)+2Cl
R-CC Ag
鉴
R-CC Cu
别
R-CC Ag HNO3
R-CCH + AgNO3
-CN + H2O
R-CCCu HNO3
R-CCH + Ag(CN)-2 + HOR-CCH + Cu2(NO3)2
纯化炔烃旳措施
2. 碳碳π键旳反应
R-CC-R’
H2/Ni, or Pd, or Pt
RCH2CH2R’
H2/ Pd-CaCO3 or Pd-BaSO4 orNiB
主要反应部位
Chemical Reaction
CCH
连在电 负性较 强旳原 子上旳 氢
碳碳π键(电子云 密度大,易发生亲 电反应)
核较为暴露旳
sp杂化旳碳
1. 末端炔氢旳反应
酸性 R3C-H
R3C- + H+
碳氢键旳断裂也能够看作是一种酸性电离,所以将烃称为含碳酸
含碳酸旳酸性强弱可用pka鉴别, pka越小,酸性越强。
*2 CH2=CH-CCH + H2 (1mol)
Ni
CH2=CH-CH=CH2 共轭双键较稳定
要想将炔烃只还原到烯烃,能够采用林德拉(Lindlar)催化剂. 或者用Pd-BaSO4 、或者用NiB做催化剂
炔烃课件-高二化学人教版(2019)选择性必修3
⑶ 加聚反应 n HC≡C-CH3 催化剂
CH=C n
CH3
炔烃的结构和性质与乙炔的相似 官能团:碳碳三键(—C≡C—)
课
堂
小炔 结烃
氧化反应 加成反应 加聚反应
①可燃性 ②使酸性KMnO4溶液褪色
卤素单质或其溶液
氢气 催化剂 烯烃或烷烃 △
卤化氢 催化剂 卤代烃△Biblioteka 水 催化剂 △醛或酮
一定条件下
nX—C≡C—Y
A.先加Cl2,再加Br2
B.先加Cl2,再加HBr
C.先加HCl,再加HBr D.先加HCl,再加Br2
3、某炔烃与氢气发生加成反应后得到,则该炔烃的结构有( B )
A.1种 B.2种
C. 3种
D.4种
4.如图为实验室制取乙炔并验证其性质
的装置图。下列说法不合理的是( C )
A.逐滴加入饱和氯化钠溶液可控制生成乙炔的速率 B.酸性KMnO4溶液褪色,说明乙炔具有还原性 C.若用溴的CCl4溶液验证乙炔的性质,不需要通过CuSO4溶液除杂 D.若将纯净的乙炔点燃,有浓烈的黑烟,说明乙炔不饱和程度高
③加聚反应
催化剂
n CH ≡ CH
[ CH=CH ]n
导电塑料——聚乙炔 (制导电高分子材料)
归纳总结:
O2
氧化反应 点燃
CO2 + H2O
酸性KMnO4溶液 褪色
乙
(BCrl22)CHBr=CHBr(BCr2l2)CHBr2-CHBr2
炔
加成反应
H2 催化剂△
CH2=CH2
H2 催化剂△
CH3-CH3
碳原子数相同时,支链越多,熔沸点越低。 密度: 随C数目的增加而增大;但相对密度都小于1 溶解性:几乎不溶于水;但可溶于有机溶剂
化学炔烃ppt课件
两分子端基炔烃在特定条件下偶联生成新 的炔烃。
烯烃复分解法
烯烃在金属催化剂作用下发生复分解反应 生成炔烃。
芳烃侧链烷基化法
芳烃在特定条件下发生侧链烷基化反应生 成含有炔烃结构的化合物。
03
炔烃的反应与机理
加成反应
催化氢化反应
在催化剂存在下,炔烃可与氢气 发生加成反应,生成相应的烷烃 。此反应具有高度的选择性和活
检查冷凝水、搅拌器等辅助设备是否正常工作。
实验步骤详解
2. 原料准备与投料 在圆底烧瓶中加入适量溶剂,然后加入炔烃原料。
根据实验要求,加入催化剂和其他辅助试剂。
实验步骤详解
3. 反应过程控制 开启搅拌器,使反应物充分混合。
通过恒压滴液漏斗缓慢滴加反应物,控制反应速度。
实验步骤详解
密切监测反应温度, 及时调整冷却水流速 以保持恒温。
化学炔烃ppt课件
CONTENTS
• 炔烃概述 • 炔烃的制备与合成 • 炔烃的反应与机理 • 炔烃的应用领域 • 实验方法与操作技巧 • 总结与展望
01
炔烃概述
定义与结构
定义
炔烃是一类含有碳-碳三键(C≡C )的不饱和烃,通式为CnH2n-2 。
结构
炔烃的分子结构中含有一个或多 个碳-碳三键,这些三键使得炔烃 具有较高的反应活性和特殊的化 学性质。
烃类裂解法
高级烃类在高温下裂解生成乙炔。
其他炔烃的制备
卤代烷脱卤化氢法
卤代烷与强碱反应,脱去 卤化氢生成对应的炔烃。
醇脱水法
醇在特定条件下脱水生成 对应的炔烃。
烯烃加成法
烯烃与卤素或卤化氢加成 生成卤代烷,再经脱卤化
氢反应生成炔烃。
炔烃的合成方法
有机化学炔烃ppt课件
contents •炔烃概述与结构特点•炔烃物理性质与化学性质•炔烃合成方法与路线设计•炔烃在有机合成中应用•炔烃分析方法与鉴定技术•实验操作注意事项及安全防护措施目录炔烃定义及分类定义分类结构特点与化学键性质结构特点化学键性质炔烃中的碳-碳三键具有较高的反应活性,容易发生加成反应、氧化反应等。
命名规则及同分异构现象命名规则同分异构现象炔烃的熔沸点炔烃的密度炔烃的溶解性030201物理性质表现化学性质活泼性分析炔烃的加成反应炔烃的氧化反应炔烃的聚合反应典型反应类型举例炔烃的加成反应举例乙炔与氢气在催化剂存在下发生加成反应,生成乙烯。
炔烃的氧化反应举例乙炔被高锰酸钾氧化,生成二氧化碳和水。
炔烃的聚合反应举例乙炔在特定条件下发生聚合反应,生成聚乙炔。
常见合成方法介绍末端炔烃的制备乙炔的制备通过卤代烃与金属反应得到末端炔烃,如碘乙烷与镁反应得到乙炔。
内炔烃的制备路线设计原则原料易得,成本低廉。
反应条件温和,易于操作。
产物易于分离提纯,收率高。
优化策略选择合适的催化剂和反应条件,提高反应速率和选择性。
01 02原料选择反应条件产物分离提纯结果分析实例分析:某炔烃合成过程解析炔烃的取代反应利用炔烃中的碳碳三键活性,进行取代反应,引入新的官能团或侧链。
炔烃的加成反应通过亲电加成、亲核加成等反应,将炔烃转化为其他官能团,如醇、醛、酮等。
炔烃的环化反应通过分子内或分子间的环化反应,构建环状化合物,如环戊二烯、苯等。
作为合成子参与反应构建复杂分子骨架策略炔烃的偶联反应利用过渡金属催化剂,实现炔烃与卤代烃、烯烃等之间的偶联反应,构建碳碳键。
炔烃的聚合反应通过炔烃的聚合反应,合成高分子化合物,如聚乙炔等。
炔烃的环加成反应利用炔烃与烯烃、醛、酮等之间的环加成反应,构建复杂环状化合物。
案例分享:具有生物活性化合物合成抗癌药物紫杉醇的合成01天然产物全合成的案例02药物分子的设计与合成031 2 3气相色谱法(GC)高效液相色谱法(HPLC)薄层色谱法(TLC)电子轰击质谱(EI-MS)01化学电离质谱(CI-MS)02场解吸质谱(FD-MS)03其他辅助手段简介红外光谱(IR)核磁共振(NMR)紫外可见光谱(UV-Vis)实验操作规范流程和注意事项熟悉实验步骤,检查实验器材和试剂是否齐全、完好。
大学有机化学课件炔烃(多应用)
大学有机化学课件:炔烃一、炔烃的定义与分类炔烃是一类含有碳碳三键的碳氢化合物,其分子通式为CnH2n-2。
根据分子中碳碳三键的数量,炔烃可分为单炔烃、双炔烃和三炔烃等。
单炔烃是指分子中仅含有一个碳碳三键的炔烃,如乙炔(C2H2);双炔烃是指分子中含有两个碳碳三键的炔烃;三炔烃是指分子中含有三个碳碳三键的炔烃。
二、炔烃的命名炔烃的命名遵循有机化合物的命名原则,以碳碳三键为中心,选取最长的碳链为主链,从最近的取代基开始编号。
炔烃的命名中,碳碳三键的位置用数字表示,并在数字后面加上“-yne”作为炔烃的后缀。
例如,丙炔的分子式为C3H4,其结构简式为CH3-C≡C-H,按照命名原则,其名称为丙炔。
三、炔烃的物理性质炔烃的物理性质与其分子结构密切相关。
炔烃的沸点、熔点随分子中碳原子数的增加而升高。
炔烃的密度小于水,不溶于水,易溶于有机溶剂。
炔烃具有较低的极性,因此其分子间作用力较弱,导致炔烃的沸点和熔点较低。
四、炔烃的化学性质1.加成反应:炔烃中的碳碳三键具有较高的活性,容易发生加成反应。
炔烃可以与氢气、卤素、水、醇等发生加成反应,相应的加成产物。
例如,乙炔与水在催化剂的作用下发生加成反应,乙醛。
2.氧化反应:炔烃可以被氧化剂氧化,醛、酮、羧酸等氧化产物。
例如,乙炔被酸性高锰酸钾氧化,醋酸。
3.聚合反应:炔烃可以通过聚合反应高分子化合物。
例如,乙烯基乙炔可以通过自由基聚合反应聚乙烯基乙炔。
4.亲核取代反应:炔烃中的碳碳三键可以发生亲核取代反应。
例如,乙炔与卤化氢反应,卤代乙烷。
五、炔烃的应用炔烃在工业、农业、医药等领域具有广泛的应用。
例如:1.工业领域:炔烃可以作为合成橡胶、塑料、合成纤维等高分子化合物的原料。
炔烃还可以用作溶剂、燃料等。
2.农业领域:炔烃可以用于合成农药、植物生长调节剂等。
3.医药领域:炔烃可以用于合成药物、生物活性分子等。
六、炔烃的安全性与环境影响炔烃具有较高的活性,容易发生火灾、爆炸等事故。
炔烃最优质ppt课件
在使用炔烃时,应避免明火、高 温等危险因素,防止发生爆炸事
故。
废气处理:在生产过程中产生的 废气必须经过处理后才能排放,
以减少对环境的影响。
05
炔烃的发展趋势与展望
炔烃的研究现状及发展趋势
01
炔烃的合成方法研究
近年来,炔烃的合成方法取得了显著的进展,包括催化反应、电化学方
法、光化学方法等。其中,金属催化的方法具有高活性和选择性,是当
炔烃最优质ppt课件
目录
• 炔烃简介 • 炔烃的合成 • 炔烃的应用 • 炔烃的危害与防治 • 炔烃的发展趋势与展望 • 炔烃的相关化学知识
01
炔烃简介
炔烃的定义
炔烃是一类有机化合物,其分 子结构中仅包含一个碳碳三键 。
炔烃的通式为CnH2n-2,其中 n表示碳原子的数目。
炔烃在有机化学中具有重要的 作用,是合成其他有机化合物 的关键原料之一。
新的思路。
炔烃的未来发展前景及挑战
炔烃的绿色合成
尽管炔烃的合成方法已经取得了很多进展,但这些方法仍然存在一些问题,如需要使用贵 金属催化剂、有机溶剂等。因此,开发绿色、可持续的炔烃合成方法是未来的一个重要研 究方向。
炔烃的性质及应用拓展
尽管炔烃在材料科学、有机合成、药物开发等领域已经有很多应用,但科学家们仍在不断 探索炔烃的新性质和应用。未来,炔烃有望在更多领域得到应用。
04
炔烃的危害与防治
炔烃的毒性及危害
神经毒性
01
炔烃对神经系统有一定的毒性,长期接触可能导致神经衰弱、
记忆力减退等症状。
肝脏损害
02
炔烃可能对肝脏造成损害,长期接触可能增加患脂肪肝、肝硬
化等疾病的风险。
致癌性
炔烃最优质ppt课件
目录
• 炔烃简介 • 炔烃的性质 • 炔烃的合成方法 • 炔烃的应用 • 炔烃的未来发展
01
炔烃简介
炔烃的定义
01
炔烃是含有碳碳三键的碳氢化合 物,其通式为CnH2n-2。
02
炔烃是一种不饱和烃,具有较高 的反应活性。
炔烃的分类
根据分子中碳碳三键的位置,炔烃可以分为端基炔和中间炔 两类。
分子聚己炔。
反应机理
01
加成反应机理
炔烃的加成反应通常经过正碳离子中间体。例如,在己炔与氢气的加成
反应中,首先生成正己碳离子,然后与氢气加成得到己烷。
02
氧化反应机理
炔烃的氧化反应通常经过自由基中间体。例如,在庚炔的氧化反应中,
首先生成庚自由基,然后与氧气结合得到庚酸。
03
聚合反应机理
炔烃的聚合反应通常经过增长链中间体。例如,在己炔的聚合反应中,
物理性质
溶解性
炔烃的溶解性主要取决于其分子极性。非极性分子如己炔 ,在非极性溶剂如苯中的溶解度较大。而极性分子如庚炔 ,在极性溶剂如水中的溶解度较大。
沸点
炔烃的沸点主要取决于其分子间作用力。直链炔烃的沸点 通常高于支链炔烃,因为直链炔烃的分子间作用力更强。
密度
炔烃的密度通常比水小,但比空气大。例如,己炔的密度 约为0.78g/cm³,而空气的密度约为0.00129g/cm³。
炔烃的实验室合成
实验室中可以通过多种方法合成炔烃 ,如:醇和乙炔的反应、烯烃的炔化 反应、醛或酮的还原反应等。
实验室合成炔烃的优点是条件温和、 操作简便,但产量较小,成本较高。
炔烃的绿色合成
绿色合成炔烃的方法包括:生物 催化法、光催化法、电化学法等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习3、含一叁键的炔烃,氢化后的产物结构简式为
此炔烃可能有的结构有(
)
A.1种
B.2种 C.3种 D.4种
小结
本节学习乙炔的结构、制法、重要性质和 主要用途。
乙炔结构 是含有CC叁键的直线型分子
化学性质 可燃性, 氧化反应、加成反应。
主要用途 焊接或切割金属, 化工原料。
2019SUCCESS
广州市高二化学公开课——选修5第二章第一节
第二章第一节
炔烃
炔烃是一类含有碳碳三键的脂肪烃。其通 式为CnH2n-2,属于不饱和烃。
观察集气瓶中的乙炔物理性质
乙炔是无色、无味的气体,微溶于水
分析的乙炔分子的结构
电子式 H C C H
结构式 H—C≡C—H 结构简式 CH≡CH 或 HC≡CH 空间结构:直线型,键角1800
2、乙炔的性质:
(1)可燃性:
2C2H2+5O2 点燃 4CO2+2H2O(液)+2600KJ 火焰明亮,并伴有浓烟。
(2)乙炔能使酸性Hale Waihona Puke MnO4溶液褪色。 (3)加成反应
CHCH + Br2
CHBr=CHBr
CHBr=CHBr + Br2
CHBr2―CHBr2
练习1: 乙炔是一种重要的基 本有机原料,可以用来制备 氯乙烯,写出乙炔制取聚氯乙 烯的化学反应方程式。
烷烃、烯烃、炔烃的结构
结构 简式
结构 特点
空间 结构
甲烷 CH4
全部单键, 饱和
乙烯 CH2=CH2
乙炔 CH≡CH
有碳碳双键, 有碳碳三键,
不饱和
不饱和
思考
1、 在烯烃分子中如果双键碳上连接了两 个不同的原子或原子团,将可以出现顺反异构, 请问在炔烃分子中是否也存在顺反异构?
2 、根据乙烷、乙烯、乙炔的分子结构特 点,你能否预测乙炔可能具有什么化学性质?
CHCH + HCl
催化剂
CH2=CHCl
nCH2=CH
催化剂 加温、加压
CH2CH n
Cl
Cl
练习2、某气态烃0.5mol能与1mol HCl氯化氢完全加 成,加成产物分子上的氢原子又可被3mol Cl2取代, 则气态烃可能是
A、CH ≡CH C、CH≡C—CH3
B、CH2=CH2 D、CH2=C(CH3)CH3
3.装置: 4.收集方法
C2H2 + Ca(OH)2
制出的乙炔气体
为什么先通入
硫酸铜溶液?
5.除杂
实验中为什么要 采用分液漏斗?
实验中采用块状 CaC2和饱和食盐水,
为什么?
实验探究
①将乙炔气体点燃,观察火焰颜色及燃烧情况 ②将乙炔气体通入溴水中 ③将乙炔气体通入酸性高锰酸钾中
甲烷、乙烯、乙炔的燃烧
POWERPOINT
2019/5/26
2019SUCCESS
THANK YOU
2019/5/26
1. 乙炔的实验室制取
1.原料:CaC2与H2O 2.原理:CaC2 + H2O 3.装置:
4.收集方法
5.净化:
C2H2 + Ca(OH)2
下列那种装置可以用来做为乙炔的制取装置?
A
B
C
D
E
F
下列那种装置可以用来做为乙炔的收集装置?
1. 乙炔的实验室制取
1.原料:CaC2与H2O 2.原理:CaC2 + H2O