初一数学期终几何复习试题
初中七年级期中数学考试卷
一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √2B. πC. -3/4D. 无理数2. 若a、b为实数,且a+b=0,则下列选项中正确的是()A. a=0,b=0B. a=0,b≠0C. a≠0,b=0D. a≠0,b≠03. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 5 = 0C. 4x + 2 = 2x + 4D. 2x + 1 = 2x + 34. 下列图形中,轴对称图形是()A. 长方形B. 正方形C. 三角形D. 梯形5. 若等边三角形的边长为a,则其周长为()A. 3aB. 2aC. aD. a/26. 下列函数中,为一次函数的是()A. y = 2x + 3B. y = x^2 + 2C. y = 3x + 4 + 2xD. y = 2x + 5 +x^27. 若等腰三角形的底边长为b,腰长为a,则其面积S为()A. S = (b^2 + a^2) / 2B. S = (b^2 - a^2) / 2C. S = (a^2 + b^2) / 2D. S = (a^2 - b^2) / 28. 下列数中,绝对值最小的是()A. -3B. 0C. 3D. -59. 若a、b、c为等差数列,且a+b+c=12,a+c=8,则b的值为()A. 4B. 5C. 6D. 710. 下列方程中,解为x=3的是()A. 2x + 1 = 7B. 3x - 2 = 7C. 4x + 3 = 7D. 5x - 4 = 7二、填空题(每题4分,共40分)11. -5与5的差是_________。
12. 若a=2,b=-3,则a-b的值为_________。
13. 等腰三角形的底边长为8,腰长为10,则其高为_________。
14. 若y = 2x + 3,当x=2时,y的值为_________。
15. 等边三角形的边长为6,则其面积为_________。
16. 若a、b、c为等差数列,且a+c=12,a+b+c=18,则b的值为_________。
2021年七上数学期中复习-图形的性质_图形认识初步_截一个几何体-单选题专训及答案
2021年七上数学期中复习-图形的性质_图形认识初步_截一个几何体-单选题专训及答案截一个几何体单选题-专训1、(2021峡江.七上期末) 用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A . ①②B . ①④C . ①②④D . ①②③④2、(2017红山.七上期末) 一个物体的外形是长方体,其内部构造不详.用5个水平的平面纵向平均截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是()A . 球体B . 圆柱C . 圆锥D . 球体或圆锥3、(2020达州.七上期中) 如图,是一个正方体,用一个平面去截这个正方体,截面形状不可能为下图中的()A .B .C .D .4、(2016连城.七上期末) 指出图中几何体截面的形状()A .B .C .D .5、(2016深圳.七上期末) 下列说法正确的是()A . 经过一点可以作两条直线B . 棱柱侧面的形状可能是一个三角形C . 长方体的截面形状一定是长方形D . 棱柱的每条棱长都相等6、(2016深圳.七上期末) 用一个平面去截一个正方体,截面的形状不可能是()A . 梯形B . 五边形C . 六边形D . 七边形7、(2019贵阳.七上期末) 用一个平面去截一个几何体,如果截面的形状是圆,则原来的几何体可能是()A . 正方体B . 三棱柱C . 四棱锥D . 球8、(2020银川.七上期末) 下列说法错误的是()A . 单项式-ab2c3的系数为-1B . 多项式ab2+b5的次数为5C . 过七边形一个顶点与其他顶点连线可以分成5个三角形D . 用平面截一个正方体,截面的形状不可能是六边形9、(2019北京.七上期中) 如图,用水平的平面截几何体,所得几何体的截面图形标号是()A .B .C .D .10、(2021酒泉.七上期中) 用平面截一个正方体,可能截出的边数最多的多边形是()A . 七边形B . 六边形C . 五边形D . 四边形11、(2021.七上期中) 用一个平面去截正方体,截面不可能是()A . 长方形B . 五边形C . 六边形D . 七边形12、(2018丹东.七上期中) 用一个平面去截一个几何体,如果截面是三角形,那么这个几何体不可能是( )A . 圆锥B . 长方体C . 圆柱D . 三棱柱13、(2018北票.七上期中) 用一个平面截一个正方体,截面可能是下列图形中的()①三角形②正方形③长方形④梯形⑤圆A . ①②③④B . ①②③C . ②③⑤D . ③④14、(2018宿州.七上期中) 下面几何体截面一定是圆的是()A . 圆柱B . 圆锥C . 球D . 圆台15、(2020宁德.七上期中) 用一个平面去截一个正方体,则截面不可能是()A .B .C .D .16、(2018和平.七上期中) 下面几何体的截面图可能是圆的是()A . 圆锥B . 正方体C . 长方体D . 棱柱17、(2019深圳.七上期中) 如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面不可能是三角形的是()A .B .C .D .18、(2019深圳.七上期中) (2018七上·深圳期末) 用一个平面截下列几何体,截面可能是三角形的是()①正方体②球体③圆柱④圆锥A . ①B . ①②C . ①④D . ①③④19、(2021济南.七上期中) 用一个平面去截下列几何体,截得的平面图形不可能是三角形的是()A .B .C .D .20、(2020兰州.七上期末) 正方体的截面中,边数最多的多边形是()A . 四边形B . 五边形C . 六边形D . 七边形21、(2017张掖.七上期中) 用一个平面截一个几何体,得到的截面是四边形,这个几何体可能是()A . 圆锥B . 圆柱C . 球体D . 以上都有可能22、(2020丹东.七上期末) 下列叙述:①最小的正整数是;②若是一个负数,则一定是负数;③用一个平面去截正方体,截面不可能是六边形;④三角形是多边形;⑤绝对值等于本身的数是正整数.其中正确的个数有()A .B .C .D .23、(2020青羊.七上期中) 用一个平面去截一个正方体,截面不可能是()A . 梯形B . 五边形C . 六边形D . 七边形24、(2020吉州.七上期末) 用一个平面去截圆柱体,则截面形状不可能是()A . 正方形B . 三角形C . 长方形D . 圆25、(2021丹东.七上期中) 用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A . 正方体B . 棱柱体C . 圆柱D . 圆锥26、(2021渠.七上期中) 有下列说法:①两个有理数比较大小,绝对值大的反而小:②用一个平面去截正方体,面的形状可能是五边形;③数轴上表示两个有理数的点,较大的数表示的点离原点较远;④若a是3的相反数,则a的倒数是;⑤一个数的绝对值等于它的相反数,这个数一定是负数.其中正确的说法有()A . 5个B . 4个C . 3个D . 2个27、(2021沈阳.七上月试) 用一个平面去截正方体,截面的形状不可能是()A . 四边形B . 五边形C . 六边形D . 七边形28、(2021青白江.七上期中) 下面几何体的截面图不可能是圆的是()A . 圆柱B . 圆锥C . 球D . 棱柱29、(2020大田.七上期末) 圆锥的截面不可能是()A . 三角形B . 圆C . 长方形D . 椭圆30、(2020吉安.七上期末) 用平面去截下列几何体,能截得长方形、三角形、等腰梯形三种形状的截面,这个几何体是( )A .B .C .D .截一个几何体单选题-答案1.答案:B2.答案:C3.答案:C4.答案:B5.答案:B6.答案:D7.答案:D8.答案:D9.答案:A10.答案:B11.答案:D12.答案:C13.答案:A14.答案:C15.答案:D16.答案:A17.答案:B18.答案:C19.答案:C20.答案:C21.答案:B22.答案:B23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。
七年级数学下册专题08 期中-几何综合大题必刷(压轴题)(原卷版)
专题08 期中-几何综合大题必刷(压轴题)1.如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.2.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠CBM、∠NDC,判断BF与DG的位置关系,并说明理由.3.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过秒后边OC 与边ON互相垂直.(直接写出答案)4.【学科融合】物理学中把经过入射点O并垂直于反射面的直线ON叫做法线,入射光线与法线的夹角i叫做入射角,反射光线与法线的夹角r叫做反射角(如图①).由此可以归纳出如下的规律:在反射现象中,反射光线、入射光线和法线都在同一平面内;反射光线、入射光线分别位于法线两侧;反射角等于入射角.这就是光的反射定律(reflection law).【数学推理】如图1,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.由以上光的反射定律,可知入射角与反射角相等,进而可以推得他们的余角也相等,即:∠1=∠2,∠3=∠4.在这样的条件下,求证:AB∥CD.【尝试探究】两块平面镜OM,ON,且∠MON=α,入射光线AB经过两次反射,得到反射光线CD.(1)如图2,光线AB与CD相交于点E,则∠BEC=;(2)如图3,光线AB与CD所在的直线相交于点E,∠BED=β,则α与β之间满足的等量关系是.5.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.6.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B 射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.7.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.8.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.9.(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFC=150°.求∠EPF的度数;(2)【问题迁移】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.10.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.11.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.12.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.13.已知M、N分别为直线AB,直线CD上的点,且AB∥CD,E在AB,CD之间.(1)如图1,求证:∠BME+∠DNE=∠MEN;(2)如图2,P是CD上一点,连PM,作MQ∥EN,若∠QMP=∠BME.试探究∠E与∠AMP的数量关系,并说明理由;(3)在(2)的条件下,作NG⊥CD交PM于G,若MP平分∠QME,NF平分∠ENG,若∠MGN=m°,∠MFN=n°,直接写出m与n的数量关系.14.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.15.已知:如图,直线PQ∥MN,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,给出下列两个结论:①的②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.16.已知AB∥CD,解决下列问题:(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).17.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.18.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,连接PM、PN、PQ,PQ平分∠MPN,如图①.(1)若∠PMA=α、∠PQC=β,求∠NPQ的度数(用含α,β的式子表示);(2)过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F,如图②,请你判断EF与PQ的位置关系,并说明理由;(3)在(2)的条件下,连接EN,如图③,若∠NEF=∠PMA,求证:NE平分∠PNQ.19.如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.20.如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H分别是直线AB和CD上的动点,作直线GH,EI平分∠AEF,HI平分∠CHG,EI与HI交于点I.(1)如图1,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠EIH的度数.(2)如图2,点G在点E的右侧,点H也在点F的右侧,若∠AEF=α,∠CHG=β,其他条件不变,求∠EIH的度数.(3)如图3,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG 的平分线EJ于点J.其他条件不变,若∠AEF=α,∠CHG=β,求∠EJH的度数.21.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.22.已知直线AB∥CD,直线EF分别交AB、CD于A、C,CM是∠ACD的平分线,CM交AB于H,过A作AG⊥AC交CM于G.(1)如图1,点G在CH的延长线上时,①若∠GAB=36°,则∠MCD=.②猜想:∠GAB与∠MCD之间的数量关系是.(2)如图2,点G在CH上时,(1)②猜想的∠GAB与∠MCD之间的数量关系还成立吗?如果成立,请给出证明;如果不成立,请写出∠GAB与∠MCD之间的数量关系,并说明理由.23.已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为;(直接写出答案)(2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数.(用含m的式子表示)(3)如图3点G为CD上一点,∠BMN=n•∠EMN,∠GEK=n•∠GEM,EH∥MN交AB于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)24.如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=∠BAP,∠DCQ=∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.25.如图1,AB∥CD.G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2.若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系;并证明你的结论.26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,此时∠EOC的度数等于(直接写出答案即可);(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,求此时∠OCA度数.27.如图1,AB∥CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠EOF =80°.(1)求∠BEO+∠OFD的值;(2)如图2,直线MN分别交∠BEO、∠OFC的角平分线于点M、N,直接写出∠EMN ﹣∠FNM的值(3)如图3,EG在∠AEO内,∠AEG=m∠OEG;FH在∠DFO内,∠DFH=m∠OFH,直线MN分别交EG、FH分别于点M、N,且∠FMN﹣∠ENM=80°,直接写出m的值.28.已知,两直线AB,CD,且AB∥CD,点M,N分别在直线AB,CD上,放置一个足够大的直角三角尺,使得三角尺的两边EP,EQ分别经过点M,N,过点N作射线NF,使得∠ENF=∠ENC.(1)转动三角尺,如图①所示,当射线NF与NM重合,∠FND=45°时,求∠AME的度数;(2)转动三角尺,如图②所示,当射线NF与NM不重合,∠FND=60°时,求∠AME 的度数.(3)转动直角三角尺的过程中,请直接写出∠FND与∠AME之间的数量关系.29.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.30.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.31.已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出的值.32.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=56°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.33.如图1,G,E是直线AB上两点,点G在点E左侧,过点G的直线GP与过点E的直线EP交于点P.直线PE交直线CD于点H,满足点E在线段PH上,∠PGB+∠P=∠PHD.(1)求证:AB∥CD;(2)如图2,点Q在直线AB,CD之间,PH平分∠QHD,GF平分∠PGB,点F,G,Q在同一直线上,且2∠Q+∠P=120°,求∠QHD的度数;(3)在(2)的条件下,若点M是直线PG上一点,直线MH交直线AB于点N,点N 在点B左侧,请直接写出∠MNB和∠PHM的数量关系.(题中所有角都是大于0°且小于180°的角)34.已知,DE平分∠ADB交射线BC于点E,∠BDE=∠BED.(1)如图1,求证:AD∥BC;(2)如图2,点F是射线DA上一点,过点F作FG∥BD交射线BC于点G,点N是FG 上一点,连接NE,求证:∠DEN=∠ADE+∠ENG;(3)如图3,在(2)的条件下,连接DN,点P为BD延长线上一点,DM平分∠BDE 交BE于点M,若DN平分∠PDM,DE⊥EN,∠DBC﹣∠DNE=∠FDN,求∠EDN的度数.35.综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),P A、PB与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(1)∠DPC=;(2)如图②,若三角板PBD保持不动,三角板∠P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC ∥DB成立;(3)如图③,在图①基础上,若三角板P AC的边P A从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?36.已知E,F分别是AB、CD上的动点,P也为一动点.(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;(2)如图2,若∠P=∠PFD﹣∠BEP,求证:AB∥CD;(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.37.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为秒.38.已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.39.如图1,直线AB、CD被直线EF截,分别交AB于点G,交CD于点H,∠AGE与∠EHC互补.(1)求证:AB∥CD;(2)如图2,点P在直线AB、CD内部直线EF上,点M、N分别在直线AB、CD上,连接PM、PN,点K在∠PMB的角平分线上,连接KN,若∠MKN=180°∠MPN,求证:∠PNK=∠CNK;(3)如图3,在(2)的条件下,点O为AB上一点,连接ON、MN,MN平分∠PNO,若∠MNK:∠PMK=2:7,2∠MKN﹣∠PNO=180°,求∠NOM的度数.40.已知,AB∥CD,点F、G分别在AB、CD上,且点E为射线FG上一点.(1)如图1:当点E在线段FG上时,连接AE、DE,易得∠AED=∠EAF+∠EDG.小明给出的理由是:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,(平行于同一条直线的两条直线互相平行)∴∠EAF=∠AEH,∠EDG=∠DEH,(依据1)∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(依据2)填空:依据1:.依据2:.(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.41.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠P AC=50°,∠ADC=30°,AE平分∠P AD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠P AC=50°,∠A1D1C=30°,求∠A1EC 的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.42.阅读下面材料:小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是.参考小亮思考问题的方法,解决问题:(2)如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP分别平分∠CGF、∠DEF相交于点P,求∠P的度数;(3)如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,作∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M=(直接用含α的式子表示).。
初一数学几何图形练习题及答案20题
初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。
b. 两个互相垂直的角的和为________度(1词)。
2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。
()b. 一个平行四边形的对角线相等。
()c. 所有的矩形都是正方形。
()d. 一个凸四边形的内角和为360度。
()3. 简答题:a. 请解释平行四边形的定义及性质。
(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。
(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。
a. 请计算三角形ABC的周长。
(2词)b. 请计算三角形ABC的面积。
(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。
在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。
请计算这个新长方形的面积。
(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。
其性质包括:对角线互相平分;相邻角互补;相对角相等。
b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。
4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。
请同学们认真学习,并通过解答这些问题来提高自己的数学技能。
初一期中数学试题及答案
初一期中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 63. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 120°C. 180°D. 240°4. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 0D. 5或-55. 以下哪个选项是方程2x + 3 = 7的解?B. x = 2C. x = 3D. x = 46. 一个数的立方是-27,那么这个数是:A. 3B. -3C. 9D. -97. 一个数的平方是16,那么这个数可以是:A. 4B. -4C. 4或-4D. 28. 以下哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x > 2D. x < 29. 一个数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 210. 以下哪个选项是不等式3x + 2 ≤ 11的解集?A. x ≤ 3C. x ≤ 2D. x ≥ 2二、填空题(每题4分,共20分)1. 一个数的平方是36,这个数是______。
2. 如果一个角的余角是30°,那么这个角的度数是______。
3. 一个数的绝对值是8,这个数可以是______。
4. 方程3x - 7 = 8的解是______。
5. 不等式5x - 2 > 13的解集是______。
三、解答题(每题10分,共50分)1. 计算:(2x - 3) + 4x,其中x = 2。
2. 解方程:4x + 5 = 19。
3. 解不等式:2x - 3 < 11。
4. 已知一个角的补角是它的两倍,求这个角的度数。
5. 已知一个数的立方是64,求这个数。
四、答案一、选择题答案1. B2. A3. A4. D5. A6. B7. C8. A9. A10. A二、填空题答案1. ±62. 60°3. ±84. 35. x > 3.4三、解答题答案1. 2x - 3 + 4x = 6x - 3 = 6 * 2 - 3 = 92. 4x + 5 = 19 → 4x = 14 → x =3.53. 2x - 3 < 11 → 2x < 14 → x < 74. 设这个角为α,则180° - α = 2α,解得α = 60°5. 64的立方根是4。
七年级数学上册期中复习题(2)
七上期中复习(二) 印一(1) 43份题号 1 2 3 4 5 6 7 8 9 10 答案1、用一个平面截圆柱,则截面形状不可能是( )A 、圆B 、椭圆C 、长方形D 、梯形2、一个多面体,若它的顶点数和面数都是5,则它的棱数应是( ) A 、5 B 、6 C 、7 D 、 83、如图是一个正方体的表面展开图,则图中 所在面的对面所标的字是( ) A 、我 B 、们 C 、加 D 、油4、长方形的长为6,宽为4,若绕着它的宽旋转一周得到的圆柱的体积为( ) A 、36π B 、72π C 、96π D 、144π5、如果|a|-b=0,则a 、b 的关系是( )A 、互为相反数;B 、a=±b,且b ≥0;C 、相等且都不小于0;D 、a 是b 的绝对值. 6、下列说法正确的是:A 、“黑色”和“白色”表示具有相反意义的量;B 、“快”和“慢”表示具有相反意义的量;C 、“向南100米”和“向北1000米”表示具有相反意义的量;D 、“+15米”就表示向东走了15米7、已知m 是有理数,下列四个式子中一定是负数的是( ) A 、|m|+2 B 、|m| C 、m-3 D 、-|m|-58、钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为( ).44×105B . 0.44×105C . 4.4×106D . 4.4×1059、列几何体不能展开成平面图形的是( )A .圆锥 B .篮球 C .圆台 D .正方体 10、在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .25油加习学们我二、填空题:(3′×5=15′)11、 在数轴上到-1的距离小于3个单位长度的整数有 12、设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,那么2a+3b+3c= 。
初中七年级数学《平面直角坐标系中几何综合题》
七年级下学期期末备考之《平面直角坐标系中几何综合题》一.解答题(共17小题)1.(春•玉环县期中)如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.(标注:三角形ABC的面积表示为S△ABC)②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.2.(春•汕头校级期中)如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍?若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.3.(春•鄂城区期中)如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.4.(春•富顺县校级期末)在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0(1)求a、b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.5.(春•泰兴市校级期末)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP 上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.6.(春•江岸区期末)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.7.(春•黄陂区期末)在直角坐标系中,已知点A、B的坐标是(a,0)(b,0),a,b满足方程组,c为y轴正半轴上一点,且S△ABC=6.(1)求A、B、C三点的坐标;(2)是否存在点P(t,t),使S△PAB=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由;(3)若M是AC的中点,N是BC上一点,CN=2BN,连AN、BM相交于点D,求四边形CMDN的面积是.8.(春•海珠区期末)在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.9.(春•黄梅县校级期中)如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.10.(春•通州区校级期中)在如图直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式+(b﹣3)2=0,(c﹣4)2≤0.(1)求a、b、c的值;(2)如果点P(m,n)在第二象限,四边形CBOP的面积为y,请你用含m,n的式子表示y;(3)如果点P在第二象限坐标轴的夹角平分线上,并且y=2S四边形CBOA,求P点的坐标.11.(春•鄂州校级期中)如图,A、B两点坐标分别为A(a,4),B(b,0),且a,b满足(a﹣2b+8)2+=0,E是y轴正半轴上一点.(1)求A、B两点坐标;(2)若C为y轴上一点且S△AOC=S△AOB,求C点的坐标;(3)过B作BD∥y轴,∠DBF=∠DBA,∠EOF=∠EOA,求∠F与∠A间的数量关系.12.(春•东湖区期中)如图,平面直角坐标系中A(﹣1,0),B(3,0),现同时将A、B 分别向上平移2个单位,再向右平移1个单位,分别得到A、B的对应点C、D,连接AC、BD(1)直接写出C、D的坐标:C D及四边形ABCD的面积:(2)在y轴负半轴上是否存在点M,连接MA、MB使得S△MAB>S四边形ABCD?若存在,求出M点纵坐标的取值范围;若不存在说明理由(3)点P为线段BD上一动点,连PC、PO,当点P在BD上移动(不含端点)现给出①的值不变,②的值不变,其中有且只有一个正确,请你找出这个结论并求其值.13.(春•台州月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.14.(春•海安县月考)如图,在平面直角坐标系中,点A,B,C的坐标分别为(﹣1,0),(3,0),(0,2),图中的线段BD是由线段AC平移得到.(1)线段AC经过怎样的平移可得到线段BD,所得四边形是什么图形,并求出所得的四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在,求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC、PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变;②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.15.(春•武汉月考)已知,在平面直角坐标系中,点A(0,m),点B(n,0),m、n满足(m﹣3)2=﹣;(1)求A、B的坐标;(2)如图1,E为第二象限内直线AB上一点,且满足S△AOE=S△AOB,求E的坐标.(3)如图2,平移线段BA至OC,B与O是对应点,A与C对应,连AC.E为BA的延长线上一动点,连EO.OF平分∠COE,AF平分∠EAC,OF交AF于F点.若∠ABO+∠OEB=α,请在图2中将图形补充完整,并求∠F(用含α的式子表示).16.(2013秋•江岸区校级月考)如图,已知点A(﹣m,n),B(0,m),且m、n满足+(n﹣5)2=0,点C在y轴上,将△ABC沿y轴折叠,使点A落在点D处.(1)写出D点坐标并求A、D两点间的距离;(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度数;(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.17.(2013春•武汉校级月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(﹣1,0)、B(3,0).现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C、D,连接AC,BD.(1)直接写出点C、D的坐标,求四边形ABDC的面积S四边形ABDC;(2)在坐标轴上是否存在一点P,使S△PAC=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)如图3,在线段CO上取一点G,使OG=3CG,在线段OB上取一点F,使OF=2BF,CF与BG交于点H,求四边形OGHF的面积S四边形OGHF.。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
2023-2024学年冀教新版七年级上册数学期中复习试卷(含解析)
2023-2024学年冀教新版七年级上册数学期中复习试卷一.选择题(共16小题,满分48分,每小题3分)1.如果a的绝对值是1,那么a2015等于( )A.1B.2015C.2015或﹣2015D.﹣1或12.如果一个角的补角是110°,则这个角的余角的度数是( )A.30°B.20°C.70°D.110°3.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( )A.1个B.2个C.3个D.4个4.如图,从A地到B地有三条路线,由上至下依次记为路线a、b、c,则从A地到B地的最短路线是c,其中蕴含的数学道理是( )A.两点确定一条直线B.两点之间,线段最短C.经过一点有无数条直线D.直线比曲线短5.如果向东走3m记为+3m,则向西走5m可记为( )A.+3m B.+5m C.﹣3m D.﹣5m6.在下列数﹣(﹣3),(﹣2)2,0,﹣32,﹣(﹣3)3,﹣|﹣|中,负数的个数是( )A.1个B.2个C.3个D.4个7.若∠1=40.4°,∠2=40°4′,则∠1与∠2( )A.∠1<∠2B.∠1>∠2C.∠1=∠2D.无法确定8.把足够大的一张厚度为0.1mm的纸连续折6次,则对折后的整叠纸总厚度为( )mm.A.0.64B.6.4C.1.28D.12.89.如图,在△ABC中,∠A=30°,将△ABC绕着B点逆时针旋转40°,到△BDE的位置,则∠a的度数是( )A.40°B.30°C.20°D.10°10.下列变形,运用加法运算律错误的是( )A.(﹣8)+(﹣9)=(﹣9)+(﹣8)B.4+(﹣6)+3=(﹣6)+4+3C.[5+(﹣2)]+4=[5+(﹣4)]+2D.+(﹣1)+(+)=(+)+(﹣1)11.现规定一种新的运算:a△b=ab﹣a+b,则2△(﹣3)=( )A.11B.﹣11C.6D.﹣612.下列说法错误的是( )A.直线AB和直线BA是同一条直线B.若线段AB=5,AC=3,则BC不可能是1C.画一条5厘米长的线段D.若线段AM=2,BM=2,则M为线段AB的中点13.在时刻9:30,墙上挂钟的时针与分针之间的夹角是( )A.115°B.105°C.100°D.90°14.现定义一种新运算:a※b=b2﹣ab,如:1※2=22﹣1×2=2,则(﹣1※2)※3等于( )A.﹣9B.﹣6C.6D.915.若a,b互为相反数,则下列选项中,互为相反数的一组是( )A.a2与b2B.a3与﹣b3C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)16.如图,点O在直线AB上,OC平分∠BOD,若∠COD=20°,则∠AOD的度数是( )A.140°B.130°C.120°D.110°二.填空题(共4小题,满分12分,每小题3分)17.小于2013且大于﹣2012的所有整数的和是 .18.大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°45',从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°45'的补角是 度.19.已知(m+2)2+|n﹣3|=0,则5m+n= .20.如图,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM =∠AOC,∠BON=∠BOD,当OC边与OB边重合时,∠COD从图中的位置绕点O顺时针旋转n°(0<n<126),则n°= 时,∠MON=2∠BOC.三.解答题(共6小题,满分60分)21.计算:①(﹣3)+(﹣4)﹣(+11)﹣(﹣9);.22.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.若∠B=21°,∠ACB=26°,求出旋转的度数,并指出旋转中心.23.小亮同学家冰箱开始启动时内部温度是10℃,如果每小时冰箱内部的温度升高﹣5℃,那么4小时后冰箱内部的温度是多少?24.学习千万条,思考第一条.请你用本学期所学知识探究以下问题:Ⅰ.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON内部作射线OC.(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°,若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数.Ⅱ.已知点A、O、B不在同一条直线上,∠AOB=α,∠BOC=β,OM平分∠AOB,ON 平分∠BOC,用含α,β的式子表示∠MON的大小.25.如图,数轴上每相邻两点的相距一个单位长度,点A、B、C、D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a,b,c,d.(1)当ab=﹣1,则d= .(2)若|d﹣2a|=7,求点C对应的数.(3)若abcd<0,a+b>0,化简|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|.26.已知:如图,点A、B、C、D四点共线,AC=2BC,BC=3,D为AB中点.求:(1)图中共有 条线段;(2)求CD的长.参考答案与试题解析一.选择题(共16小题,满分48分,每小题3分)1.解:∵|a|=1,∴a=±1,∴(±1)2015=±1,故选:D.2.解:设这个角为x,由题意得x+110°=180°,解得x=70°,则这个角的余角的度数是90°﹣70°=20°.故选:B.3.解:①用两个钉子就可以把木条固定在墙上,②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线根据“两点确定一条直线”,共2个,故选:B.4.解:从A地到B地的最短路线是c,其中蕴含的数学道理是两点之间线段最短,故选:B.5.解:如果向东走3m记为+3m,则向西走5m可记为﹣5m.故选:D.6.解:﹣(﹣3)=3,(﹣2)2=4,﹣32=﹣9,﹣(﹣3)3=27,.∴负数有﹣32、,共2个.故选:B.7.解:∵∠1=40.4°=40°24′,∠2=40°4′,∴∠1>∠2.故选:B.8.解:对折后的整叠纸总厚度为:0.1×26=6.4(mm).故选:B.9.解:如图,设AC,BD相交于O,∵将△ABC绕着点B逆时针旋转40°,到△BDE的位置,∴∠DBA=40°,∠D=∠A=30°,∵∠AOB+∠A+∠ABD=∠COD+∠D+∠α=180°,而∠AOB=∠COD,∴∠α=∠ABD=40°.故选:A.10.解:A、(﹣8)+(﹣9)=(﹣9)+(﹣8),故A不符合题意;B、4+(﹣6)+3=(﹣6)+4+3,故B不符合题意;C、[5+(﹣2)]+4=(5+4)+(﹣2),故C符合题意;D、+(﹣1)+(+)=(+)+(﹣1),故D不符合题意;故选:C.11.解:根据题中的新定义得:原式=﹣6﹣2﹣3=﹣11,故选:B.12.解:A.直线AB和直线BA是同一条直线,说法正确,不合题意;B.若线段AB=5,AC=3,则BC最短为2,不可能是1,说法正确,不合题意;C.画一条5厘米长的线段,说法正确,不合题意;D.若线段AM=2,BM=2,则M不一定是线段AB的中点,故原说法错误,符合题意.故选:D.13.解:∵9点30分,时针指向9和10的中间,分针指向6,中间相差3大格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴9点30分分针与时针的夹角是30°×3.5=105°,故选:B.14.解:根据题中的新定义得:﹣1※2=22﹣(﹣1)×2=4+2=6,则6※3=32﹣6×3=9﹣18=﹣9.故选:A.15.解:∵a,b互为相反数,∴a+b=0,a=﹣b,A、a2=(﹣b)2=b2,即只有当a=b=0时,a2与b2互为相反数,故此选项不符合题意;B、a3=(﹣b)3=﹣b3,即只有当a=b=0时,a2与b2互为相反数,故此选项不符合题意;C、a2n=(﹣b)2n=b2n(n为正整数),即只有当a=b=0时,a2与b2互为相反数,故此选项不符合题意;D、a2n+1与=(﹣b)2n+1=﹣b2n+1,与b2n+1(n为正整数)互为相反数,故此选项符合题意;故选:D.16.解:∵OC平分∠BOD,∴∠BOD=2∠COD=40°.∴∠AOD=180°﹣∠BOD=180°﹣40°=140°.故选:A.二.填空题(共4小题,满分12分,每小题3分)17.解:小于2013而大于﹣2012的所有整数有:﹣2011,﹣2010,﹣2009,...,﹣1,0,1, (2012)和为﹣2011﹣2010﹣2009﹣…﹣1+0+1+…+2012=(﹣2011+2011)+(﹣2010+2010)+…+(﹣1+1)+2012=2012.故答案为:2012.18.解:180°﹣54°45'=179°60'﹣54°45'=125°15'=125.25°.故答案为:125.2519.解:∵(m+2)2+|n﹣3|=0,∴m+2=0,n﹣3=0,∴m=﹣2,n=3,则5m+n=5×(﹣2)+3=﹣7.故答案为:﹣7.20.解:①0°<n<54°时,∠BOC=n°,∠MON=2n°,∠MON=(126°+n°)+54°﹣(54°+n°)=100°,∴n=51.②当54°<n<126°时,∠AOC=360°﹣(126°+n°)=234°﹣n°,∠BOD=54°+n°,∴∠MON=360°﹣∠AOM﹣∠AOB﹣∠BON=360°﹣(234°﹣n°)﹣126°﹣(54°+n°)=138°∴n=69.综上所述,n的值为51或69.故答案为:51°或69°.三.解答题(共6小题,满分60分)21.解:①(﹣3)+(﹣4)﹣(+11)﹣(﹣9)=(﹣3)+(﹣4)+(﹣11)+9=﹣9;=﹣1﹣5+2×=﹣1﹣5+=﹣5.22.解:∵∠B=21°,∠ACB=26°,∴∠BAC=180°﹣∠B﹣∠ACB=180°﹣21°﹣26°=133°,即∠BAD=133°,∴旋转的度数为133°,由图可知旋转中心为点A.23.解:∵冰箱开始启动时内部温度为10℃,如果每小时冰箱内部的温度升高﹣5℃,那么4小时后冰箱内部的温度为10﹣4×5=﹣10(℃).答:4小时后冰箱内部的温度是﹣10℃.24.解:Ⅰ(1)∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,∴射线OC表示的方向为北偏东60°;(2)∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°;Ⅱ.如图1:∵∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=∠AOB=α,∠CON=∠BON=∠COB=β,∴∠MON=∠BOM+∠CON=,如图2,∠MON=∠BOM﹣∠BON=;如图3,∠MON=∠BON﹣∠BOM=,∴∠MON为或或.25.解:(1)因为每相邻两点的相距一个单位长度,所以a,b为整数又ab=﹣1,所以a=﹣1,b=1,所以d=8故答案为:8;(2)因为|d﹣2a|=7所以d﹣2a=±7;由图知:d﹣a=9;ⅰ.当d﹣2a=7 时,9﹣a=7,则a=2,所以C对应的点就为7;ⅱ.当d﹣2a=﹣7 时,9﹣a=﹣7,则a=16,所以C对应的点就为21.(3)因为abcd<0,a<b<c<d,所以a,b,c为负数,d为正数;或者a为负数,b,c,d为正数.又因为a+b>0,所以a为负数,b,c,d为正数;由题与图可得:﹣1<a<0,1<b<2,4<c<5,8<d<9;因为a﹣b<0,b+c>0,c﹣5<0,d﹣a>0,8﹣d<0所以|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|=b﹣a﹣(b+c﹣5)+(c﹣5)﹣(d﹣a)﹣(8﹣d)=b﹣a﹣b﹣c+5+c﹣5﹣d+a﹣8+d=﹣8.26.解:(1)n(n﹣1)=×4×3=6,故答案为6;(2)∵AC=2BC,BC=3,∴AC=6,∴AB=6+3=9,∵D为AB中点,∴DB=AB=,∴DC=﹣3=.。
2024年人教版初一上学期期中数学试卷及答案指导
2024年人教版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?选项:A、13厘米B、23厘米C、30厘米D、40厘米2、一个数加上它的两倍,再减去3,结果是7,这个数是多少?选项:A、1B、2C、3D、43、题目:一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?选项:A. 15厘米B. 25厘米C. 30厘米D. 50厘米4、题目:一个数的2倍是12,这个数是多少?选项:A. 2B. 4C. 6D. 85、下列各数中,有理数是()A、√2B、πC、3.14D、-1/36、下列各数中,属于无理数的是()A、1.414B、-2/3C、3/5D、π7、下列各数中,是正数的是:A、-1/2B、-2C、0D、1/28、下列各数中,是负数的是:A、-1/2B、-2C、0D、1/29、选择题:一个长方形的长是6cm,宽是3cm,那么这个长方形的周长是多少平方厘米?A. 18cm²B. 15cm²C. 18cmD. 15cm² 10、选择题:一个圆的半径是4cm,那么这个圆的面积是多少平方厘米?(取π≈3.14)A. 50.24cm²B. 78.5cm²C. 25.12cm²D. 12.56cm²二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长为______cm。
2、在直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,-2)。
那么线段AB的中点坐标为 ______ 。
3、若一个数的3倍减去12等于18,则这个数是 ______ 。
4、一个长方形的长是宽的3倍,若长方形的周长是48厘米,则这个长方形的面积是 ______ 平方厘米。
5、在等差数列{an}中,若a1=3,d=2,则前n项和Sn=______ 。
初中初一几何试题及答案
初中初一几何试题及答案
一、选择题
1. 下列哪个图形是轴对称图形?
A. 圆
B. 正方形
C. 等腰三角形
D. 所有选项
答案:D
2. 一个等边三角形的内角和是多少度?
A. 90°
B. 180°
C. 360°
D. 540°
答案:B
3. 如果一个平行四边形的对角线互相垂直,那么这个平行四边形是什么?
A. 矩形
B. 菱形
C. 正方形
D. 梯形
答案:B
二、填空题
4. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是______厘米。
答案:30
5. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是______厘米。
答案:5
6. 一个等腰三角形的顶角是30°,那么它的底角是______°。
答案:75
三、解答题
7. 已知一个圆的直径是14厘米,求这个圆的周长和面积。
答案:周长:44π厘米,面积:77π平方厘米。
8. 一个等腰梯形的上底是6厘米,下底是10厘米,高是4厘米,求这个等腰梯形的面积。
答案:24平方厘米。
9. 一个正五边形的每个内角是多少度?
答案:108°。
2024-2025学年苏科版七年级数学上册期中复习试卷
2024-2025学年苏科版七年级数学上册期中复习试卷一、单选题1.2024-的绝对值是( ) A .12024B .12024-C .2024-D .20242.杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A .48.810⨯B .48.0810⨯C .58.810⨯D .58.0810⨯3.一个点在数轴上从表示 - 3的点A 开始,先向左移动5个单位,再移动3个单位到达点B ,这时点B 到点A 的距离为( ) A .2B .9C .2或8D .2或94.下列各说法中,错误的是( )A .x ,y 的平方和,用代数式表示为22x y +B .x 与y 和的5倍,用代数式表示为5()x y +C .x 的5倍与y 的和的一半,用代数式表示为52yx + D .比x 的2倍多3的数,用代数式表示为23x + 5.下列各对数中,相等的一对是( )A .223与223⎛⎫ ⎪⎝⎭B .3(2)-与32-C .22-与2(2)-D .()23--与2||3--6.若()2230a b -++=,则()2024a b +的值是( )A .1-B .2024-C .1D .20247.如图,a b c d e f ,,,,,均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a b c d e f -+-+-的值为( )A .1B .3-C .7D .88.有理数a 、b 在数轴上对应的点的位置如右图所示,则下面结论:①a <0; ②|a ∣>|b |; ③a +b >0;④b -a >0;其中正确的个数有( )个.A .1B .2C .3D .49.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折n 次,可以得到折痕的条数是( )A .nB .1n -C .21n -D .121n --10.如图所示,在这个运算程序当中,若开始输入的x 是48,则经过2023次输出的结果是( )A .3B .6C .12D .24二、填空题 11.比较大小:23-34-. 12.若代数式513m a b +与22n a b -是同类项,那么m+n= .13.若22(3)0a b ++-=,则b a =.14.根据如图所示的程序计算,若输入x 的值为0,则输出y 的值为.15.已知22210,216a ab b ab -=-=-,则()()22224a ab b a b -+--=.16.已知210x y --=,则52x y -+的值是17.定义一种新运算,规定:3a b a b ⊕=-,若1(6)24a b ⊕-=-请计算(2)(25)a b a b +⊕-值为.18.列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为三、解答题 19.计算:(1)()()6487--+-+; (2)()25118362⎛⎫--⨯- ⎪⎝⎭; (3)()211623--÷-⨯-.20.(1)把下面的直线补充成一条数轴,在数轴上表示下列各数;(2)--,4,112-,0,2.5, 3.5-.(2)用“>”将(1)中的每个数连接起来. 21.化简: (1)3245m m --+;(2)()()222332x y x y ++-;22.用火柴棒按图中的方式搭图形.按上述信息填空: (1)a =______,b =______;(2)按照这种方式搭下去,则搭第n 个图形需要火柴棒的根数为______;(用含n 的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2023个图形需要的火柴棒根数. 23.水果超市最近新进了一批橙子,每斤进价10元,9月29日每斤售价15元,国庆黄金周9月30日起试行机动价格,价格超出前一天的部分记为正,不足前一天的部分记为负,超市记录了国庆黄金周橙子的售价变化情况和售出情况:(1)10月4日超市售出的橙子的单价是多少元?(2)10月4日超市售出的橙子的收益如何?(盈利成亏损的钱数) (3)国庆黄金周水果超市出售此种接子的收益如何? 24.【情景创设】12,16,112,120,130…是一组有规律的数,我们如何求这些连续数的和呢? 【探索活动】(1)根据规律第6个数是______,1132是第______个数; 【阅读理解】111111111111111511122334455622334455666++++=-+-+-+-+-=-=⨯⨯⨯⨯⨯ 【实践应用】根据上面获得的经验完成下面的计算: (2)11112612132+++⋅⋅⋅+;(3)1111 1232343458910 +++⋅⋅⋅+⨯⨯⨯⨯⨯⨯⨯⨯.25.某超市在双十一期间对顾客实行优惠政策,规定如下表:(1)若小惠一次购物原价300元,她实际付款___________元;若一次购物原价600元,她实际付款___________元.(2)若小惠在该超市一次购物x元.当x大于或等于500元时,她实际付款___________元(用含x的代数式表示并化简).(3)如果小惠两次购物合计850元(原价),第一次购物的原价为a元(200300a<<),用含a的代数式表示两次购物实际付款一共多少元?当250a=元时,小惠两次购物一共节省了多少元?26.如图,数轴上点A表示的有理数为4-,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当2t=时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.。
苏科版数学初一上学期期中试卷及解答参考(2024-2025学年)
2024-2025学年苏科版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A、19厘米B、21厘米C、30厘米D、40厘米2、一个正方形的边长是10厘米,那么这个正方形的面积是多少平方厘米?A、100平方厘米B、50平方厘米C、25平方厘米D、20平方厘米3、下列哪一个等式表示的是线性方程?A.(2x2+3x−5=0)B.(4x+7=15)C.(x3−2x+1=0)+2=3)D.(1x4、如果一个长方形的长是宽的两倍,并且它的周长是30厘米,那么这个长方形的面积是多少平方厘米?A. 30B. 45C. 60D. 905、下列各组数中,都是质数的一组是:A. 7,11,13,17B. 6,10,14,18C. 4,8,12,16D. 3,9,15,216、若a、b是正整数,且a+b=10,则a和b的最大公约数是:A. 1B. 2C. 5D. 107、已知点A(3, -2),点B(-1, 4),则线段AB的中点M的坐标是多少?A. (1, 1)B. (2, 1)C. (1, 2)D. (1, 1.5)8、如果一个正方形的边长增加了原来的50%,那么面积增加了多少百分比?A. 50%B. 100%C. 125%D. 150%9、一个长方形的长是8厘米,宽是长的一半,那么这个长方形的周长是多少厘米?选项:A. 16厘米B. 20厘米C. 24厘米D. 32厘米 10、一个正方形的对角线长是10厘米,那么这个正方形的边长是多少厘米?选项:A. 5厘米B. 10厘米C. 15厘米D. 20厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(a+b=7),且(a−b=3),则(a)的值为____ 。
2、已知一个长方形的长是宽的2倍,如果它的周长是30厘米,则这个长方形的面积为 ____ 平方厘米。
2024~2025学年北师大版数学七年级上册期中模拟测试卷
2024~2025学年北师大版数学七年级上册期中模拟测试卷一、单选题1.如图,该几何体的俯视图是( )A .B .C .D .2.拒绝餐桌浪费,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.3240万用科学记数法表示为( ) A .80.32410⨯ B .632.410⨯C .73.2410⨯D .832410⨯3.单项式23x yπ-的系数是( )A .3π B .13-C .13D .3π-4.下列运算正确的是( ) A .624x x -= B .333734x x x -= C .224235x x x +=D .3(2)32a b a b --=-+5.“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是( ).A .文B .明C .典D .范6.已知5a =,3b =,0a b -<,则2+a b 值为( ) A .11B .-1C .-1或11D .1或-117.一根1m 长的小木棒,第一次截去它的14,第二次截去剩余部分的14,第三次再截去剩余部分的14,如此截下去,第六次后剩余的小木棒的长度是( )A .63m 4⎛⎫ ⎪⎝⎭B .631m 4⎛⎫- ⎪⎝⎭C .61m 4⎛⎫ ⎪⎝⎭D .611m 4⎛⎫- ⎪⎝⎭8.若关于a ,b 的多项式221253ab ka b b -++与22351b a b ab +-+的差不含三次项,则数k 的值为( )A .13-B .13C .9-D .99.若()2210a b ++-=,则()2024a b +等于( )A .2024-B .1-C .1D .202410.某窗户的形状如图所示(图中长度单位:cm ),其上部是半圆形,下部是由两个相同的长方形和一个正方形构成.已知半圆的半径为cm a ,长方形的长和宽分别为cm b 和cm c .给出下面四个结论:①窗户外围的周长是()π32cm a b c ++;②窗户的面积是()222π2cm a bc b ++;③22b c a +=; ④3b c =.上述结论中,所有正确结论的序号是( )A .①②B .①③C .②④D .③④二、填空题11.某地气象观测用的测温气球,每上升1千米,气温大约降低6℃,若地面温度为21℃,高空某处的温度为39-℃,则此处的高度为千米.12.如图是某几何体从不同方向看到的图形.若从正面看的高为10cm ,从上面看的圆的直径为4cm ,求这个几何体的侧面积(结果保留π)为.13.若33m x y +与225n x y --的和是单项式,则mn 的值是.14.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a ,b 的式子表示).15.已知当3x =时,代数式31ax bx +-的值是2,则当3x =-时,代数式31ax bx +-的值是.三、解答题 16.计算:(1)()()210020241110.5333⎡⎤---⨯⨯--⎣⎦ (2)31113629618⎛⎫--⨯- ⎪⎝⎭17.先化简,再求值2221316223x y xy x y x y xy ⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭,其中1,2x y ==-18.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:()22357236x x x x +-+-=-+-.求被捂住的多项式.19.如图是由7个同样大小棱长为1的小正方体搭成的几何体.(1)请分别画出它的主视图、左视图和俯视图; (2)求这个组合几何体的表面积(包括底面积). 20.如图是一个运算程序:(1)若13x y ==,,求m 的值;(2)若2y =-,m 的值大于4-,直接写出一个符合条件的x 的值. 21.观察下列等式的规律.1234122122122122,,,,212223234245a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L .解答下列问题:(1)第5个等式为___________,第n 个等式为___________(用含n 的式子表示,n 为正整数);(2)设112234356101220232024,,,,S a a S a a S a a S a a =-=-=-=-L ,求1231012S S S S ++++L 的值. 22.小刘在学校附近开了一家麻辣烫店,为了吸引顾客,于是想到了发送传单:刘氏麻辣烫开业大酬宾,第一周每碗4.5元,第二周每碗5元,第三周每碗5.5元,从第四周开始每碗6元,月末结算时,每周以500碗为标准,多卖记为正,少卖记为负,这四周的销售情况如下表:(1)若麻辣烫成本为3.1元/碗,哪一周的收益最多?是多少元? (2)这四周总销售额是多少?(3)在(1)的条件下,为了拓展学生消费群体,第四周后,小刘又决定实行两种优惠方案:方案一:凡来本店吃麻辣烫者,每碗附赠一瓶0.7元的矿泉水;方案二:凡一次性购买3碗以上的,可免费送货上门,但每次送货需支付配送费2元. 若某人一次性购买4碗麻辣烫,则小刘更希望以哪种方案卖出?23.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:若数轴上点A ,B 表示的数分别为a ,b ,则A ,B 两点之间的距离AB a b =-,线段AB 的中点表示的数为2a b+. 【知识应用】如图,在数轴上,点A 表示的数为5,点B 表示的数为3,点C 表示的数为-2,点P 从点C 出发,以每秒2个单位沿数轴向右匀速运动.设运动时间为t 秒(()0t >),根据以上信息,回答下列问题:(1)填空:①A ,C 两点之间的距离AC =___________,线段BC 的中点表示的数为___________. ②用含t 的代数式表示:t 秒后点P 表示的数为___________. (2)若点M 为PA 的中点,当t 为何值时,12MB =. 【拓展提升】(3)在数轴上,点D 表示的数为9,点E 表示的数为6,点F 表示的数为-4,点G 从点D ,点H 从点E 同时出发,分别以每秒1个单位长度和每秒2个单位长度的速度沿数轴的负方向运动,且当它们各自到达点F 时停止运动,设运动时间为t 秒,线段GH 的中点为点K ,当t 为何值时,3HK =.。
北师大版七年级数学下册期中测试卷及期中复习题共5套试题
七年级数学下册期中测试题班级: 姓名: 成绩:一、选择题(每题3分,共30分) 1、在代数式2,1,32,,22y x a x ax x ++-中,单项式有( ) A 、1个 B 、2个 C 、3个 D 、4个 2、下列计算正确的是( )A 、623.a a a =B 、4442.b b b =C 、1055x x x =+D 、87.y y y = 3、计算(x-y)3·(y-x)=( )A 、(x-y)4B 、(y-x)4C 、-(x-y)4D 、(x+y)4 4、下列运算中能用平方差公式的是( ) A、(2a-b)(2a+3b) B 、(2a-b )(2a+b ) C、(a-b )(b-a ) D 、(a+b )(a+b ) 5、下列说法中正确的有( )①一个角的余角一定比这个角大 ②同角的余角相等 ③若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补 ④对顶角相等 A 、1个 B 、2个 C 、3个 D 、4个6、如图1,下列条件中,不能判断直线l 1∥l 2的是 ( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180°7、如图2,直线AB 与CD 交于点O,OE ⊥AB 于O,∠1与∠2的关系是 ( ) A.对顶角 B.互余 C.互补 D 相等 8、把0.00000156用科学记数法表示为( )A 、810156⨯ B 、7106.15-⨯ C 、1.56×10-5D 、61056.1-⨯ 9、在用图象表示变量之间的关系时,下列说法中最恰当的是( ). A 、用水平方向的数轴上的点表示因变量 B 、用竖直方向的数轴上的点表示自变量 C .用横轴上的点表示自变量D .用横轴或纵轴上的点表示自变量10、为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所图1C21E D BA图2示:按照上面的规律,摆第(n)图,需用火柴棒的根数为( ).A. 50B. 6nC. 6n-2D.6n+2二、填空(每题3分,共24分) 11、观察:你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来。
【必考题】初一数学上期中试题(及答案)
【必考题】初一数学上期中试题(及答案)一、选择题1.﹣3的绝对值是()A.﹣3B.3C.-13D.132.下列各数中,比-4小的数是()A. 2.5-B.5-C.0D.2 3.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x=12,y=34.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°5.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A.60°B.45°C.65.5°D.52.5°6.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A.66.6×107B.0.666×108C.6.66×108D.6.66×1077.若关于x的方程3x+2a=12和方程2x-4=12的解相同,则a的值为()A.6B.8C.-6D.48.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为3210⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为a b c d22223210⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是()021202125A.B.C.D.9.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°10.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我11.如图所示几何体的左视图是()A.B.C.D.12.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=330二、填空题13.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=_____,一般地,用含有m,n的代数式表示y,即y=_____.14.23-的相反数是______. 15.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).16.如图,是小明用火柴搭的1条、2条、3条“金鱼”…,分别用去火柴棒8根、14根、 20根、…,则搭n 条“金鱼”需要火柴棒________根(含n 的代数式表示).17.若一个角的余角是其补角的13,则这个角的度数为______. 18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为_____米.19.若233m x y -与42n x y 是同类项,则n m =__________.20.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____三、解答题21.用代数式表示:(1)a ,b 两数的平方和减去它们乘积的2倍;(2)a ,b 两数的和的平方减去它们的差的平方;(3)一个两位数,个位上的数字为a ,十位上的数字为b ,请表示这个两位数; (4)若a 表示三位数,现把2放在它的右边,得到一个四位数,请表示这个四位数.22.“*”是新规定的这样一种运算法则:a *b=a 2+2ab .比如3*(﹣2)=32+2×3×(﹣2)=﹣3(1)试求2*(﹣1)的值;(2)若2*x=2,求x 的值;(3)若(﹣2)*(1*x )=x+9,求x 的值.23.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.24.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.615454542.6154••=为例,进行探索: 设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,②②-①得:99261.54 2.61258.93x =-= 25893287799001100x ∴== 因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•=(2)试说明3.1415••是一个有理数,即能用一个分数表示.25.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 2.B解析:B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.3.D解析:D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D、x=12、y=3时,输出结果为2×12+32=10,符合题意;故选:D.【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.4.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.5.D解析:D【解析】【分析】设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60-2x,根据∠AOB=60°,∠COD=45°,列出算式,求出x-y的度数,最后根据∠MON与各角之间的关系,即可求出答案.【详解】设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°-2x∵∠COD=45°∴60°-2x+2y=45°,∴x-y=7.5°∴∠MON=x+(60°-2x)+y=60°(x-y)=52.5°故选D.【点睛】本题考查了角平分线的性质、几何图形中角度计算问题,通过代数方法解决几何问题是本题的关键.6.C解析:C【解析】665 575 306≈6.66×108.故选C.7.C解析:C【解析】【分析】分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.【详解】解第一个方程得:x=1223a-,解第二个方程得:x=8,∴1223a-=8,解得:a=-6.【点睛】考查了同解方程,利用同解方程得出关于a的方程是解题关键.8.B解析:B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【详解】A.第一行数字从左到右依次为1,0,1,0,序号为3210⨯+⨯+⨯+⨯=,表1202120210示该生为10班学生.B.第一行数字从左到右依次为0,1, 1,0,序号为3210⨯+⨯+⨯+⨯=,表021212026示该生为6班学生.C.第一行数字从左到右依次为1,0,0,1,序号为3210⨯+⨯+⨯+⨯=,表120202129示该生为9班学生.D.第一行数字从左到右依次为0,1,1,1,序号为3210⨯+⨯+⨯+⨯=,表021212127示该生为7班学生.故选B.【点睛】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.9.C解析:C【解析】【分析】【详解】解:∵OA⊥OC,∴∠AOC=90°.∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选C.【点睛】本题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.解析:D【解析】分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.B解析:B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.D解析:D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=330.故选D.二、填空题13.m(n+1)【解析】【分析】【详解】解:观察可得3=1×(2+1)15=3×(4+ 1)35=5×(6+1)所以x=7×(8+1)=63y=m(n+1)故答案为:63;y=m(n+1)【点睛】本题考查解析:m(n+1)【解析】【分析】【详解】解:观察可得,3=1×(2+1),15=3×(4+1),35=5×(6+1),所以x=7×(8+1)=63,y=m(n+1).故答案为:63;y=m(n+1).【点睛】本题考查规律探究题.14.【解析】试题解析:根据只有符号不同的两个数互为相反数可得的相反数是解析:2 3【解析】试题解析:根据只有符号不同的两个数互为相反数,可得23-的相反数是2315.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关解析:5()4a b+【解析】【分析】首先设标价x元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x元,由题意得:80%x﹣b=a,解得:x=5()4a b+,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.16.6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结得到其中的规律【详解】解:观察图形发现:搭1条金鱼需要火柴8根搭2条金鱼需要14根即发现了每多搭1条金鱼需要多用6根火柴则搭n条金鱼需要解析:6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结,得到其中的规律.【详解】解:观察图形发现:搭1条金鱼需要火柴8根,搭2条金鱼需要14根,即发现了每多搭1条金鱼,需要多用6根火柴.则搭n条“金鱼”需要火柴8+6(n﹣1)=6n+2.故答案为:6n+2.【点睛】本题考查了图形的变化类问题,此类题找规律的时候一定要注意结合图形进行发现规律.17.【解析】【分析】设这个角的度数为x则它的余角为90°-x补角为180°-x再根据题意列出方程求出x的值即可【详解】设这个角的度数为x则它的余角为90°-x补角为180°-x依题意得:90°-x=(1解析:45︒【解析】【分析】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,再根据题意列出方程,求出x的值即可.【详解】设这个角的度数为x,则它的余角为90°-x,补角为180°-x,依题意得:90°-x=13(180°-x),解得x=45°.故答案为:45°.【点睛】本题考查的是余角及补角的定义,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,能根据题意列出关于x的方程是解答此题的关键.18.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为:解析:164【解析】【分析】【详解】解:第一次截后剩下12米;第二次截后剩下212⎛⎫⎪⎝⎭米;第三次截后剩下312⎛⎫⎪⎝⎭米;则第六次截后剩下612⎛⎫⎪⎝⎭=164米.故答案为:164. 19.8【解析】【分析】利用同类项的定义得出mn 的值进而得出答案【详解】∵与是同类项∴∴∴故答案为:8【点睛】此题主要考查了同类项正确得出mn 的值是解题关键解析:8【解析】【分析】利用同类项的定义得出m ,n 的值进而得出答案.【详解】∵233m x y -与42n x y 是同类项∴24m =,3n =∴2m =∴328n m ==.故答案为:8.【点睛】此题主要考查了同类项,正确得出m ,n 的值是解题关键.20.﹣6或8【解析】试题解析:当往右移动时此时点A 表示的点为﹣6当往左移动时此时点A 表示的点为8解析:﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.三、解答题21.(1)222a b ab +-;(2)22(a b)(a b)+--;(3)10b a +;(4)10a +2【解析】【分析】(1)关系式为:a 、b 两数的平方和−a ,b 乘积的2倍,列出代数式即可;(2)分别表示出a 与b 两数和的平方、a 与b 差的平方,然后用前者减去后者即可;(3)两位数=十位数字×10+个位数字,根据此关系可列出代数式; (4)只需将原先的三位数扩大十倍再加上数字1即可得到四位数.【详解】解:(1)a ,b 两数的平方和减去它们乘积的2倍,代数式表示为:222a b ab +-;(2)a ,b 两数的和的平方减去它们的差的平方,代数式表示为:22(a b)(a b)+--; (3)这个两位数为:10b a +;(4)由题意得,这个四位数可表示为:10a +2.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.22.(1)0;(2):x=﹣12;(3)x=﹣1. 【解析】根据规定的运算法则,将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.解:(1)根据题中的新定义得:原式=4﹣4=0;(2)根据题中的新定义化简得:4+4x=2,解得:x=﹣;(3)根据题中的新定义化简得:(﹣2)*(1+2x )=4﹣4(1+2x )=x+9,去括号得:4﹣4﹣8x=x+9,解得:x=﹣1.23.(1)150;240;(2)11根.【解析】【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元; (2)有这种可能,可以设小红购买x 跳绳根,那么小明购买x -2根跳绳,列出方程25x ×0.8=25(x -2)-5,解答即可.【详解】解:(1)一次性购买6根跳绳需25×6=150(元); 一次性购买12根跳绳需25×12×0.8=240(元); 故答案为:150;240.(2)设小红购买x 跳绳根,那么小明购买(x -2)根跳绳,25x ×0.8=25(x -2)-5,解得: x =11;小明购买了:11-2=9根.答:小红购买11根跳绳.【点睛】解答的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程进行解答即可.24.(1)149;(2)见解析 【解析】【分析】(1)设 1.5x •=,两边乘10,仿照例题可解;(2)设 3.1415x ••=,两边乘100,仿照例题可化简求解.【详解】解:(1)设 1.5x •=,①两边乘10得:1015.5x •=,②②-①得:914x =, ∴149x =, ∴141.59•=; (2)设 3.1415x ••=,①两边同乘以100得:••100314.15x =,②②-①得:314.15 3.1499311.1105x ••••=-= 311011036799003300x ∴==, 因此3.1415••是有理数【点睛】本题需理解题中的例子,将一个循环小数化为分数的方法,需要学生有很好的分析理解能力.25.∠2=65°,∠3=50°.【解析】【分析】首先根据平角以及∠FOC 和∠1的度数求出∠3的度数,然后根据∠3的度数求出∠AOD 的度数,根据角平分线的性质求出∠2的度数.【详解】∵AB 为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=40°,∴∠3=180°-90°-40°=50°.∵∠3与∠AOD 互补,∴ ∠AOD=180°-∠3=130°.∵OE 平分∠AOD ,∴ ∠2=∠AOD=65°. 【点睛】考点:角平分线的性质、角度的计算.。
初一几何题题库
初一几何题题库一、线段相关题目1. 已知线段AB = 8cm,点C在线段AB上,AC = 3cm,点M是线段BC的中点,求线段AM的长。
解析:因为AB = 8cm,AC = 3cm,所以BC=AB - AC = 8 - 3 = 5cm。
又因为点M是线段BC的中点,所以CM = 1/2BC = 1/2×5 = 2.5cm。
则AM = AC+CM = 3 + 2.5 = 5.5cm。
2. 线段AB被点C分成3:5两部分,已知AC = 6cm,求AB的长。
解析:因为线段AB被点C分成3:5两部分,设AC占3x,CB占5x,则AC = 3x = 6cm,解得x = 2cm。
那么CB = 5x=5×2 = 10cm。
所以AB=AC + CB = 6+10 = 16cm。
二、角相关题目1. 已知∠AOB = 80°,∠BOC = 30°,OM平分∠AOB,ON平分∠BOC,求∠MON 的度数。
解析:(1)当OC在∠AOB内部时,因为OM平分∠AOB,所以∠MOB=1/2∠AOB = 1/2×80° = 40°。
因为ON平分∠BOC,所以∠NOB = 1/2∠BOC=1/2×30° = 15°。
则∠MON=∠MOB - ∠NOB = 40°-15° = 25°。
(2)当OC在∠AOB外部时,∠MOB = 1/2∠AOB = 40°,∠NOB = 1/2∠BOC = 15°则∠MON = ∠MOB+∠NOB = 40° + 15° = 55°。
2. 一个角的补角比它的余角的3倍少20°,求这个角的度数。
解析:设这个角的度数为x度。
它的补角为(180 - x)度,余角为(90 - x)度。
根据题意得:180 - x=3(90 - x)- 20180 - x = 270 - 3x - 20- x+3x=270 - 20 - 1802x = 70x = 35°。
2021年七上数学期中复习-图形的性质_图形认识初步_几何体的展开图-单选题专训及答案
2021年七上数学期中复习-图形的性质_图形认识初步_几何体的展开图-单选题专训及答案几何体的展开图单选题-专训1、(2021拉萨.七上期末) 下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A .B .C .D .2、(2020平谷.七上期末) 下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A .B .C .D .3、(2020榆次.七上期末) 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A . 厉B . 害C . 了D . 我4、(2020平江.七上期末) 下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .5、(2020乌兰浩特.七上期末) 如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A . 的B . 中C . 国D . 梦6、(2021清远.七上期中) 如图是正方体的表面展开图,则与“前”字相对的字是()A . 认B . 真C . 复D . 习7、(2020通榆.七上期末) 如图,图1和图2中所有的正方形都相同,将图1的正方形放在图2中①②③④某一位置,所组成的图形不能围成正方体的位置是A . ①B . ②C . ③D . ④8、(2020罗山.七上期末) 如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A . 我B . 中C . 国D . 梦9、(2020武城.七上期末) 如图是正方体的一种展开图,其每个面上都标有一个汉字,那么在原正方体中,与汉字“智”相对的面上的汉字是( )A . 义B . 仁C . 信D . 礼10、(2020寻乌.七上期末) 将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图所示,那么在这个正方体中,和“强”相对的字是()A . 文B . 明C . 民D . 主11、(2019端州.七上期末) 如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A . 文B . 明C . 肇D . 庆12、(2019龙湖.七上期末) 如图,它需再添一个面,折叠后才能围成一个正方体,下列选项中的黑色小正方形分别由四位同学补画,其中正确的是( )A .B .C .D .13、(2020科尔沁右翼中旗.七上期末) 如图所示的正方体的展开图是()A .B .C .D .14、(2019凤山.七上期末) 一个正方体六个面上分别写着1,2,3,4,5,6,从三个不同角度看正方体如图所示,请判断:1对面的数字是( )A . 2B . 3C . 4D . 515、(2020兰州.七上期末) 如图是一个表面写有数字的正方体,其表面展开图可能是()A .B .C .D .16、(2020昌平.七上期中) 如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A . 美B . 丽C . 广D . 安17、(2020丹东.七上期中) 一个正方体的表面展开如图所示,则正方体中的&所在面的对面所标的字是()A . 丹B . 东C . 欢D . 迎18、(2020宁津.七上月试) 下列各图经过折叠后不能围成一个正方体的是()A .B .C .D .19、(2020凤翔.七上期中) 一个几何体的展开图如图所示,这个几何体是()A . 三棱柱B . 三棱锥C . 四棱柱D . 四棱锥20、(2020临泽.七上期中) 小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A .B .C .D .21、(2020天桥.七上期末) 一个正方体的平面展开图如图所示,将它折成正方体后,“主”字的对面的字是()A . 富B . 强C . 自D . 由22、(2020乾.七上期末) 2017年咸阳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是( )A . 全B . 城C . 市D . 明23、(2020云梦.七上期末) 如图是一个正方体的表面展开图,则原正方体中与“云”字所在的面相对的面上标的字是()A . 建B . 设C . 美D . 丽24、(2020大冶.七上期末) 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“孝”字一面相对而上的字是()A . 包B . 容C . 大D . 气25、(2020东台.七上期末) 如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A .B .C .D .26、(2020丹江口.七上期末) 有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中,,,中的()位置接正方形.A .B .C .D .27、(2020临颍.七上期末) 下列图形,折叠后不能围成正方体的是()A .B .C .D .28、(2020临颍.七上期末) 如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是()A .B .C .D .29、(2020前郭尔罗斯蒙古族自治.七上期末) 下列图形中,是正方体表面展开图的是()A .B .C .D .30、(2020嘉鱼.七上期末) 一个正方体的六个面上分别标有字母A,B,C,D,E,F,甲,乙,丙三位同学分别从三个不同的方向看这个正方体,观察结果如图所示,则F的对面是()A . AB . BC . CD . E几何体的展开图单选题-答案1.答案:B2.答案:B3.答案:D4.答案:C5.答案:D6.答案:B7.答案:A8.答案:D9.答案:A10.答案:A11.答案:D12.答案:C13.答案:D14.答案:C15.答案:B16.答案:D17.答案:B18.答案:D19.答案:A20.答案:A21.答案:B22.答案:B23.答案:C24.答案:D25.答案:C26.答案:A27.答案:D28.答案:B29.答案:30.答案:。
七年级期中数学试卷难题
1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的面积是_________cm²。
2. 在平面直角坐标系中,点A(-2,3)关于原点的对称点是_________。
3. 已知一个一元二次方程x²-4x+3=0,则它的两个根是_________。
4. 一个长方形的长是8cm,宽是5cm,那么它的对角线长是_________cm。
5. 在梯形ABCD中,AD∥BC,AB=CD,AD=10cm,BC=6cm,那么梯形ABCD的面积是_________cm²。
二、选择题(每题3分,共15分)1. 下列各数中,属于无理数的是()A. 0.3B. √2C. -3D. 0.333...2. 已知一个圆的半径是r,则它的直径是()A. 2rB. √2rC. r²D. r/23. 在三角形ABC中,若∠A=45°,∠B=60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°4. 下列各式中,正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)²=a²+2ab-b²D. (a-b)²=a²-2ab+b²5. 在一次函数y=kx+b中,若k=2,b=-3,则该函数的图像经过()A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第一、二、四象限三、解答题(每题10分,共30分)1. 已知一个等边三角形的边长为a,求该三角形的面积。
2. 在平面直角坐标系中,已知点A(3,-2)和点B(-1,4),求线段AB的中点坐标。
3. 已知一元二次方程x²-5x+6=0,求该方程的两个根,并判断它们之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G
B B F D C
F C E
3
答案与提示
一、1.6 2.90,45 3.50 4.45.88;126;18;36 5.123°17′28″;8°38′ 6.72;162 7.AC;BD;∠ACB、∠ADC、 ∠BDC;∠B、∠ACD;∠BCD 8.4,DAB,5 9.15°,15°或 52.5°,127.5° 10.如果两个角是同一个角的余角,那么这两个角相等. 二、11.D 12.C 13.A 14.C 15.C 16.B 17.A 三、18.已知:OC 平分∠AOB,P 是 OC 上任意一点, A PE⊥OA,PF⊥OB,垂足分别是 E、F. E P C 求证:PE=PF. 四、19.AD=6.5cm,AN=4.25cm F B O 20.∠C=60° 21.∠PAG=12° 22.∵EF∥AD ∴∠AGE=∠BAD,∠E=∠DAC ∵AD 平分∠BAC ∴∠BAD=∠DAC ∴∠AGE=∠E 23.∵EF∥CD ∴∠BEF=∠BCD,∠FED=∠EDC ∵DE∥AC ∴∠EDC=∠DCA ∴∠FED=∠DCA ∵CD 平分∠ACB ∴∠DCA=∠BCD ∴∠BEF=∠FED,即 EF 平分∠BED.
.已知,如图 16,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP 平分∠BAC,求 ∠PAG 的度数.
.已知,如图 17,AD 平分∠BAC,点 F 在 BD 上,FE∥AD 交 AB 于 G,交 CA 的延 长线于 E,求证:∠AGE=∠E.
.已知,如图 18,CD 平分∠ACB,DE∥AC,EF∥CD,求证:EF 平分∠BED.
四、解答题
.如图 14,M 是 AB 的中点,AB= 求 AD、AN 的长.
2 BC,N 是 BD 的中点,且 BC=2CD,如果 AB=2cm, 3
F A D D E A B
M
A B
N
C D
BHale Waihona Puke 2GC C
P
<图 14> <图 15> <图 16> .已知,如图 15,AD∥BC,DA⊥AB,DB 平分∠ADC,∠ABD=30°,求∠C 的度数.
4
1
A.117.5° B.112.5° C.125° D.127.5° .如图 11,P 为直线 l 外一点,A、B、C 在 l 上,且 PB⊥l,下列说法中,正确的个数 P 是( ) ①PA、PB、PC 三条线段中,PB 最短 ②线段 PB 的长叫做点 P 到直线 l 的距离 l ③线段 AB 的长是点 A 到 PB 的距离 B C A ④线段 AC 的长是点 A 到 PC 的距离 <图 11> A.1 个 B.2 个 C.3 个 D.4 个 .已知,如图 12,AB∥CD,则∠α、∠β、∠γ之间的关系为( ) A.∠α+∠β+∠γ=360° B.∠α-∠β+∠γ=180° C.∠α+∠β-∠γ=180° D.∠α+∠β+∠γ=180°
初一数学期终几何复习
一、填空
A D C B
.如图 6,已知 CB=4,DB=7,D 是 AC 的中点, 则 AC=___6______ . <图 6> .时钟的时针和分针在 2 时 20 分时,所成的角度是_____度. .45°52′48″=_________度,126.31°=____°____′____″. .180°-56°42′32″=_____________,25°54′÷3=__________. .如图 7,CB⊥AB,∠CBA 与∠CBD 的度数比是 5:1,则∠DBA=____75____度,∠CBD 的补角是____15_____度. C D C 5 D 4 3 C
N
A E A
o
B
N
30
D C
B
<图 12> <图 13> .如图 13,由 A 到 B 的方向是( ) A.南偏东 30° B.南偏东 60° C.北偏西 30° D.北偏西 60° 下列三个命题 ①同位角相等; ②如果一个角的两边分别平行于另一个角的两边, 则两个角一定相等; ③两点之间的线段就是这两点间的距离. 其中正确的有( ) A.0 个 B.1 个 C.2 个 D.3 个
D <图 8>
B
A <图 9>
B
二、选择题
.下列结论中错误的是( ) A.一个角的余角一定比它的补角小 B.凡直角都相等 C.定理是真命题 D.在直线、射线和线段中,直线最长 E .如图 10,∠AOE=∠BOC,OD 平分∠COE, D A 那么图中除∠AOE=∠BOC 外,相等的角共 C 有( ) A.1 对 B.2 对 B O C.3 对 D.4 对 <图 10> .互为余角的两个角之差为 35°,则较大角的补角是( )
2 1
A B
A
<图 7> .如图 8,AC⊥BC,CD⊥AB,点 A 到 BC 边的距离是线段_____的长,点 B 到 CD 边的 距离是线段_____的长, 图中的直角有_____________, ∠A 的余角有_______________, 和∠A 相等的角有__________. .如图 9,当∠1=∠_____时,AB∥CD;当∠D+∠_____=180°时,AB∥CD;当∠B =∠_____时,AB∥CD. .若两个角的两边分别平行,而一个角比另一个角的 3 倍少 30°,则两个角的度数分别 是____________________. .命题“同角的余角相等”改写成“如果……, 那么……”的形式可写成 ______________________________.