江西省高考数学理试题及答案解析

合集下载

2023年江西省五市九校协作体高考数学第二次联考试卷(理科)+答案解析(附后)

2023年江西省五市九校协作体高考数学第二次联考试卷(理科)+答案解析(附后)

2023年江西省五市九校协作体高考数学第二次联考试卷(理科)1. 已知集合,,则( )A. B. C. D.2. 若复数z满足为虚数单位,则下列说法正确的是( )A. z的虚部为B.C. D. z在复平面内对应的点在第二象限3. 若,是第三象限的角,则( )A. 2B.C.D.4. 天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,2023年是癸卯年,请问:在100年后的2123年为( )A. 壬午年B. 癸未年C. 己亥年D. 戊戌年5. 已知双曲线C:的左、右焦点分别为、,点P在双曲线C的右支上,且,双曲线C的一条渐近线方程为,则k的最小值为( )A. B. C. D.6. 中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕年,中国空间站将正式进入运营阶段.假设空间站要安排甲、乙等6名航天员开展实验,三舱中每个舱至少一人至多三人,则不同的安排方法有( )A. 450种B. 72种C. 90种D. 360种7. 已知椭圆的一个焦点为F,点P是椭圆C上的一个动点,的最小值为,且存在点P,使得点O为坐标原点为正三角形,则椭圆C的焦距为.( )A. 2B.C.D. 48. 关于曲线C:,下列说法正确的是( )A. 曲线C可能经过点B. 若,过原点与曲线C相切的直线有两条C. 若,曲线C表示两条直线D. 若,则直线被曲线C截得弦长等于9. 已知函数,则下列说法中正确的是( )A. 是偶函数B. 的图像关于直线对称C. 的值域为D. 在上有5个零点10. 如图为“杨辉三角”示意图,已知每一行的数字之和构成的数列为等比数列且记该数列前n项和为,设,将数列中的整数项依次取出组成新的数列记为,则的值为( )A. 5052B. 5057C. 5058D. 506311.在直四棱柱中中,,,P为中点,点Q满足,下列结论正确的是( )A. 若,则四面体的体积为定值B. 若平面,则AQ的最小值为C. 若的外心为M,则为定值2D. 若,则点Q的轨迹长度为12. 已知,,,,则( )A. B. C. D.13.已知非零向量,满足,,则向量,的夹角是______ .14. 已知,则______ .15. 已知实数a,b满足,,,则的最小值为______ .16. 已知设函数若关于x的不等式恒成立,则a的取值范围为______ .17.已知中,内角A、B、C的对边分别为a、b、c,BD为的角平分线.求证:AD::CB;若且,求的面积.18. 如图,在梯形ABCD中,,,四边形ACFE为矩形,且平面ABCD,求证:平面BCF;点M在线段含端点上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.19. 某企业对生产设备进行优化升级,升级后的设备控制系统由个相同的元件组成,每个元件正常工作的概率均为,各元件之间相互独立.当控制系统有不少于k个元件正常工作时,设备正常运行,否则设备停止运行,记设备正常运行的概率为例如:表示控制系统由3个元件组成时设备正常运行的概率;表示控制系统由5个元件组成时设备正常运行的概率若,当时,求控制系统中正常工作的元件个数X的分布列和数学期望,并求;已知设备升级前,单位时间的产量为a件,每件产品的利润为1元,设备升级后,在正常运行状态下,单位时间的产量是原来的4倍,且出现了高端产品,每件产品成为高端产品的概率为,每件高端产品的利润是2元.记设备升级后单位时间内的利润为单位:元请用表示;设备升级后,在确保控制系统中元件总数为奇数的前提下,分析该设备能否通过增加控制系统中元件的个数来提高利润.20. 过坐标原点O作圆C:的两条切线,设切点为P,Q,直线PQ恰为抛物线E:的准线.求抛物线E的标准方程;设点T是圆C的动点,抛物线E上四点A,B,M,N满足:,,设AB中点为证明:TD垂直于y轴;设面积为S,求S的最大值.21. 已知函数讨论函数的单调性;若函数存在两个极值点,,且恒成立,求实数k的最小值.22. 以直角坐标系的原点O为极点,以x轴正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为为参数,,曲线C的极坐标方程为求曲线C的直角坐标方程;设直线l与曲线C相交于A,B两点,当变化时,求的最小值.23. 已知a,b,c均为正实数,且证明:;答案和解析1.【答案】B【解析】解:由题意可知,集合,或,,故选:利用集合的交集的概念及运算求解即可.本题考查集合的交集的概念及运算,属于基础题.2.【答案】B【解析】解:,,的虚部为,故选项A错误,,故选项B正确,,故选项C错误,z在复平面内对应的点为,在第一象限,故选项D错误,故选:先利用复数的除法运算法则求出z,再结合复数虚部的定义,复数模长的定义,以及共轭复数的定义逐个判断各个选项即可.本题主要考查了复数的四则运算,考查了复数的模长,以及共轭复数的概念,属于基础题.3.【答案】C【解析】解:由,是第三象限的角,可得,故选:将表达式式中的正切化成正余弦,由,求出,即可得到结论.本题主要考查三角恒等变换中的倍角公式的灵活运用、同角的三角函数关系等知识以及相应的运算能力,还要注意条件中的角与待求式中角的差别,注意转化思想的应用.4.【答案】B【解析】解:由题意可知,天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于,余数为0,故100年后天干为癸,由于…4,余数为4,故100年后地支为未,综上,100年后的2123年为癸未年.故选:根据题意,天干和地支的年份分别是以10和12为公差的等差数列,根据等差数列的性质即可求解.本题考查逻辑推理,等差数列的简单应用,属于基础题.5.【答案】B【解析】解:因为,且,所以,,因为,所以,即,由题得双曲线的渐近线方程为,即,又因为双曲线C的一条渐近线方程为,所以,因为所以所以所以k的最小值为,故选:由及得出和,根据求出e 的范围,再根据,求出k的范围,即可求出k的最小值.本题考查双曲线的几何性质,化归转化思想,属中档题.6.【答案】A【解析】解:由题知,6名航天员安排三舱,三舱中每个舱至少一人至多三人,可分两种情况考虑:第一种,分人数为的三组,共有种;第二种,分人数为的三组,共有种;所以不同的安排方法共有种.故选:利用分组和分配的求法求得6名航天员的安排方案,再利用分类加法计数原理即可求得.本题主要考查排列、组合及简单计数问题,属于基础题.7.【答案】D【解析】【分析】本题考查椭圆的性质及正三角形的性质,属于中档题.由椭圆的性质可得的值,再由点O为坐标原点为正三角形可得P点的坐标,将P 的坐标代入可得a,b,c之间的关系,再由椭圆中a,b,c之间的关系求出c的值,进而求出焦距的值.【解答】解:由椭圆的定义可得,①要使点O为坐标原点为正三角形,则存在,,即,将P代入椭圆的方程,②又,③由①②③可得:,即,可得焦距故选8.【答案】B【解析】解:将点代入曲线C:可得,整理得,即,显然此方程无解,即曲线C一定不过点,A 错误;时,易得曲线C是圆心为,半径为的圆,此时原点和圆心之间的距离为,,故原点在圆外,过原点有两条直线与曲线C相切,B正确;时,曲线C:,则,解得,则曲线C表示一个点,C错误;时,曲线C:,圆心在直线上,则直线被曲线C截得弦长即为圆的直径等于2,D错误.故选:直接将点代入曲线C方程,由方程无解即可判断A选项;先由原点到圆心的距离判断出原点在圆外即可判断B选项;代入曲线C解出即可判断C选项;先求出圆心在直线上结合直径即可判断D选项.本题考查了曲线与方程,属于中档题.9.【答案】C【解析】解:函数的定义域为,因为,所以,,所以,所以不是偶函数,A错误;当时,,当时,,若函数的图像关于直线对称,则,又,,矛盾,所以函数的图像不关于直线对称,B错误;时,的值域是,时,的值域是,C正确;时,,有无数个零点,函数在上有无数个零点,D错误.故选:根据偶函数的定义判断A,对给定函数式按及两段化简,结合对称的性质利用反证法判断B,再结合正弦函数的性质,判断C,本题主要考查了函数的奇偶性,对称性的判断,还考查了函数值域及零点个数的求解,属于中档题.10.【答案】B【解析】解:根据杨辉三角的性质,,所以,由题意得:数列的整数项为2,3,7,8,12,13,,其规律为各项之间以,,,,,,,单调递增,因此,数列的奇数项是以5为公差,2为首项的等差数列,偶数项是以5为首项,3为首项的等差数列;即,所以故选:直接利用杨辉三角的性质和对数的运算求出数列的奇数项是以5为公差,2为首项的等差数列,偶数项是以5为首项,3为首项的等差数列,进一步求出结果.本题考查的知识要点:杨辉三角的性质,等差数列的性质,主要考查学生的理解能力和计算能力,属于基础题和易错题.11.【答案】ABD【解析】解:在直四棱柱中中,,,P为中点,点Q满足,,对于A,因为,所以Q,C,三点共线,所以点Q在,因为,平面,平面,所以平面,所以点Q到平面的距离为定值,因为的面积为定值,所以四面体的体积为定值,所以A正确;对于B,取,DC的中点分别为M,N,连接AM,MN,AN,则,因为平面,平面,所以平面,因为,,所以,因为平面,平面,平面,因为,MN,平面AMN,所以平面॥平面,因为平面AMN ,所以AQ平面,所以当时,AQ最小,因为,,所以,,所以,所以Q,M重合,所以AQ的最小值为,所以B正确;对于C,若的外心为M,过M作于H,因为,所以,所以C错误,对于D,过作于点O,因为则可得平面,平面,所以,因为,,平面,所以平面,在,上取点,,使得,则,所以若,则Q在以O为圆心,2为半径的圆弧上运动,因为,所以,则圆弧等于,所以D正确,故选:对于A,由,可得Q,C,三点共线,可得点Q在,而由直四棱柱的性质可得平面,所以点Q到平面的距离为定值,而的面积为定值,从而可进行判断;对于B,取,DC的中点分别为M,N,连接AM,MN,AN,由面面平行的判定定理可得平面平面AMN,从而可得平面,进而可求得AQ的最小值;对于C,由三角形外心的性质和向量数量积的性质可判断;对于D,在,上取点,,使得,可得点Q的轨迹为圆弧,从而可进行判断.本题考查了立体几何的综合运用,属于中档题.12.【答案】D【解析】解:对于A,,,,令,则,所以在单调递减,在上单调递增,且,故,令,,则,所以在上单调递减,且,,,,,,即,故A错误;对于B,,,,令,则,所以在单调递增,在上单调递减,且,故,令,,所以在上单调递减,且,,,,,,即,故B错误;对于C,,,,又在单调递增,,,故C错误;对于D,由C可知,,,又在单调递减,,故D正确.故选:先构造函数,通过函数的单调性确定a,b的大致范围,再构造,通过函数的单调性确定d与的大小关系,进而得到A选项;先构造函数,通过函数的单调性确定c,d的大致范围,再构,通过函数的单调性确定d与的大小关系,进而可知B选项错误;通过,得到,进而可得与d的大小关系,进而可知C选项错误;D与C选项同样的方法即可判断.本题主要考查利用导数研究函数的单调性,考查逻辑推理能力,属于中档题.13.【答案】【解析】解:已知非零向量,满足,又,则,即,则,又,则,则向量,的夹角是,故答案为:由平面向量数量积的运算,结合平面向量夹角的运算求解即可.本题考查了平面向量数量积的运算,重点考查了平面向量夹角的运算,属基础题.14.【答案】132【解析】解:,…,故答案为:由,继而根据展开式的特点求出答案.本题主要考查二项式定理的应用,属于基础题.15.【答案】2025【解析】解:,因为,所以,,,故,由基本不等式得:,当且仅当,即时,等号成立,故,即的最小值为故答案为:先对式子变形得到,由基本不等式求出,从而求出的最小值.本题主要考查了利用基本不等式求最值,属于中档题.16.【答案】【解析】解:当时,,即或,即,当时恒成立,故成立;当时,时,递减,可得,故恒成立;当时,,当时,递增;当时,递减.①当时,在递增,可得,恒成立;②当时,在处取得最小值,当时,,则恒成立;当时,,则不恒成立;故时,则恒成立;当时,在递增,可得,即,此时,,所以;时,递增,,故恒成立.综上可得,a的取值范围是故答案为:对a讨论,分,,,考虑和时,的单调性,求得最值,解不等式,求并集可得所求范围.本题考查分段函数的运用,以及函数恒成立问题解法,考查分类讨论思想和转化思想、运算能力和推理能力,属于难题.17.【答案】解:证明:由题意可得,因为BD为的角平分线,则,在中,,则,同理可得,因此;设,则,因为,即,因为,则,则,,即,可得,,所以,,【解析】结合正弦定理以及角平分线性质即可得到结论,设,则,利用,求出,进而求解结论.本题主要考查正弦定理以及诱导公式在解三角形中的应用,属于基础题目.18.【答案】解:在梯形ABCD中,,,又,,…分…分平面ABCD,平面ABCD,,…分而,平面…分,平面…分由可建立分别以直线CA,CB,CF为x轴,y轴,z轴的如图所示建立空间直角坐标系,令,则,,,,…分,,设为平面MAB的一个法向量,由得取,则,…分是平面FCB的一个法向量,,当时,有最小值,…分点M与点F重合时,平面MAB与平面FCB所成二面角最大,此时二面角的余弦值为【解析】在梯形ABCD中,通过,求出,通过证明,证明,推出平面BCF,即可证明平面由可建立分别以直线CA,CB,CF为x轴,y轴,z轴的如图所示建立空间直角坐标系,求出平面MAB的一个法向量,求出平面FCB的一个法向量,通过向量的数量积,推出平面MAB 与平面FCB所成二面角,然后求解二面角的余弦值.本题考查平面向量的数量积的求法,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.19.【答案】解:因为,所以控制系统中正常工作的元件个数X的可能取值为0,1,2,3;因为每个元件的工作相互独立,且正常工作的概率均为,所以,所以,,,,所以控制系统中正常工作的元件个数X的分布列为:X0123P控制系统中正常工作的元件个数X的数学期望为:,;升级改造后单位时间内产量的分布列为:产量4a0设备运行概率所以升级改造后单位时间内产量的期望为;产品类型高端产品一般产品产量单位:件利润单位:元21设备升级后单位时间内的利润为,即;因为控制系统中元件总数为奇数,若增加2个元件,则第一类:原系统中至少有个元件正常工作,其概率为;第二类:原系统中恰好有k个元件正常工作,新增2个元件中至少有1个正常工作,其概率为;第三类:原系统中有个元件正常工作,新增2个元件全部正常工作,其概率为;所以,则,所以当时,,单调递增,即增加元件个数设备正常工作的概率变大,当时,,即增加元件个数设备正常工作的概率没有变大,又因为,所以当时,设备可以通过增加控制系统中元件的个数来提高利润;当时,设备不可以通过增加控制系统中元件的个数来提高利润.【解析】由题意可知,利用二项分布求解即可求得期望,根据互斥事件的和事件的概率公式求解;先写出升级改造后单位时间内产量的分布列congestion求出设备升级后单位时间内的利润,即为;分类讨论求出与的关系,做差比较大小即可得出结论.本题考查二项分布的概率及期望的求解,离散型随机变量的分布列及概率的最值问题,化归转化思想,属难题.20.【答案】解:设直线PQ与x轴交于S,则,由圆的方程知:圆心,半径,为圆C的切线,,又,∽,,即,解得:,抛物线E的标准方程为:设,,,证明:由知:M为TA中点,且在抛物线E上,即,又,,整理可得:;由知:N为TB中点,且在抛物线E上,同理可得:;,是方程的两根,,,点的纵坐标为,直线TD的斜率为0,即TD垂直于y轴.,,,在圆C上,,,则当时,,【解析】设直线PQ与x轴交于S,由三角形相似关系可得,由此可构造方程求得p的值,从而得到抛物线方程;根据共线向量可知M,N为TA,TB中点,结合点在抛物线上可确定,为方程的两根,由此可得韦达定理的结论;根据D点纵坐标可知TD斜率为零,由此可得结论;由,代入韦达定理,结合点T在圆C上,可化简得到,根据二次函数最值的求法可求得结果.本题考查了抛物线的方程、直线与抛物线的综合问题,考查了圆锥曲线中的最值求解,属于中档题.21.【答案】解:函数的定义域为,则,,令,则,当,即时,恒成立,则,所以在上单调递增,当,即或时,①当时,是开口向上且过的抛物线,对称轴为,函数的两个零点为和,所以在上,单调递增,在上,单调递减,在上,单调递增,②当时,是开口向上且过的抛物线,对称轴为,在上恒成立,所以,单调递增,综上所述,当时,函数在上单调递增,当时,函数在,上单调递增,在上单调递减.由知当时,有两个极值点,,则,是方程,是方程的两个根,所以,,所以,所以恒成立转化为恒成立,令,不等式转化为,所以,所以,即,令,则不等式化为,因为,所以当时,,单调递增,所以,即,令,,所以在上,单调递增,在上,单调递减,所以,所以,即时,实数k取得最小值,所以实数k的最小值为【解析】求导得,,令,则,分两种情况:当,当,分析的符号,的符号,进而可得的单调性.由知当时,有两个极值点,,则,是方程,是方程的两个根,由韦达定理可得,,则,则恒成立转化为恒成立,即可得出答案.本题考查导数的综合应用,解题中需要理清思路,属于中档题.22.【答案】解:曲线C的极坐标方程为,根据,转换为直角坐标方程为;把直线l的参数方程为为参数,,代入方程;得到,整理得,,故,当时,最小值为【解析】直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;利用一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,主要考查学生的运算能力和数学思维能力,属于基础题.23.【答案】证明:因为a,b,c都为正实数,且,,,,当且仅当时,取等号,所以,可得,当且仅当时“=”成立,所以由题意得,当且仅当时取等号,,当且仅当时取等号,,当且仅当时取等号,由①+②+③,得,当且仅当时等号成立.又,当且仅当时等号成立.所以【解析】利用重要不等式结合已知条件,推出结果即可.通过,当且仅当时取等号,,当且仅当时取等号,,当且仅当时取等号,累加,转化求解证明即可.本题考查不等式的证明,综合法的应用,考查转化思想以及计算能力,是中档题.。

(完整版)2012年江西省高考数学试卷(理科)答案与解析

(完整版)2012年江西省高考数学试卷(理科)答案与解析

2012年江西省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•江西)若集合A={﹣1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5B.4C.3D.2考点:元素与集合关系的判断.专题:集合.分析:根据题意,计算元素的和,根据集合中元素的互异性,即可得到结论.解答:解:由题意,∵集合A={﹣1,1},B={0,2},﹣1+0=﹣1,1+0=1,﹣1+2=1,1+2=3 ∴{z|z=x+y,x∈A,y∈B}={﹣1,1,3}∴集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3故选C.点评:本题考查集合的概念,考查集合中元素的性质,属于基础题.2.(5分)(2012•江西)下列函数中,与函数y=定义域相同的函数为()A.y=B.y=C.y=xe x D.y=考点:正弦函数的定义域和值域;函数的定义域及其求法.专题:计算题.分析:由函数y=的意义可求得其定义域为{x∈R|x≠0},于是对A,B,C,D逐一判断即可得答案.解答:解:∵函数y=的定义域为{x∈R|x≠0},∴对于A,其定义域为{x|x≠kπ}(k∈Z),故A不满足;对于B,其定义域为{x|x>0},故B不满足;对于C,其定义域为{x|x∈R},故C不满足;对于D,其定义域为{x|x≠0},故D满足;综上所述,与函数y=定义域相同的函数为:y=.故选D.点评:本题考查函数的定义域及其求法,正确理解函数的性质是解决问题之关键,属于基础题.3.(5分)(2012•江西)若函数f(x)=,则f(f(10))=()A.l g101 B.2C.1D.0考点:函数的值.专题:计算题.分析:通过分段函数,直接求出f(10),然后求出f(f(10)的值.解答:解:因为函数f(x)=,所以f(10)=lg10=1;f(f(10)=f(1)=2.故选B.点评:本题考查分段函数的值的求法,考查计算能力.4.(5分)(2012•江西)若tanθ+=4,则sin2θ=()A.B.C.D.考点:二倍角的正弦;同角三角函数间的基本关系.专题:三角函数的求值.分析:先利用正弦的二倍角公式变形,然后除以1,将1用同角三角函数关系代换,利用齐次式的方法化简,可求出所求.解答:解:sin2θ=2sinθcosθ=====故选D.点评:本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算能力,属于基础题.5.(5分)(2012•江西)下列命题中,假命题为()A.存在四边相等的四边形不是正方形B.z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数C.若x,y∈R,且x+y>2,则x,y至少有一个大于1D.对于任意n∈N*,++…+都是偶数考点:二项式系数的性质;充要条件.专题:综合题.分析:通过特例判断A的正误;通过复数的共轭复数判断B的正误;通过不等式的基本性质判断C 的正误;通过二项式定理系数的形状判断D 的正误.解答:解:例如菱形,满足四边相等的四边形不是正方形,所以A正确;z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数,不正确;例如z1=2+i,z2=6﹣i,z1+z2为实数,但是z1,z2不是共轭复数,所以B不正确.若x,y∈R,且x+y>2,则x,y至少有一个大于1,显然正确;对于任意n∈N*,++…+=2n≥2,都是偶数正确;不正确是命题是B.故选B.点评:本题考查充要条件的判断,二项式定理,复数等有关知识,考查基本知识的灵活运用,是基础题.6.(5分)(2012•江西)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.199考点:归纳推理.专题:阅读型.分析:观察可得各式的值构成数列1,3,4,7,11,…,所求值为数列中的第十项.根据数列的递推规律求解.解答:解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.点评:本题考查归纳推理,实际上主要为数列的应用题.要充分寻找数值、数字的变化特征,构造出数列,从特殊到一般,进行归纳推理.7.(5分)(2012•江西)在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD 的中点,则=()A.2B.4C.5D.10考点:向量在几何中的应用.专题:计算题;综合题.分析:以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.解答:解:以D为原点,AB所在直线为x轴,建立如图坐标系,∵AB是Rt△ABC的斜边,∴以AB为直径的圆必定经过C点设AB=2r,∠CDB=α,则A(﹣r,0),B(r,0),C(rcosα,rsinα)∵点P为线段CD的中点,∴P(rcosα,rsinα)∴|PA|2=+=+r2cosα,|PB|2=+=﹣r2cosα,可得|PA|2+|PB|2=r2又∵点P为线段CD的中点,CD=r∴|PC|2==r2所以:==10故选D点评:本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.8.(5分)(2012•江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为()A.50,0 B.30,20 C.20,30 D.0,50考点:函数最值的应用.专题:计算题.分析:设种植黄瓜和韭菜的种植面积分别为x,y亩,种植总利润为z万元,然后根据题意建立关于x与y的约束条件,得到目标函数,利用线性规划的知识求出最值时的x和y的值即可.解答:解:设种植黄瓜和韭菜的种植面积分别为x,y亩,种植总利润为z万元.由题意可知一年的种植总利润为z=0.55×4x+0.3×6y﹣1.2x﹣0.9y=x+0.9y作出约束条件如下图阴影部分,平移直线x+0.9y=0,当过点A(30,20)时,一年的种植总利润为z取最大值.故选B.点评:本题主要考查了线性规划,解题的关键是得到约束条件和目标函数,同时考查了作图的能力,属于基础题.9.(5分)(2012•江西)样本(x1,x2…,x n)的平均数为x,样本(y1,y2,…,y m)的平均数为(≠).若样本(x1,x2…,x n,y1,y2,…,y m)的平均数=α+(1﹣α),其中0<α<,则n,m的大小关系为()A.n<m B.n>m C.n=m D.不能确定考点:众数、中位数、平均数.专题:计算题;压轴题.分析:通过特殊值判断α的范围,是否满足题意即可得到选项.解答:解:法一:不妨令n=4,m=6,设样本(x1,x2…,x n)的平均数为=6,样本(y1,y2,…,y m)的平均数为=4,所以样本(x1,x2…,x n,y1,y2,…,y m)的平均数=α+(1﹣α)=6α+(1﹣α)4=,解得α=0.4,满足题意.解法二:依题意nx+my=(m+n)[ax+(1﹣a)y],∴n(x﹣y)=a(m+n)(x﹣y),x≠y,∴a=∈(0,),m,n∈N+,∴2n<m+n,∴n<m.故选:A.点评:本题考查众数、中位数、平均数,考查计算能力,特殊值法是解题的常用方法.10.(5分)(2012•江西)如图,已知正四棱锥S﹣ABCD所有棱长都为1,点E是侧棱SC 上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为()A .B.C.D.考点:函数的图象与图象变化.专题:计算题;压轴题.分析:由题意可知截面下面部分的体积为V(x),不是SE的线性函数,可采用排除法,排除C,D,进一步可排除B,于是得答案.解答:解:由题意可知截面下面部分的体积为V(x),不是SE=x的线性函数,可采用排除法,排除C,D;又当截面为BDE,即x=时,V(x)=,当侧棱SC上的点E从SC的中点向点C移动时,V(x)越来越小,故排除B;故选:A.点评:本题考查函数的图象与图象变化,着重考查排除法的应用,考查学生冷静地分析问题解决问题的能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2012•江西)计算定积分(x2+sinx)dx=.考点:定积分.专题:计算题.分析:求出被积函数的原函数,再计算定积分的值.解答:解:由题意,定积分===.故答案为:.点评:本题考查定积分的计算,确定被积函数的原函数是关键.12.(5分)(2012•江西)设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5= 35.考点:等差数列的性质.专题:计算题.分析:根据等差数列的通项公式,可设数列{a n}的公差为d1,数列{b n}的公差为d2,根据a1+b1=7,a3+b3=21,可得2(d1+d2)=21﹣7=14.最后可得a5+b5=a3+b3+2(d1+d2)=2+14=35.解答:解:∵数列{a n},{b n}都是等差数列,∴设数列{a n}的公差为d1,设数列{b n}的公差为d2,∴a3+b3=a1+b1+2(d1+d2)=21,而a1+b1=7,可得2(d1+d2)=21﹣7=14.∴a5+b5=a3+b3+2(d1+d2)=21+14=35故答案为:35点评:本题给出两个等差数列首项之和与第三项之和,欲求它们的第五项之和,着重考查了等差数列的概念与通项公式和等差数列的性质,属于基础题.13.(5分)(2012•江西)椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为.考点:椭圆的简单性质;等比数列的性质.专题:计算题;压轴题.分析:直接利用椭圆的定义,结合|AF1|,|F1F2|,|F1B|成等比数列,即可求出椭圆的离心率.解答:解:因为椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,|AF1|=a﹣c,|F1F2|=2c,|F1B|=a+c,所以(a﹣c)(a+c)=4c2,即a2=5c2,所以e=.故答案为:.点评:本题考查椭圆的基本性质的应用,离心率的求法,考查计算能力.14.(5分)(2012•江西)下图是某算法的程序框图,则程序运行后输出的结果是3.考点:循环结构.专题:算法和程序框图.分析:直接计算循环后的结果,当k=6时不满足判断框的条件,推出循环输出结果即可.解答:解:第1次,满足循环,a=1,T=1,K=2,第2次满足2<6;sin,不成立,执行a=0,T=1,k=3,第3次有,不满足条件循环,a=0,T=1,k=4,满足,a=1,T=2,k=5,满足k<6,此时成立,a=1,T=3,k=6,不满足6<6,退出循环,输出结果T=3.故答案为:3.点评:本题考查循环结构的作用,循环中两次判断框,题目比较新,考查学生分析问题解决问题的能力.三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分.15.(5分)(2012•江西)(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2﹣2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为ρ=2cosθ.(2)(不等式选做题)在实数范围内,不等式|2x﹣1|+|2x+1|≤6的解集为{}.考点:简单曲线的极坐标方程;绝对值不等式的解法.专题:计算题;压轴题.分析:(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得(2)利用绝对值的几何意义求解.解答:解:(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换,得出ρ2﹣2ρcosθ=0.即ρ=2cosθ故答案为:ρ=2cosθ(2)不等式|2x﹣1|+|2x+1|≤6化为不等式|x﹣|+|x+|≤3,如图所示数轴上点,到点的距离之和为3,所以解集为{}故答案为:{}点评:本题考查极坐标和直角坐标的互化,绝对值不等式求解,其中(2)利用了绝对值的几何意义,避免了分类讨论.四.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2012•江西)已知数列{a n}的前n项和S n=﹣n2+kn(其中k∈N+),且S n的最大值为8.(1)确定常数k,求a n;(2)求数列的前n项和T n.考点:数列的求和;等差数列的通项公式.专题:综合题.分析:(1)由二次函数的性质可知,当n=k时,取得最大值,代入可求k,然后利用a n=s n﹣s n﹣1可求通项(2)由=,可利用错位相减求和即可解答:解:(1)当n=k时,取得最大值即=k2=8∴k=4,S n=﹣n2+4n从而a n=s n﹣s n﹣1=﹣[﹣(n﹣1)2+4(n﹣1)]=又∵适合上式∴(2)∵=∴=两式相减可得,==∴点评:本题主要考查了由数列的递推公式求解数列的通项公式,及数列求和的错位相减求和方法是数列求和中的重要方法,也是高考在数列部分(尤其是理科)考查的热点,要注意掌握17.(12分)(2012•江西)在△ABC中,角A,B,C的对边分别为a,b,c.已知A=,bsin(+C)﹣csin(+B)=a,(1)求证:B﹣C=(2)若a=,求△ABC的面积.考点:解三角形.专题:计算题;证明题.分析:(1)通过正弦定理以及两角和与差的三角函数化简已知表达式,推出B﹣C的正弦函数值,然后说明B﹣C=.(2)利用a=,通过正弦定理求出b,c,然后利用三角形的面积公式求△ABC的面积.解答:解:(1)证明:由bsin(+C)﹣csin()=a,由正弦定理可得sinBsin(+C)﹣sinCsin()=sinA.sinB()﹣sinC()=.整理得sinBcosC﹣cosBsinC=1,即sin(B﹣C)=1,由于0<B,C,从而B﹣C=.(2)解:B+C=π﹣A=,因此B=,C=,由a=,A=,得b==2sin,c==2sin,所以三角形的面积S==cos sin=.点评:本题考查三角形的解法,正弦定理的应用,两角和与差的三角函数的应用,考查计算能力.18.(12分)(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;(2)求V的分布列及数学期望EV.考点:n次独立重复试验中恰好发生k次的概率;列举法计算基本事件数及事件发生的概率.专题:计算题.分析:(1)基本事件空间即6个点中随机取3个点,共有20种取法,研究的事件即4点共面所占基本事件为先选一个面,再选3个点,共有12种选法,故由古典概型概率计算公式即可得所求;(2)先确定随机变量V的所有可能取值,再利用古典概型概率计算公式分别计算随机变量取值的概率,最后列出分布列,利用期望计算公式计算V的期望解答:解:(1)从6个点中随机选取3个点共有=20种取法,选取的三个点与原点在一个平面内的取法有=12种,∴V=0的概率P(V=0)==(2)V的所有可能取值为0,,,,P(V=0)=P(V=)==P(V=)==P(V=)==P(V=)==∴V的分布列为V 0P由V的分布列可得EV=0×++++=点评:本题主要考查了古典概型的概率的计算方法和计算公式,利用组合数公式进行计数的方法,离散型随机变量分布列的意义和期望的计算,属中档题19.(12分)(2012•江西)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:综合题.分析:(1)连接AO,在△AOA1中,作OE⊥AA1于点E,则E为所求.可以证出OE⊥BB1,BC⊥OE而得以证明.在RT△A1OA中,利用直角三角形射影定理得出AE.(2)如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,求出平面A1B1C的法向量是=(x,y,z),利用,夹角求平面A1B1C与平面BB1C1C 夹角的余弦值.解答:(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,所以OE⊥BB1,因为A1O⊥平面ABC,所以BC⊥平面AA1O,所以BC⊥OE,所以OE⊥平面BB1C1C,又AO==1,AA1=,得OE===,则AE==(2)解:如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,2,0),C(0,﹣2,0),A1(0,0,2)由,得点E得坐标是(),设平面A1B1C的法向量是=(x,y,z),由得令y=1,得x=2,z=﹣1,所以=(2,1,﹣1),所以cos<,>==即平面A1B1C与平面BB1C1C夹角的余弦值为.点评:本题考查空间直线和平面位置关系的确定,要熟练掌握应用空间有关的性质、定理;还考查了二面角大小求解,本题具有建立空间直角坐标系的良好空间特征,故用向量法为宜.20.(13分)(2012•江西)已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=•(+)+2.(1)求曲线C的方程;(2)动点Q(x0,y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE 的面积之比是常数?若存在,求t的值.若不存在,说明理由.考点:圆锥曲线的轨迹问题;利用导数研究曲线上某点切线方程.专题:综合题;压轴题.分析:(1)用坐标表示,,从而可得+,可求|+|,利用向量的数量积,结合M(x,y)满足|+|=•(+)+2,可得曲线C的方程;(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y=,直线PB的方程是y=分类讨论:①当﹣1<t<0时,l∥PA,不符合题意;②当t≤﹣1时,,,分别联立方程组,解得D,E的横坐标,进而可得△QAB与△PDE 的面积之比,利用其为常数,即可求得结论.解答:解:(1)由=(﹣2﹣x,1﹣y),=(2﹣x,1﹣y)可得+=(﹣2x,2﹣2y),∴|+|=,•(+)+2=(x,y)•(0,2)+2=2y+2.由题意可得=2y+2,化简可得x2=4y.(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y=,直线PB的方程是y=∵﹣2<x0<2,∴①当﹣1<t<0时,,存在x0∈(﹣2,2),使得∴l∥PA,∴当﹣1<t<0时,不符合题意;②当t≤﹣1时,,,∴l与直线PA,PB一定相交,分别联立方程组,,解得D,E的横坐标分别是,∴∵|FP|=﹣∴=∵∴=×∵x0∈(﹣2,2),△QAB与△PDE的面积之比是常数∴,解得t=﹣1,∴△QAB与△PDE的面积之比是2.点评:本题考查轨迹方程,考查向量知识的运用,考查分类讨论的数学思想,考查三角形面积的计算,同时考查学生的探究能力,属于难题.21.(14分)(2012•江西)若函数h(x)满足①h(0)=1,h(1)=0;②对任意a∈[0,1],有h(h(a))=a;③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)=(λ>﹣1,p>0)(1)判函数h(x)是否为补函数,并证明你的结论;(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p=(n∈N+)时h(x)的中介元为x n,且S n=,若对任意的n∈N+,都有S n<,求λ的取值范围;(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1﹣x的上方,求P的取值范围.考点:综合法与分析法(选修);进行简单的演绎推理.专题:综合题;压轴题;新定义;转化思想.分析:(1)可通过对函数h(x)=(λ>﹣1,p>0)进行研究,探究其是否满足补函数的三个条件来确定函数是否是补函数;(2)由题意,先根据中介元的定义得出中介元x n通式,代入S n=,计算出和,然后结合极限的思想,利用S n<得到参数的不等式,解出它的取值范围;(3)λ=0,x∈(0,1)时,对参数p分类讨论由函数y=h(x)的图象总在直线y=1﹣x的上方这一位置关系进行转化,解出p的取值范围.解答:解:(1)函数h(x)是补函数,证明如下:①h(0)==1,h(1)==0;②任意a∈[0,1],有h(h(a))=h()==a③令g(x)=(h(x))p,有g′(x)==,又因为λ>﹣1,p>0,所以当x∈(0,1)时,g′(x)<0,所以g(x)在(0,1)上是减函数,故h(x)在(0,1)上是减函数由上证,函数h(x)是补函数(2)当p=(n∈N*),由h(x)=x得,(i)当λ=0时,中介元x n=,(ii)当λ>﹣1且λ≠0时,由(*)得=∈(0,1)或=∉(0,1),得中介元x n=,综合(i)(ii):对任意的λ>﹣1,中介元为x n=,于是当λ>﹣1时,有S n===,当n无限增大时,无限接近于0,S n无限接近于,故对任意的非零自然数n,S n<等价于,即λ∈[3,+∞)(3)当λ=0时,h(x)=,中介元为.(i)0<p≤1时,,中介元为≤,所以点(x p,h(x p))不在直线y=1﹣x的上方,不符合条件;(ii)当p>1时,依题意只需>1﹣x在x∈(0,1)时恒成立,也即x p+(1﹣x)p<1在x∈(0,1)时恒成立设φ(x)=x p+(1﹣x)p,x∈(0,1),则φ′(x)=p(x p﹣1﹣(1﹣x)p﹣1)令φ′(x)=0,得x=,且当x∈(0,)时,φ′(x)<0,当x∈(,1)时,φ′(x)>0,又φ(0)=φ(1)=1,所以x∈(0,1)时,φ(x)<1恒成立.综上,p的取值范围是(1,+∞)点评:本题考查综合法与分析法,探究性强,难度较大,综合考查了转化的思想,导数在最值中的运用,极限的思想,综合性强,运算量大,对逻辑推理要求较高,极易出错或者找不到转化的方向,解题时要严谨认真,避免马虎出错。

2023江西省高考数学试卷(理科)

2023江西省高考数学试卷(理科)

2023江西省高考数学试卷(理科)考试必备2023年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

满分150分,考试时间120分钟。

考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

第II卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。

3.考试结束,务必将试卷和答题卡一并上交。

参考公式:1锥体体积公式V=Sh,其中S为底面积,h为高。

3第I卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A={-1,1},B={0,2},则集合{z︱z=某+y,某∈A,y∈B}中的元素的个数为A.5B.4C.3D.22.下列函数中,与函数y=A.y=1定义域相同的函数为 3某1n某sin某1 B.y= C.y=某e某 D.某某sin某?某2?1,某?13.若函数f(某)= ?,则f(f(10)=lg某,某?1?A.lg101 B.b C.1 D.0 14.若tan?+ =4,则sin2?=tan?1111A. B. C. D.54325.下列命题中,假命题为A.存在四边相等的四边形不是正方形.B.z1,z2?C,z1?z2为实数的充分必要条件是z1,z2为共轭复数C.若某,y?R,且某?y?2,则某,y至少有一个大于101nD.对于任意n?N,Cn都是偶数?Cn??Cn6.观察下列各式:a?b?1,a2?b2?3,a3?b3?4,a4?b4?7,a5?b5?11,?则-1-考试必备a10?b10?A.28B.76C.123D.1997.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则PA?PBPC222=A.2B.4C.5D.108.农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A.50,0B.30,20C.20,30D.0,509.样本(某1,某2,?,某n)的平均数为某,样本(y1,y2,?ym)的平均数为y(某?y),若样本(某1,某2,?,某n,y1,y2,?ym)的平均数z?a 某?(1?a)y,其中0??1,则n,m2的大小关系为A.n?mB.n?mC.n?mD.不能确定10.如右图,已知正四棱锥S?ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分,记SE?某(0?某?1),截面下面部分的体积为V(某),则函数y?V(某)的图像大致为-2-考试必备2023年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答。

2016年江西省高考数学试卷及答案(理科)(全国新课标ⅰ)

2016年江西省高考数学试卷及答案(理科)(全国新课标ⅰ)

2016年江西省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分,共25分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年江西省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,)【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B二、填空题:本大题共4小题,每小题5分,共25分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【解答】解:(2x+)5的展开式中,通项公式为:T r==25﹣+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.4=4080,∴买19个更合适.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x 1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C 3 ,∴1﹣a2=0,∴a=1(a>0).[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).。

2011年高考江西省数学试卷-理科(含详细答案)

2011年高考江西省数学试卷-理科(含详细答案)

绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。

参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni ini ini i iy yx xy y x xr 12121)()())(( 其中nx x x x n +++= (21)ny y y y n+++= (21)锥体的体积公式 13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若ii z 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2 答案:C 解析: i i ii i ii z -=--=+=+=21222122(2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0) B. (21-,0] C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0) 答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f(5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析: 11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni ini ini i iyyxxyy x xr 12121第一组变量正相关,第二组变量负相关。

2022年江西省高考试卷(数学理)解析版

2022年江西省高考试卷(数学理)解析版

2022年江西省高考试卷(数学理)解析版理科数学试题(江西卷)第Ⅰ卷一、选择题:本大题共12小题,每个小题5分,共60分。

在每个小题给出的四个选项中,有一项是符合题目要求的。

1.已知(x+i )(1-i )=y ,则实数x ,y 分别为( )A.x=-1,y=1B. x=-1,y=2C. x=1,y=1D. x=1,y=2 【答案】 D【解析】考查复数的乘法运算。

可采纳展开运算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2.2.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=( )A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅ 【答案】 C【解析】考查集合的性质与交集以及绝对值不等式运算。

常见的解法为运算出集合A 、B ;{|11}A x x =-≤≤,{|0}B y y =≥,解得A B={x|01}x ≤≤。

在应试中可采纳特值检验完成。

3.不等式22x x x x --> 的解集是( ) A. (02), B. (0)-∞, C. (2)+∞, D. (0)∞⋃+∞(-,0),【答案】 A【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.20x x-<,解得A 。

或者选择x=1和x=-1,两个检验进行排除。

4.2111lim 1333nx →∞⎛⎫++++=⎪⎝⎭( )A. 53B. 32 C. 2 D. 不存在【答案】B【解析】考查等比数列求和与极限知识.解法一:先求和,然后对和取极限。

1133lim ()1213nn →+∞-=-5.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则()'0f =( )A .62 B. 92 C. 122 D. 152 【答案】C【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。

2011年江西省高考数学试卷(理科)及答案

2011年江西省高考数学试卷(理科)及答案

2011年江西省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若z=,则复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i2.(5分)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}3.(5分)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0]C.(,+∞)D.(0,+∞)4.(5分)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(﹣1,0)5.(5分)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.556.(5分)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r17.(5分)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A.3125 B.5625 C.0625 D.81258.(5分)已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(5分)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)10.(5分)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知==2,•=﹣2,则与的夹角为.12.(5分)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.13.(5分)如图是某算法的程序框图,则程序运行后输出的结果是.14.(5分)若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.15.(5分)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为.(2)(不等式选做题)对于实数x,y,若|x﹣1|≤1,|y﹣2|≤1,则|x﹣2y+1|的最大值为.三、解答题(共6小题,满分75分)16.(12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.18.(12分)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.19.(12分)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.20.(13分)P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求λ的值.21.(14分)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.2011年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•江西)若z=,则复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【分析】直接对复数的分母、分子同乘i,然后化简,求出复数z的共轭复数.【解答】解:==2﹣i所以=2+i故选D2.(5分)(2011•江西)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}【分析】根据已知条件我们分别计算出集合A,B,然后根据交集运算的定义易得到A∩B的值.【解答】解:∵A={x|﹣1≤2x+1≤3}={x|﹣1≤x≤1},={x|0<x≤2}故A∩B={x|0<x≤1},故选B3.(5分)(2011•江西)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0]C.(,+∞)D.(0,+∞)【分析】求函数的定义域即求让函数解析式有意义的自变量x的取值范围,由此可以构造一个关于x的不等式,解不等式即可求出函数的解析式.【解答】解:要使函数的解析式有意义自变量x须满足:即0<2x+1<1解得故选A4.(5分)(2011•江西)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(﹣1,0)【分析】由题意,可先求出函数的定义域及函数的导数,再解出不等式f′(x)>0的解集与函数的定义域取交集,即可选出正确选项.【解答】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.5.(5分)(2011•江西)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.55【分析】根据题意,用赋值法,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,进而由数列的前n项和的性质,可得答案.【解答】解:根据题意,在s n+s m=s n+m中,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,根据数列的性质,有a10=s10﹣s9,即a10=1,故选A.6.(5分)(2011•江西)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r1【分析】求两组数据的相关系数的大小和正负,可以详细的解出这两组数据的相关系数,现分别求出两组数据的两个变量的平均数,利用相关系数的个数代入求出结果,进行比较.【解答】解:∵变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),=11.72∴这组数据的相关系数是r=,变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),∴这组数据的相关系数是﹣0.3755,∴第一组数据的相关系数大于零,第二组数据的相关系数小于零,故选C.7.(5分)(2011•江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A.3125 B.5625 C.0625 D.8125【分析】根据所给的以 5 为底的幂的形式,在写出后面的几项,观察出这些幂的形式是有一定的规律的每四个数字是一个周期,用2011除以4看出余数,得到结果.【解答】解:∵55=3125,56=15625,57=78125,58=390625,59=1953125,510=9765625,511=48828125…可以看出这些幂的最后4位是以4为周期变化的,∵2011÷4=502…3,∴52011的末四位数字与57的后四位数相同,是8125,故选D.8.(5分)(2011•江西)已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由已知中α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3,结合面面平行的性质,我们分别判断“P1P2=P2P3”⇒“d1=d2”及“d1=d2”⇒“P1P2=P2P3”的真假,结合充要条件的定义,即可得到答案.【解答】解:由已知中α1,α2,α3是三个相互平行的平面,且平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,又由直线l与α1,α2,α3分别相交于P1,P2,P3.则“P1P2=P2P3”⇒“d1=d2”为真命题且“d1=d2”⇒“P1P2=P2P3”是真命题故“P1P2=P2P3”是“d1=d2”的充分必要条件故选C.9.(5分)(2011•江西)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)【分析】由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,曲线C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y﹣mx ﹣m=0要有2个交点,根据直线y﹣mx﹣m=0过定点,先求出直线与圆相切时m的值,然后根据图象即可写出满足题意的m的范围.【解答】解:由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,化为标准方程得:(x﹣1)2+y2=1,所以圆心坐标为(1,0),半径r=1;C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,由直线y﹣mx﹣m=0可知:此直线过定点(﹣1,0),在平面直角坐标系中画出图象如图所示:直线y=0和圆交于点(0,0)和(2,0),因此直线y﹣mx﹣m=0与圆相交即可满足条件.当直线y﹣mx﹣m=0与圆相切时,圆心到直线的距离d==r=1,化简得:m2=,解得m=±,而m=0时,直线方程为y=0,即为x轴,不合题意,则直线y﹣mx﹣m=0与圆相交时,m∈(﹣,0)∪(0,).故选B.10.(5分)(2011•江西)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.【分析】根据已知中直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.我们分析滚动过程中,M,N的位置与大圆及大圆圆心的重合次数,及点M,N运动的规律,并逐一对四个答案进行分析,即可得到答案.【解答】解:如图,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧与小圆点M转过的圆弧相等.以切点A在如图上运动为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×1=θ,小圆圆弧的长为l2=2θ×=θ,即l1=l2,∴小圆的两段圆弧与圆弧长相等,故点M1与点M′重合,即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,M、N的轨迹为相互垂直的线段.观察各选项,只有选项A符合.故选A.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2011•江西)已知==2,•=﹣2,则与的夹角为.【分析】利用向量的运算律将向量的等式展开,利用向量的平方等于向量模的平方,求出两个向量的数量积;利用向量的数量积公式求出两个向量的夹角余弦,求出夹角.【解答】解:设两个向量的夹角为θ∵∴∵∴∴∴故答案为12.(5分)(2011•江西)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.【分析】根据题意,计算可得圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型求概率即可.【解答】解:圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型得小波周末不在家看书的概率为P=故答案为:13.(5分)(2011•江西)如图是某算法的程序框图,则程序运行后输出的结果是10.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:S n是否继续循环循环前01第一圈02是第二圈33是第三圈54是第四圈105否此时S值为10.故答案为:10.14.(5分)(2011•江西)若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.【分析】设出切点坐标,利用切点与原点的连线与切线垂直,列出方程得到AB 的方程,将右焦点坐标及上顶点坐标代入AB的方程,求出参数c,b;利用椭圆中三参数的关系求出a.,求出椭圆方程.【解答】解:设切点坐标为(m,n)则即∵m2+n2=1∴m即AB的直线方程为2x+y﹣2=0∵线AB恰好经过椭圆的右焦点和上顶点∴2c﹣2=0;b﹣2=0解得c=1,b=2所以a2=5故椭圆方程为故答案为15.(5分)(2011•江西)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为(x﹣2)2+(y﹣1)2=5.(2)(不等式选做题)对于实数x,y,若|x﹣1|≤1,|y﹣2|≤1,则|x﹣2y+1|的最大值为5.【分析】(1)把曲线的极坐标方程ρ=2sinθ+4c osθ两边同时乘以ρ,再把x=ρcosθ,y=ρsinθ 代入化简.(2)先由条件得到0≤x≤2,1≤y≤3,再根据|x﹣2y+1|≤|x|+2|y|+1,求得|x﹣2y+1|的最大值.【解答】解:(1)∵曲线的极坐标方程为ρ=2sinθ+4cosθ,∴ρ2=2ρ sinθ+4ρ cosθ,∴x2+y2=2y+4x,∴(x﹣2)2+(y﹣1)2=5.故答案为:(x﹣2)2+(y﹣1)2=5.(2)|x﹣1|≤1,|y﹣2|≤1,即0≤x≤2,1≤y≤3,则|x﹣2y+1|=|x﹣1﹣2y+4﹣2|≤|x﹣1|+2|y﹣2|+2≤1+2×1+2=5,∴|x﹣2y+1|的最大值为5,故答案为:5.三、解答题(共6小题,满分75分)16.(12分)(2011•江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.【分析】(1)X的所有可能取值为0,1,2,3,4,由古典概型分别求出概率,列出分布列即可.(2)由(1)可知此员工月工资Y的所有可能取值有3500、2800、2100,Y取每个值时对应(1)中的X取某些值的概率,列出Y的分布列,求期望即可.【解答】解:(1)X的所有可能取值为0,1,2,3,4,P(X=0)==P(X=1)==P(X=2)==P(X=3)==P(X=4)==(2)此员工月工资Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)==P(Y=2800)=P(X=3)==P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=EY==228017.(12分)(2011•江西)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.【分析】(1)利用二倍角公式将已知等式化简;将得到的式子平方,利用三角函数的平方关系求出sinC.(2)利用求出的三角函数的值将角C的范围缩小,求出C的余弦;将已知等式配方求出边a,b;利用余弦定理求出c【解答】解:(1)∵∴∴∴∴∴∴∴(2)由得即∴∵a2+b2=4(a+b)﹣8∴(a﹣2)2+(b﹣2)2=0∴a=2,b=2由余弦定理得∴18.(12分)(2011•江西)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.【分析】(1)设等比数列{a n}的公比为q,根据“b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.且{b n}为等比数列,由等比中项,可解得公比,从而求得通项.(2)由(1)知(2+aq)2=(1+a)(3+aq2)整理得:aq2﹣4aq+3a﹣1=0,易知方程有一零根,从而求得结果.【解答】解:(1)设等比数列{a n}的公比为q,又∵b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.且{b n}为等比数列,且b1=2,b2=2+q,b3=3+q2,∴(2+q)2=2(3+q2)∴q=2±∴(2)由(1)知(2+aq)2=(1+a)(3+aq2)整理得:aq2﹣4aq+3a﹣1=0∵a>0,∴△=4a2+4a>0∵数列{a n}唯一,∴方程必有一根为0,得a=.19.(12分)(2011•江西)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.【分析】(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0.(2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值.【解答】解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)≥0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴f′(x)≤f′()=+2a,由0≤+2a,解得a≥﹣.检验a=﹣时,f(x)的增区间为(,),故不成立.故a>﹣.(2)当0<a<2时,△>0;f′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为20.(13分)(2011•江西)P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求λ的值.【分析】(1)根据P(x0,y0)(x0≠±a)是双曲线E:上一点,代入双曲线的方程,M,N分别是双曲线E的左右顶点,直线PM,PN 的斜率之积为,求出直线PM,PN的斜率,然后整体代换,消去x0,y0,再由c2=a2+b2,即可求得双曲线的离心率;(2)根据过双曲线E的右焦点且斜率为1的直线,写出直线的方程,联立直线与双曲线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,及A,B,C为双曲线上的点,注意整体代换,并代入,即可求得λ的值.【解答】解:(1)∵P(x0,y0)(x0≠±a)是双曲线E:上一点,∴,①由题意又有,②联立①、②可得a2=5b2,c2=a2+b2,则e=,(2)联立,得4x2﹣10cx+35b2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1•x2=,设=(x3,y3),,即又C为双曲线上一点,即x32﹣5y32=5b2,有(λx1+x2)2﹣5(λy1+y2)2=5b2,化简得:λ2(x12﹣5y12)+(x22﹣5y22)+2λ(x1x2﹣5y1y2)=5b2,又A(x1,y1),B(x2,y2)在双曲线上,所以x12﹣5y12=5b2,x22﹣5y22=5b2,而x1x2﹣5y1y2=x1x2﹣5(x1﹣c)(x2﹣c)=﹣4x1x2+5c(x1+x2)﹣5c2=﹣4+5c﹣5c2=﹣35b2=•6b2﹣35b2=10b2,得λ2+4λ=0,解得λ=0或﹣4.21.(14分)(2011•江西)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.【分析】(1)先取A1A4的三等分点p2,p3,A1A3的中点M,A2A4,的中点N,过三点A2,P2,M,作平面α2,过三点p3,A3,N作平面α3,先得到两个平行平面,再过点A1,A4,分别作平面α1,α4,与平面α3平行即可.(2)直接利用(1)中的四个平面以及四面体,建立出以△A2A3A4的中心O为坐标原点,以直线A4O为y轴,直线OA1为Z轴的直角坐标系,求出各点对应坐标,求出平面A3P3N的法向量,利用α1,α2,α3,α4相邻平面之间的距离为1求出正四面体的棱长,进而代入体积公式求出体积即可.【解答】解:(1)如图所示,取A1A4的三等分点p2,p3,A1A3的中点M,A2A4,的中点N,过三点A2,P2,M,作平面α2,过三点A3,P3,N作平面α3,,A3P3∥MP2,所以平面α2∥α3,因为A2P2∥NP3再过点A1,A4,分别作平面α1,α4,与平面α3平行,那么四个平面α1,α2,α3,α4依次互相平行,由线段A1A4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2):当(1)中的四面体为正四面体,若所得的四个平行平面每相邻两平面之间的距离为1,则正四面体A1A2A3A4就是满足题意的正四面体.设正四面体的棱长为a,以△A2A3A4的中心O为坐标原点,以直线A4O为y轴,直线OA1为Z轴建立如图所示的右手直角坐标系,则A1(0,0,a),A2(﹣,a,0),A3(,a,0),A4(0,﹣a,0).令P2,P3为.A1A4的三等分点,N为A2A4的中点,有P3(0,a,a),N(﹣,﹣a,0),所以=(﹣,a,﹣a),=(a,a,0),=(﹣,a,0)设平面A3P3N的法向量=(x,y,z),有即,所以=(1,﹣,﹣).因为α1,α2,α3,α4相邻平面之间的距离为1,所以点A4到平面A3P3N 的距离=1,解得a=,由此可得,边长为的正四面体A1A2A3A4满足条件.所以所求四面体的体积V=Sh=××a=a3=.。

2013年江西省高考数学试卷(理科)答案与解析

2013年江西省高考数学试卷(理科)答案与解析

2013年江西省高考数学试卷(理科)答案与解析2013年江西省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•江西)已知集合M={1,2,zi},i 为虚数单位,N={3,4},M ∩N={4},则复数z=( ) A . ﹣2i B . 2i C . ﹣4i D . 4i考点:交集及其运算.专题:计算题.分析: 根据两集合的交集中的元素为4,得到zi=4,即可求出z 的值. 解答: 解:根据题意得:zi=4, 解得:z=﹣4i .故选C 点评: 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•江西)函数y=的定义域为( )A . (0,1)B . [0,1)C . (0,1]D . [0,1] 考点:函数的定义域及其求法.专题: 计算题;函数的性质及应用. 分析:由函数的解析式可直接得到不等式组,解出其解集即为所求的定义域,从而选出正确选项 解答:解:由题意,自变量满足,解得0≤x <1,即函数y=的定义域为[0,1)故选B 点评:本题考查函数定义域的求法,理解相关函数的定义是解题的关键,本题是概念考查题,基础题.3.(5分)(2013•江西)等比数列x ,3x+3,6x+6,…的第四项等于( )A . ﹣24B . 0C . 12D . 24考点:等比数列的性质.专题:等差数列与等比数列.分析: 由题意可得(3x+3)2=x (6x+6),解x 的值,可得此等比数列的前三项,从而求得此等比数列的公比,从而求得第四项. 解答: 解:由于 x ,3x+3,6x+6是等比数列的前三项,故有(3x+3)2=x (6x+6),解x=﹣3,故此等比数列的前三项分别为﹣3,﹣6,﹣12,故此等比数列的公比为2,故第四项为﹣24, 故选A . 点评: 本题主要考查等比数列的通项公式,等比数列的性质,属于基础题.4.(5分)(2013•江西)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( ) 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 A . 08 B . 07 C . 02 D . 01考点:简单随机抽样.专题:图表型.分析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论. 解答:解:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01, 故第5个数为01. 故选:D . 点评: 本题主要考查简单随机抽样.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.5.(5分)(2013•江西)(x 2﹣)5的展开式中的常数项为( ) A . 80 B . ﹣80 C . 40 D . ﹣40考点:二项式定理.专题:计算题;概率与统计. 分析:利用(x )5展开式中的通项公式T r+1=•x 2(5﹣r )•(﹣2)r •x ﹣3r ,令x 的幂指数为0,求得r 的值,即可求得(x )5展开式中的常数项.解答:解:设(x )5展开式中的通项为T r+1,则T r+1=•x 2(5﹣r )•(﹣2)r •x ﹣3r =(﹣2)r ••x 10﹣5r,令10﹣5r=0得r=2, ∴(x)5展开式中的常数项为(﹣2)2×=4×10=40.故选C . 点评: 本题考查二项式定理,着重考查二项展开式的通项公式,考查运算能力,属于中档题. 6.(5分)(2013•江西)若S 1=x 2dx ,S 2=dx ,S 3=e x dx ,则S 1,S 2,S 3的大小关系为( ) A . S 1<S 2<S 3B . S 2<S 1<S 3C . S 2<S 3<S 1D . S 3<S 2<S 1考点:微积分基本定理.专题:导数的概念及应用.分析: 先利用积分基本定理计算三个定积分,再比较它们的大小即可.解答: 解:由于S 1=x 2dx=|=,S 2=dx=lnx|=ln2, S 3=e x dx=e x |=e 2﹣e .且ln2<<e 2﹣e ,则S 2<S 1<S 3. 故选:B .点评: 本小题主要考查定积分的计算、不等式的大小比较等基础知识,考查运算求解能力.属于基础题.7.(5分)(2013•江西)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为( )A . S =2*i ﹣B . S =2*i ﹣C . S =2*iD . S =2*i+42 1考点:程序框图.专题:图表型.分析:题目给出了输出的结果i=5,让我们分析矩形框中应填的语句,根据判断框中内容,即s <10,我们模拟程序执行的过程,从而得到答案. 解答: 解:当空白矩形框中应填入的语句为S=2*I 时,程序在运行过程中各变量的值如下表示: i S 是否继续循环 循环前1 0/ 第一圈 2 5 是 第二圈 3 6 是 第三圈 4 9 是 第四圈 5 10 否故输出的i 值为:5,符合题意. 故选C . 点本题考查了程序框图中的当型循环,当型循评: 环是当条件满足时进入循环体,不满足条件算法结束,输出结果.8.(5分)(2013•江西)如果,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m+n=( )A . 8B . 9C . 10D . 11考点:平面的基本性质及推论.专题:计算题;空间位置关系与距离.分析:判断CE 与EF 与正方体表面的关系,即可推出正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,求出m+n 的值. 解解:由题意可知直线CE 与正方体的上底面答: 平行在正方体的下底面上,与正方体的四个侧面不平行,所以m=4,直线EF 与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以n=4,所以m+n=8. 故选A . 点评: 本题考查直线与平面的位置关系,基本知识的应用,考查空间想象能力.9.(5分)(2013•江西)过点()引直线l与曲线y=相交于A ,B 两点,O 为坐标原点,当△ABO 的面积取得最大值时,直线l 的斜率等于( ) A . B . C .D .考点:直线与圆的位置关系;直线的斜率.专题:压轴题;直线与圆.分析: 由题意可知曲线为单位圆在x 轴上方部分(含与x 轴的交点),由此可得到过C 点的直线与曲线相交时k 的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值. 解答:解:由y=,得x 2+y 2=1(y ≥0). 所以曲线y=表示单位圆在x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合, 则﹣1<k <0,直线l 的方程为y ﹣0=,即.则原点O 到l 的距离d=,l 被半圆截得的半弦长为.则===. 令,则,当,即时,S△ABO有最大值为.此时由,解得k=﹣.故答案为B .点评:本题考查了直线的斜率,考查了直线与圆的关系,考查了学生的运算能力,考查了配方法及二次函数求最值,解答此题的关键在于把面积表达式转化为二次函数求最值,是中档题.10.(5分)(2013•江西)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧的长为x (0<x <π),y=EB+BC+CD ,若l 从l 1平行移动到l 2,则函数y=f (x )的图象大致是( )A .B .C .D .考点:函数的图象.专压轴题;函数的性质及应用.题: 分析: 由题意可知:随着l 从l 1平行移动到l 2,y=EB+BC+CD 越来越大,考察几个特殊的情况,计算出相应的函数值y ,结合考查选项可得答案.解答: 解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG 为正三角形,此时AM=OH=, 在正△AED 中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA ﹣(AE+AD )=3×﹣2×1=2﹣2.如图. 又当x=时,图中y 0=+(2﹣)=>2﹣2.故当x=时,对应的点(x ,y )在图中红色连线段的下方,对照选项,D 正确. 故选D .点评: 本题考查函数的图象,注意理解图象的变化趋势是解决问题的关键,属中档题.二.第Ⅱ卷填空题:本大题共4小题,每小题5分,共20分11.(5分)(2013•江西)函数y=最小正周期T 为 π . 考点: 三角函数的周期性及其求法;两角和与差的正弦函数;二倍角的余弦.专题:三角函数的图像与性质.分析: 函数解析式第二项利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的最小正周期. 解答:解:y=sin2x+2×=sin2x ﹣cos2x+=2(sin2x ﹣cos2x )+=2sin (2x﹣)+, ∵ω=2,∴T=π. 故答案为:π 点评:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的余弦函数公式,两角和与差的正弦函数公式,熟练掌握公式是解本题的关键.12.(5分)(2013•江西)设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为 . 考点:平面向量数量积的运算.专题:平面向量及应用.分析: 根据题意求得的值,从而求得的值,再根据在上的射影为 ,运算求得结果.解答: 解:∵、为单位向量,且 和 的夹角θ等于,∴=1×1×cos =. ∵=+3,=2,∴=(+3)•(2)=2+6=2+3=5.∴在上的射影为 =,故答案为 . 点评: 本题主要考查两个向量的数量积的运算,一个向量在另一个向量上的射影的定义,属于中档题.13.(5分)(2013•江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x+e x ,则f ′(1)= 2 . 考点:导数的运算;函数的值.专题: 计算题;压轴题;函数的性质及应用;导数的概念及应用.分析: 由题设知,可先用换元法求出f (x )的解析式,再求出它的导数,从而求出f ′(1). 解答: 解:函数f (x )在(0,+∞)内可导,且f (e x )=x+e x ,令e x =t ,则x=lnt ,故有f (t )=lnt+t ,即f (x )=lnx+x ,∴f ′(x )=+1,故f ′(1)=1+1=2.故答案为:2. 点评: 本题考查了求导的运算以及换元法求外层函数的解析式,属于基本题型,运算型.14.(5分)(2013•江西)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线=1相交于A ,B 两点,若△ABF 为等边三角形,则p= 6 . 考点:抛物线的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析: 求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线与双曲线的交点坐标,利用三角形是等边三角形求出p 即可.解答:解:抛物线的焦点坐标为(0,),准线方程为:y=﹣, 准线方程与双曲线联立可得:,解得x=±,因为△ABF 为等边三角形,所以,即p 2=3x 2, 即,解得p=6.故答案为:6. 点评: 本题考查抛物线的简单性质,双曲线方程的应用,考查分析问题解决问题的能力以及计算能力.三.第Ⅱ卷选做题:请在下列两题中任选一题作答,若两道题都做,按第一题评卷计分.本题共5分.15.(5分)(2013•江西)(坐标系与参数方程选做题)设曲线C 的参数方程为(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 ρcos 2θ﹣sin θ=0 . 考点: 抛物线的参数方程;简单曲线的极坐标方程.专题:计算题;压轴题.分析: 先求出曲线C 的普通方程,再利用x=ρcos θ,y=ρsin θ代换求得极坐标方程.解答:解:由(t 为参数),得y=x 2, 令x=ρcos θ,y=ρsin θ,代入并整理得ρcos 2θ﹣sin θ=0. 即曲线C 的极坐标方程是ρcos 2θ﹣sin θ=0.故答案为:ρcos 2θ﹣sin θ=0. 点评: 本题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcos θ,y=ρsin θ.16.(2013•江西)(不等式选做题)在实数范围内,不等式||x ﹣2|﹣1|≤1的解集为 [0,4] . 考点:绝对值不等式的解法.专题:计算题;压轴题;不等式的解法及应用.分析: 利用绝对值不等式的等价形式,利用绝对值不等式几何意义求解即可.解答: 解:不等式||x ﹣2|﹣1|≤1的解集,就是﹣1≤|x ﹣2|﹣1≤1的解集,也就是0≤|x ﹣2|≤2的解集,0≤|x ﹣2|≤2的几何意义是数轴上的点到2的距离小于等于2的值,所以不等式的解为:0≤x ≤4.所以不等式的解集为[0,4]. 故答案为:[0,4].点评: 本题考查绝对值不等式的解法,绝对值不等式的几何意义,注意不等式的等价转化是解题的关键.四.第Ⅱ卷解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)(2013•江西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cosC+(cosA ﹣sinA )cosB=0. (1)求角B 的大小;(2)若a+c=1,求b 的取值范围.考点:余弦定理;两角和与差的余弦函数.专题:解三角形.分析: (1)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA 不为0求出tanB 的值,由B 为三角形的内角,利用特殊角的三角函数值即可求出B 的度数;(2)由余弦定理列出关系式,变形后将a+c及cosB 的值代入表示出b 2,根据a 的范围,利用二次函数的性质求出b 2的范围,即可求出b 的范围. 解答: 解:(1)由已知得:﹣cos (A+B )+cosAcosB ﹣sinAcosB=0,即sinAsinB ﹣sinAcosB=0,∵sinA ≠0,∴sinB ﹣cosB=0,即tanB=, 又B 为三角形的内角, 则B=;(2)∵a+c=1,即c=1﹣a ,cosB=, ∴由余弦定理得:b 2=a 2+c 2﹣2ac •cosB ,即b 2=a 2+c 2﹣ac=(a+c )2﹣3ac=1﹣3a (1﹣a )=3(a ﹣)2+,∵0<a <1,∴≤b 2<1, 则≤b <1. 点评:此题考查了余弦定理,二次函数的性质,诱导公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.18.(12分)(2013•江西)正项数列{a n }的前n 项和S n 满足:S n 2 (1)求数列{a n }的通项公式a n ; (2)令b,数列{b n }的前n 项和为T n .证明:对于任意n ∈N *,都有T .考点:数列的求和;等差数列的通项公式.专题:计算题;证明题;等差数列与等比数列. 分析: (I )由S n 2可求s n ,然后利用a 1=s 1,n ≥2时,a n =s n ﹣s n ﹣1可求a n(II )由b==,利用裂项求和可求T n ,利用放缩法即可证明解答:解:(I )由S n 2 可得,[](S n +1)=0 ∵正项数列{a n },S n >0 ∴S n =n 2+n 于是a 1=S 1=2n ≥2时,a n =S n ﹣S n ﹣1=n 2+n ﹣(n ﹣1)2﹣(n﹣1)=2n ,而n=1时也适合 ∴a n =2n (II )证明:由b ==∴]=点评: 本题主要考查了递推公式a 1=s 1,n ≥2时,a n =s n ﹣s n ﹣1在求解数列的通项公式中的应用及数列的裂项求和方法的应用.19.(12分)(2013•江西)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.考点: 离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析: (1)先求出从8个点中任意取两个点为向量的终点的不同取法,而X=0时,即两向量夹角为直角,求出结果数,代入古典概率的求解公式可求(2)先求出两向量数量积的所有可能情形及相应的概率,即可求解分布列及期望值 解答:解:(1)从8个点中任意取两个点为向量的终点的不同取法有=28种 X=0时,两向量夹角为直角共有8种情形 所以小波参加学校合唱团的概率P (X=0)==(2)两向量数量积的所有可能情形有﹣2,﹣1,0,1X=﹣2时有2种情形 X=1时有8种情形 X=﹣1时,有10种情形 X 的分布列为: X ﹣2 ﹣1 0 1PEX==点评:本题主要考查了古典概率的求解公式的应用及离散型随机变量的分布列及期望值的求解.20.(12分)(2013•江西)如图,四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,E 为BD 的中点,G 为PD 的中点,△DAB ≌△DCB ,EA=EB=AB=1,PA=,连接CE 并延长交AD 于F (1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值.考点: 用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:计算题;空间位置关系与距离;空间角. 分析: (1)利用直角三角形的判定得到∠BAD=,且∠ABE=∠AEB=.由△DAB ≌△DCB 得到△EAB ≌△ECB ,从而得到∠FED=∠FEA=,所以EF ⊥AD 且AF=FD ,结合题意得到FG 是△PAD 是的中位线,可得FG ∥PA ,根据PA ⊥平面ABCD 得FG ⊥平面ABCD ,得到FG ⊥AD ,最后根据线面垂直的判定定理证出AD ⊥平面CFG ;(2)以点A 为原点,AB 、AD 、PA 分别为x 轴、y 轴、z 轴建立如图直角坐标系,得到A 、B 、C 、D 、P 的坐标,从而得到、、的坐标,利用垂直向量数量积为零的方法建立方程组,解出=(1,﹣,)和=(1,,2)分别为平面BCP 、平面DCP 的法向量,利用空间向量的夹角公式算出、夹角的余弦,即可得到平面BCP 与平面DCP 的夹角的余弦值. 解答: 解:(1)∵在△DAB 中,E 为BD 的中点,EA=EB=AB=1,∴AE=BD ,可得∠BAD=,且∠ABE=∠AEB=∵△DAB ≌△DCB ,∴△EAB ≌△ECB ,从而得到∠FED=∠BEC=∠AEB= ∴∠EDA=∠EAD=,可得EF ⊥AD ,AF=FD又∵△PAD中,PG=GD,∴FG是△PAD 是的中位线,可得FG∥PA∵PA⊥平面ABCD,∴FG⊥平面ABCD,∵AD⊂平面ABCD,∴FG⊥AD又∵EF、FG是平面CFG内的相交直线,∴AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,可得A(0,0,0),B(1,0,0),C(,,0),D(0,,0),P(0,0,)∴=(,,0),=(﹣,﹣,),=(﹣,,0)设平面BCP的法向量=(1,y 1,z1),则解得y 1=﹣,z1=,可得=(1,﹣,),设平面DCP的法向量=(1,y 2,z2),则解得y 2=,z2=2,可得=(1,,2),∴cos <,>===因此平面BCP 与平面DCP 的夹角的余弦值等于|cos <,>|=.点评: 本题在三棱锥中求证线面垂直,并求平面与平面所成角的余弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题.21.(13分)(2013•江西)如图,椭圆C :经过点P (1,),离心率e=,直线l 的方程为x=4. (1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程. 专题: 压轴题;转化思想;圆锥曲线的定义、性质与方程.分析: (1)由题意将点P (1,)代入椭圆的方程,得到,再由离心率为e=,将a ,b 用c 表示出来代入方程,解得c ,从而解得a ,b ,即可得到椭圆的标准方程; (2)方法一:可先设出直线AB 的方程为y=k (x ﹣1),代入椭圆的方程并整理成关于x 的一元二次方程,设A (x 1,y 1),B (x 2,y 2),利用根与系数的关系求得x 1+x 2=,,再求点M 的坐标,分别表示出k 1,k 2,k 3.比较k 1+k 2=λk 3即可求得参数的值;方法二:设B (x 0,y 0)(x 0≠1),以之表示出直线FB 的方程为,由此方程求得M 的坐标,再与椭圆方程联立,求得A 的坐标,由此表示出k 1,k 2,k 3.比较k 1+k 2=λk 3即可求得参数的值 解答:解:(1)椭圆C :经过点P (1,),可得①由离心率e=得=,即a=2c ,则b 2=3c 2②,代入①解得c=1,a=2,b= 故椭圆的方程为(2)方法一:由题意可设AB 的斜率为k ,则直线AB 的方程为y=k (x ﹣1)③ 代入椭圆方程并整理得(4k 2+3)x 2﹣8k 2x+4k 2﹣12=0设A (x 1,y 1),B (x 2,y 2), x 1+x 2=,④在方程③中,令x=4得,M 的坐标为(4,3k ),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k所以k 1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k 1+k2=2k﹣×=2k﹣1又k 3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB 的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA 的斜率k 1=,直线PB 的斜率为k 2=所以k 1+k 2=+=2×=2k 3,故存在常数λ=2符合题意点评: 本题考查直线与圆锥曲线的综合问题,考查了分析转化的能力与探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极易出错,解答时要严谨运算,严密推理,方能碸解答出.22.(14分)(2013•江西)已知函数f (x )=,a 为常数且a >0. (1)f (x )的图象关于直线x=对称; (2)若x 0满足f (f (x 0))=x 0,但f (x 0)≠x 0,则x 0称为函数f (x )的二阶周期点,如果f (x )有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2,和a ,设x 3为函数f (f (x ))的最大值点,A (x 1,f (f (x 1))),B (x 2,f (f (x 2))),C (x 3,0),记△ABC 的面积为S (a ),讨论S (a )的单调性. 考点: 利用导数研究函数的单调性;奇偶函数图象的对称性;函数的值.专题:压轴题;新定义.分析: (1)只要证明成立即可;(2)对a 分类讨论,利用二阶周期点的定义即可得出;(3)由(2)得出x 3,得出三角形的面积,利用导数即可得出其单调性. 解答: (1)证明:∵==a (1﹣2|x|),=a (1﹣2|x|),∴,∴f (x )的图象关于直线x=对称. (2)解:当时,有f (f (x ))=.∴f (f (x ))=x 只有一个解x=0又f (0)=0,故0不是二阶周期点.当时,有f(f(x))=.∴f(f(x))=x有解集,{x|x},故此集合中的所有点都不是二阶周期点.当时,有f(f(x))=,∴f(f(x))=x有四个解:0,,,.由f(0)=0,,,.故只有,是f(x)的二阶周期点,综上所述,所求a的取值范围为.(3)由(2)得,.∵x 2为函数f(x)的最大值点,∴,或.当时,S (a )=.求导得:S ′(a )=.∴当时,S (a )单调递增,当时,S (a )单调递减. 当时,S (a )=,求导得.∵,从而有.∴当时,S (a )单调递增.点评: 本题考查了新定义“二阶周期点”、利用导数研究函数的单调性、三角形的面积等基础知识,考查了推理能力和计算能力.。

2023年江西省九所重点中学高考数学第二次联考试卷(理科)+答案解析(附后)

2023年江西省九所重点中学高考数学第二次联考试卷(理科)+答案解析(附后)

2023年江西省九所重点中学高考数学第二次联考试卷(理科)1. 已知集合,,则( )A. B. C. D.2. 已知复数z满足,( )A. B. C. D.3. 《周髀算经》中“侧影探日行”一文有记载:“即取竹空,径一寸,长八尺,捕影而视之,空正掩目,而日应空之孔.”意谓:“取竹空这一望筒,当望筒直径d是一寸,筒长l 是八尺时注:一尺等于十寸,从筒中搜捕太阳的边缘观察,则筒的内孔正好覆盖太阳,而太阳的外缘恰好填满竹管的内孔.”如图所示,O为竹空底面圆心,则太阳角的正切值为( )A. B. C. D.4. 已知某样本的容量为50,平均数为36,方差为48,现发现在收集这些数据时,其中的两个数据记录有误,一个错将24记录为34,另一个错将48记录为在对错误的数据进行更正后,重新求得样本的平均数为,方差为,则( )A. B. C. D.5. 已知抛物线C:的焦点为F,点是抛物线C上一点,以点M为圆心的圆与直线交于E,G两点.若,则抛物线C的方程是( )A. B. C. D.6. 已知圆C:上的点均满足,则r的最大值为( )A. B. C. D.7. 一袋中有大小相同的3个白球和4个红球,现从中任意取出3个球,记事件A:“3个球中至少有一个白球”,事件B:“3个球中至少有一个红球”,事件C:“3个球中有红球也有白球”,下列结论不正确的是( )A. 事件A与事件B不为互斥事件B. 事件A与事件C不是相互独立事件C. D.8.中,已知的面积为,设D是BC边的中点,且的面积为,则等于( )A. 2B. 4C.D.9. 将边长为4的正方形纸片折成一个三棱锥,使三棱锥的四个面刚好可以组成该正方形纸片,若三棱锥的各顶点都在同一球面上,则该球的表面积为( )A. B. C. D.10. 已知函数在区间上单调,且在区间内恰好取得一次最大值2,记的最小正周期为T,则当取最大值时,的值为( )A. 1B.C.D.11. 已知双曲线C:,若直线l:与双曲线C交于不同的两点P,Q,且P,Q与构成的三角形中有,则t的取值范围是( )A. B.C. D.12. 已知函数,,的定义域均为R,为的导函数.若为偶函数,且,则以下命题错误的是( )A. B. 关于直线对称C. D.13. 在的展开式中,常数项为______请用数字作答14. 定义:,其中为向量与的夹角,若,,,则等于______ .15. 已知某圆锥的侧面积等于底面面积的4倍,直线l是底面所在平面内的一条直线,则该直线l与母线所成的角的余弦值的取值范围为______ .16. 已知函数的导函数满足:,且,当时,恒成立,则实数a的取值范围是______ .17. 已知数列和满足,且满足,,求数列,的通项公式;设数列的前n项和为,求当时,正整数n的最小值.18. 基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,校考过程中笔试通过后才能进入面试环节年有3500名学生报考某试点高校,若报考该试点高校的学生的笔试成绩,且笔试成绩高于70分的学生进入面试环节.从报考该试点高校的学生中随机抽取10人,求这10人中至少有一人进入面试的概率;现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为、、、设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.附:若,则,,,19. 如图,在几何体ABCDE中,,,已知平面平面ACD,平面平面BCE,平面ABC,证明:平面ACD;若,设M为棱BE上的点,且满足,求当几何体ABCDE的体积取最大值时AM与CD所成角的余弦值.20. 设椭圆E的方程为,点O为坐标原点,点A,B的坐标分别为,,点M在线段AB上,满足,直线OM的斜率为求椭圆的方程;若动直线l与椭圆E交于P,Q两点,且恒有,是否存在一个以原点O为圆心的定圆C,使得动直线l始终与定圆C相切?若存在,求圆C的方程,若不存在,请说明理由.21. 已知函数,,其中a为实数,e为自然对数底数,….已知函数,,求实数a取值的集合;已知函数有两个不同极值点、①求实数a的取值范围;②证明:22. 在平面直角坐标系xoy中,圆O的方程为,圆E以为圆心且与圆O 外切.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.求圆E的参数方程与极坐标方程.若射线与圆O交于点A,与圆E交于点B,C,且,求直线BC的斜率.23. 已知正数a,b,c满足求证:若正数m,n满足,求证:答案和解析1.【答案】B【解析】解:集合,,故选:求出集合P,Q,利用交集定义求出本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:,则,故,所以故选:根据已知条件,结合复数的四则运算,以及复数模公式,即可求解.本题主要考查复数的四则运算,以及复数模公式,属于基础题.3.【答案】A【解析】解:如图所示,设,则,所以故选:可设,先根据条件求出,然后利用二倍角公式求出结果.本题考查解三角形知识、三角恒等变换的方法在实际问题中的应用,属于基础题.4.【答案】B【解析】解:设收集的48个准确数据为,,⋯,所以,所以,所以,又,故选:根据数据总和不变,则平均数不变,再结合方差公式,即可求解.本题主要考查方差公式的应用,属于基础题.5.【答案】C【解析】解:过点M作,垂足为点D,点是抛物线C上一点,,①,由题意可得,,,,,解得②,由①②,解得舍去或故抛物线C的方程为过点M作,垂足为点D,由已知可得,由,可得,求解可得抛物线C的方程.本题考查求抛物线的方程,考查转化思想,考查运算求解能力,属中档题.6.【答案】A【解析】解:圆心到直线:的距离,点到直线:的距离,,的最大值为故选:求得圆心C到两直线的距离,可求r的最大值.本题考查直线与圆的位置关系,考查点到直线的距离,属基础题.7.【答案】D【解析】解:根据题意,取出的3个球的可能情况为:3个红球;1个红球2个白球;2个红球1个白球;3个白球.故事件A包含:1个红球2个白球;2个红球1个白球;3个白球,且;事件B包含:1个红球2个白球;2个红球1个白球;3个红球,且;事件C包含:1个红球2个白球;2个红球1个白球,且所以,,,因为,则事件A与事件B不为互斥事件,A选项正确;,故事件A与事件C不是相互独立事件,B正确;,故D错误;,故C正确;根据题意,取出的3个球的可能情况为:3个红球;1个红球2个白球;2个红球1个白球;3个白球,进而依次分析事件A、事件B、事件C,及其概率,再讨论各选项即可得答案.本题考查条件概率,互斥事件,独立事件,属于中档题.8.【答案】A【解析】解:的面积为,,在中,由余弦定理得,,即,当且时,则,此时,不符合题意,,解得,将代入,解得,是BC边的中点,,,故选:利用三角形的面积公式和余弦定理可得,当时不符合题意,则,求出A,利用向量的线性运算可得,即可得出答案.本题考查平面向量数量积的性质和余弦定理,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.9.【答案】C【解析】解:在边长为4的正方形ABCD中,设E、F分别为AB、BC的中点,、、分别沿DE、EF、FD折起,使A,B、C三点重合于点,满足题意,如下图所示:翻折前,,,翻折后,则由,,,将三棱锥补成长方体,其中,,设三棱锥的外接球的半径为R,则,,故该三棱锥的外接球的表面积为故选:作出三棱锥的直观图,将三棱锥补成长方体,可计算出该三棱锥的外接球的半径,结合球体的表面积公式可求得结果.本题考查了三棱锥的外接球的表面积计算,属于中档题.10.【答案】C【解析】解:,函数在区间上单调,且在区间内恰好取得一次最大值2,,解可得,则当取最大值时,的最小正周期,则故选:先结合和差角,辅助角公式对已知函数进行化简,由题意可知,解不等式可求的范围,进而即可求解.本题主要考查了三角函数的图象与性质的应用,解题中要注意性质的灵活应用,属于基础题.11.【答案】B【解析】解:联立直线与双曲线C:,可得,则,即,且,①设,,可得,由P,Q与构成的三角形中有,可得为等腰三角形,且,设PQ的中点为N,则,又PQ的中点N的坐标为,直线MN的斜率为,所以,化为,②,③由①②③解得或,故选:联立直线l的方程与双曲线的方程,运用判别式大于0,结合中点坐标公式求得线段PQ的中点N的坐标,再由题意可得为等腰三角形,由,结合两直线垂直的条件可得k,t的方程,即可得到所求取值范围.本题考查双曲线的方程和性质,以及直线和双曲线的位置关系,考查方程思想和运算能力,属于中档题.12.【答案】C【解析】解:由,,可得,则与为常数,令,则,,则,故关于直线对称,故B正确;为偶函数,,,则为奇函数,故,即,则是以4为周期的周期函数,由,令,则,可得,故,故A正确;由,令,则,即,令,则,即,故,则,由,得,则,由于无法得出的值,故C错误;,故D正确.故选:由已知等式可得,继而得到,即可判断B;由为偶函数可得为奇函数,继而得到是以4为周期的周期函数,即可判断本题考查函数的奇偶性、单调性、周期性以及函数图象的对称性,考查函数的导函数的应用,考查逻辑思维能力与推理论证能力,属难题.13.【答案】60【解析】【分析】考察了二项式定理的应用,考查了学生的运算能力,属于基础题.求出展开式的通项,然后令x的指数为0,进而可以求解.【解答】解:二项式的展开式的通项为,,1,2,,6,令,解得,所以展开式的常数项为,故答案为:14.【答案】6【解析】解:由题意得,,故答案为:根据向量数量积的定义,即可求解.本题考查向量数量积的概念,化归转化思想,属基础题.15.【答案】【解析】解:已知圆锥的侧面积等于底面面积的4倍,设圆锥底面圆半径为r,母线长为,则,解得,直线l与母线所成的最小角为母线与圆锥底面所成角,即;当直线l为DE时,且满足,又底面圆O,底面圆O,所以,,所以平面OAC,平面OAC,所以,即直线l与母线AC垂直,直线l与母线所成的角最大,余弦值为所以直线与与母线所成的角的余弦值的取值范围为故答案为:直线l与母线所成的最小角为母线与圆锥底面所成角,当直线l与一条母线垂直时所成的角最大,即可得解.本题考查了直线与平面所成的角以及异面直线所成的角的问题,属于中档题.16.【答案】【解析】解:设,则,故,则,又因为,即,所以,,所以当时,恒成立,即当时,恒成立,即当时,恒成立,构造,则,令得:,当得:,当得:,故在处取的极小值,也是最小值,所以,即,故,故,实数a的取值范围为故答案为:先构造函数,利用,最终求得,即当时,恒成立,参变分离后使用切线放缩,最后求得a的取值范围.本题考查利用导数研究函数的最值和极值,属于难题.17.【答案】解:已知数列和满足,,,则,,又满足,数列为等比数列,又,,;由可得,又,,又,,即正整数n的最小值为【解析】由题意可知数列为等比数列,结合已知条件求出数列和的通项公式即可;由可得,然后结合等差数列及等比数列的求和公式求解即可.本题考查了等比数列通项公式的求法,重点考查了分组求和及公式法求和,属基础题.18.【答案】解:由题意可知,,则,所以,从报考该试点高校的学生中随机抽取10人,这10人中至少有一人进入面试的概率为由题意可知,随机变量X的可能取值有0、1、2、3、4,则,,,,,所以,随机变量X的分布列如下表所示:X01234P故【解析】计算出试点高校每名学生进入面试的概率,再利用对立事件的概率公式可求得所求事件的概率;分析可知随机变量X的可能取值有0、1、2、3、4,计算出随机变量X在不同取值下的概率,可得出随机变量X的分布列,进一步可求得的值.本题主要考查离散型随机变量的分布列和期望,属于中档题.19.【答案】证明:过点D作,与AC交于点O,平面平面ACD,且两平面的交线为AC,由面面垂直的性质定理可得平面ABC,又平面ABC,,又且,由线面垂直的判断定理可得平面解:过点E作交BC与点N,连接ON,平面平面BCE,且两平面的交线为BC,平面ABC,又平面ABC,,E到平面ABC的距离相等,且,平面ACD,,,,又,令,则,则,当时,,单调递增,当时,,单调递减,据此可知当,即时取得最大值,如图所示,以点O为原点建立空间直角坐标系,则,,,,,因为M为棱BE上的点,且满足,所以,,,设AM与CD所成角为,则,即当几何体ABCDE体积最大时,AM与CD所成角的余弦值为【解析】由题意通过面面垂直的性质得到平面ABC,然后结合线面平行可得,进而根据线面垂直的判定定理即可证明平面ACD;过点E作交BC与点N,连接ON,据此可得四边形ODEN为平行四边形,然后把多面体ABCDE分为两个三棱锥求体积,令,把求体积的最大值转化为求关于x的函数的最大值,利用导数研究其最值,然后以点O为原点建立空间直角坐标系,通过向量法求AM与CD所成角的正切值.本题主要考查线面垂直的证明,锥体体积的相关计算,利用导数求最值的方法,线面角的计算,空间想象能力的培养等知识,属于中等题.20.【答案】解:设点M的坐标为,点M在线段AB上,满足,,,故,,,,解得,椭圆的方程的方程为;当直线斜率不存在时,直线l的方程为,,,此时,当直线l的斜率存在时,设直线l的方程为,设,,原点O到直线l的距离为d,,整理得,由,可得,,,,,,,恒成立,恒成立,,,定圆的方程为当时,存在定圆C与直线l相切,其方程为【解析】设点M的坐标为,由已知可得,,结合已知可得,求解即可;当直线斜率不存在时,直线l的方程为,当直线l的斜率存在时,设直线l的方程为,设,,联立方程可得,,进而由,可求解.本题考查求椭圆的方程,考查求圆的方程,考查运算求解能力,属中档题.21.【答案】解:由,得,当时,为增函数,因为,所以当时,,不合题意;当时,当时,,单调递减,当时,,单调递增,,要使,只需,令,则,当时,,单调递增,当时,,单调递减,,则由,得,,故实数a的取值的集合为;①由已知,,函数有两个不同极值点、有两个零点,若时,则在R上单调递增,在R上至多一个零点,与已知矛盾,舍去,当时,由,得,令,,当时,,单调递增,当时,,单调递减,,,当,,,,故实数a的取值范围;②证明:设由①得,,,,取对数得,令,,则,即,令,则,,在上单调递减,在上单调递增,令,则,在上单调递增,又,时,,即,,,在,上单调递增,,,即,故成立.【解析】求出函数的导数,分类讨论可得函数的单调区间,进而分析可得答案;由已知得有两个零点,分类讨论,结合构造函数可证不等式成立.本题考查导数的综合应用,考查构造函数证明不等式,属难题.22.【答案】解:因为圆E以为圆心且与圆O外切,所以其半径为所以圆E的普通方程为圆E的参数方程为为参数,由,得由,得圆E的极坐标方程为由题意得,所以把代入,得,则,是的两个根,所以,解得,所以,所以,所以直线BC的斜率为【解析】根据直角坐标方程和参数方程与极坐标方程的转化关系即可;根据极坐标方程的几何意义,求出直线BC的倾斜角即可.本题主要考查参数方程,极坐标方程与普通方程的互化,考查极坐标的几何意义,考查运算求解能力,属于中档题.23.【答案】证明:因为a,b,c为正数,所以当且仅当时,取等号,同理可得当且仅当时取等号,当且仅当时取等号,因为正数a,b,c满足,所以当且仅当时取等号;因为正数a,b,c满足,所以,因为正数m,n满足,所以当且仅当时取等号【解析】首先根据题意得到,再利用不等式的性质即可证明;首先根据三个正数均值不等式得到,再根据证明即可.本题考查了不等式的性质和正数均值不等式,属于中档题.。

2014年江西省高考数学试卷(理科)(含解析版)

2014年江西省高考数学试卷(理科)(含解析版)

2014 年江西省高考数学试卷(理科)一、选择题:本大题共10 小题,每小题 5 分,共 50 分,每小题给出的四个选项中,只有一项是符合题目要求的1.( 5 分)是 z 的共轭复数,若 z+ =2,(z﹣)i=2( i 为虚数单位),则 z=()A.1+i B.﹣ 1﹣i C.﹣ 1+i D.1﹣i2.(5 分)函数 f( x)=ln(x2﹣x)的定义域为()A.(0,1)B.[ 0,1]C.(﹣∞, 0)∪( 1,+∞)D.(﹣∞, 0] ∪ [ 1,+∞)3.(5 分)已知函数 f( x)=5 x|,g(x)=ax2﹣ x(a∈R),若 f[ g(1)] =1,则 a=|()A.1B.2C.3D.﹣ 1,,的对边分别为,,,若22+6,4.( 5 分)在△ ABC中,内角A B C a b c c =(a﹣b)C= ,则△ ABC的面积为()A.3B.C.D.35.(5 分)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是()A.B.C.D.6.(5 分)某人研究中学生的性别与成绩、视力、智商、阅读量这 4 个变量的关系,随机抽查了52 名中学生,得到统计数据如表 1 至表 4,则与性别有关联的可能性最大的变量是()表 1成绩不及格及格总计性别男61420女102232总计163652表 2视力好差总计性别男41620女122032总计163652表 3智商偏高正常总计性别男81220女82432总计163652表 4阅读量丰富不丰富总计性别男14620女23032总计163652 A.成绩B.视力C.智商D.阅读量7.( 5 分)阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7B.9C.10D.11.(分)若2+2f( x) dx,则f(x)dx=()8 5f(x) =xA.﹣ 1B.﹣C.D.19.(5 分)在平面直角坐标系中,A, B 分别是 x 轴和 y 轴上的动点,若以AB 为直径的圆 C 与直线 2x+y﹣ 4=0 相切,则圆 C 面积的最小值为()A.πB.πC.(6﹣2)πD.π10.( 5 分)如图,在长方体ABCD﹣A1B1 C1D1中, AB=11, AD=7,AA1=12.一质点从顶点 A 射向点 E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第 i﹣1 次到第 i 次反射点之间的线段记为l i( i=2, 3, 4),l1=AE,将线段 l1,l2,l3,l4竖直放置在同一水平线上,则大致的图形是()A.B.3C.D.二、选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题记分,本题共 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.不等式选做题11.( 5 分)对任意 x,y∈R,| x﹣ 1|+| x|+| y﹣1|+| y+1| 的最小值为()A.1B.2C.3D.4坐标系与参数方程选做题12.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段 y=1﹣x( 0≤ x≤ 1)的极坐标方程为()A.ρ=,0≤θ≤B.ρ=,0≤θ≤C.ρ =cos+sinθ θ,0≤θ≤D.ρ =cos+sinθ θ,0≤θ≤三、填空题:本大题共 4 小题,每小题 5 分,共 20 分13.( 5 分) 10 件产品中有 7 件正品, 3 件次品,从中任取 4 件,则恰好取到1件次品的概率是.14.( 5 分)若曲线﹣x上点 P 的切线平行于直线2x+y+1=0,则点 P 的坐标y=e是.15.( 5 分)已知单位向量与的夹角为α,且 cos α=,向量 =3 ﹣2与=3﹣的夹角为β,则 cos β=.16.(5 分)过点 M(1,1)作斜率为﹣的直线与椭圆C:+ =1(a>b>0)相交于 A,B 两点,若 M 是线段 AB 的中点,则椭圆 C 的离心率等于.五、解答题:本大题共 6 小题,共 75 分,解答应写出文字说明、证明过程或演算步骤17.(12 分)已知函数 f(x)=sin(x+θ)+acos(x+2θ),其中 a∈ R,θ∈(﹣,)(1)当 a= ,θ= 时,求 f( x)在区间 [ 0,π]上的最大值与最小值;(2)若 f ()=0, f(π)=1,求 a,θ的值.18.( 12 分)已知首项是1 的两个数列 { a n} , { b n } (b n≠0,n∈N*)满足 a n b n+1﹣a n+1b n+2b n+1b n =0.(1)令 c n= ,求数列 { c n } 的通项公式;(2)若 b n=3n﹣1,求数列 { a n} 的前 n 项和 S n.19.( 12 分)已知函数 f (x)=(x2+bx+b)(b∈R)(1)当 b=4 时,求 f( x)的极值;(2)若 f (x)在区间( 0,)上单调递增,求 b 的取值范围.20.( 12 分)如图,四棱锥P﹣ABCD中, ABCD为矩形,平面 PAD⊥平面 ABCD.(1)求证: AB⊥PD;(2)若∠ BPC=90°,PB= ,PC=2,问 AB 为何值时,四棱锥 P﹣ABCD的体积最大?并求此时平面 BPC与平面 DPC夹角的余弦值.21.( 13 分)如图,已知双曲线C:﹣y2=1(a>0)的右焦点为F,点 A,B 分别在 C 的两条渐近线 AF⊥x 轴, AB⊥OB,BF∥OA(O 为坐标原点).( 1)求双曲线 C 的方程;( 2)过 C 上一点 P( x0,y0)(y0≠0)的直线 l:﹣y0y=1与直线AF相交于点 M ,与直线 x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.22.( 14 分)随机将 1,2,,2n(n∈N*, n≥ 2)这 2n 个连续正整数分成A、B 两组,每组 n 个数, A 组最小数为 a1,最大数为 a2;B 组最小数为 b1,最大数为 b ;记ξ=a﹣ a ,η=b﹣ b .22121(1)当 n=3 时,求ξ的分布列和数学期望;(2) C 表示事件“ξ与η的取值恰好相等”,求事件 C 发生的概率 P(C);(3)对( 2)中的事件 C,表示 C 的对立事件,判断 P(C)和 P()的大小关系,并说明理由.2014 年江西省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10 小题,每小题 5 分,共 50 分,每小题给出的四个选项中,只有一项是符合题目要求的1.( 5 分)是 z 的共轭复数,若 z+ =2,(z﹣)i=2( i 为虚数单位),则 z=()A.1+i B.﹣ 1﹣i C.﹣ 1+i D.1﹣i【考点】 A5:复数的运算.【专题】 11:计算题; 5N:数系的扩充和复数.【分析】由题,先求出 z﹣ =﹣2i,再与 z+ =2 联立即可解出 z 得出正确选项.【解答】解:由于,( z﹣) i=2,可得 z﹣ =﹣2i ①又 z+ =2 ②由①②解得 z=1﹣i故选: D.【点评】本题考查复数的乘除运算,属于基本计算题2.(5 分)函数 f( x)=ln(x2﹣x)的定义域为()A.(0,1)B.[ 0,1]C.(﹣∞, 0)∪( 1,+∞)D.(﹣∞, 0] ∪ [ 1,+∞)【考点】 33:函数的定义域及其求法.【专题】 51:函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则x2﹣ x>0,即 x>1 或 x<0,故函数的定义域为(﹣∞,0)∪( 1, +∞),故选: C.【点评】本题主要考查函数定义域的求法,比较基础.3.(5 分)已知函数 f( x)=5|x|,g(x)=ax2﹣ x(a∈R),若 f[ g(1)] =1,则 a=()A.1B.2C.3D.﹣ 1【考点】 3T:函数的值.【专题】 51:函数的性质及应用.【分析】根据函数的表达式,直接代入即可得到结论.【解答】解:∵ g(x)=ax2﹣x( a∈ R),∴g(1)=a﹣1,若 f[ g(1)] =1,则 f( a﹣ 1) =1,即 5|a﹣1| =1,则 | a﹣1| =0,解得 a=1,故选: A.【点评】本题主要考查函数值的计算,利用条件直接代入解方程即可,比较基础.4.( 5 分)在△ ABC中,内角A ,,的对边分别为,,,若22+6,BC a b c c =(a﹣b)C=,则△ ABC的面积为()A.3B.C.D.3【考点】 HR:余弦定理.【专题】 58:解三角形.【分析】根据条件进行化简,结合三角形的面积公式进行求解即可.【解答】解:∵ c2=(a﹣b)2 +6,∴c2=a2﹣ 2ab+b2+6,即 a2+b2﹣c2=2ab﹣6,∵C= ,10∴ cos ===,解得 ab=6,则三角形的面积S= absinC==,故选: C.【点评】本题主要考查三角形的面积的计算,根据余弦定理求出ab=6 是解决本题的关键.5.(5 分)一几何体的直观图如图所示,下列给出的四个俯视图中正确的是()A.B.C.D.【考点】 L7:简单空间图形的三视图.【专题】 5F:空间位置关系与距离.【分析】通过几何体结合三视图的画图方法,判断选项即可.【解答】解:几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可见线段,所以 C、D 不正确;几何体的上部的棱与正视图方向垂直,所以 A 不正确,故选: B.【点评】本题考查三视图的画法,几何体的结构特征是解题的关键.6.(5 分)某人研究中学生的性别与成绩、视力、智商、阅读量这 4 个变量的关系,随机抽查了52 名中学生,得到统计数据如表 1 至表 4,则与性别有关联的可能性最大的变量是()表 111成绩不及格及格总计性别男61420女102232总计163652表 2视力好差总计性别男41620女122032总计163652表 3智商偏高正常总计性别男81220女82432总计163652表 4阅读量丰富不丰富总计性别男14620女23032总计163652 A.成绩B.视力C.智商D.阅读量【考点】 BL:独立性检验.【专题】 12:应用题; 5I:概率与统计.12【分析】根据表中数据,利用公式,求出X2,即可得出结论.【解答】解:表 1: X2=≈;0.009表 2:X2≈;= 1.769表 3:X2≈;= 1.3表 4:X2≈,=23.48∴阅读量与性别有关联的可能性最大,故选: D.【点评】本题考查独立性检验的应用,考查学生的计算能力,属于中档题.7.( 5 分)阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7B.9C.10D.11【考点】 EF:程序框图.【专题】 11:计算题; 27:图表型; 4B:试验法; 5K:算法和程序框图.【分析】模拟程序的运行,由程序框图得出该算法的功能以及S>1 时,终止循环;再根据 S 的值求出终止循环时的i 值即可.【解答】解:模拟执行程序,可得i=1,S=0S=lg3,不满足条件 1<S,执行循环体, i=3,S=lg3+lg=lg5,不满足条件 1<S,执行循环体, i=5,S=lg5+lg=lg7,不满足条件 1<S,执行循环体, i=7,S=lg5+lg=lg9,13不满足条件 1<S,执行循环体, i=9,S=lg9+lg =lg11,满足条件 1<S,跳出循环,输出 i 的值为 9.故选: B.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键,属于基础题..(分)若2+2f( x) dx,则f(x)dx=()8 5f(x) =xA.﹣ 1B.﹣C.D.1【考点】 67:定积分、微积分基本定理.【专题】 53:导数的综合应用.【分析】把定积分项看成常数对两侧积分,化简求解即可.【解答】解:令f( x)dx=t,对 f ( x)=x2+2 f (x) dx,两边积分可得:t= +2tdx= +2t,解得 t=f(x)dx=﹣,故选: B.【点评】本题考查定积分以及微积分基本定理的应用,是基础题.9.(5 分)在平面直角坐标系中,A, B 分别是 x 轴和 y 轴上的动点,若以AB 为直径的圆 C 与直线 2x+y﹣ 4=0 相切,则圆 C 面积的最小值为()A.πB.πC.(6﹣2)πD.π【考点】 J9:直线与圆的位置关系.【专题】 5B:直线与圆.【分析】如图,设AB 的中点为 C,坐标原点为 O,圆半径为 r ,由已知得 | OC| =| CE| =r,过点 O 作直线 2x+y﹣ 4=0 的垂直线段 OF,交 AB 于 D,交直线2x+y﹣ 4=0 于 F,则当 D 恰为 AB 中点时,圆 C 的半径最小,即面积最小.14【解答】解:如图,设 AB 的中点为 C,坐标原点为 O,圆半径为 r,由已知得 | OC| =| CE| =r,过点 O 作直线 2x+y﹣4=0 的垂直线段 OF,交 AB 于 D,交直线 2x+y﹣ 4=0 于 F,则当 D 恰为 OF 中点时,圆 C 的半径最小,即面积最小此时圆的直径为O(0,0)到直线 2x+y﹣4=0 的距离为:d==,此时 r=∴圆 C 的面积的最小值为: S π×()2=.min=故选: A.【点评】本题主要考查了直线与圆的位置关系,考查圆的面积的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.10.( 5 分)如图,在长方体ABCD﹣A1B1 C1D1中, AB=11, AD=7,AA1=12.一质点从顶点 A 射向点 E(4,3,12),遇长方体的面反射(反射服从光的反射原理),将第 i﹣1 次到第 i 次反射点之间的线段记为l i( i=2, 3, 4),l1=AE,将线段 l1,l2,l3,l4竖直放置在同一水平线上,则大致的图形是()15A.B.C.D.【考点】 JH:空间中的点的坐标; MK:点、线、面间的距离计算.【专题】 5H:空间向量及应用.【分析】根据平面反射定理,列出反射线与入射线的关系,得到入射线与反射平面的交点,再利用两点间的距离公式,求出距离,即可求解.【解答】解:根据题意有:A的坐标为:( 0, 0, 0),B 的坐标为( 11,0,0),C 的坐标为( 11,7,0),D的坐标为( 0, 7,0);A1的坐标为:( 0,0,12),B1的坐标为( 11,0,12),C1的坐标为( 11,7,12),16D1的坐标为( 0,7,12);E 的坐标为( 4, 3, 12)( 1) l1长度计算所以: l1.=| AE| ==13( 2) l2长度计算将平面 A1 B1C1D1沿 Z 轴正向平移 AA1个单位,得到平面A2B2C2D2;显然有:A2的坐标为:( 0,0,24),B2的坐标为( 11,0,24),C2的坐标为( 11,7,24),D2的坐标为( 0,7,24);显然平面 A2B2C2D2和平面 ABCD关于平面 A1B1C1D1对称.设 AE 与的延长线与平面 A2B2C2D2相交于: E2(x E2,y E2, 24)根据相似三角形易知:x E2=2x E=2× 4=8,y E2=2y E=2× 3=6,即: E2(8,6,24)根据坐标可知, E2在长方形 A2B2C2D2内.根据反射原理, E2在平面 ABCD上的投影即为AE反射光与平面 ABCD的交点.所以 F 的坐标为( 8, 6, 0).因此: l2=| EF| ==13.( 3) l3长度计算设 G 的坐标为:(x G, y G,z G)如果 G 落在平面 BCC1B1;这个时候有: x G=11, y G≤7,z G≤12根据反射原理有: AE∥ FG于是:向量与向量共线;即有:=λ因为:=( 4, 3, 12);=(x G﹣ 8, y G﹣6,z G﹣ 0) =( 3,y G﹣6,z G)即有:(4,3,12)=λ(3,y G﹣6,z G)17解得: y G= ,z G=9;故 G 的坐标为:(11,,9)因为:>7,故 G 点不在平面 BCC上,1B1所以: G 点只能在平面DCCD 上;1 1因此有: y G=7;x G≤ 11,z G≤ 12此时:=( x G﹣8,y G﹣ 6,z G﹣0)=(x G﹣ 8,1,z G)即有:(4,3,12)=λ(x G﹣8,1,z G)解得: x G=,z G=4;满足: x G≤ 11,z G≤ 12故 G 的坐标为:(,7,4)所以: l3=| FG| ==( 4) l4长度计算设 G点在平面 A1 1 1 1 的投影为G’,坐标为(,7,12)B C D因为光线经过反射后,还会在原来的平面内;即: AEFGH共面故 EG的反射线 GH 只能与平面 A1B1C1 D1相交,且交点 H 只能在 A1G';易知: l4>| GG’| =12﹣4=8>l3.根据以上解析,可知l1,l2, l3, l4要满足以下关系:l1=l2;且 l4>l3对比 ABCD选项,可知,只有 C 选项满足以上条件.故选: C.18【点评】本题主要考察的空间中点坐标的概念,两点间的距离公式,解法灵活,属于难题.二、选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题记分,本题共 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.不等式选做题11.( 5 分)对任意 x,y∈R,| x﹣ 1|+| x|+| y﹣1|+| y+1| 的最小值为()A.1B.2C.3D.4【考点】 5A:函数最值的应用; R4:绝对值三角不等式.【专题】 59:不等式的解法及应用.【分析】把表达式分成 2 组,利用绝对值三角不等式求解即可得到最小值.【解答】解:对任意 x,y∈R,| x﹣ 1|+| x|+| y﹣1|+| y+1|=| x﹣1|+| ﹣x|+| 1﹣y|+| y+1|≥| x﹣1﹣x|+| 1﹣ y+y+1| =3,当且仅当 x∈ [ 0,1] ,y∈[ ﹣1,1] 成立.故选: C.【点评】本题考查绝对值三角不等式的应用,考查利用分段函数或特殊值求解不等式的最值的方法.坐标系与参数方程选做题12.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段 y=1﹣x( 0≤ x≤ 1)的极坐标方程为()19A.ρ=,0≤θ≤B.ρ=,0≤θ≤C.ρ =cos+sinθ θ,0≤θ≤D.ρ =cos+sinθ θ,0≤θ≤【考点】 Q4:简单曲线的极坐标方程.【专题】 5S:坐标系和参数方程.【分析】根据直角坐标和极坐标的互化公式x=ρcos,θy=ρsin,θ把方程y=1﹣x (0≤x≤1)化为极坐标方程.【解答】解:根据直角坐标和极坐标的互化公式x=ρcos,θy=ρsin,θy=1﹣x(0≤x≤1),可得ρcos+θρsin θ,=1即ρ=.由 0≤x≤ 1,可得线段 y=1﹣ x(0≤x≤1)在第一象限,故极角θ∈[ 0,] ,故选: A.【点评】本题主要考查把直角坐标方程化为极坐标方程的方法,注意极角θ的范围,属于基础题.三、填空题:本大题共 4 小题,每小题 5 分,共 20 分13.( 5 分) 10 件产品中有 7 件正品, 3 件次品,从中任取 4 件,则恰好取到1件次品的概率是.【考点】 C6:等可能事件和等可能事件的概率.【专题】 11:计算题.【分析】本题是一个等可能事件的概率,试验发生包含的事件是从 10 件中取 4 件有 C104种结果,满足条件的事件是恰好有 1 件次品有 C73种结果,得到概率.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是从10 件中取 4 件有 C104种结果,满足条件的事件是恰好有 1 件次品有 C种结果,20∴恰好有一件次品的概率是P==故答案为:【点评】本题考查等可能事件的概率,本题解题的关键是利用组合数写出试验发生包含的事件数和满足条件的事件数,本题是一个基础题.﹣x14.( 5 分)若曲线 y=e上点P的切线平行于直线2x+y+1=0,则点P的坐标是(﹣ ln2, 2).【考点】 6H:利用导数研究曲线上某点切线方程.【专题】 11:计算题; 52:导数的概念及应用.【分析】先设 P( x,y),对函数求导,由在在点P 处的切线与直线2x+y+1=0 平行,求出 x,最后求出 y.【解答】解:设 P( x, y),则 y=e﹣x,∵y′=﹣e﹣x,在点 P 处的切线与直线 2x+y+1=0 平行,∴﹣ e﹣x=﹣ 2,解得 x=﹣ln2,∴ y=e﹣x=2,故 P(﹣ ln2,2).故答案为:(﹣ln2,2).【点评】本题考查了导数的几何意义,即点P 处的切线的斜率是该点出的导数值,以及切点在曲线上和切线上的应用.15.( 5 分)已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3 ﹣的夹角为β,则cosβ=.【考点】 9S:数量积表示两个向量的夹角.【专题】 5A:平面向量及应用.【分析】转化向量为平面直角坐标系中的向量,通过向量的数量积求出所求向量的夹角.21【解答】解:单位向量与的夹角为α,且cosα=,不妨=( 1,0),=,=3 ﹣2 =(),=3﹣=(),∴ cosβ===.故答案为:.【点评】本题考查向量的数量积,两个向量的夹角的求法,考查计算能力.16.(5 分)过点 M(1,1)作斜率为﹣的直线与椭圆C:+ =1(a>b>0)相交于 A,B 两点,若 M 是线段 AB 的中点,则椭圆 C 的离心率等于.【考点】 K4:椭圆的性质.【专题】 5D:圆锥曲线的定义、性质与方程.【分析】利用点差法,结合M 是线段 AB 的中点,斜率为﹣,即可求出椭圆C 的离心率.【解答】解:设 A( x1,y1),B(x2, y2),则①,②,∵ M 是线段 AB 的中点,∴=1,=1,∵直线 AB 的方程是 y=﹣(x﹣1)+1,∴ y1﹣y2=﹣(x1﹣x2),∵过点 M (1,1)作斜率为﹣的直线与椭圆C:+=1( a> b> 0)相交于22A,B 两点, M 是线段 AB 的中点,∴①②两式相减可得,即,∴a= b,∴=b,∴e= = .故答案为:.【点评】本题考查椭圆的离心率,考查学生的计算能力,正确运用点差法是关键.五、解答题:本大题共 6 小题,共 75 分,解答应写出文字说明、证明过程或演算步骤17.(12 分)已知函数 f(x)=sin(x+θ)+acos(x+2θ),其中 a∈ R,θ∈(﹣,)(1)当 a= ,θ= 时,求 f( x)在区间 [ 0,π]上的最大值与最小值;(2)若 f ()=0, f(π)=1,求 a,θ的值.【考点】 GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】 56:三角函数的求值.【分析】(1)由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f (x)=﹣sin(x﹣),再根据 x∈[ 0,π] ,利用正弦函数的定义域和值域求得函数的最值.( 2)由条件可得θ∈(﹣,),cosθ﹣asin2θ=0①,﹣sinθ﹣acos2θ=1②,由这两个式子求出 a 和θ的值.【解答】解:(1)当 a=,θ= 时,f(x)=sin(x+θ)+acos(x+2θ)=sin( x+)+cos(x+)=sinx+ cosx﹣sinx=﹣sinx+cosx23=sin(﹣ x) =﹣ sin(x﹣).∵ x∈[ 0,π] ,∴ x﹣∈[ ﹣,] ,∴ sin(x﹣)∈[﹣,1],∴﹣ sin( x﹣)∈ [ ﹣1,] ,故 f( x)在区间 [ 0,π]上的最小值为﹣ 1,最大值为.( 2)∵ f( x)=sin(x+θ)+acos(x+2θ),a∈R,θ∈(﹣,),f()=0,f(π)=1,∴cosθ﹣asin2 θ=0①,﹣ sin θ﹣acos2θ=1②,由①求得 sin θ=,由②可得 cos2θ==﹣﹣.再根据 cos2θ=1﹣2sin2θ,可得﹣﹣=1﹣2×,求得 a=﹣1,∴ sin θ=﹣,θ=﹣.综上可得,所求的a=﹣ 1,θ=﹣.【点评】本题主要考查两角和差的正弦公式、余弦公式,正弦函数的定义域和值域,属于中档题.18.( 12 分)已知首项是1 的两个数列 { a n} , { b n } (b n≠0,n∈N*)满足a nb n+1﹣a n+1b n+2b n+1b n =0.(1)令 c n= ,求数列 { c n } 的通项公式;(2)若 b n=3n﹣1,求数列 { a n} 的前 n 项和 S n.【考点】 8E:数列的求和; 8H:数列递推式.【专题】 15:综合题; 54:等差数列与等比数列.【分析】(1)由 a n n+1﹣a n+1n+2b n+1 n , n,可得数列n } 是以 1 为首项,b b b =0c ={ c2 为公差的等差数列,即可求数列{ c n} 的通项公式;24( 2)用错位相减法来求和.【解答】解:(1)∵ a n n+1﹣a n+1n+2b n+1 n , n,b b b =0c =∴c n﹣c n+1+2=0,∴c n+1﹣ c n=2,∵首项是 1 的两个数列 { a n} ,{ b n } ,∴数列 { c n} 是以 1 为首项, 2 为公差的等差数列,∴c n=2n﹣1;( 2)∵ b n=3n﹣1,c n=,∴a n=( 2n﹣1)?3n﹣1,∴S n=1×30+3×31+ +( 2n﹣1)× 3n﹣1,∴3S n=1×3+3×32+ +(2n﹣ 1)× 3n,∴﹣ 2S n=1+2?(31+ +3n﹣1)﹣( 2n﹣1)?3n,∴S n=( n﹣ 1) 3n+1.【点评】本题为等差等比数列的综合应用,用好错位相减法是解决问题的关键,属中档题.19.( 12 分)已知函数 f (x)=(x2+bx+b)(b∈R)(1)当 b=4 时,求 f( x)的极值;(2)若 f (x)在区间( 0,)上单调递增,求 b 的取值范围.【考点】 6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】 53:导数的综合应用.【分析】(1)把 b=4 代入函数解析式,求出函数的导函数,由导函数的零点对定义域分段,由导函数在各区间段内的符号判断原函数的单调性,从而求得极值;( 2)求出原函数的导函数,由导函数在区间(0,)上大于等于0恒成立,得25到对任意 x∈( 0,)恒成立.由单调性求出的范围得答案.【解答】解:( 1)当 b=4 时,f( x)=(x2+4x+4)=(x),则=.由 f ′(x) =0,得 x=﹣ 2 或 x=0.当x<﹣2 时,f ′(x)<0,f(x)在(﹣∞,﹣2)上为减函数.当﹣ 2<x< 0 时, f ′(x)> 0, f(x)在(﹣ 2,0)上为增函数.当 0<x<时, f ′(x)< 0, f(x)在( 0,)上为减函数.∴当 x=﹣ 2 时, f (x)取极小值为 0.当 x=0 时, f(x)取极大值为 4;( 2)由 f (x)=(x2+bx+b),得:=.由 f( x)在区间( 0,)上单调递增,得 f ′(x)≥ 0 对任意 x∈( 0,)恒成立.即﹣ 5x2﹣3bx+2x≥0 对任意 x∈( 0,)恒成立.∴对任意 x∈( 0,)恒成立.∵.∴.∴ b 的取值范围是.【点评】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的极值,考查了数学转化思想方法,是中档题.2620.( 12 分)如图,四棱锥P﹣ABCD中, ABCD为矩形,平面 PAD⊥平面 ABCD.(1)求证: AB⊥PD;(2)若∠ BPC=90°,PB= ,PC=2,问 AB 为何值时,四棱锥 P﹣ABCD的体积最大?并求此时平面 BPC与平面 DPC夹角的余弦值.【考点】 MJ:二面角的平面角及求法.【专题】 5G:空间角; 5H:空间向量及应用.【分析】(1)要证 AD⊥PD,可以证明 AB⊥面 PAD,再利用面面垂直以及线面垂直的性质,即可证明AB⊥PD.( 2)过 P 做 PO⊥ AD 得到 PO⊥平面 ABCD,作 OM⊥BC,连接 PM,由边长关系得到 BC=,PM=,设AB=x,则V P﹣ABCD=,故当时,V P﹣ABCD取最大值,建立空间直角坐标系O﹣AMP,利用向量方法即可得到夹角的余弦值.【解答】解:(1)∵在四棱锥 P﹣ ABCD中, ABCD为矩形,∴AB⊥AD,又∵平面 PAD⊥平面 ABCD,平面 PAD∩平面 ABCD=AD,∴AB⊥面 PAD,∴ AB⊥ PD.(2)过 P 做 PO⊥ AD,∴ PO⊥平面 ABCD,作 OM⊥BC,连接 PM∴PM⊥ BC,∵∠ BPC=90°, PB= , PC=2,∴ BC= , PM== =,BM== ,设 AB=x,∴ OM=x∴ PO=,=x×==,∴ V P﹣ABCD× ×27当,即 x=,V ﹣ABCD,P=建立空间直角坐标系 O﹣ AMP,如图所示,则 P(0,0,),D(﹣,0, 0),C(﹣,,0),M(0,,0),B(,,0)面 PBC的法向量为=( 0, 1, 1),面 DPC的法向量为=( 1, 0,﹣ 2)∴ cosθ==﹣=﹣.由图可知二面角为锐角,即cos【点评】本题考查线面位置关系、线线位置关系、线面角的度量,考查分析解决问题、空间想象、转化、计算的能力与方程思想.21.( 13 分)如图,已知双曲线C:﹣y2=1(a>0)的右焦点为F,点 A,B 分别在 C 的两条渐近线 AF⊥x 轴, AB⊥OB,BF∥OA(O 为坐标原点).( 1)求双曲线 C 的方程;( 2)过 C 上一点 P( x0,y0)(y0≠0)的直线 l:﹣y0与直线AF 相交于y=1点 M ,与直线 x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.28【考点】 KH:直线与圆锥曲线的综合.【专题】 5D:圆锥曲线的定义、性质与方程.【分析】(1)依题意知, A( c,),设B(t,﹣),利用AB⊥OB,BF∥ OA,可求得 a=,从而可得双曲线 C 的方程;( 2)易求 A(2,),l的方程为:﹣y0y=1,直线l:﹣y0y=1与直线AF 相交于点 M,与直线 x=相交于点N,可求得M(2,),N(,),于是化简=可得其值为,于是原结论得证.【解答】(1)解:依题意知, A(c,),设B(t,﹣),∵AB⊥OB,BF∥OA,∴? =﹣1,=,整理得: t=,a=,∴双曲线 C 的方程为﹣y2=1;( 2)证明:由( 1)知 A(2,),l的方程为:﹣y0y=1,又 F( 2,0),直线 l:﹣y0y=1与直线AF相交于点M,与直线x=相交于点N.29于是可得 M(2,),N(,),∴==== =.【点评】本题考查直线与圆锥曲线的综合问题,着重考查直线与圆锥曲线的位置关系等基础知识,推理论证能力、运算求解能力、函数与方程思想,属于难题.22.( 14 分)随机将 1,2,,2n(n∈N*, n≥ 2)这 2n 个连续正整数分成A、B 两组,每组 n 个数, A 组最小数为 a1,最大数为 a2;B 组最小数为 b1,最大数为 b2;记ξ=a2﹣ a1,η=b2﹣ b1.(1)当 n=3 时,求ξ的分布列和数学期望;(2) C 表示事件“ξ与η的取值恰好相等”,求事件 C 发生的概率 P(C);(3)对( 2)中的事件 C,表示 C 的对立事件,判断 P(C)和 P()的大小关系,并说明理由.【考点】 CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】(1)当 n=3 时,ξ的取值可能为 2,3,4,5,求出随机变量ξ的分布列,代入数学期望公式可得其数学期望Eξ.(2)根据 C 表示事件“ξ与η的取值恰好相等”,利用分类加法原理,可得事件 C 发生的概率 P(C)的表达式;(3)判断 P( C)和 P()的大小关系,即判断 P( C)和的大小关系,根据30(2)的公式,可得答案.【解答】解:(1)当 n=3 时,ξ的取值可能为 2,3,4,5其中 P(ξ=2)= = ,P(ξ =3)= =,P(ξ =4)= =,P(ξ =5)= =,故随机变量ξ的分布列为:ξ2345Pξ的数学期望 E(ξ) =2×+3×+4×+5×=;(2)∵ C 表示事件“ξ与η的取值恰好相等”,∴ P( C) =2×( 3)当 n=2 时, P(C)=2×=,此时P()<;即 P()<P(C);当 n≥3 时, P( C) =2×<,此时P()>;即 P()>P(C);【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.31。

2023年江西省高考理科数学真题及参考答案精选全文

2023年江西省高考理科数学真题及参考答案精选全文

2023年江西省高考理科数学真题及参考答案一、选择题1.设5212ii iz +++=,则=z ()A .i 21-B .i21+C .i -2D .i+22.设集合R U =,集合{}1<=x x M ,{}21<<-=x x N ,则{}=≥2x x ()A .()N M C U ⋃B .MC N U ⋃C .()N M C U ⋂D .NC M U ⋃3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .25.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .216.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .237.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种8.已知圆锥PO 的底面半径为3,O 为底面圆心,PB P A ,为圆锥的母线,︒=∠120AOB ,若P AB ∆的面积等于439,则该圆锥的体积为()A .πB .π6C .π3D .π639.已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角D AB C --为150°,则直线CD 与平面ABC 所成角的正切值为()A .51B .52C .53D .5210.已知等差数列{}n a 的公差为32π,集合{}*∈=N n a S n cos ,若{}b a S ,=,则=ab ()A .1-B .21-C .0D .2111.已知B A ,是双曲线1922=-y x 上两点,则可以作为B A ,中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-12.已知圆122=+y x O :,2=OP ,过点P 作直线1l 与圆O 相切于点A ,作直线2l 交圆O 于C B ,两点,BC 中点为D ,则PD P A ⋅的最大值为()A .221+B .2221+C .21+D .22+二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.15.已知{}n a 为等比数列,63542a a a a a =,8109-=a a ,则=7a .16.已知()()xxa a x f ++=1,()1,0∈a ,若()x f 在()∞+,0为增函数,则实数a 的取值范围为.三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在ABC ∆中,︒=∠120BAC ,2=AB ,1=AC .(1)求ABC ∠sin ;(2)若D 为BC 上一点,且︒=∠90BAD ,求ADC ∆的面积.19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,DO AD 5=,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角C AO D --的正弦值.20.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,求证:线段MN 中点为定点.21.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)是否存在实数b a ,使得曲线⎪⎭⎫⎝⎛=x f y 1关于直线b x =对称,若存在,求出b a ,的值;如果不存在,请说明理由;(3)若()x f 在()∞+,0存在极值,求a 的取值范围.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112BADDCDCBCBDA1.解:()i i ii i i i i i i z 21112211212252-=--=+=+-+=+++=,则i z 21+=2.解:由题意可得{}2<=⋃x x N M ,则()=⋃N M C U {}2≥x x .3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .5.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .6.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .7.解:有1本相同的读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分布乘法公式则共有⋅16C 12025=A 种.8.解:在AOB ∆中,︒=∠120AOB ,而3==OB OA ,取AC 中点C ,连接PC OC ,,有AB OC ⊥,AB PC ⊥,如图,︒=∠30ABO ,23=OC ,32==BC AB ,由P AB ∆的面积为439得439321=⨯⨯PC ,解得233=PC ,于是6232332222=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=OC PC PO ,∴圆锥的体积()πππ663313122=⨯⨯=⨯⨯=PO OA V .9.解:取AB 的中点E ,连接DE CE ,,∵ABC ∆为等腰直角三角形,AB 为斜边,则有AB CE ⊥,又ABD ∆为等边三角形,则AB DE ⊥,从而CED ∠为二面角DAB C --的平面角,即︒=∠150CED ,显然E DE CE =⋂,⊂DE CE ,平面CDE ,又⊂AB 平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面CE ABC =,直线⊂CD 平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2=AB ,则1=CE ,3=DE,在CDE ∆中,由余弦定理得:72331231cos 222=⎪⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅-+=CED DE CE DE CE CD ,由正弦定理得CEDCDDCE DE ∠=∠sin sin ,即7237150sin 3sin =︒=∠DCE ,显然DCE ∠是锐角,7257231sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=∠-=∠DCE DCE ,∴直线CD 与平面ABC 所成角的正切值为53.10.解:依题意,等差数列{}n a 中,()⎪⎭⎫⎝⎛-+=⋅-+=323232111πππa n n a a n ,显然函数==n a y cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+3232cos 1ππa n 的周期为3,而*∈N n ,即n a cos 最多有3个不同取值,又{}{}b a Nn a n ,cos =∈*,而在321cos ,cos ,cos a a a 中,321cos cos cos a a a ≠=或321cos cos cos a a a =≠,于是有⎪⎭⎫ ⎝⎛+=32cos cos πθθ,即有Z k k ∈=⎪⎭⎫ ⎝⎛++,232ππθθ,解得Z k k ∈-=,3ππθ213cos cos cos 3cos 343cos 3cos 2-=-=⎪⎭⎫ ⎝⎛--=⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππππππππk k k k k ab 11.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk ,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.12.解:如图所示,1=OA ,2=OP ,则由题意可知:︒=∠45APO ,由勾股定理可得122=-=OA OP P A ,当点D A ,位于直线PO 异侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛+⨯=⎪⎭⎫ ⎝⎛+⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22-+=-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=42sin 2221πα∵40πα≤≤,则4424ππαπ≤-≤-,∴当442ππα-=-时,PD P A ⋅有最大值1.当点D A ,位于直线PO 同侧时,设40παα≤≤=∠,OPC ,则:⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⋅=⋅4cos cos 214cos πααπαPD P A αααααααα2sin 2122cos 1cos sin cos sin 22cos 22cos 22++=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++=42sin 2221πα∵40πα≤≤,则2424ππαπ≤+≤,∴当242ππα=+时,PD P A ⋅有最大值为221+.二、填空题13.49;14.8;15.2-;16.⎪⎪⎭⎫⎢⎣⎡-1,21513.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A 此时截距z -最小,则z 最大,代入得8=z .15.解:设{}n a 的公比为()0≠q q ,则q a q a a a a a a 5263542⋅==,显然0≠n a ,则24q a =,即231q q a =,则11=q a ,∵8109-=a a ,则89181-=⋅q a q a ,则()()3351528-=-==q q,则23-=q ,则25517-==⋅=q q q a a .16.⎪⎪⎭⎫⎢⎣⎡-1,215解析:()()()a a a a x f xx+++='1ln 1ln ,由()x f 在()∞+,0为增函数可知()∞+∈,0x 时,()0≥'x f 恒成立,只需()0min ≥'x f ,而()()()01ln 1ln 22>+++=''a a a a x f xx,∴()()()01ln ln 0≥++='>'a a f x f ,又∵()1,0∈a ,∴⎪⎪⎭⎫⎢⎣⎡-∈1,215a .三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)根据题意,由余弦定理可得:72112212cos 222222=⎪⎭⎫ ⎝⎛-⨯⨯⨯-+=∠⋅-+=BAC AC AB AC AB BC ∴7=BC 由正弦定理ABC AC A BC ∠=∠sin sin ,即ABC∠=sin 1237,解得1421sin =∠ABC .(2)由三角形面积公式可得430sin 2190sin 21=︒⨯⨯⨯︒⨯⨯⨯=∆∆AD AC AD AB S S ACDABD ,则103120sin 12215151=⎪⎭⎫⎝⎛︒⨯⨯⨯⨯==∆∆ABC ACD S S .19.解:(1)连接OF OE ,,设tAC AF =,则()BC t BA t AF BA BF +-=+=1,BC BA AO 21+-=,AO BF ⊥,则()[]()()0414********=+-=+-=⎪⎭⎫⎝⎛+-⋅+-=⋅t t BC t BA t BC BA BC t BA t AO BF 解得21=t ,则F 为AC 的中点,由F O E D ,,,分别为AC BC P A PB ,,,的中点,于是AB OF AB DE AB DE 2121∥,,∥=,即OF DE OF DE =,∥,则四边形ODEF 为平行四边形,DO EF DO EF =,∥,又⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)由(1)可知EF ∥OD ,则266==DO AO ,,得2305==DO AD ,因此215222==+AD AO OD ,则AO OD ⊥,有AO EF ⊥,又BF AO ⊥,F EF BF =⋂,⊂EF BF ,平面BEF ,则有AO ⊥平面BEF ,又⊂AO 平面ADO ,∴平面ADO ⊥平面BEF .(3)过点O 作BF OH ∥交AC 于点H ,设G BE AD =⋂,由BF AO ⊥得AO HO ⊥,且AH FH 31=,又由(2)知,AO OD ⊥,则DOH ∠为二面角C AO D --平面角,∵E D ,分别为P A PB ,的中点,因此G 为P AB ∆的重心,即有,31,31BE GE AD DG ==又AH FH 31=,即有GF DH 23=,622642622215234cos 2⨯⨯-+=⨯⨯-+=∠P A ABD ,解得14=P A ,同理得26=BE ,于是3222==+BF EF BE ,即有EF BE ⊥,则35262631222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⨯=GF ,从而315=GF ,21531523=⨯=DH ,在DOH ∆中,215,262321====DH OD BF OH ,于是22221sin ,22232624154346cos 2=⎪⎪⎭⎫ ⎝⎛--=∠-=⨯⨯-+=∠DOH DOH .∴二面角C AO D --的正弦值为22.20.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y。

2013年江西省高考数学试卷(理科)答案与解析

2013年江西省高考数学试卷(理科)答案与解析

2013年江西省高考数学试卷(理科)参考答案和试题分析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•江西)已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.﹣2i B.2i C.﹣4i D.4i考点:交集及其运算.专题:计算题.分析:根据两集合的交集中的元素为4,得到zi=4,即可求出z的值.解答:解:根据题意得:zi=4,解得:z=﹣4i.故选C点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•江西)函数y=的定义域为()A.(0,1)B.[0,1)C.(0,1]D.[0,1]考点:函数的定义域及其求法.专题:计算题;函数的性质及使用.分析:由函数的分析式可直接得到不等式组,解出其解集即为所求的定义域,从而选出正确选项解答:解:由题意,自变量满足,解得0≤x<1,即函数y=的定义域为[0,1)故选B点评:本题考查函数定义域的求法,理解相关函数的定义是解题的关键,本题是概念考查题,基础题.3.(5分)(2013•江西)等比数列x,3x+3,6x+6,…的第四项等于()A.﹣24 B.0C.12 D.24 考点:等比数列的性质.专题:等差数列和等比数列.分析:由题意可得(3x+3)2=x(6x+6),解x的值,可得此等比数列的前三项,从而求得此等比数列的公比,从而求得第四项.解答:解:由于x,3x+3,6x+6是等比数列的前三项,故有(3x+3)2=x(6x+6),解x=﹣3,故此等比数列的前三项分别为﹣3,﹣6,﹣12,故此等比数列的公比为2,故第四项为﹣24,故选A.本题主要考查等比数列的通项公式,等比数列的性质,属于基础题.点评:4.(5分)(2013•江西)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481 A.08 B. 07 C. 02 D.01考点:简单随机抽样.专题:图表型.分析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论.解答:解:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01,故第5个数为01.故选:D.点评:本题主要考查简单随机抽样.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.5.(5分)(2013•江西)(x2﹣)5的展开式中的常数项为()A.80 B.﹣80 C.40 D.﹣40 二项式定理.考点:计算题;概率和统计.专题:分利用(x)5展开式中的通项公式T r+1=•x2(5﹣r)•(﹣2)r•x﹣3r,令x的幂析:指数为0,求得r的值,即可求得(x)5展开式中的常数项.解解:设(x)5展开式中的通项为T r+1,答:则T r+1=•x2(5﹣r)•(﹣2)r•x﹣3r=(﹣2)r••x10﹣5r,令10﹣5r=0得r=2,∴(x)5展开式中的常数项为(﹣2)2×=4×10=40.故选C.点本题考查二项式定理,着重考查二项展开式的通项公式,考查运算能力,属于中档题.6.(5分)(2013•江西)若S1=x2dx,S2=dx,S3=e x dx,则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1考点:微积分基本定理.专题:导数的概念及使用.分析:先利用积分基本定理计算三个定积分,再比较它们的大小即可.解答:解:由于S1=x2dx=|=,S2=dx=lnx|=ln2,S3=e x dx=e x|=e2﹣e.且ln2<<e2﹣e,则S2<S1<S3.故选:B.点评:本小题主要考查定积分的计算、不等式的大小比较等基础知识,考查运算求解能力.属于基础题.7.(5分)(2013•江西)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为()A.S=2*i﹣2 B.S=2*i﹣1 C.S=2*i D.S=2*i+4考程序框图.专题:图表型.分析:题目给出了输出的结果i=5,让我们分析矩形框中应填的语句,根据判断框中内容,即s<10,我们模拟程序执行的过程,从而得到答案.解答:解:当空白矩形框中应填入的语句为S=2*I时,程序在运行过程中各变量的值如下表示:i S 是否继续循环循环前1 0/第一圈2 5 是第二圈3 6 是第三圈4 9 是第四圈5 10 否故输出的i值为:5,符合题意.故选C.点评:本题考查了程序框图中的当型循环,当型循环是当条件满足时进入循环体,不满足条件算法结束,输出结果.8.(5分)(2013•江西)如果,正方体的底面和正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面和直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A.8B.9C.10 D.11考点:平面的基本性质及推论.专题:计算题;空间位置关系和距离.分析:判断CE和EF和正方体表面的关系,即可推出正方体的六个面所在的平面和直线CE,EF相交的平面个数分别记为m,n,求出m+n的值.解答:解:由题意可知直线CE和正方体的上底面平行在正方体的下底面上,和正方体的四个侧面不平行,所以m=4,直线EF和正方体的左右两个侧面平行,和正方体的上下底面相交,前后侧面相交,所以n=4,所以m+n=8.故选A.点评:本题考查直线和平面的位置关系,基本知识的使用,考查空间想象能力.9.(5分)(2013•江西)过点()引直线l和曲线y=相交于A,B两点,O 为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于()A.B.C.D.考直线和圆的位置关系;直线的斜率.专题:压轴题;直线和圆.分析:由题意可知曲线为单位圆在x轴上方部分(含和x轴的交点),由此可得到过C点的直线和曲线相交时k的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.解答:解:由y=,得x2+y2=1(y≥0).所以曲线y=表示单位圆在x轴上方的部分(含和x轴的交点),设直线l的斜率为k,要保证直线l和曲线有两个交点,且直线不和x轴重合,则﹣1<k<0,直线l的方程为y﹣0=,即.则原点O到l的距离d=,l被半圆截得的半弦长为.则===.令,则,当,即时,S△ABO有最大值为.此时由,解得k=﹣.故答案为B.点评:本题考查了直线的斜率,考查了直线和圆的关系,考查了学生的运算能力,考查了配方法及二次函数求最值,解答此题的关键在于把面积表达式转化为二次函数求最值,是中档题.10.(5分)(2013•江西)如图,半径为1的半圆O和等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l和半圆相交于F,G两点,和三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题;函数的性质及使用.分析:由题意可知:随着l从l1平行移动到l2,y=EB+BC+CD越来越大,考察几个特殊的情况,计算出相应的函数值y,结合考查选项可得答案.解答:解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG为正三角形,此时AM=OH=,在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA﹣(AE+AD)=3×﹣2×1=2﹣2.如图.又当x=时,图中y0=+(2﹣)=>2﹣2.故当x=时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选D.点本题考查函数的图象,注意理解图象的变化趋势是解决问题的关键,属中档题.评:二.第Ⅱ卷填空题:本大题共4小题,每小题5分,共20分11.(5分)(2013•江西)函数y=最小正周期T为π.考点:三角函数的周期性及其求法;两角和和差的正弦函数;二倍角的余弦.专题:三角函数的图像和性质.分析:函数分析式第二项利用二倍角的余弦函数公式化简,整理后利用两角和和差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的最小正周期.解答:解:y=sin2x+2×=sin2x﹣cos2x+=2(sin2x﹣cos2x)+=2sin (2x﹣)+,∵ω=2,∴T=π.故答案为:π点评:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的余弦函数公式,两角和和差的正弦函数公式,熟练掌握公式是解本题的关键.12.(5分)(2013•江西)设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为.考点:平面向量数量积的运算.专题:平面向量及使用.分析:根据题意求得的值,从而求得的值,再根据在上的射影为,运算求得结果.解答:解:∵、为单位向量,且和的夹角θ等于,∴=1×1×cos=.∵=+3,=2,∴=(+3)•(2)=2+6=2+3=5.∴在上的射影为=,故答案为.点评:本题主要考查两个向量的数量积的运算,一个向量在另一个向量上的射影的定义,属于中档题.13.(5分)(2013•江西)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)= 2.考点:导数的运算;函数的值.专题:计算题;压轴题;函数的性质及使用;导数的概念及使用.分析:由题设知,可先用换元法求出f(x)的分析式,再求出它的导数,从而求出f′(1).解答:解:函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,令e x=t,则x=lnt,故有f(t)=lnt+t,即f(x)=lnx+x,∴f′(x)=+1,故f′(1)=1+1=2.故答案为:2.点评:本题考查了求导的运算以及换元法求外层函数的分析式,属于基本题型,运算型.14.(5分)(2013•江西)抛物线x2=2py(p>0)的焦点为F,其准线和双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=6.考点:抛物线的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质和方程.分析:求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线和双曲线的交点坐标,利用三角形是等边三角形求出p即可.解答:解:抛物线的焦点坐标为(0,),准线方程为:y=﹣,准线方程和双曲线联立可得:,解得x=±,因为△ABF为等边三角形,所以,即p2=3x2,即,解得p=6.故答案为:6.点评:本题考查抛物线的简单性质,双曲线方程的使用,考查分析问题解决问题的能力以及计算能力.三.第Ⅱ卷选做题:请在下列两题中任选一题作答,若两道题都做,按第一题评卷计分.本题共5分.15.(5分)(2013•江西)(坐标系和参数方程选做题)设曲线C的参数方程为(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρcos2θ﹣sinθ=0.考点:抛物线的参数方程;简单曲线的极坐标方程.专题:计算题;压轴题.分析:先求出曲线C的普通方程,再利用x=ρcosθ,y=ρsinθ代换求得极坐标方程.解答:解:由(t为参数),得y=x2,令x=ρcosθ,y=ρsinθ,代入并整理得ρcos2θ﹣sinθ=0.即曲线C的极坐标方程是ρcos2θ﹣sinθ=0.故答案为:ρcos2θ﹣sinθ=0.点评:本题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcosθ,y=ρsinθ.16.(2013•江西)(不等式选做题)在实数范围内,不等式||x﹣2|﹣1|≤1的解集为[0,4].考点:绝对值不等式的解法.专题:计算题;压轴题;不等式的解法及使用.分析:利用绝对值不等式的等价形式,利用绝对值不等式几何意义求解即可.解答:解:不等式||x﹣2|﹣1|≤1的解集,就是﹣1≤|x﹣2|﹣1≤1的解集,也就是0≤|x﹣2|≤2的解集,0≤|x﹣2|≤2的几何意义是数轴上的点到2的距离小于等于2的值,所以不等式的解为:0≤x≤4.所以不等式的解集为[0,4].故答案为:[0,4].点评:本题考查绝对值不等式的解法,绝对值不等式的几何意义,注意不等式的等价转化是解题的关键.四.第Ⅱ卷解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•江西)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣sinA)cosB=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.考点:余弦定理;两角和和差的余弦函数.专题:解三角形.分析:(1)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA不为0求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(2)由余弦定理列出关系式,变形后将a+c及cosB的值代入表示出b2,根据a的范围,利用二次函数的性质求出b2的范围,即可求出b的范围.解答:解:(1)由已知得:﹣cos(A+B)+cosAcosB﹣sinAcosB=0,即sinAsinB﹣sinAcosB=0,∵sinA≠0,∴sinB﹣cosB=0,即tanB=,又B为三角形的内角,则B=;(2)∵a+c=1,即c=1﹣a,cosB=,∴由余弦定理得:b2=a2+c2﹣2ac•cosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣)2+,∵0<a<1,∴≤b2<1,则≤b<1.点评: 此题考查了余弦定理,二次函数的性质,诱导公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键. 18.(12分)(2013•江西)正项数列{a n }的前n 项和S n 满足:S n 2(1)求数列{a n }的通项公式a n ; (2)令b,数列{b n }的前n 项和为T n .证明:对于任意n ∈N *,都有T .考点: 数列的求和;等差数列的通项公式. 专题: 计算题;证明题;等差数列和等比数列. 分析: (I )由S n2可求s n ,然后利用a 1=s 1,n ≥2时,a n =s n ﹣s n ﹣1可求a n (II )由b==,利用裂项求和可求T n ,利用放缩法即可证明 解答: 解:(I )由S n2可得,[](S n +1)=0∵正项数列{a n },S n >0∴S n =n 2+n 于是a 1=S 1=2n ≥2时,a n =S n ﹣S n ﹣1=n 2+n ﹣(n ﹣1)2﹣(n ﹣1)=2n ,而n=1时也适合 ∴a n =2n (II )证明:由b==∴]=点评: 本题主要考查了递推公式a 1=s 1,n ≥2时,a n =s n ﹣s n ﹣1在求解数列的通项公式中的使用及数列的裂项求和方法的使用. 19.(12分)(2013•江西)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X的分布列和数学期望.考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望和方差.专题:计算题;概率和统计.分析:(1)先求出从8个点中任意取两个点为向量的终点的不同取法,而X=0时,即两向量夹角为直角,求出结果数,代入古典概率的求解公式可求(2)先求出两向量数量积的所有可能情形及相应的概率,即可求解分布列及期望值解答:解:(1)从8个点中任意取两个点为向量的终点的不同取法有=28种X=0时,两向量夹角为直角共有8种情形所以小波参加学校合唱团的概率P(X=0)==(2)两向量数量积的所有可能情形有﹣2,﹣1,0,1X=﹣2时有2种情形X=1时有8种情形X=﹣1时,有10种情形X的分布列为:X ﹣2 ﹣1 0 1PEX==点评:本题主要考查了古典概率的求解公式的使用及离散型随机变量的分布列及期望值的求解.20.(12分)(2013•江西)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F(1)求证:AD⊥平面CFG;(2)求平面BCP和平面DCP的夹角的余弦值.考点:用空间向量求平面间的夹角;直线和平面垂直的判定;二面角的平面角及求法.专题:计算题;空间位置关系和距离;空间角.分析:(1)利用直角三角形的判定得到∠BAD=,且∠ABE=∠AEB=.由△DAB≌△DCB得到△EAB≌△ECB,从而得到∠FED=∠FEA=,所以EF⊥AD 且AF=FD,结合题意得到FG是△PAD是的中位线,可得FG∥PA,根据PA⊥平面ABCD得FG⊥平面ABCD,得到FG⊥AD,最后根据线面垂直的判定定理证出AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,得到A、B、C、D、P的坐标,从而得到、、的坐标,利用垂直向量数量积为零的方法建立方程组,解出=(1,﹣,)和=(1,,2)分别为平面BCP、平面DCP的法向量,利用空间向量的夹角公式算出、夹角的余弦,即可得到平面BCP和平面DCP的夹角的余弦值.解答:解:(1)∵在△DAB中,E为BD的中点,EA=EB=AB=1,∴AE=BD,可得∠BAD=,且∠ABE=∠AEB=∵△DAB≌△DCB,∴△EAB≌△ECB,从而得到∠FED=∠BEC=∠AEB=∴∠EDA=∠EAD=,可得EF⊥AD,AF=FD又∵△PAD中,PG=GD,∴FG是△PAD是的中位线,可得FG∥PA∵PA⊥平面ABCD,∴FG⊥平面ABCD,∵AD⊂平面ABCD,∴FG⊥AD又∵EF、FG是平面CFG内的相交直线,∴AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,可得A(0,0,0),B(1,0,0),C(,,0),D(0,,0),P(0,0,)∴=(,,0),=(﹣,﹣,),=(﹣,,0)设平面BCP的法向量=(1,y1,z1),则解得y1=﹣,z1=,可得=(1,﹣,),设平面DCP的法向量=(1,y2,z2),则解得y2=,z2=2,可得=(1,,2),∴cos<,>===因此平面BCP和平面DCP的夹角的余弦值等于|cos<,>|=.点评:本题在三棱锥中求证线面垂直,并求平面和平面所成角的余弦值.着重考查了空间线面垂直的判定和性质,考查了利用空间向量研究平面和平面所成角等知识,属于中档题.21.(13分)(2013•江西)如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB和直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.考点:直线和圆锥曲线的关系;椭圆的标准方程.专题:压轴题;转化思想;圆锥曲线的定义、性质和方程.分析:(1)由题意将点P (1,)代入椭圆的方程,得到,再由离心率为e=,将a,b用c表示出来代入方程,解得c,从而解得a,b,即可得到椭圆的标准方程;(2)方法一:可先设出直线AB的方程为y=k(x﹣1),代入椭圆的方程并整理成关于x的一元二次方程,设A(x1,y1),B(x2,y2),利用根和系数的关系求得x1+x2=,,再求点M的坐标,分别表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值;方法二:设B(x0,y0)(x0≠1),以之表示出直线FB的方程为,由此方程求得M的坐标,再和椭圆方程联立,求得A的坐标,由此表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值解答:解:(1)椭圆C:经过点P (1,),可得①由离心率e=得=,即a=2c,则b2=3c2②,代入①解得c=1,a=2,b=故椭圆的方程为(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为y=k(x﹣1)③代入椭圆方程并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0设A(x1,y1),B(x2,y2),x1+x2=,④在方程③中,令x=4得,M的坐标为(4,3k),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k所以k1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k1+k2=2k﹣×=2k﹣1又k3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA的斜率k1=,直线PB的斜率为k2=所以k1+k2=+=2×=2k3,故存在常数λ=2符合题意点评:本题考查直线和圆锥曲线的综合问题,考查了分析转化的能力和探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极易出错,解答时要严谨运算,严密推理,方能碸解答出.22.(14分)(2013•江西)已知函数f(x)=,a为常数且a>0.(1)f(x)的图象关于直线x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性.考点:利用导数研究函数的单调性;奇偶函数图象的对称性;函数的值.专题:压轴题;新定义.分析:(1)只要证明成立即可;(2)对a分类讨论,利用二阶周期点的定义即可得出;(3)由(2)得出x3,得出三角形的面积,利用导数即可得出其单调性.解答:(1)证明:∵==a(1﹣2|x|),=a(1﹣2|x|),∴,∴f(x)的图象关于直线x=对称.(2)解:当时,有f(f(x))=.∴f(f(x))=x只有一个解x=0又f(0)=0,故0不是二阶周期点.当时,有f(f(x))=.∴f(f(x))=x有解集,{x|x},故此集合中的所有点都不是二阶周期点.当时,有f(f(x))=,∴f(f(x))=x有四个解:0,,,.由f(0)=0,,,.故只有,是f(x)的二阶周期点,综上所述,所求a的取值范围为.(3)由(2)得,.∵x2为函数f(x)的最大值点,∴,或.当时,S(a)=.求导得:S′(a)=.∴当时,S(a)单调递增,当时,S(a)单调递减.当时,S(a)=,求导得.∵,从而有.∴当时,S(a)单调递增.点评:本题考查了新定义“二阶周期点”、利用导数研究函数的单调性、三角形的面积等基础知识,考查了推理能力和计算能力.。

2007年江西省高考数学试卷(理科)及解析

2007年江西省高考数学试卷(理科)及解析

2007年江西省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)化简的结果是()A.2+i B.﹣2+i C.2﹣i D.﹣2﹣i2.(5分)()A.等于0 B.等于1 C.等于3 D.不存在3.(5分)若,则cotα等于()A.﹣2 B.C.D.24.(5分)已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4 B.5 C.6 D.75.(5分)若,则下列命题中正确的是()A.B.C.D.6.(5分)若集合M={0,1,2},N={(x,y)|x﹣2y+1≥0且x﹣2y﹣1≤0,x,y∈M},则N中元素的个数为()A.9 B.6 C.4 D.27.(5分)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°8.(5分)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1,h2,h3,h4,则它们的大小关系正确的是()A.h2>h1>h4B.h1>h2>h3C.h3>h2>h4D.h2>h4>h19.(5分)设椭圆=1(a>0,b>0)的离心率e=,右焦点F(c,0),方程ax2+bx﹣c=0的两个根分别为x1,x2,则点P(x1,x2)在()A.圆x2+y2=2内B.圆x2+y2=2上C.圆x2+y2=2外D.以上三种情况都有可能10.(5分)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()A.B.C.D.11.(5分)设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.B.0 C.D.512.(5分)设p:f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥﹣5,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题(共4小题,每小题4分,满分16分)13.(4分)设函数y=4+log2(x﹣1)(x≥3),则其反函数的定义域为.14.(4分)已知数列{a n}对于任意p,q∈N*,有a p+a q=a p+q,若,则a36=.15.(4分)如图,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,若=m,=n,则m+n的值为.16.(4分)设有一组圆C k:(x﹣k+1)2+(y﹣3k)2=2k4(k∈N*).下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是(写出所有真命题的代号).三、解答题(共6小题,满分74分)17.(12分)已知函数f(x)=满足f(c2)=.(1)求常数c的值;(2)解不等式f(x)>.18.(12分)如图,函数的图象与y轴交于点,且在该点处切线的斜率为﹣2.(1)求θ和ω的值;(2)已知点,点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当,时,求x0的值.19.(12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.20.(12分)如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.(1)设点O是AB的中点,证明:OC∥平面A1B1C1;(2)求二面角B﹣AC﹣A1的大小;(3)求此几何体的体积.21.(12分)设动点P到点A(﹣1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.(1)证明:动点P的轨迹C为双曲线,并求出C的方程;(2)过点B作直线双曲线C的右支于M,N两点,试确定λ的范围,使,其中点O为坐标原点.22.(14分)设正整数数列{a n}满足:a2=4,且对于任何n∈N*,有2+;(1)求a1,a3;(2)求数列{a n}的通项a n.2007年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•江西)化简的结果是()A.2+i B.﹣2+i C.2﹣i D.﹣2﹣i【分析】先化简分母,然后分子、分母同乘分母的共轭复数,化为a+bi(a、b ∈R).【解答】解:=,故选C2.(5分)(2007•江西)()A.等于0 B.等于1 C.等于3 D.不存在【分析】先化简再代入即可.【解答】解:=,故选B.3.(5分)(2007•江西)若,则cotα等于()A.﹣2 B.C.D.2【分析】用两角差的正切公式变形,整理,得到关于tanα的一元一次方程,解方程,得到正切值,根据正切和余切之间的关系,求出余切值.【解答】解:由得,∴cotα=﹣2,故选A4.(5分)(2007•江西)已知展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4 B.5 C.6 D.7【分析】本题对于二项式系数的和可以通过赋值令x=1来求解,而各项二项式系数之和由二项式系数公式可知为2n,最后通过比值关系为64即可求出n的值是6.【解答】解:展开式中,令x=1可得各项系数的和为(1+3)n=4n又由二项式系数公式得各项二项式系数的和为2n,所以=64,从而得2n=64,所以n=6所以选C5.(5分)(2007•江西)若,则下列命题中正确的是()A.B.C.D.【分析】用特殊值法,取x=可排除B、C,取x=可排除A【解答】解:取x=可排除B、C,取x=可排除A,故选D.6.(5分)(2007•江西)若集合M={0,1,2},N={(x,y)|x﹣2y+1≥0且x﹣2y﹣1≤0,x,y∈M},则N中元素的个数为()A.9 B.6 C.4 D.2【分析】本题主要考查集合中元素的个数,要用线性规划求出符合条件的整点,在可行域中找整点,要先找出关键点然后挨个列举【解答】解:画出集合N所表示的可行域,知满足条件的N中的点只有(0,0)、(1,0)、(1,1)和(2,1)四点,故选C7.(5分)(2007•江西)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°【分析】如上图,正方体的体对角线AC1有以下性质:①AC1⊥平面A1BD,AC1⊥平面CB1D1;②AC1被平面A1BD与平面CB1D1三等分;③AC1=AB等.(注:对正方体要视为一种基本图形来看待.)【解答】解:因为三棱锥A﹣A1BD是正三棱锥,所以顶点A在底面的射影H是底面中心,所以选项A正确;易证面A1BD∥面CB1D1,而AH垂直平面A1BD,所以AH垂直平面CB1D1,所以选项B正确;连接正方体的体对角线AC1,则它在各面上的射影分别垂直于BD、A1B、A1D等,所以AC1⊥平面A1BD,则直线A1C与AH重合,所以选项C正确;故选D.8.(5分)(2007•江西)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1,h2,h3,h4,则它们的大小关系正确的是()A.h2>h1>h4B.h1>h2>h3C.h3>h2>h4D.h2>h4>h1【分析】可根据几何体的图形特征,结合题目,选择答案.【解答】解:观察图形可知体积减少一半后剩余酒的高度最高为h2,最低为h4,故选A9.(5分)(2007•江西)设椭圆=1(a>0,b>0)的离心率e=,右焦点F(c,0),方程ax2+bx﹣c=0的两个根分别为x1,x2,则点P(x1,x2)在()A.圆x2+y2=2内B.圆x2+y2=2上C.圆x2+y2=2外D.以上三种情况都有可能【分析】先根据x1+x2=﹣,x1x2=﹣表示出x12+x22,再由e==得到a与c的关系,从而可表示出b与c的关系,然后代入到x12+x22的关系式中可得到x12+x22的范围,从而可确定答案.【解答】解:∵x1+x2=﹣,x1x2=﹣x12+x22=(x1+x2)2﹣2x1x2=e==∴a=2cb2=a2﹣c2=3c2所以x12+x22=<2所以在圆内故选A.10.(5分)(2007•江西)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()A.B.C.D.【分析】将一骰子扔一次有6种不同的结果,则将一骰子连续抛掷三次有63个结果,这样做出了所有的事件数,而符合条件的为等差数列有三类:公差为0的有6个;公差为1或﹣1的有8个;公差为2或﹣2的有4个,共有18个成等差数列的,根据古典概型公式得到结果.【解答】解:∵一骰子连续抛掷三次得到的数列共有63个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或﹣1的有8个;(3)公差为2或﹣2的有4个,∴共有18个成等差数列的概率为,故选B11.(5分)(2007•江西)设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.B.0 C.D.5【分析】偶函数的图象关于y轴对称,x=0为极值点,f(x)是R上以5为周期,x=5也是极值点,极值点处导数为零【解答】解:∵f(x)是R上可导偶函数,∴f(x)的图象关于y轴对称,∴f(x)在x=0处取得极值,即f′(0)=0,又∵f(x)的周期为5,∴f′(5)=0,即曲线y=f(x)在x=5处的切线的斜率0,故选项为B12.(5分)(2007•江西)设p:f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,q:m≥﹣5,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】首先求出函数的导数,然后根据导数与函数单调性的关系求出m的范围.【解答】解:由题意得f′(x)=e x++4x+m,∵f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,∴f′(x)≥0,即e x++4x+m≥0在定义域内恒成立,由于+4x≥4,当且仅当=4x,即x=时等号成立,故对任意的x∈(0,+∞),必有e x++4x>5∴m≥﹣e x﹣﹣4x不能得出m≥﹣5但当m≥﹣5时,必有e x++4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2007•江西)设函数y=4+log2(x﹣1)(x≥3),则其反函数的定义域为[5,+∞).【分析】欲求反函数的定义域,可不求出反函数,通过反函数的定义域即为原函数的值域求解即可.【解答】解:反函数的定义域即为原函数的值域,由x≥3得x﹣1≥2,所以log2(x﹣1)≥1,所以y≥5,反函数的定义域为[5,+∞),填[5,+∞).14.(4分)(2007•江西)已知数列{a n}对于任意p,q∈N*,有a p+a q=a p+q,若,则a36=4.【分析】由题设知,按递推公式先求出a2,再导出a4,然后求出a8,再导出a16,进而求出a32,由此可求出a36.【解答】解:由题意得,.故答案为4.15.(4分)(2007•江西)如图,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,若=m,=n,则m+n的值为2.【分析】三点共线时,以任意点为起点,这三点为终点的三向量,其中一向量可用另外两向量线性表示,其系数和为一.【解答】解:=()=+,∵M、O、N三点共线,∴+=1,∴m+n=2.故答案:216.(4分)(2007•江西)设有一组圆C k:(x﹣k+1)2+(y﹣3k)2=2k4(k∈N*).下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是②④(写出所有真命题的代号).【分析】根据圆的方程找出圆心坐标,发现满足条件的所有圆的圆心在一条直线上,所以这条直线与所有的圆都相交,②正确;根据图象可知这些圆互相内含,不存在一条定直线与所有的圆均相切,不存在一条定直线与所有的圆均不相交,所以①③错;利用反证法,假设经过原点,将(0,0)代入圆的方程,因为左边为奇数,右边为偶数,故不存在k使上式成立,假设错误,则圆不经过原点,④正确.【解答】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④.故答案为:②④三、解答题(共6小题,满分74分)17.(12分)(2007•江西)已知函数f(x)=满足f(c2)=.(1)求常数c的值;(2)解不等式f(x)>.【分析】(1)先判定c2的大小,从而断定代入哪一个解析式,建立等量关系,解之即可;(2)根据分段函数的分类标准进行分类讨论,分别在每一段上求解不等式,注意解集与前提求交集,最后将两种情形求并集即可.【解答】解(1)依题意0<c<1,∴c2<c,∵f(c2)=,c=(2)由(1)得f(x)=由f(x)>得当0<x<时,∴当时,,∴综上所述:∴f(x)>的解集为{x|}18.(12分)(2007•江西)如图,函数的图象与y轴交于点,且在该点处切线的斜率为﹣2.(1)求θ和ω的值;(2)已知点,点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当,时,求x0的值.【分析】(1)根据(0,)以及θ的范围,求θ,利用导数和斜率的关系求ω的值;(2)利用点,点Q(x0,y0)求出P,点P是该函数图象上一点,代入表达式,利用,,求x0的值.【解答】解:(1)将x=0,代入函数y=2cos(ωx+θ)得,因为,所以.又因为y'=﹣2ωsin(ωx+θ),y'|x=0=﹣2,,所以ω=2,因此.(2)因为点,Q(x0,y0)是PA的中点,,所以点P的坐标为.又因为点P在的图象上,所以.因为,所以,从而得或.即或.19.(12分)(2007•江西)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.【分析】对于(1)求第一次烧制后恰有一件产品合格的概率,故分为只有甲合格,只有乙合格,只有丙合格,3种情况,根据相互独立事件的概率乘法公式分别求出3种情况的概率,相加即可得到答案.对于(2)求经过两次烧制后,合格工艺品的个数ξ的期望.根据已知很容易可以求得每件工艺品经过两次烧制后合格的概率均为p=0.3,因为概率相同,可以把它们看成3次重复试验发生k次的概率,然后根据二项分布期望公式直接求得.【解答】解:分别记甲、乙、丙经第一次烧制后合格为事件A1,A2,A3,(1)设E表示第一次烧制后恰好有一件合格,则=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38.(2):因为容易求得每件工艺品经过两次烧制后合格的概率均为p=0.3,所以ξ~B(3,0.3),故Eξ=np=3×0.3=0.9.20.(12分)(2007•江西)如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.(1)设点O是AB的中点,证明:OC∥平面A1B1C1;(2)求二面角B﹣AC﹣A1的大小;(3)求此几何体的体积.【分析】(1)由题意及图形,利用直三棱柱的特点,因为O为中点连接OD,由题意利用借助线面垂直的判定定理证明OC∥平面A1B1C1;(2)由题意利用三垂线定理找到二面角的平面角,在三角形中进行求解二面角的大小;(3)由题意及图形利用体积分割的方法,把不规则的几何体分割成两个规则的几何体,利用相应的体积公式进行求解.【解答】(1)证明:作OD∥AA1交A1B1于D,连C1D.则OD∥BB1∥CC1.因为O是AB的中点,所以OD=.则ODC1C是平行四边形,因此有OC∥C1D.C1D⊂平面C1B1A1且OC⊄平面C1B1A1,则OC∥面A1B1C1.(2)如图,过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2.作BH⊥A2C2于H,连CH.因为CC1⊥面BA2C2,所以CC1⊥BH,则BH⊥平面A1C.又因为AB=,BC=,AC=.所以BC⊥AC,根据三垂线定理知CH⊥AC,所以∠BCH就是所求二面角的平面角.因为BH=,所以sin∠BCH=,故∠BCH=30°,即:所求二面角的大小为30°.(3)因为BH=,所以=.=•2=1.所求几何体体积为=.21.(12分)(2007•江西)设动点P到点A(﹣1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.(1)证明:动点P的轨迹C为双曲线,并求出C的方程;(2)过点B作直线双曲线C的右支于M,N两点,试确定λ的范围,使,其中点O为坐标原点.【分析】(1)首先利用余弦定理写出d1和d2的等量关系式,然后把它变形为(d1﹣d2)2=*的形式,即|d1﹣d2|=*的形式,此时满足双曲线的定义,则问题得证,最后由双曲线的标准方程形式即可写出其方程.(2)首先根据直线MN是否垂直于x轴进行讨论,若直线MN垂直于x轴,则直线方程为x=1,又=0可得M、N的坐标,代入双曲线方程即得λ的值;若直线MN不垂直于x轴,则设其点斜式方程,并与双曲线方程联立方程组,可消y得x的一元二次方程,再由根与系数的关系用k与λ的代数式表示出x1+x2和x1x2,进而由=0及x1+x2>0,x1x2>0通过整理消去k得到λ的不等式,此时解不等式即可,最后把两种情况综合之.【解答】(1)证明:在△PAB中,|AB|=2,即22=d12+d22﹣2d1d2cos2θ,4=(d1﹣d2)2+4d1d2sin2θ,即(常数),所以点P的轨迹C是以A,B为焦点,实轴长的双曲线.又b2=1﹣(1﹣λ),所以C的方程为:.(2)解:设M(x1,y1),N(x2,y2)①当MN垂直于x轴时,MN的方程为x=1,M(1,1),N(1,﹣1)在双曲线上.即,因为0<λ<1,所以.②当MN不垂直于x轴时,设MN的方程为y=k(x﹣1).由得:[λ﹣(1﹣λ)k2]x2+2(1﹣λ)k2x﹣(1﹣λ)(k2+λ)=0,由题意知:[λ﹣(1﹣λ)k2]≠0,所以,.于是:.因为,且M,N在双曲线右支上,所以.由①②知,λ的取值范围是:.22.(14分)(2007•江西)设正整数数列{a n}满足:a2=4,且对于任何n∈N*,有2+;(1)求a1,a3;(2)求数列{a n}的通项a n.【分析】(1)令n=1,根据2+可得到,再由a1为正整数可得到a1的值,当n=2时同样根据2+可得到2+进而可得到a3的范围,最后根据数列{a n}是正整数数列求出a3的值.(2)先根据a1=1,a2=4,a3=9可猜想a n=n2,再用数学归纳法证明.【解答】解:(1)据条件得2+①当n=1时,由,即有2+<,解得.因为a1为正整数,故a1=1.当n=2时,由2+,解得8<a3<10,所以a3=9.(2)由a1=1,a2=4,a3=9,猜想:a n=n2.下面用数学归纳法证明.①当n=1,2时,由(1)知a n=n2均成立;②假设n=k(k≥2)成立,则a k=k2,则n=k+1时由(1)得2+∴,即∴因为k≥2时,(k3+1)﹣(k+1)2=k(k+1)(k﹣2)≥0,所以.k﹣1≥1,所以.又a k+1∈N*,所以(k+1)2≤a k+1≤(k+1)2.故a k=(k+1)2,即n=k+1时,a n=n2成立.由1°,2°知,对任意n∈N*,+1a n=n2.。

2024年江西省高考数学真题及参考答案

2024年江西省高考数学真题及参考答案

2024年江西省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。

2017年江西省高考数学试卷与解析word(理科)(全国新课标Ⅰ)

2017年江西省高考数学试卷与解析word(理科)(全国新课标Ⅰ)

2017年江西省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年江西省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选C.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A11.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N),数列{a n}的前N项和为数列{b n}的前n项和,+即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2=,则=====﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2007年江西省高考试题(数学理)全解全析

2007年江西省高考试题(数学理)全解全析

2007年普通高等学校招生全国统一考试(江西卷)数 学(理 科)全解全析参考公式:如果事件A.B 互斥,那么 球的表面积公式P (A +B)=P (A)+P (B) S =4πR 2如果事件A.B 相互独立,那么 其中R 表示球的半径P (A·B)=P (A)·P (B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径P n (k )=C k n P k(1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简2)1(42i i++的结果是( ) A.2+i B.-2+i C.2-i D.-2-i【标准答案】 C 【试题分析】22424122(1)2i i i i i i++==+=-+,故选C 。

【高考考点】复数的运算。

【易错提醒】2i =-1是学生容易出错的地方,易忘记负号。

【备考提示】复数是高考经常出现的试题之一,一般出现在选择题或填空题,难度不会太大。

2.1lim 231--→x x x x ( ) A.等于0 B.等于l C.等于3 D.不存在【标准答案】 B【试题分析】32211limlim 11x x x x x x →→-==-,故选B 。

【高考考点】极限。

【易错提醒】未将分子分解因式,直接将x =1代入分母,不存在,错选(D )。

【备考提示】极限也是高考中经常出现的试题之一,有时也会在解答题中出现。

3.若tan(4π一α)=3,则cot α等于 A.-2 B.-21 C.21D.2【标准答案】 A【试题分析】tan(4π一α)=31tan 13tan cot 21tan 2αααα-⇒=⇒=-⇒=-+,故选A 。

【高考考点】三角函数,两角差的正切公式。

【易错提醒】两角差的正切公式与两角和的正切公式混淆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

满分150分,考试时间120分钟。

考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

第II卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。

3.考试结束,务必将试卷和答题卡一并上交。

参考公式:锥体体积公式V=13Sh,其中S为底面积,h为高。

第I卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为A.5 B.4 C.3 D.22.下列函数中,与函数y=定义域相同的函数为A.y=1sin xB.y=1nxxC.y=xe xD.sin xx3.若函数f(x)=21,1lg,1x xx x⎧+≤⎨>⎩,则f(f(10)=A.lg101B.bC.1D.04.若tanθ+1tanθ=4,则sin2θ=A.15B.14C.13D.125.下列命题中,假命题为A.存在四边相等的四边形不是正方形B.z1,z2∈c,z1+z2为实数的充分必要条件是z1,z2互为工复数C.若x,y∈CR,且x+y>2,则x,y至少有一个大于1D.对于任意n∈N,C°+C1.…+C°。

都是偶数6.观察下列各式:a+b=1.a2+b2=3,a3+b3=4 ,a4+b4=7,a5+b5=11,…,则a10+b10= A.28 B.76 C.123 D.1997.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则A.2B.4C.5D.108.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A.50,0B.30.0C.20,30D.0,509.样本(x1,x2…,xn)的平均数为x,样本(y1,y2,…,yn)的平均数为。

若样本(x1,x2…,xn,y1,y2,…,yn)的平均数,其中0<α<12,则n,m的大小关系为A.n<mB.n>mC.n=mD.不能确定10.如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分。

记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为2012年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答。

若在试题卷上作答,答案无效。

二。

填空题:本大题共4小题,每小题5分,共20分。

11.计算定积分___________。

12.设数列{an },{bn}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=___________。

13椭圆(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2。

若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为_______________.14下图为某算法的程序框图,则程序运行后输出的结果是______________.三、选做题:请在下列两题中任选一题作答。

若两题都做,则按第一题评阅计分。

本题共5分。

15.(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为___________。

15.(2)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为___________。

四.解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)已知数列{an }的前n项和,且Sn的最大值为8.(1)确定常数k,求an;(2)求数列的前n 项和T n 。

17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a ,b ,c 。

已知,。

(1)求证:(2)若ABC 的面积。

18.(本题满分12分) 如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,2,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)。

(1)求V=0的概率;(2)求V 的分布列及数学期望。

19.(本题满分12分)在三棱柱ABC-A 1B 1C 1中,已知AB=AC=AA 1BC=4,在A 1在底面ABC 的投影是线段BC 的中点O 。

(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A1B1C 与平面BB 1C 1C 夹角的余弦值。

20. (本题满分13分) 已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足()2MA MB OM OA OB +=⋅++.(1) 求曲线C 的方程; (2)动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l 向:是否存在定点P (0,t )(t <0),使得l 与PA ,PB 都不相交,交点分别为D,E ,且△QAB 与△PDE 的面积之比是常数若存在,求t 的值。

若不存在,说明理由。

21. (本小题满分14分) 若函数h(x)满足(1)h(0)=1,h(1)=0;(2)对任意[]0,1a ∈,有h(h(a))=a ; (3)在(0,1)上单调递减。

则称h(x)为补函数。

已知函数(1)判函数h(x)是否为补函数,并证明你的结论;(2)若存在[]0,1m ∈,使得h(m)=m ,若m 是函数h(x)的中介元,记时h(x)的中介元为x n ,且,若对任意的n N +∈,都有S n <12,求λ的取值范围; (3)当λ=0,()0,1x ∈时,函数y= h(x)的图像总在直线y=1-x 的上方,求P 的取值范围。

2012年江西卷(理数)详细解析一、选择题:1.C 【解析】本题考查集合的概念及元素的个数.容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn 图的考查等.2.D 【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域. 函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为()(),00,-∞+∞.故选D. 【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法.3.B 【解析】本题考查分段函数的求值.因为101>,所以()10lg101f ==.所以2((10))(1)112f f f ==+=.【点评】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量x 的取值对应着哪一段区间,就使用哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式. 4.D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等.5.B 【解析】本题以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等.(验证法)对于B 项,令()121,9z mi z mi m =-+=-∈R ,显然128z z +=∈R ,但12,z z 不互为共轭复数,故B 为假命题,应选B.【点评】体现考纲中要求理解命题的概念,理解全称命题,存在命题的意义.来年需要注意充要条件的判断,逻辑连接词“或”、 “且”、 “非”的含义等. 6.C 【解析】本题考查归纳推理的思想方法.观察各等式的右边,它们分别为1,3,4,7,11,…,发现从第3项开始,每一项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…, 故1010123.a b +=【点评】归纳推理常常可借助前几项的共性来推出一般性的命题.体现考纲中要求了解归纳推理.来年需要注意类比推理等合情推理. 7. D 【解析】本题主要考查两点间的距离公式,以及坐标法这一重要的解题方法和数形结合的数学思想.不失一般性,取特殊的等腰直角三角形,不妨令4AC BC ==,则AB =CD =12AB =1||2PC PD CD ===PA PB ====所以222||||101010||2PA PB PC ++==. 【点评】对于非特殊的一般图形求解长度问题,由于是选择题,不妨尝试将图形特殊化,以方便求解各长度,达到快速求解的目的.体现考纲中要求掌握两点间的距离公式.来年需要注意点到直线的距离公式.8.B 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y 亩,总利润为z 万元,则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+.线性约束条件为?50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组50,43180,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩表示的可行域,易求得点()()()0,50,30,20, 0,45A B C .平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).故选B.【点评】解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么 (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系; (4)作答——就应用题提出的问题作出回答.体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.9.A 【解析】本题考查统计中的平均数,作差法比较大小以及整体思想. 由统计学知识,可得1212,n m x x x nx y y y my +++=+++=,()()()12121n m x x x y y y m n z m n x y αα⎡⎤+++++++=+=++-⎣⎦.()()()1m n x m n y αα=+++-,所以()()()1nx my m n x m n y αα+=+++-.所以()()(),1.n m n m m n αα=+⎧⎪⎨=+-⎪⎩故()[(1)]()(21)n m m n m n ααα-=+--=+-.因为102α<<,所以210α-<.所以0n m -<.即n m <. 【点评】要牢固掌握统计学中一些基本特征:如平均数,中位数,方差,标准差等的求法. 体现考纲中要求会用样本的基本数字特征估计总体的基本数字特征.来年需要注意频率分布直方图中平均值,标准差等的求解等.10.A 【解析】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法.(定性法)当102x <<时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越快;当112x ≤<时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A 图象符合.故选A. 【点评】对于函数图象的识别问题,若函数()y f x =的图象对应的解析式不好求时,作为选择题,没必要去求解具体的解析式,不但方法繁琐,而且计算复杂,很容易出现某一步的计算错误而造成前功尽弃;再次,作为选择题也没有太多的时间去给学生解答;因此,使用定性法,不但求解快速,而且准确节约时间. 二、填空题:11.23【解析】本题考查有关多项式函数,三角函数定积分的应用.31211111112(sin )cos |cos1cos1333333x x x dx x --⎛⎫-⎛⎫⎛⎫+=-=---=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰.【点评】这里,许多学生容易把原函数写成3cos 3x x +,主要是把三角函数的导数公式记混而引起的.体现考纲中要求了解定积分的概念.来年需要注意定积分的几何意义求曲面面积等.12. 35【解析】本题考查等差中项的性质及整体代换的数学思想(解法一)因为数列{},{}n n a b 都是等差数列,所以数列{}n n a b +也是等差数列.故由等差中项的性质,得()()()5511332a b a b a b +++=+,即()557221a b ++=⨯,解得5535a b +=.(解法二)设数列{},{}n n a b 的公差分别为12,d d ,因为331112111212(2)(2)()2()72()21a b a d b d a b d d d d +=+++=+++=++=, 所以127d d +=.所以553312()2()35a b a b d d +=+++=.【点评】对于等差数列的计算问题,要注意掌握基本量法这一通法,同时要注意合理使用等差数列的性质进行巧解. 体现考纲中要求理解等差数列的概念.来年需要等差数列的通项公式,前n 项和,等差中项的性质等.了函数与方程,转化与化归思想.利用椭圆及等比数列的性质解题.由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故c e a ==. 【点评】求双曲线的离心率一般是通过已知条件建立有关,a c 的方程,然后化为有关,a c 的齐次式方程,进而转化为只含有离心率e 的方程,从而求解方程即可. 体现考纲中要求掌握椭圆的基本性质.来年需要注意椭圆的长轴,短轴长及其标准方程的求解等. 14.3【解析】本题考查算法程序框图的应用以及运算求解的能力. 由程序框图可知: 第一次:T=0,k=1,sin 1sin 002π=>=成立,a=1,T=T+a=1,k=2,2<6,满足判断条件,继续循环;第二次:sin 0sin 12ππ=>=不成立,a=0,T=T+a=1,k=3,3<6,满足判断条件,继续循环;第三次:3sin1sin 02ππ=->=不成立,a=0,T=T+a=1,k=4,4<6, 满足判断条件,继续循环;第四次: 3sin 20sin 12ππ=>=-成立,a=1,T=T+a=2,k=5, 满足判断条件,继续循环; 第五次: 5sin1sin 202ππ=>=成立,a=1,T=T+a=2,k=6,6<6不成立,不满足判断条件,跳出循环,故输出T 的值3.【点评】对于循环结构的算法框图问题,要观察什么时候刚好退出循环,,直到循环终止为止.体现考纲中要求理解输出语句,了解算法的含义与思想.来年需要注意判断条件的求解,程序的输出功能等.15.(1)2cos ρθ=【解析】本题考查极坐标方程与直角坐标方程的互化及转化与化归的数学思想.由极坐标方程与直角坐标方程的互化公式cos ,sin ,x y ρθρθ=⎧⎨=⎩得22222cos x y x ρρθ+-=-0=,又0ρ>,所以2cos ρθ=.【点评】公式cos ,sin x y ρθρθ==是极坐标与直角坐标的互化的有力武器.体现考纲中要求能进行坐标与直角坐标的互化.来年需要注意参数方程与直角坐标的互化,极坐标与直角坐标的互化等.15.(2)33|22x x ⎧⎫∈-≤≤⎨⎬⎩⎭R 【解析】本题考查绝对值不等式的解法以及转化与划归、分类讨论的数学思想.原不等式可化为1,212216,x x x ⎧≤-⎪⎨⎪---≤⎩.①或11,2221216,x x x ⎧-<<⎪⎨⎪---≤⎩②或1,221216,x x x ⎧≥⎪⎨⎪-++≤⎩③ 由①得3122x -≤≤-;由②得1122x -<<;由③得1322x ≤≤,综上,得原不等式的解集为33|22x x ⎧⎫∈-≤≤⎨⎬⎩⎭R . 【点评】不等式的求解除了用分类讨论法外,还可以利用绝对值的几何意义——数轴来求解;后者有时用起来会事半功倍.体现考纲中要求会用绝对值的几何意义求解常见的绝对值不等式.来年需要注意绝对值不等式公式,a b a b a b a c c b +≤+-≤-+-的转化应用. 16.【解析】【点评】本题考查数列的通项,递推、错位相减法求和以及二次函数的最值的综合应用.利用11(1),n nn S n a S S -=⎧=⎨-⎩来实现n a 与n S 的相互转化是数列问题比较常见的技巧之一,要注意1n n n a S S -=-不能用来求解首项1a ,首项1a 一般通过11a S =来求解.运用错位相减法求数列的前n项和适用的情况:当数列通项由两项的乘积组成,其中一项是等差数列、另一项是等比数列.17. 【解析】【点评】本题考查解三角形,三角形的面积,三角恒等变换、三角和差公式以及正弦定理的应用.高考中,三角解答题一般有两种题型:一、解三角形:主要是运用正余弦定理来求解边长,角度,周长,面积等;二、三角函数的图像与性质:主要是运用和角公式,倍角公式,辅助角公式进行三角恒等变换,求解三角函数的最小正周期,单调区间,最值(值域)等.来年需要注意第二种题型的考查.18 . 【解析】【点评】本题考查组合数,随机变量的概率,离散型随机变量的分布列、期望等. 高考中,概率解答题一般有两大方向的考查.一、以频率分布直方图为载体,考查统计学中常见的数据特征:如平均数,中位数,频数,频率等或古典概型;二、以应用题为载体,考查条件概率,独立事件的概率,随机变量的期望与方差等.来年需要注意第一种方向的考查.19. 【解析】【点评】本题考查线面垂直,二面角、向量法在解决立体几何问题中的应用以及空间想象的能力. 高考中,立体几何解答题一般有以下三大方向的考查.一、考查与垂直,平行有关的线面关系的证明;二、考查空间几何体的体积与表面积;三、考查异面角,线面角,二面角等角度问题.前两种考查多出现在第1问,第3种考查多出现在第2问;对于角度问题,一般有直接法与空间向量法两种求解方法.20.【解析】【点评】本题以平面向量为载体,考查抛物线的方程,直线与抛物线的位置关系以及分类讨论的数学思想. 高考中,解析几何解答题一般有三大方向的考查.一、考查椭圆的标准方程,离心率等基本性质,直线与椭圆的位置关系引申出的相关弦长问题,定点,定值,探讨性问题等;二、考查抛物线的标准方程,准线等基本性质,直线与抛物线的位置关系引申出的相关弦长问题,中点坐标公式,定点,定值,探讨性问题等;三、椭圆,双曲线,抛物线综合起来考查.一般椭圆与抛物线结合考查的可能性较大,因为它们都是考纲要求理解的内容.21. 【解析】【点评】本题考查导数的应用、函数的新定义,函数与不等式的综合应用以及分类讨论,数形结合的数学思想. 高考中,导数解答题一般有以下几种考查方向:一、导数的几何意义,求函数的单调区间;二、用导数研究函数的极值,最值;三、用导数求最值的方法证明不等式.来年需要注意用导数研究函数最值的考查.。

相关文档
最新文档