2016数学中考分类汇总二次函数实际问题

合集下载

二次函数中考常见题型

二次函数中考常见题型

二次函数中考常见题型二次函数中考常见题型二次函数作为数学中比较重要的一章,其考试题型也会经常出现在中考中。

在备考阶段,要注意哪些题型是重点,做好相应的准备。

以下为二次函数中考常见题型:一、教材基础部分1. 含义理解:定义、性质、图像等。

2. 根的求法:公式法、配方法、图像法等。

3. 解析式的求法:从图像入手,按照标准式来确定。

二、与之相关的几何问题1. 抛物线上某点的切线问题。

2. 对称轴问题:如已知抛物线的顶点,求其对称轴方程等。

3. 根与系数问题:如已知根,求系数等。

三、实际问题与抛物线模型1. 炮弹轨迹问题。

2. 喷水池设计问题。

3. 碗碟生产成本分析问题。

四、考点分类综合练习通过以上几个方面的题型练习,这里特意准备了几道综合练习题,读者可以将所学知识综合运用,巩固自己的学习成果。

1. (2018·江苏镇江) 根据题意,列方程解析式,并画出抛物线的图像。

现已知一条水泄水道曲线,用实验室的计算仪器测试,得到其一些关键点坐标。

当流量为 4L/s 时,水面高度为 200 cm,当流量为 9L/s 时,水面高度为 260 cm。

(1) 请根据已知数据,列出方程。

(2) 请用解析式画出此抛物线的图像。

2. (2019·辽宁大连) 已知 y=ax²+bx+c 是顶点为 (1,4),且过点 (2,2)、(6,-8) 的抛物线。

(1) 求出该抛物线解析式。

(2) 求出 a,b,c 的值。

(3) 给出该抛物线的图像。

以上就是二次函数中考常见题型的总结,考生可根据此文进行重复梳理与练习。

希望各位在中考中能够取得好成绩!。

2016年全国中考数学真题分类 二次函数概念、性质和图象(习题解析)

2016年全国中考数学真题分类 二次函数概念、性质和图象(习题解析)

2016年全国中考数学真题分类 二次函数概念、性质和图象一、选择题1. (2016兰州,8,4分)二次函数y=x 2-2x+4化为y=a(x-h)2+k 的形式,下列正确的是( ) A. y=(x-1)2+2 B. y=(x-1)2+3 C. y=(x-2)2+2 D. y=(x-2)2+4 【答案】B2.(2016四川南充,5,3分)抛物线y=x 2+2x+3的对称轴是( )A .直线x=1B .直线x=﹣1C .直线x=﹣2D .直线x=2【答案】B3.(2016年湖北荆门,10,3分)若二次函数y =x 2+m x 的对称轴是x =3,则关于x 的方程x 2+m x =7的解为( )A .x 1=0,x 2=6B .x 1=0,x 2=6C .x 1=0,x 2=6D .x 1=0,x 2=6 [答案]D4.(2016·山西,8,3分)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y 答案:D5.(2016浙江衢州,7,3分)二次函数图像上部分点的坐标对应值列表如下:x ....-3 - 2 -1 0 1 ....y ....-3 -2 -3 -6 -11....则该函数图像的对称轴是( )A .直线x =- 3B .直线x =-2C .直线x =- 1D .直线x =0 【答案】B6.(2016浙江绍兴,9,4分)抛物线y =x 2+bx +c(其中b ,c 是常数)过点A(2,6),且抛物线的对称轴与线段y =O(l ≤x ≤3)有交点,则c 的值不可能是( ) A .4 B .6 C .8 D .10【答案】A7.(2016湖北黄石,9,3分)以x 为自变量的二次函数()12222-+--=b x b x y 的图象不经过第三象限,则实数b 的取值范围是( ) A.45≥b B.1≥b 或 1-≤b C.2≥b D. 21≤≤b 【答案】A8.(2016湖北孝感,10,3分)如图是抛物线2y ax bx c =++(0a ≠)的部分图象,其顶点坐标为)1(n ,,且与x 轴的一个交点在点)0 3(,和)0 4(,之间.则下列结论: ①0>+-c b a ;②03=+b a ;③)(42n c a b -=;④一元二次方程12-=++n c bx ax 有两个不相等的实数根. 其中正确结论的个数是 A .1B .2C .3D .4【答案】C9.(2016湖南长沙,12,3分)已知抛物线y=ax 2+bx+c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程ax 2+bx+c+2=0无实数根;③a ﹣b+c ≥0;④的最小值为3.其中,正确结论的个数为( ) A .1个 B .2个C .3个D .4个【答案】D10.(2016山东烟台,11,3分)二次函数y=ax 2+bx+c 的图象如图所示,下列结论: ①4ac <b 2;②a+c >b ;③2a+b >0. 其中正确的有( ))10(题第xy O)1(n ,1=x 342A .①②B .①③C .②③D .①②③[答案] B11.(2016广东广州,9,3分)对于二次函数y =-14x 2+x -4,下列说法正确的是( )A 、当x>0,y 随x 的增大而增大B 、当x=2时,y 有最大值-3C 、图像的顶点坐标为(-2,-7)D 、图像与x 轴有两个交点[答案] B12.(2016浙江宁波,11,4分)已知函数y=ax 2﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( )A .当a=1时,函数图象过点(﹣1,1)B .当a=﹣2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大 【解答】D .13. (2016兰州,13,4分)二次函数y=ax 2+bx+c 的图像如图所示,对称轴是直线 x=-1,有以下结论:①abc>0;②4ac<b 2;③2a+b=0;④a-b+c>2.其中正确的结论的个 数是( )A. 1B. 2C. 3D. 4 (第13题) 【答案】C14. (2016兰州,11,4分)点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=-x 2+2x+c的图像上,则y 1,y 2,y 3的大小关系是( )A. y 3 > y 2 >y 1B. y 3>y 1=y 2C. y 1>y 2>y 3D. y 1=y 2>y 3 【答案】D15.(2016四川自贡,10,4分)二次函数y=ax 2+bx+c 的图象如图,反比例函数y=与正比例函数y=bx 在同一坐标系内的大致图象是( )【答案】C .16.(2016湖南益阳,7,5分)关于抛物线221y x x =-+,下列说法错.误.的是 ( ) A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线1x =D .当1x >时,y 随x 的增大而减小【答案】D17.(2016湖南株洲,10,3分)已知二次函数2(0)y ax bx c a =++>的图象经过点A(-1,2),B (2,5)顶点坐标为(,)m n ,则下说法错误的是( )A 、3c <B 、12m ≤ C 、2n ≤ D 、1b <【答案】B18.(2016四川成都,9,3分)二次函数y=2x 2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线x=1D .抛物线与x 轴有两个交点【答案】D19.(2016福州,11,3分)已知点A (-1,m ),B (1,m ),C (2,m +1),在同一个函数图象上,这个函数图象可以是A .B .C .D . 【答案】C20.(2016四川广安,10,3分)已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,并且关于x 的一元二次方程ax 2+bx +c -m =0有两个不相等的实数根.下列结论:①b 2-4ac <0;②abc >0;③a -b +c <0;④m >-2.其中,正确的个数有( ) A .1 B .2 C .3 D .4【答案】B .21.(2016聊城,7,3分)二次函数c bx ax y ++=2的图像如图所示,则一次函数b ax y +=与反比例函数xcy =的图像可能是( )【答案】C22.(2016山东枣庄,12,3分)已知二次函数cbxaxy++=2(0≠a)的图象如图所示,给出以下四个结论:①0=abc;②0>++cba;③ba>;④042<-bac.其中,正确的结论有()A.1个B.2个C.3个D.4个【答案】C23.(2016四川巴中,10,3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中,正确结论的个数是()A.1 B.2 C.3 D.4【答案】B24.(2016山东临沂, 13,3分)二次函数y=ax2+bx+c,自变量x与函数y的对应值如下表:x…-5 -4 -3 -2 -1 0 …y… 4 0 -2 -2 0 4 …下列说法正确的是( )O23xy(第10题图)-x=第12题图A .抛物线的开口向下B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是x =-52【答案】D25. (2016山东滨州,10,3分)抛物线y=22x 与坐标轴的交点个数是( ) A.0 B.1 C.2 D.3 答案:C.26. (2016山东滨州,11,3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=2x +5x+6,则原抛物线的解析式是( )A.y=-2511()24x --B.y=-2511()24x +-C.y=-251()24x --D.y=-251()24x ++答案:A. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 二、填空题1.(2016湖南益阳,10,5分)某学习小组为了探究函数2||y x x =-的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m = .【答案】0.75;2.1.(2016山东泰安,21,3分)将抛物线y=22(1)x -+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为_________. 答案:y=22(2)x +-2.3. (2016兰州,16,4分)二次函数y=x 2+4x-3的最小值是_____________________. 【答案】-74.(2016山东青岛,12,3分)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.答案:.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.三、解答题1.(2016,山东淄博,21,8分)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A 的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得y=kx+b,解得k=2,b=2,∴直线AB的解析式为y=2x+2.25.(2016四川南充,25,10分)如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y 轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.【解答】解:(1)∵抛物线与x轴交于点A(﹣5,0),B(3,0),∴可以假设抛物线为y=a(x+5)(x﹣3),把点(0,5)代入得到a=﹣,∴抛物线的解析式为y=﹣x2﹣x+5.(2)作FG⊥AC于G,设点F坐标(m,0),则AF=m+5,AE=EM=m+6,FG=(m+5),FM==,∵sin∠AMF=,∴=,∴=,整理得到2m2+19m+44=0,∴(m+4)(2m+11)=0,∴m=﹣4或﹣5.5(舍弃),∴点Q坐标(﹣4,).(3)①当MN是对角线时,设点F(m,0).∵直线AC解析式为y=x+5,∴点N(m,m+5),点M(m+1,m+6),∵QN=PM,∴﹣m2﹣m+5﹣m﹣5=m+6﹣[﹣(m+1)2﹣(m+1)+5],解得m=﹣3±,∴点M坐标(﹣2+,3+)或(﹣2﹣,3﹣).②当MN为边时,MN=PQ=,设点Q(m,﹣ m2﹣m+5)则点P(m+1,﹣ m2﹣m+6),∴﹣m2﹣m+6=﹣(m+1)2﹣(m+1)+5,解得m=﹣3.∴点M坐标(﹣2,3),综上所述以点P,Q,M,N为顶点的四边形是平行四边形时,点M的坐标为(﹣2,3)或(﹣2+,3+)或(﹣2﹣,3﹣).2.(2016湖南益阳,21,12分)如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B .(1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.解:(1)∵抛物线顶点为(3,1)A ,设抛物线对应的二次函数的表达式为2(3)1y a x =-+, 将原点坐标(0,0)代入表达式,得13a =-. ∴抛物线对应的二次函数的表达式为:212333y x x =-+. (2)将0y = 代入212333y x x =-+中,得B 点坐标为:(23,0), 设直线OA 对应的一次函数的表达式为y kx =, 将(3,1)A 代入表达式y kx =中,得3k =, ∴直线OA 对应的一次函数的表达式为3y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为3y x b =+, 将B (23,0)代入3y x b =+中,得2b =- ,∴直线BD 对应的一次函数的表达式为32y x =-.由2321233y y x ⎧-⎪⎪⎨⎪=-+⎪⎩得交点D 的坐标为(3,3)-,将0x =代入32y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , 23OB OD ==.在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩, ∴△OAB ≌△OCD .(3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小.过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '∆∽C DQ '∆. ∴PO C O DQ C Q '=',253=,∴23PO ,∴ 点P 的坐标为23(.22.(2016浙江衢州,22,6分)已知二次函数y =x 2+x 的图象,如图所示.(1)根据方程的根与函数图象之间的关系,将方程x 2+x =1的根在图上近似地表示出来(描点), 并观察图象,写出方程x 2+x =1的根(精确到0.1). (2)在同一直角坐标中系中画出一次函数1322y x =+的图象,观察图象写出自变量x 取值在什么范围时,一次函数的值小于二次函数的值.(3)如图,点P 是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在点P 上,写出平移后二次函数图象的函数表达式,并判断点P 是否在函数1322y x =+的图象上,请说明理由.(1)作图描点X 1 ≈ -1.6 , x 2 ≈ 0.6 (2)画直线x <-1.5或x >1 (3)平移方法不唯一如,先向上平移54个单位,再向作平移12个单位 平移后的顶点坐标P (-1,1)平移后表达式:y =(x +1)2+1或 y =x 2+2x +2 理由:把P 点坐标(-1,1)代入1322y x =+ 左边=右边,点P 在函数1322y x =+的图像上.3.(2016福州,27,13分) (13分)已知,抛物y =ax 2+bx +c (a ≠0)经过原点,顶点为A (h ,k ) (h ≠0).(1)当h =1,k =2时,求抛物线的解析式;(2)若抛物线y =tx 2(t ≠0)也经过A 点,求a 与t 之间的关系式; (3)当点A 在抛物线y =x 2-x 上,且-2≤h <1时,求a 的取值范围.【答案】解:根据题意,设抛物线的解析式为y =a (x -h )2+k (a ≠0) (1)∵h =1,k =2. ∴y =a (x -1)2+2.∵抛物线经过原点,∴a+2=0,解得a=-2.∴y=+2(x-1)2+2.即y=-2x2+4x.(2)∵抛物线y=tx2 (t≠0)经过点A(h,k).∴k=th2,∴y=a(x-h)2+th2.∵抛物线经过原点,∴ah2+th2=0.∵k≠0,∴a=-t.点A在第一、二象限内的示意图如图所示.(3)∵点A (h,k) 在抛物线y=x2-x上.∴k=h2-h.∴y=a(x-h)2+h2-h,∵抛物线经过原点,∴ah2+h2-h=0.∵h≠0,∴a=1h=1,分两类讨论:①当-2≤h<0时,由反比例函数性质可知1h ≤-12.∴a≤-32;②当0≤h<1时,由反比例函数性质可知1h≥1.∴a>0.综上所述,a的取值范围是a≤-32或a>0.(2016,山东淄博,23,9分)已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.解:(1)∵圆心O的纵坐标为,∴设Q(m,),F(0,),∵QO=QF,∴m2+()2=m2+(﹣)2,∴a=1,∴抛物线为y=x2.(2)∵M在抛物线上,设M(t,t2),Q(m,),∵O、Q、M在同一直线上,∴KOM =KOQ,∴=,∴m=,∵QO=QM,∴m2+()2=(m﹣t)2=(﹣t2)2,整理得到:﹣ t 2+t 4+t 2﹣2mt=0, ∴4t 4+3t 2﹣1=0, ∴(t 2+1)(4t 2﹣1)=0, ∴t 1=,t 2=﹣, 当t 1=时,m 1=, 当t 2=﹣时,m 2=﹣.∴M1(,),Q 1(,),M 2(﹣,),Q 2(﹣,). (3)设M (n ,n 2)(n >0), ∴N (n ,0),F (0,), ∴MF===n 2+,MN+OF=n 2+,∴MF=MN+OF .4.(2016聊城,25,12分)如图,已知抛物线y=ax 2+bx+c 经过点A (-3,0),B (9,0)和C (0,4)。

2016中考数学分类二次函数解答题汇总

2016中考数学分类二次函数解答题汇总

二次函数解答1--28一.解答题(共30小题)1.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.﹣m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.(1)(2)2.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.3.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m 的取值范围.4.抛物线y=x2﹣2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2﹣2x+c沿y轴向下平移后,所得新抛物线与x轴交于A、B两点,如果AB=2,求新抛物线的表达式.5.已知二次函y=x2+px+q图象的顶点M为直线y=x+与y=﹣x+m﹣1的交点.(1)用含m的代数式来表示顶点M的坐标(直接写出答案);(2)当x≥2时,二次函数y=x2+px+q与y=x+的值均随x的增大而增大,求m的取值范围(3)若m=6,当x取值为t﹣1≤x≤t+3时,二次函数y最小值=2,求t的取值范围.6.如图抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,顶点为D,连接AC、CD、AD.(1)求该二次函数的解析式;(2)求△ACD的面积;(3)若点Q在抛物线的对称轴上,抛物线上是否存在点P,使得以A、B、Q、P四点为顶点的四边形为平行四边形?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.(6)7.如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B 两点的抛物线y=﹣x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=﹣x2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,直线y=x﹣与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.9.已知正三角形ABC,AB=a,点P,Q分别从A,C两点同时出发,以相同速度作直线运动,且点P沿射线AB方向运动,点Q沿射线BC方向运动.设AP的长为x,△PCQ的面积为S,(1)求S关于x的函数关系式;(2)当AP的长为多少时,△PCQ的面积和△ABC 的面积相等?10.已知抛物线C:y=x2﹣(m+1)x+1的顶点在坐标轴上.(1)求m的值;(2)m>0时,抛物线C向下平移n(n>0)个单位后与抛物线C1:y=ax2+bx+c 关于y轴对称,且C1过点(n,3),求C1的函数关系式;(3)﹣3<m<0时,抛物线C的顶点为M,且过点P(1,y0).问在直线x=﹣1上是否存在一点Q使得△QPM的周长最小,如果存在,求出点Q的坐标,如果不存在,请说明理由.11.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.12.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.(12)(13)13.当﹣2≤x≤2时,求函数y=x2﹣2x﹣3的最大值和最小值.14.如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标.15.如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.16.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.17.已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点(,﹣),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式,及顶点D的坐标;(2)求|PC﹣PD|的最大值及对应的点P 的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.18.设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n(()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.19.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN 与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.20.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.21.如图,在平面直角坐标系xOy中,直线y=2x+4与y轴交于A点,与x轴交于B点,抛物线C1:y=﹣x2+bx+c过A、B两点,与x轴另一交点为C.(1)求抛物线解析式及C点坐标.(2)向右平移抛物线C1,使平移后的抛物线C2恰好经过△ABC的外心,抛物线C1、C2相交于点D,求四边形AOCD的面积.(3)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为抛物线C1上一点,是否存在以点M、Q、P、B为顶点的四边形为平行四边形?若存在,直接写出P点坐标;不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C (0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.23.如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=,c=,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.25.如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直线y=x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.(1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式;(2)求A、B两点的坐标;(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y=x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.26.在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),且与x 轴交于点A,点B(点A在点B的左边),与y轴交于点C.(1)填空:b=,c=,直线AC的解析式为;(2)直线x=t与x轴相交于点H.①当t=﹣3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;②当﹣3<t<﹣1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.27.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).28.如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A、点B、点C的坐标;(2)求直线BD的解析式;(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.29.如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.(1)直接写出点A,C,D的坐标;(2)当四边形ABDE是矩形时,求a的值及抛物线y2的解析式;(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.30.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B (0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.第11页(共11页)。

2016年全国中考数学真题分类 二次函数的图象与性质(习题解析)

2016年全国中考数学真题分类 二次函数的图象与性质(习题解析)

2016年全国中考数学真题分类二次函数概念、性质和图象一、选择题10.(2016内蒙古呼和浩特,10,3分)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A.6 B.3 C.﹣3 D.0【考点】根与系数的关系;二次函数的最值.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m ﹣1)2+(n﹣1)2有最小值,代入即可得到结论.【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.10.(2分)(2016•沈阳,10,2分)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【解答】解:y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点横坐标分别是﹣3、1.又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想.9.(2016四川攀枝花,9,3分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【考点】二次函数图象与系数的关系.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C 错误;由a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.【答案】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.12.(2016广西南宁,12,3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.7.(2016湖南常德,7,3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【答案】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.11.(2016四川眉山,11,3分)若抛物线不动,将平面直角坐标系xoy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.2(2)5=-+y x=-+B.2(2)3y xC.21=+y xy x=-D.2410.(2016陕西10,3分)已知抛物线322+--=x x y 与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为 【 D 】A.21B. 55 C. 552 D. 221.(2016台湾,21)坐标平面上,某二次函数图形的顶点为(2,﹣1),此函数图形与x 轴相交于P 、Q 两点,且PQ=6.若此函数图形通过(1,a )、(3,b )、(﹣1,c )、(﹣3,d )四点,则a 、b 、c 、d 之值何者为正?( ) A .a B .b C .c D .d【考点】抛物线与x 轴的交点.【分析】根据抛物线顶点及对称轴可得抛物线与x 轴的交点,从而根据交点及顶点画出抛物线草图,根据图形易知a 、b 、c 、d 的大小. 【答案】解:∵二次函数图形的顶点为(2,﹣1), ∴对称轴为x=2, ∵×PQ=×6=3,∴图形与x 轴的交点为(2﹣3,0)=(﹣1,0),和(2+3,0)=(5,0), 已知图形通过(2,﹣1)、(﹣1,0)、(5,0)三点, 如图,由图形可知:a=b <0,c=0,d >0. 故选:D .二、填空题18.(2016湖北荆州,18,3分)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为﹣1或2或1 .【分析】直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.16.(2016辽宁大连,16,3分)如图,抛物线y=ax2+bx+c与x轴相交于点A、B (m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).【考点】抛物线与x轴的交点.【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.(2016•大庆,18,3分)直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).【分析】根据直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.【解答】解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴=,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).三、解答题25.(2016•广东茂名,25,8分)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G 为顶点的四边形是正方形时,请求出点M的坐标.【思路分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P的坐标为(x,﹣2x+6),利用勾股定理表示出PC2和PE2,根据题意列出方程,解方程求出x的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.【答案】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G 为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).26.(2016四川眉山,26,11分)已知如图,在平面直角坐标系xoy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xoy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在⑵的条件下,请求出当||PM AM-的最大值时点M的坐标,并直接写出||PM AM-的最大值.【答案】(1)解:设抛物线的解析式为2y ax bx c=++∵A(1,0)、B(0,3)、C(-4,0),∴31640 a b cca b c++=⎧⎪=⎨⎪-+=⎩解之34a=-,94b=-,3c=,∴经过A、B、C三点的抛物线的解析式为239344y x x=--+…3分(2)∵OB=3,OC=4,∴BC=AC=5.当BP平行且等于AC时,四边形ACBP为菱形,∴BP=AC=5,且点P到轴的距离等于OB.∴点P的坐标为(5,3).当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,∴当点P的坐标为(5,3)时,以点A、B、C、P为顶点的四边形为菱形…6分(3)设直线PA的解析式为(0)y kx b k=+≠225xy=-⎧⎨=-⎩.∴53k bk b+=⎧⎨+=⎩. 解之34k=,34b=-.∴直线PA的解析式为3344y x=-……7分当点M与点P、A不在同一直线上时,根据三角形的三边关系||PM AM PA-<,当点M与点P、A在同一直线上时,||PM AM PA-=,∴当点M与点P、A在同一直线上时,||PM AM-的值最大,即点M为直线PA 与抛物线的交点……8分解方程组2334439344y xy x x⎧=-⎪⎪⎨⎪=--+⎪⎩得111xy=⎧⎨=⎩、22592xy=-⎧⎪⎨=-⎪⎩.∴点M的坐标为(1,0)或(-5,-92)时,||PM AM-的值最大……10分此时||PM AM-的最大值为5.……11分24. (2016湖南张家界,24,10分)已知抛物线2-3 (a0) 的图象与y轴交于点A(0,),顶点为B. (1)试确定a的值,并写出B点的坐标;(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;(3)试在x轴上求一点P,使得△PAB的周长取最小值;(4)若将抛物线平移m(m0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由。

初三数学二次函数分类题型及解析[整理版]-12页文档资料

初三数学二次函数分类题型及解析[整理版]-12页文档资料

初三数学二次函数分类题型及解析一.解答题(共10小题)1.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.2.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.3.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.4.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.5.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.6.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?7.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?8.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?9.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y 与x的函数关系图象.(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.10.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.2016年12月09日天津优胜教育二次函数组卷参考答案与试题解析一.解答题(共10小题)1.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0), 解得:, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).2.(2016•菏泽)在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y=﹣x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.【解答】解:(1)由题意解得,∴抛物线解析式为y=x 2﹣x+2.(2)∵y=x 2﹣x+2=(x ﹣1)2+.∴顶点坐标(1,),∵直线BC 为y=﹣x+4,∴对称轴与BC 的交点H (1,3),∴S △BDC =S △BDH +S △DHC =•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.3.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.4.(2016•大连)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d 最大===,∴D 点的坐标为(,). 5.(2016•黔南州)已知二次函数y=x 2+bx+c 的图象与y 轴交于点C (0,﹣6),与x 轴的一个交点坐标是A (﹣2,0).(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移个单位长度,当 y <0时,求x 的取值范围.【解答】解:(1)∵把C (0,﹣6)代入抛物线的解析式得:C=﹣6,把A (﹣2,0)代入y=x 2+bx ﹣6得:b=﹣1,∴抛物线的解析式为y=x 2﹣x ﹣6.∴y=(x ﹣)2﹣.∴抛物线的顶点坐标D (,﹣).(2)二次函数的图形沿x 轴向左平移个单位长度得:y=(x+2)2﹣. 令y=0得:(x+2)2﹣=0,解得:x 1=,x 2=﹣.∵a >0,∴当y <0时,x 的取值范围是﹣<x <. 6.(2016•咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.7.(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.8.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y (个)与售价x (元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y=180﹣10(x ﹣12)=﹣10x+300(12≤x ≤30).(2)设王大伯获得的利润为W ,则W=(x ﹣10)y=﹣10x 2+400x ﹣3000,令W=840,则﹣10x 2+400x ﹣3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x 2+400x ﹣3000=﹣10(x ﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W 取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.9.(2016•云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.10.(2016•湖北襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.【解答】解:(1)当40≤x<60时,W=(x﹣30)(﹣2x+140)=﹣2x2+200x﹣4200,当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣x2+110x﹣2400;(2)当40≤x<60时,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∴当x=50时,W取得最大值,最大值为800万元;当60≤x≤70时,W=﹣x2+110x﹣2400=﹣(x﹣55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W取得最大值,最大值为:﹣(60﹣55)2+625=600,∵800>600,∴当x=50时,W取得最大值800,答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元;(3)当40≤x<60时,由W≥750得:﹣2(x﹣50)2+800≥750,解得:45≤x≤55,当60≤x≤70时,W的最大值为600<750,∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x≤55.希望以上资料对你有所帮助,附励志名言3条:1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。

2016年各地数学中考试题分类汇编-----二次函数(解析版)

2016年各地数学中考试题分类汇编-----二次函数(解析版)

2016年各地数学中考试题分类汇编---- 二次函数一.选择题(共20小题)1.(2016•鄂州)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B 两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c(a≠0)有一个根为﹣其中正确的结论个数有()A.1个B.2个C.3个D.4个【分析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.【解答】解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以﹣>0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac﹣b+1=0,两边同时乘c可得ac2﹣bc+c=0,即方程有一个根为x=﹣c,由②可知﹣c=OA,而当x=OA是方程的根,∴x=﹣c是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.2.(2016•长沙)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.3.(2016•资阳)已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A.m=n B.m=n C.m=n2D.m=n2【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣,m),B(﹣+,m),将A点坐标代入抛物线解析式,得m=(﹣﹣)2+(﹣﹣)b+c,即m=﹣+c,∵b2=4c,∴m=n2,故选D.【点评】本题考查的是抛物线与x轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.4.(2016•南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.5.(2016•滨州)抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.3【分析】对于抛物线解析式,分别令x=0与y=0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数.【解答】解:抛物线y=2x2﹣2x+1,令x=0,得到y=1,即抛物线与y轴交点为(0,1);令y=0,得到2x2﹣2x+1=0,即(x﹣1)2=0,解得:x1=x2=,即抛物线与x轴交点为(,0),则抛物线与坐标轴的交点个数是2,故选C【点评】此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点.6.(2016•台湾)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B 两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【分析】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【解答】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.故选:D.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.7.(2016•台湾)坐标平面上,某二次函数图形的顶点为(2,﹣1),此函数图形与x轴相交于P、Q两点,且PQ=6.若此函数图形通过(1,a)、(3,b)、(﹣1,c)、(﹣3,d)四点,则a、b、c、d之值何者为正?()A.a B.b C.c D.d【分析】根据抛物线顶点及对称轴可得抛物线与x轴的交点,从而根据交点及顶点画出抛物线草图,根据图形易知a、b、c、d的大小.【解答】解:∵二次函数图形的顶点为(2,﹣1),∴对称轴为x=2,∵×PQ=×6=3,∴图形与x轴的交点为(2﹣3,0)=(﹣1,0),和(2+3,0)=(5,0),已知图形通过(2,﹣1)、(﹣1,0)、(5,0)三点,如图,由图形可知:a=b<0,c=0,d>0.故选:D.【点评】本题主要考查抛物线与x轴的交点,根据抛物线的对称性由对称轴及交点距离得出两交点坐标是解题的关键.8.(2016•永州)抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣2【分析】由抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.【解答】解:∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选A.【点评】本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>0;②抛物线与x轴无交点,则△<0;③抛物线与x轴有一个交点,则△=0.9.(2016•兰州)二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4【分析】根据配方法,可得顶点式函数解析式.【解答】解:y=x2﹣2x+4配方,得y=(x﹣1)2+3,故选:B.【点评】本题考查了二次函数的形式你,配方法是解题关键.10.(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若1≤x≤3<h,当x=3时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.11.(2016•舟山)二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.【分析】结合二次函数图象的开口方向、对称轴以及增减性进行解答即可.【解答】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=,所以m+n=﹣2+=.故选:D.【点评】本题考查了二次函数的最值问题,二次函数的增减性,根据函数解析式求出对称轴解析式是解题的关键.12.(2016•兰州)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c 的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【分析】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y 随x的增大而减小,据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,可判断y1=y2>y3.【解答】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选D.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.13.(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A (x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【解答】解:y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点横坐标分别是﹣3、1.又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想.14.(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y 轴交于(0,c).15.(2016•孝感)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x 轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.16.(2016•巴中)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中,正确结论的个数是()A.1 B.2 C.3 D.4【分析】①根据抛物线y轴交点情况可判断;②根据点离对称轴的远近可判断;③根根据抛物线对称轴可判断;④根据抛物线与x轴交点个数以及不等式的性质可判断.【解答】解:由抛物线交y轴的正半轴,∴c>0,故①正确;∵对称轴为直线x=﹣1,∴点B(﹣,y1)距离对称轴较近,∵抛物线开口向下,∴y1>y2,故②错误;∵对称轴为直线x=﹣1,∴﹣=﹣1,即2a﹣b=0,故③正确;由函数图象可知抛物线与x轴有2个交点,∴b2﹣4ac>0即4ac﹣b2<0,∵a<0,∴>0,故④错误;综上,正确的结论是:①③,故选:B.【点评】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.17.(2016•广安)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4【分析】直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选:B.【点评】此题主要考查了二次函数图象与系数的关系,正确把握二次函数与方程之间的关系是解题关键.18.(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y<0,即a﹣b+c<0,∴a+2a+c<0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x 轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.19.(2016•随州)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣=2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.(2016•烟台)二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①② B.①③ C.②③ D.①②③【分析】根据抛物线与x轴有两个交点即可判断①正确,根据x=﹣1,y<0,即可判断②错误,根据对称轴x>1,即可判断③正确,由此可以作出判断.【解答】解:∵抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴4ac<b2,故①正确,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,故②错误,∴对称轴x>1,a<0,∴﹣>1,∴﹣b<2a,∴2a+b>0,故③正确.故选B.【点评】本题考查二次函数图象与系数的关系,二次函数的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.。

九年级数学二次函数的应用分类整理超级全面中考必看

九年级数学二次函数的应用分类整理超级全面中考必看

二次函数的应用二次函数实际应用分类众多,分为四类,以利润类型和面积类型为主。

一、利润问题1.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数).(1)每件商品的售价上涨x元后,每件商品的售价变为元,每件商品的利润为元,每个月就会少卖出件(用含有x的代数式表示).(2)每件商品的售价定为多少元时,每个月的利润恰好是1920元?2.新欣商场经营某种新型电子产品,购进时的价格为20元/件.根据市场预测,在一段时间内,销售价格为40元/件时,销售量为200件,销售单价每降低1元,就可多售出20件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)写出销售该产品所获利润W(元)与销售单价x(元)之间的函数关系式,并求出商场获得的最大利润;(3)若商场想获得不低于4000元的利润,同时要完成不少于320件的该产品销售任务,该商场应该如何确定销售价格.3.银泰百货名创优品店购进600个钥匙扣,进价为每个8元.第一周以每个12元的价格售出200个,第二周若按每个12元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售.据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价,单价降低x元销售,销售一周后,商店对剩余钥匙扣清仓处理,以每个6元的价格全部售出.(1)如果这批钥匙扣共获利1050元,那么第二周每个钥匙扣的销售价格为多少元?(2)这次降价活动,1050元是最高利润吗?若是,说明理由;若不是,求出最高利润.4.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?5.“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数关系:y =﹣4x+220(10≤x≤50,且x是整数),设影城每天的利润为w(元)(利润=票房收入﹣运营成本).(1)试求w与x之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?A B C D 25m 图4 (2)问哪一天的销售利润最大?最大日销售利润为多少?二、面积问题1.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图4). 若设绿化带的BC 边长为xm ,绿化带的面积为2ym .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 为何值时,满足条件的绿化带的面积最大?2.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃。

2016全国各地中考数学分类汇编:二次函数(含解析)讲解

2016全国各地中考数学分类汇编:二次函数(含解析)讲解

2016年全国各地中考数学分类汇编:二次函数一、 选择题1.(2016·山东省滨州市·3分)抛物线y=2x 2﹣2x+1与坐标轴的交点个数是( )A .0B .1C .2D .3【考点】抛物线与x 轴的交点. 【专题】二次函数图象及其性质.【分析】对于抛物线解析式,分别令x=0与y=0求出对应y 与x 的值,即可确定出抛物线与坐标轴的交点个数.【解答】解:抛物线y=2x 2﹣2x+1,令x=0,得到y=1,即抛物线与y 轴交点为(0,1);令y=0,得到2x 2﹣2x+1=0,即(x ﹣1)2=0,解得:x 1=x 2=,即抛物线与x 轴交点为(,0),则抛物线与坐标轴的交点个数是2, 故选C【点评】此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点.2.(2016·山东省滨州市·3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x 2+5x+6,则原抛物线的解析式是( )A .y=﹣(x ﹣)2﹣B .y=﹣(x+)2﹣C .y=﹣(x ﹣)2﹣D .y=﹣(x+)2+【考点】二次函数图象与几何变换.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.【解答】解:∵抛物线的解析式为:y=x 2+5x+6,∴绕原点选择180°变为,y=﹣x 2+5x ﹣6,即y=﹣(x ﹣)2+,∴向下平移3个单位长度的解析式为y=﹣(x ﹣)2+﹣3=﹣(x ﹣)2﹣.故选A .【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.3.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.4.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c的图象相比较看是否一致.【解答】解:A 、由抛物线可知,a <0,由直线可知,故本选项错误;B 、由抛物线可知,a >0,x=﹣>0,得b <0,由直线可知,a >0,b >0,故本选项错误;C 、由抛物线可知,a <0,x=﹣<0,得b <0,由直线可知,a <0,b <0,故本选项正确;D 、由抛物线可知,a <0,x=﹣<0,得b <0,由直线可知,a <0,b >0故本选项错误.故选C .5.(2016·福建龙岩·4分)已知抛物线y=ax 2+bx+c 的图象如图所示,则|a ﹣b+c|+|2a+b|=( )A .a+bB .a ﹣2bC .a ﹣bD .3a 【考点】二次函数图象与系数的关系.【分析】观察函数图象找出“a >0,c=0,﹣2a <b <0”,由此即可得出|a ﹣b+c|=a ﹣b ,|2a+b|=2a+b ,根据整式的加减法运算即可得出结论. 【解答】解:观察函数图象,发现: 图象过原点,c=0; 抛物线开口向上,a >0; 抛物线的对称轴0<﹣ab2<1,﹣2a <b <0.∴|a ﹣b+c|=a ﹣b ,|2a+b|=2a+b , ∴|a ﹣b+c|+|2a+b|=a ﹣b+2a+b=3a . 故选D .6.(2016·广西桂林·3分)已知直线y=﹣3x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣3)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.7.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.8.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.9.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.10.(2016贵州毕节3分)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.11. (2016·浙江省绍兴市·4分)抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【考点】二次函数的性质.【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.12. (2016·湖北随州·3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣=2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.13.(2016·四川南充)抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=﹣2 D.直线x=2【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选B.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣.14.(2016·四川泸州)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【考点】二次函数的性质.【分析】首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【解答】解:依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.15.(2016·四川攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0B.a+b+c>0C.3a﹣c=0D.当a=时,△ABD是等腰直角三角形【考点】二次函数图象与系数的关系.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误;由a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a=,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y=x2﹣x﹣,把x=1代入得y=﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.【点评】本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).16.(2016·黑龙江齐齐哈尔·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为负数可得到3a+c<0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y<0,即a﹣b+c<0,∴a+2a+c<0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.17.(2016·湖北黄石·3分)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A.b≥B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x 轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥,故选A.【点评】此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b的不等式组解决问题.18.(2016·湖北荆门·3分)若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7【考点】二次函数的性质;解一元二次方程-因式分解法.【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.19.(2016·青海西宁·3分)如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s 的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm2【考点】解直角三角形;二次函数的最值.【分析】先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ的长,设△PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可.【解答】解:∵tan∠C=,AB=6cm,∴=,∴BC=8,由题意得:AP=t,BP=6﹣t,BQ=2t,设△PBQ的面积为S,则S=×BP×BQ=×2t×(6﹣t),S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ的最大面积为9cm2;故选C.20. (2016·陕西·3分)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.21. (2016·四川眉山·3分)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+4【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【点评】本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.二、填空题1.(2016·山东省菏泽市·3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=﹣1.【考点】二次函数图象与几何变换;抛物线与x轴的交点.【专题】规律型.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.2.(2016·黑龙江哈尔滨·3分)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【考点】二次函数的最值.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.3.(2016河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】二次函数的性质;二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.4.(2016·四川南充)已知抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=经过点(a,bc),给出下列结论:①bc>0;②b+c>0;③b,c是关于x的一元二次方程x2+(a﹣1)x+=0的两个实数根;④a﹣b﹣c≥3.其中正确结论是①③(填写序号)【分析】根据抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=经过点(a,bc),可以得到a>0,a、b、c的关系,然后对a、b、c进行讨论,从而可以判断①②③④是否正确,本题得以解决.【解答】解:∵抛物线y=ax2+bx+c开口向上且经过点(1,1),双曲线y=经过点(a,bc),∴∴bc>0,故①正确;∴a>1时,则b、c均小于0,此时b+c<0,当a=1时,b+c=0,则与题意矛盾,当0<a<1时,则b、c均大于0,此时b+c>0,故②错误;∴x2+(a﹣1)x+=0可以转化为:x2+(b+c)x+bc=0,得x=b或x=c,故③正确;∵b,c是关于x的一元二次方程x2+(a﹣1)x+=0的两个实数根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,当a>1时,2a﹣1>3,当0<a<1时,﹣1<2a﹣1<3,故④错误; 故答案为:①③.【点评】本题考查二次函数与图象的关系,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.5.(2016·四川泸州)若二次函数y=2x 2﹣4x ﹣1的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,则+的值为 ﹣ .【考点】抛物线与x 轴的交点.【分析】设y=0,则对应一元二次方程的解分别是点A 和点B 的横坐标,利用根与系数的关系即可求出+的值.【解答】解:设y=0,则2x 2﹣4x ﹣1=0,∴一元二次方程的解分别是点A 和点B 的横坐标,即x 1,x 2,∴x 1+x 2=﹣=2,x 1,•x 2=﹣,∵+==﹣,∴原式==﹣,故答案为:﹣.6.(2016·四川内江)二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b |+|3b -2c |,Q =|2a -b |-|3b +2c |,则P ,Q 的大小关系是______. [答案]P >Q[考点]二次函数的图象及性质。

中考二次函数常见题型

中考二次函数常见题型

中考二次函数常见题型
中考二次函数常见题型包括:
1. 确定二次函数的表达式:根据已知条件,如顶点坐标、与x轴的交点坐标等,使用待定系数法求出二次函数的表达式。

2. 二次函数与一元一次方程的关系:根据二次函数图象与x轴的交点,求得一元二次方程的根。

3. 二次函数的增减性:根据二次函数的开口方向以及对称轴,判断函数的增减性。

4. 二次函数图象的平移:通过平移规则,将一个二次函数图象平移到指定位置,再根据平移后的顶点坐标求得新的二次函数表达式。

5. 二次函数的最值问题:根据二次函数的顶点和开口方向,求得函数的最大值或最小值。

6. 二次函数与几何图形的综合题:例如,已知抛物线与x轴交于A、B两点,与y轴交于点C,点P是抛物线上的动点,探究四边形ABCP的面积的最大值等。

这些题型涵盖了中考中二次函数的主要考点,可以通过针对性的练习加以掌握。

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结技巧1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。

解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示1,我们要用x分别把h,l表示出来。

经济问题:总利润=出来,如三角形S=hl2总销售额-总成本;总利润=单件利润×销售数量。

解最值问题时,一定要注意自变量的取值范围。

分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。

2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.题型:一、利润最值问题1、某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式1336 8y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b,c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?3、某食品零售店为食品厂供销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?二、面积最值问题1.蒋老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,蒋老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?2、小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?3.如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.三、图形问题1、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是25322y x x =-++,请回答下列问题: (1)花形柱子OA 的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?O 2.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.2103335四、图像问题(一)长度最值、平行四边形问题8.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.O xAMNBPC 题22图(二)周长与面积最值问题9.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.(三)等腰三角形问题10.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(四)直角三角形 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.A CB y x0 1 1(五)圆如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.(六)分段函数、累计二次函数问题11.启优学堂积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线,由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次),公司累积获得的利润y(万元)与销售时间第x月之间的函数关系(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上,该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A、B、C的横坐标分别为4、10、12。

(word版)九年级数学二次函数实际应用分类总结专题

(word版)九年级数学二次函数实际应用分类总结专题

九年级数学二次函数的实际应用题型一、草坪面积问题1.在美化校园的活动中,某兴趣小组用总长为28米的围栏材料,一面靠墙,围成一个矩形花园,墙长8米,设AB的长为x米,矩形花园的面积为S平方米.当x为多少时,S取得最大值,最大值是多少?2.如图,要围成一个如图所示的矩形ABCD花圃,花圃的一边利用20米长的墙,另三边用总长为36米的篱笆恰好围成,设AB边的长为x米.(1)AB边的长为多少时,花圃面积为160m2.(2)当x是多少米时,花圃面积S最大?最大面积是多少?某小区业主委员会决定把一块长50 m,宽30 m的矩形空地建成健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14 m,不大于26 m,设绿化区较长边为xm,活动区的面积为ym2(1)直接写出:①用x的式子表示出口的宽度为____;②y与x的函数关系式及x的取值范围____;(2)求活动区的面积y的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,如果业主委员会投资不得超过72000元来参与建造,当x为整数时,共有几种建造方案?3.如图,利用一面墙(墙的长度为15m),用篱笆围成一个矩形花园ABCD,中间再用一道篱笆隔成两个小矩形,共用去篱笆42m.设平行于墙的一边BC长为x m,花园的面积为S m2.(1)求S与x之间的函数解析式;(2)问花园面积可以达到120平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.4.如图,某小区有一块长为(2a+b)米,宽为(2a−b)米的长方形地块,角上有4个边长为(a−b)米的小正方形空地,开发商计划将阴影部分绿化,其中a>b。

(1)用含有a和b的式子表示绿化的总面积S;(结果用最简形式表示)(2)若a+b=20且33b−a=1,求S的大小;(3)若a+b=20,那么当a=_______米且b=_________米时,有S的最大值为:___________。

中考复习专题二次函数经典分类讲解复习以及练习题

中考复习专题二次函数经典分类讲解复习以及练习题

2a , 4a ⎪⎪ 2a ,4a ⎪⎪ 当x = - 时, y 最小值为当x = - 时, y 最大值为2016 中考复习二次函数知识点分类复习及练习知识要点:• • • • • • • •1、二次函数的定义2、二次函数的图像及性质3、求解析式的三种方法4、a ,b ,c 及相关符号的确定5、抛物线的平移6、二次函数与一元二次方程的关系7、二次函数的应用题8、二次函数的综合运用1、二次函数的定义定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0 ) 定义要点:①a ≠ 0 ②最高次数为 2 ③代数式一定是整式练习:1、y=-x ²,y=2x²-2/x ,y=100-5 x 有____个。

m 2 - m ²,y=3 x²-2x³+5,其中是二次函数的2.当 m_______时,函数 y=(m+1)χ- 2χ +1 是二次函数?2、二次函数的图像及性质yyxx抛物线顶点坐标对称轴位置开口方向增减性最值y=ax 2+bx+c(a>0)⎛ b 4ac -b 2 ⎫ - ⎝ ⎭直线x = - b2a由a,b 和c 的符号确定a>0,开口向上在对称轴的左侧,y 随着x 的增大而减小.b 4ac -b 22a 4ay=ax 2+bx+c (a<0)⎛ b 4ac -b 2 ⎫- ⎝ ⎭直线x = - b2a由a,b 和c 的符号确定a<0,开口向下在对称轴的左侧,y 随着x 的增大而增 大. 在对称轴的右侧, y 随着x 的增大b 4ac -b 22a 4a3、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)2,顶点式:已知抛物线顶点坐标(h,k),通常设抛物线解析式为_______________求出表达式后化为一般形式.y=a(x-h)2+k(a≠0)3,交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________求出表达式后化为一般形式.y=a(x-x1)(x-x2)(a≠0)练习:根据下列条件,求二次函数的解析式。

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)

中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题。

解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量的取值范围。

2.几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论。

3.构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题。

练习题1、(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案2【分析】分别计算三个方案的菜园面积进行比较即可.【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:解法一:如图,过点B作BH⊥AC于H,则BH≤AB=4,∵S△ABC=•AC•BH,∴当BH=4时,△ABC的面积最大为×4×4=8;解法二:过点A作AD⊥BC于D,设CD=x,AD=y,则x2+y2=16,∴S=•BC•AD=•2x•y=xy,∵(x﹣y)2=x2+y2﹣2xy≥0,∴16﹣2xy≥0,∴xy≤8,∴当且仅当x=y=2时,菜园最大面积=8米2;方案3:半圆的半径=米,∴此时菜园最大面积==米2>8米2;故选:C . 2、(2022•襄阳)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m 高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm ,与跳台底部所在水平面的竖直高度为ym ,y 与x 的函数关系式为y =2213212++−x x (0≤x ≤20.5),当她与跳台边缘的水平距离为 m 时,竖直高度达到最大值.【分析】把抛物线解析式化为顶点式,由函数的性质求解即可.【解答】解:y =x 2+x +2=﹣(x ﹣8)2+4,∵﹣<0, ∴当x =8时,y 有最大值,最大值为4,∴当她与跳台边缘的水平距离为8m 时,竖直高度达到最大值.故答案为:8.3、(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y =﹣121x 2+32x +35,则铅球推出的水平距离OA 的长是 m .【分析】根据题目中的函数解析式和图象可知,OA 的长就是抛物线与x 轴正半轴的交点的横坐标的值,然后令y =0求出相应的x 的值,即可得到OA 的长.【解答】解:∵y =﹣x 2+x +,∴当y=0时,0=﹣x2+x+,解得x1=﹣2,x2=10,∴OA=10m,故答案为:10.4、(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为s时,小球达到最高点.【分析】把二次函数解析式化为顶点式,即可得出结论.【解答】解:h=﹣5t2+20t=﹣5(t﹣2)2+20,∵﹣5<0,∴当t=2时,h有最大值,最大值为20,故答案为:2.5、(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).【分析】利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.【解答】解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.6、(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再根据通过把x=4代入抛物线解析式得出y,即可得出答案.【解答】解:以水面所在的直线AB为x轴,以过拱顶C且垂直于AB的直线为y轴建立平面直角坐标系,O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,把A点坐标(﹣3,0)代入抛物线解析式得,9a+2=0,解得:a=﹣,所以抛物线解析式为y=﹣x2+2,当x=4时,y=﹣×16+2=﹣,∴水面下降米,故答案为:.7、(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为m2.【分析】设与墙垂直的一边长为xm,然后根据矩形面积列出函数关系式,从而利用二次函数的性质分析其最值.【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(16﹣2x)m,∴矩形围栏的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x﹣4)2+32,∵﹣2<0,∴当x=4时,矩形有最大面积为32m2,故答案为:32.8、(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t (单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.9、(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为 3.05m,则他距篮筐中心的水平距离OH是m.【分析】根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.【解答】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.10、(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O 点3m.那么喷头高m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.。

(2021年整理)2016.9.20初三数学二次函数知识点总结及经典习题含答案

(2021年整理)2016.9.20初三数学二次函数知识点总结及经典习题含答案

2016.9.20初三数学二次函数知识点总结及经典习题含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016.9.20初三数学二次函数知识点总结及经典习题含答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016.9.20初三数学二次函数知识点总结及经典习题含答案的全部内容。

第二章 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小.2。

2y ax c =+的性质: 上加下减.3. ()2y a x h =-的性质:左加右减。

4。

()2y a x h k =-+的性质:三、二次函数图象的平移1。

平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2。

平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2。

二次函数的实际应用六大压轴题型归纳总结(含答案)

二次函数的实际应用六大压轴题型归纳总结(含答案)

二次函数的实际应用六大压轴题型归纳总结【题型1 利用二次函数解决几何图形问题】【例1】(2020春•萧山区月考)如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)【解题思路】(1)根据2AB+7半径+弧长=6列出代数式即可;(2)设面积为S,列出关于x的二次函数求得最大值即可.【解答过程】解:(1)根据题意得:2AB+7x+πx=2AB+10x=6,整理得:AB=3﹣5x;根据3﹣5x>0,所以x的取值范围是:0<x<3 5;(2)设面积为S,则S=2x(3﹣5x)+32x2=−172x2+6x=−172(x−617)2+1817,当x=617时,S最大=1817.【变式1-1】(2020•安徽模拟)如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.【解题思路】(1)根据矩形的性质得到CD=AB=16,AD=BC=12,根据正方形AEFG和正方形JKCI 形状大小相同,矩形GHID和矩形EBKL形状大小相同,得到DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.【解答过程】解:(1)在矩形ABCD中,CD=AB=16,AD=BC=12,∵正方形AEFG和正方形JKCI形状大小相同,矩形GHID和矩形EBKL形状形状大小相同,AG=x,∴DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,∵S矩形LJHF=FL•LJ,∴y=(2x﹣12)(16﹣2x)=﹣4x2+56x﹣192;(2)由(1)得,y=﹣4x2+56x﹣192=﹣4(x﹣7)2+4,∵FL=2x﹣12>0,LJ=16﹣2x>0,∴6<x<8,∵a=﹣4<0,∴当x=7时,y的最大值=4;故矩形观赏鱼用地LJHF面积的最大值为4m2.【变式1-2】(2020•富顺县三模)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【解题思路】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,再利用二次函数增减性求得最值;(3)根据题意确定x的取值范围,利用二次函数增减性计算即可.【解答过程】解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:{28−x≥ax≥6,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.【变式1-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长. (1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【解题思路】(1)①设AB 的长是x 米,根据矩形的面积公式列出方程; ②列出面积关于x 的函数关系式,再根据函数的性质解答;(2)设AB =x ,能围成的矩形花圃的面积为S ,根据题意列出S 关于x 的函数关系,再通过求最值方法解答.【解答过程】解:(1)①设AB 的长是x 米,则AD =20﹣3x , 根据题意得,x (20﹣3x )=25, 解得:x 1=5,x 2=53, 当x =53时,AD =15>6, ∴x =5, ∴AD =5,答:AD 的长是5米;②设BC 的长是x 米,矩形花圃的最大面积是y 平方米,则AB =13[20﹣x ﹣(x ﹣6)]=263−23x , 根据题意得,y =x (263−23x )=−23x 2+263x =−23(x −132)2+1696(x >6), ∴当x =132时,y 有最大值为1696.答:按图乙的方案,能围成的矩形花圃的最大面积是1696平方米;(2)设BC =x ,能围成的矩形花圃的面积为S ,按图甲的方案,S =x ×20−x 3=−13x 2+203x =−13(x −10)2+1003, ∴在x =a <10时,S 的值随x 的增大而增大,∴当x =a 的最大值n 时,S 的值最大,为S =−13(n −10)2+1003;按图乙方案,S =13[20﹣x ﹣(x ﹣a )]x =−23(x −a+204)2+(a+20)224,∴当x =a+204时,S 的值最大为S =(a+20)224,此时a 取最大值n 时,S 的值最大为S =(n+20)224; ∵(n+20)224−[−13(n ﹣10)2+1003]=9n 2−120n+40024>0, ∴(n+20)224>−13(n −10)2+1003,故第二种方案能围成面积最大的矩形花圃.【题型2 利用二次函数解决销售利润问题】【例2】2020年1月,全国爆发新型冠状病毒肺炎,2月某工厂购进某防护材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价但不高于成本价2倍,经试销,销售量y (千克)与销售单价x (元)的关系如图所示.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少元时,当天该工厂日利润最大,最大日利润为多少元?【解题思路】(1)直接利用待定系数法求出一次函数关系式;(2)利用销量×每件利润=总利润,进而结合二次函数增减性得出答案. 【解答过程】解:(1)设y 与x 的函数关系式为:y =kx +b (k ≠0),根据图象可得方程组{30k +b =14050k +b =100,解得:{k =−2b =200,∴y 与x 的函数关系式为:y =﹣2x +200,x 的取值范围是:30≤x ≤60; (2)设日利润为w ,则可以列出函数关系式为: w =(﹣2x +200)(x ﹣30)﹣450 =﹣2x 2+260x ﹣6450, 当x =−b2a=65, 又∵30≤x ≤60,∴当x =60时,w 取得最大值,w =1950,答:当销售单价为60元时,当天该工厂日利润最大,最大日利润为1950元.【变式2-1】某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解题思路】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【解答过程】解;(1)设y 关于x 的函数解析式为y =kx +b , {85k +b =17595k +b =125,得{k =−5b =600,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【变式2-2】(2020•安徽二模)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解题思路】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x之间的函数关系式,再利用配方法求函数最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【解答过程】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则{100k+b=20 b=30,解得:{k=−110 b=30,故z与x之间的关系式为z=−110x+30;(2)W=zx﹣y=−110x2+30x−110x2=−15x2+30x=−15(x2﹣150x)=−15(x﹣75)2+1125,∵−15<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得110x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=−15(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【变式2-3】(2020•邢台二模)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a 元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.【解题思路】(1)根据实际售价﹣进价=进价×利润率建立关于a的方程,解之可得a的值;用原销售量﹣因价格上涨而减少的销售量可得答案.(2)根据“总利润=每个硒鼓利润×销售量”列出关于x的函数,配方成顶点式,再利用二次函数的性质求解可得;(3)根据以上相等关系,并结合新进价列出关于x的二次函数,找到其对称轴,利用二次函数的增减性求解可得.【解答过程】解:(1)30×0.8﹣a=20%a,解得a=20.y=500﹣10(x﹣30),即y=﹣10x+800(20≤x≤48).(2)根据题意,得W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000.∵﹣10<0,销售单价不能超过48元/个,即当20≤x≤48时,W随x的增大而增大,∴当x=48时,W有最大值,最大值为8960.答:当售价为48元/个时,每月获得的利润最大,最大利润为8960元.(3)根据题意,得G=(x﹣n)(﹣10x+800)=﹣10x2+(800+10n)x﹣800n,对称轴x=80+n 2.∵a=﹣10<0,∵当n ≤x ≤48时,该商品利润G 随x 的增大而增大, ∴80+n 2≥48,解得n ≥16. ∵进价是降低的,∴n 的取值范围是16≤n <20.【题型3 利用二次函数解决抛物线形轨迹问题】【例3】(2020秋•渑池县期末)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,球达到最大高度12米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距8√3米. (1)求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点,并说明理由.【解题思路】(1)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)OA 与水平方向OC 的夹角为30°,OA =8√3米,解直角三角形可求点A 的坐标,把点A 的横坐标x =12代入抛物线解析式,看函数值与点A 的纵坐标是否相符. 【解答过程】解:(1)∵顶点B 的坐标是(9,12), ∴设抛物线的解析式为y =a (x ﹣9)2+12, ∵点O 的坐标是(0,0)∴把点O 的坐标代入得:0=a (0﹣9)2+12, 解得a =−427,∴抛物线的解析式为y =−427(x ﹣9)2+12 即y =−427x 2+83x ;(2)在Rt△AOC中,∵∠AOC=30°,OA=8√3,∴AC=OA•sin30°=8√3×12=4√3,OC=OA•cos30°=8√3×√32=12.∴点A的坐标为(12,4√3),∵当x=12时,y=323≠4√3,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.【变式3-1】如图,运动员甲在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?(3)运动员乙跳离地面时,最高能摸到3.3m,问:在(2)的条件下,运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?【解题思路】(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.(3)当y=3.3m,进而代入函数解析式,求出x的值,即可得出答案.【解答过程】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.(3)由题意可得出:y=3.3,则3.3=﹣0.2x2+3.5解得:x1=1,x2=﹣1,∴2.5﹣1=1.5(m),1.5﹣1=0.5(m)∴乙在距离甲1.5米以内或离篮板0.5米以内能在空中截住球.【变式3-2】(2021•嘉善县一模)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A'(如图3),请直接写出m的取值范围.【解题思路】(1)根据条件可以得到抛物线的顶点坐标是(6,4.4),利用待定系数法即可求得函数的解析式;(2)求出当y=2.44时,x的值,取正;(3)先求出y=0时,x的值,取正,减去恰好击中球门横梁时,足球的水平距离.【解答过程】解:(1)抛物线的顶点坐标是(6,4.4),设抛物线的解析式是:y=a(x﹣6)2+4.4,把(0,0.4)代入得36a+4.4=0.4,解得a=−1 9,则抛物线是y=−19(x﹣6)2+4.4;(2)∵球门高为2.44米,即y=2.44,则有2.44=−19(x﹣6)2+4.4,解得:x1=10.2,x2=1.8,从题干图2中,发现球门在CD右边,∴x=10.2,即足球运动的水平距离是10.2米;(3)不后退时,刚好击中横梁,∴往后退,则球可以进入球门,而当球落地时,球刚好在门口,是一个临界值,当y=0时,有0=−19(x﹣6)2+4.4,解得:x1=6+35√110,x2=6−35√110,取正值,x=6+35√110,∴后退的距离需小于6+35√110−10.2=(35√110−4.2)米故0<m<35√110−4.2.【变式3-3】(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)【解题思路】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6√2=8.4,即可求解.【解答过程】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=−1 50,故抛物线的表达式为:y=−150(x﹣7)2+2.88;当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,当x=18时,y=−150(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6√2=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.【题型4 利用二次函数解决车过隧道问题】【例4】(2020秋•海淀区校级月考)小宇遇到了这样一个问题:如图是一个单向隧道的断面,隧道顶MCN是一条抛物线的一部分,经测量,隧道顶的跨度MN为4m,最高处到地面的距离CO为4m,两侧墙高AM和BN均为3m,今有宽2.4m的卡车在隧道中间行驶,如果卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,那么卡车载物后的限高应是多少米?(精确到0.1m)为解决这个问题,小宇以AB中点O为原点,建立了如图所示的平面直角坐标系,根据上述信息,设抛物线的表达式为y=ax2+c.(1)写出M、C、N、F四个点的坐标;(2)求出抛物的表达式;(3)利用求出的表达式,帮助小宇解决这个问题.【解题思路】(1)根据题中信息直接写出M、C、N、F四个点的坐标即可;(2)将点M、C点的坐标代入抛物线的表达式为y=ax2+c,利用待定系数法求解即;(3)在y=−14x2+4中,令x=1.2,求得相应的y值,从而可得点D的坐标,结合卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,可得卡车载物最高点距地面的距离,然后精确到0.1m,即可得出答案.【解答过程】解:(1)由题意得:M(﹣2,3)、C(0,4)、N(2,3)、F(1.2,0);(2)将M(﹣2,3)、C(0,4)代入y=ax2+c,得:{4a+c=3c=4,解得:{a=−14 c=4,∴抛物的表达式为y =−14x 2+4;(3)在y =−14x 2+4中,令x =1.2,得:y =−14×1.22+4=3.64,∴点D 的坐标为(1.2,3.64),即点D 与地面的距离为3.64m ,∵卡车载物后的最高点E 到隧道顶面对应的点D 的距离应不小于0.6m ,∴点E 离地面的距离不超过3.04m ,∴卡车载物后的限高应是3.0m .【变式4-1】(2021•海城市模拟)如图,隧道的横截面由抛物线形和矩形OABC 构成.矩形一边OA 的长是12m ,另一边OC 的长是1m .抛物线上的最高点D 到地面OA 的距离为7m .以OA 所在直线为x 轴,以OC 所在直线为y 轴,建立平面直角坐标系.(1)求该抛物线所对应的函数表达式.(2)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为5m ,求两排灯之间的水平距离.(3)隧道内车辆双向通行,规定车辆必须在中心线两侧行驶,并保持车辆顶部与隧道有不少于13m 的空隙.现有一辆货运汽车,在隧道内距离道路边缘2m 处行驶,求这辆货运汽车载物后的最大高度.【解题思路】(1)设抛物线所对应的函数表达式为y =a (x ﹣6)2+7,将点C (0,1)代入所设解析式求出a 的值即可得出函数解析式;(2)将y =5代入解析式求出x 的值,将所求x 的值相减可得答案;(3)求出x =2时y 的值,再减去13可得答案. 【解答过程】解:(1)由题意设抛物线所对应的函数表达式为y =a (x ﹣6)2+7,将点C (0,1)代入上式,36a +7=1,解得a =−16,∴该抛物线所对应的函数表达式为y =−16(x −6)2+7.(2)把y=5代入y=−16(x−6)2+7中,−16(x−6)2+7=5,解得x1=6+2√3,x2=6−2√3,6+2√3−(6−2√3)=4√3,所以两排灯之间的水平距离为4√3m;(3)把x=2代入y=−16(x−6)2+7中,y=−16(2−6)2+7=133,13 3−13=4,所以这辆货运汽车载物后的最大高度为4m.【变式4-2】(2020•武汉模拟)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【解题思路】(1)根据题目可知A,B,C的坐标,设出抛物线的解析式代入可求解.(2)把x=5代入可求出支柱的长度,然后算出总造价即可.(3)先求出坦克方队的长,然后算出速度,从而求得通过隧道的时间即可.【解答过程】【解】(1)设y=ax2+c,把C(0,6)、B(10,0)代入,得a=−350,c=6.∴y=−350x2+6.(2)当x=5时,y=−350×52+6=92,∴EF=10−92=112,CD=10﹣6=4,支柱的总造价为2(2×112+2×10+4)=70(万元). (3)∵坦克的高为3米,令y =3时,−350x 2+6=3,解得:x =±5√2,∵7<5√2<8,坦克宽为2米,∴可以并排3辆坦克行驶,此时坦克方阵的长为120÷3×4=160(米),坦克的行驶速度为24km /h =400米/分,∴通过隧道的最短时间为1000+160400=2.9(分).【变式4-3】(2020秋•海州区校级期末)施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM 为16米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x 的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A .D 点在抛物线上.B 、C 点在地面OM 线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.【解题思路】(1)抛物线的顶点坐标为(8,8),则其表达式为:y =a (x ﹣8)2+8,将点O (0,0)代入上式,即可求解;(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x =7.5﹣3.5=4,即可求解;(3)点A 、D 关于函数对称轴对称,则设AD =2m ,则AB =y =−18(x ﹣8)2+8=8−18m 2,w =AB +AD +DC =2m +2AB =−14m 2+2m +16,即可求解.【解答过程】解:(1)抛物线的顶点坐标为(8,8),则其表达式为:y =a (x ﹣8)2+8,将点O (0,0)代入上式得:0=64a +8,解得:a =−18,故函数的表达式为:y =−18(x ﹣8)2+8,即y =−18x 2+2x (0≤x ≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x =7.5﹣3.5=4,当x =4时,y =6,即允许的最大高度为6米,5.8<6,故该车辆能通行;(3)设点B (m ,0),则点A (m ,−18m 2+2m ),由抛物线的表达式知,其对称轴为x =8,则BC =2(8﹣m )=16﹣2m =AD ,则AB =−18m 2+2m ,则设:w =AB +AD +DC =2m +2AB =−14m 2+2m +16,∵−14<0,故w 有最大值,当m =4时,w 的最大值为20,故AB 、AD 、DC 的长度之和的最大值是20.【题型5 利用二次函数解决拱桥形问题】【例5】(2020秋•渝水区校级月考)某河上有抛物线形拱桥,当水面离拱顶5m 时,水面宽8m .一木船宽4m ,高2m ,载货后,木船露出水面的部分为34m .以拱顶O 为坐标原点建立如图所示的平面直角坐标系,A 、B 为抛物线与水面的交点.(1)B 点的坐标为 ;(2)求抛物线解析式;(3)当水面离拱顶1.8米时,木船能否通过拱桥?【解题思路】(1)当水面距拱顶5m 时,水面宽8m ,则B (4,﹣5);(2)设抛物线的解析式为y =ax 2,将点B 的坐标代入上式即可求解;(3)将x =2代入上式,得y =−516x 2=−54,则54+34=2,而1.8<2,即可求解.【解答过程】解:(1)当水面距拱顶5m 时,水面宽8m ,则点B (4,﹣5),故答案为(4,﹣5);(2)设抛物线的解析式为y =ax 2,将点B 的坐标代入上式得﹣5=a ×42,解得a =−516,∴该抛物线的解析式为y =−516x 2; (3)将x =2代入上式,得y =−516x 2=−54, ∵54+34=2,而1.8<2,当水面离拱顶1.8米时,木船不能通过拱桥.【变式5-1】(2020秋•泗阳县期末)河上有一座抛物线形的石拱桥,水面宽6m 时,水面离桥拱顶部3m .(1)如图建立平面直角坐标系,试求抛物线的解析式;(2)一艘装满货物的小船,露出水面部分的高为0.5m ,宽为4m .现因暴雨河水水位上升了1m ,这艘小船能从这座石拱桥下通过吗?请说明理由.【解题思路】(1)根据题意可以知道A 、B 的坐标,在利用点C 得坐标从而求出抛物线的解析式.(2)代入x =2求出y 的值,用其减去1求出可通过船的做最高高度,与0.5比较大小从而得出答案.【解答过程】解:(1)设抛物线的解析式为y =a (x ﹣x 1)(x ﹣x 2).A (﹣3,0),B (3,0),C (0,3).y =a (x +3)(x ﹣3).在将点C (0,3)带入y =a (x +3)(x ﹣3)中的得a =−13,所以抛物线的解析式为y =−13x 2+3,(2)小船可以通过,理由:当x =2时,y =−13×22+3=53,∵53−1=23>0.5,∴暴雨后这艘船能从这座拱桥下通过.【变式5-2】(2021•衢州)如图1是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24m ,在距离D 点6米的E 处,测得桥面到桥拱的距离EF 为1.5m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离.(2)如图2,桥面上方有3根高度均为4m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m .①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【解题思路】根据题意设出适当的二次函数表达式,利用待定系数法求出表达式,再结合图形进行求解即可;【解答过程】解:(1)根据题意可知点F 的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y 1═a 1x 2.将F (6,﹣1.5)代入y 1═a 1x 2有:﹣1.5═36a 1,求得a 1═−124,∴y 1═−124x 2,当x ═12时,y 1═−124×122═﹣6,∴桥拱顶部离水面高度为6m .(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y 2═a 2(x ﹣6)2+1, 将H (0,4)代入其表达式有:4═a 2(0﹣6)2+1,求得a 2═112, ∴右边钢缆所在抛物线表达式为:y 2═112(x ﹣6)2+1,左边钢缆所在抛物线表达式为:y 3═112(x +6)2+1 ②设彩带的长度为Lm ,则L ═y 2﹣y 1═112(x ﹣6)2+1﹣(−124x 2)═18x 2−x +4═18(x −4)2+2, ∴当x ═4时,L 最小值═2,答:彩带长度的最小值是2m .【变式5-3】(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA =8m ,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处,有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y =ax 2+bx +c (a ≠0),该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m (m >0)个单位长度,平移后的函数图象在8≤x ≤9时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【解题思路】(1)根据题意结合图象可以求出函数的顶点B (4,4),先设抛物线的顶点式y =a (x ﹣4)2+4,再根据图象过原点,求出a 的值即可;(2)先求出工人矩原点的距离,再把距离代入函数解析式求出y 的值,然后和1.68比较即可;(3)根据倒影与桥对称,先求出倒影的解析式,再平移m 各单位,根据二次函数的性质求出m 的取值范围.【解答过程】解:(1)如图②,由题意得:水面宽OA 是8m ,桥拱顶点B 到水面的距离是4m ,。

中考 一轮复习 二次函数专题之实际应用问题和线段问题(word版含简单答案)

中考 一轮复习 二次函数专题之实际应用问题和线段问题(word版含简单答案)

二次函数专题一,二次函数实际应用问题(经济类)1.某商家投资销售一种进价为每盏30元的护眼台灯,销售过程中发现,每月销售量y (盏)与销售单价x (元)之间的关系可近似的看作一次函数:10700y x =-+,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)要使每月获得的利润为3000元,那么每月的销售单价定为多少元? (2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?2.某水果批发商场经销一种水果,如果每干克盈利10元,每天可售出500千克,经市场调查发现.在进货价不变的情况下,若每千克涨价一元.日销售量将减少20千克.(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,则每千克应涨价多少元? (2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.3.东莞某镇斥资打造夜市网红街,王阿姨在这夜市做起了地摊生意,他以每件40元的价格购进一种商品,在销售过程中发现这种商品每天的销售量y (件)与每件的销售单价x (元)满足一次函数关系:y =﹣2x +140(x >40).(1)若设每天的利润为w 元,请求出w 与x 的函数关系式;(2)若每天的销售量不少于44件,则销售单价定为多少元时,此时利润最大,最大利润是多少? 4.某经销商经销一种封面为建党100周年的笔记本,每本进价为3元,按每本5元出售,每天可售出30本.调查发现这种笔记本销售单价每提高1元,每天的销售量就会减少3本. (1)当销售单价定为多少元时,该经销商每天销售这笔记本的销售利润为105元?(2)当销售单价定为多少元时,才能使该经销商每天销售这种笔记本所得的利润最大?最大利润是多少元?5.524红薯富含膳食纤维,维生素(A ,B ,C ,D ,E )以及钾,铁等10余种微量元素,被营养学专家称为营养均衡的保健食品,深受广大消费者喜爱.某土特产批发店以30元/箱的价格进货.根据市场调查发现,批发价定位48元/箱时,每天可销售500箱,为保证市场占有率,决定降价销售,发现每箱降价1元,每天可增加销量50箱. (1)写出每天的利润w 与降价x 元的函数关系式; (2)当降价多少元时,每天可获得最大利润,为多少? (3)要使每天的利润为9750元,并让利于民,应降价多少元?6.2022年冬奥会即将在北京召开,某网络经销商销售以冬奥会为主题的文化衫,平均每天可售出30件,每件盈利40元.为了尽快减少库存、增加盈利,该经销商采取了降价措施,经过一段时间的销售发现,销售单价每降低1元,平均每天可多售出3件.(1)若降价x元,则平均每天销售数量为件(用含x的代数式表示);(2)若该经销商每天获得利润1800元,则每件商品应降价多少元?(3)若每件盈利不少于24元,不多于36元,求该经销商每天获得的最高利润和最低利润分别为多少?二,二次函数几何综合(线段类)7.如图,已知直线y=﹣23x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣23x2+bx+c经过A、B两点.(1)求这条抛物线的表达式;(2)直线x=t与该抛物线交于点C,与线段AB交于点D(点D与点A、B不重合),与x轴交于点E,联结AC、BC.①当DECD=AEOE时,求t的值;①当CD平分①ACB 时,求ABC的面积.8.已知抛物线y=ax2+bx+3交y轴于点A,交x轴于点B(﹣3,0)和点C(1,0),顶点为点M.(1)请求出抛物线的解析式和顶点M的坐标;(2)如图1,点E为x 轴上一动点,若AME的周长最小,请求出点E的坐标;(3)点F为直线AB上一个动点,点P 为抛物线上一个动点,若BFP为等腰直角三角形,请直接写出点P的坐标.9.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m).(1)求抛物线的解析式.(2)点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E,求线段PE最大时点P 的坐标.10.综合与探究如图,已知点B (3,0),C (0,-3),经过B .C 两点的抛物线y =x 2-bx +c 与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,求点D 的坐标.(3)若点E (2,-3),在坐标平面内是否存在点P ,使以点A ,B ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 11.综合与探究如图,已知抛物线24y ax bx =++经过(1,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的解析式,连接BC ,并求出直线BC 的解析式;(2)请在抛物线的对称轴上找一点P ,使AP PC +的值最小,此时点P 的坐标是 (3)点Q 在第一象限的抛物线上,连接CQ ,BQ ,求出①BCQ 面积的最大值.(4)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使得以A 、C 、M 、N 四点为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.12.如图,抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点,B ,C 两点的坐标分别为(3,0)和(0,3). (1)直线BC 的解析式为________. (2)求抛物线所对应的函数解析式.(3)①顶点D 的坐标为________;①当0≤x ≤4时,二次函数的最大值为_______,最小值为__________.(4)若点M 是第一象限的抛物线上的点,过点M 作x 轴的垂线交BC 于点N ,求线段MN 的最大值.13.如图,已知抛物线2134y x bx =-++与x 轴交于A 、B 两点,与y 轴交于点C ,若已知B 点的坐标为B (6,0).(1)求抛物线的解析式及其对称轴;(2)在此抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)M 为线段BC 上方抛物线上一点,N 为线段BC 上的一点,若MN ①y 轴,求MN 的最大值;答案第1页,共2页参考答案1.(1)40元;(2)48元时, 3960元 2.(1)涨价5元(2)当涨价为152元时,利润最大,最大利润为6125元 3.(1)w =﹣2x 2+220x ﹣5600(x >40)(2)销售单价定为48元时,利润最大,最大利润是352元4.(1)10元或8元;(2)每本售价定为9元时,利润最大,最大利润是108元 5.(1)()2504009000018w x x x =-++≤≤,(2)当降价4元时,每天可获得最大利润,最大利润为9800(3)应降价5元 6.(1)(30+3x )(2)每件商品应降价20元(3)该经销商每天获得的最高利润和最低利润分别为1875元,1512元7.(1)224233y x x =-++(2)①2;①548.(1)y =-x 2-2x +3;顶点M 的坐标为(-1,4);(2)点E (-37,0);(3)点P 的坐标为(2,-5)或(1,0).9.(1)223y x x =--;(2)P 13(,)22-10.(1)223y x x =--;(2)点D 的坐标为()1,2-;(3)存在,1(2,3)P --,2(6,3)P -,3(0,3)P .答案第2页,共2页11.(1)234y x x =-++;直线BC 的解析式为4y x =-+;(2)35,22P ⎛⎫⎪⎝⎭;(3)8;(4)存在,()3,4或4⎫-⎪⎪⎝⎭或4⎫-⎪⎪⎝⎭.12.(1)3y x =-+ ;(2)2y x 2x 3=-++ ;(3)①()1,4D;①4,-5;(4)9413.(1)抛物线解析式为2134y x x =-++,抛物线对称轴为直线2x =;(2)当P 点坐标为(2,2)时,使得①P AC 的长最小;(3)94。

历年中考二次函数与实际问题1

历年中考二次函数与实际问题1

中考二次函数与实际问题大全利用二次函数解决实际问题关键是把实际问题转化为二次函数模型,有时要根据实际问题的情境建立平面直角坐标系,建立坐标系以简单为原则,例1写出下列各函数关系,并判断它们是什么类型的函数.①圆的面积y(cm2)与它的周长x(cm)之间的函数关系;②某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y (元)与所存年数x之间的函数关系;③菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.[例2]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动.(1)运动第t秒时,△PBQ的面积y(cm²)是多少?(2)此时五边形APQCD的面积是S(cm²),写出S与t的函数关系式,并指出自变量的取值范围.(3)t为何值时s最小,最小值时多少?例 2 :某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y与x之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x取何值时,花园的面积最大,最大面积是多少?解练习1.如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;例3:一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,①根据题意建立直角坐标系,并求出抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程实际问题
一.选择题(共2小题)
1.如图,已知抛物线y1=﹣x2+1,直线y2=﹣x+1,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=2时,y1=﹣3,y2=﹣1,y1<y2,此时M=﹣3.下列判断中:
①当x<0时,M=y1;②当x>0时,M随x的增大而增大;
③使得M大于1的x值不存在;④使得M=的值是﹣或,
其中正确的个数有()
(1)(3)(4)A.1 B.2 C.3 D.4
2.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()A.6厘米B.12厘米C.24厘米D.36厘米
二.填空题(共28小题)
3.如图,在平面直角坐标系中,抛物线y=ax2﹣4ax(a>0)与x轴正半轴交于点C,这条抛物线的对称轴与x轴交于点D,以CD为边作菱形ABCD,若菱形ABCD的顶点A、B
在这条抛物线上,则菱形ABCD的面积为.
4.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan
∠EBA=,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25
单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是s.
5.如图,在平面直角坐标系中,抛物线y=a1(x﹣2)2+2与y=a2(x﹣2)2﹣3的顶点分别为A,B,与x轴分别交于点O,C,D,E.若点D的坐标为(﹣1,0),则△ADE与△BOC 的面积比为.
(5)
6.如图,抛物线y=﹣x2+4x+5与x轴交于A、B两点,与y轴交于点C.已知M(0,1),点P是第一象限内的抛物线上的动点.△PCM是以CM为底的等腰三角形,则点P的坐标为.
(6)(7)
7.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点A、B的横坐标分别为﹣1,3,与y轴负半轴交点C.在下面五个结论中:
①bc>0;②a+b+c<0;③c=﹣3a;④当﹣1<x<3时,y>0;⑤如果△ABC为直角三角形,那么仅a=一种情况,其中正确的结论是.(只填序号)
8.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=3;
③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;
④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.
其中真命题的序号是.
(8)(9)(10)9.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A、B、C、D分别是“芒果”
与坐标轴的交点,AB是半圆的直径,抛物线的解析式为y=x2﹣,则图中CD的长为.
10.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D 的横坐标的最大值为.
11.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称
得C3,连接C1与C3的顶点,则图中阴影部分的面积为.
12.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为.
(12)(16)(17)13.已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.
14.已知抛物线y=ax2+bx+c与双曲线y=有三个交点A(﹣3,m),B(﹣1,n),C(2,
p),则不等式ax3+bx2+cx﹣k2>0的解集为.
15.已知y=x2+mx﹣6,当1≤m≤3时,y<0恒成立,那么实数x的取值范围是.16.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D 在该抛物线上,坐标为(m,c),则点A的坐标是.
17.如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5
的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当
PQ=BQ时,a的值是.
18.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.
(18)(20)
19.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.
20.如图,正方形OABC和正方形CDEF在平面直角坐标系中,点O,C,F在y轴上,点O为坐标原点,点M为OC的中点,抛物线y=ax2+b经过M,B,E三点,则的值为.
21.如图,抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(﹣3,0),点B的坐标为(1,0),点C在y轴的正半轴上,且∠CAB=30°,若直线l:y=x+m 从点C开始沿y轴向下平移.
(1)当直线l上点D满足DA=DC且∠ADC=90°时,m的值为;
(2)以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与抛物线有交点,写出m 的取值范围.
(21)(22)
22.如图,抛物线y=a(x﹣1)2+(a≠0)经过y轴正半轴上的点A,点B,C分别是此抛物线和x轴上的动点,点D在OB上,且AD平分△ABO的面积,过D作DF∥BC交x 轴于F点,则DF的最小值为.
23.如图,抛物线y=ax2﹣4和y=﹣ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为.
(23)(25)
24.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满足=k(k≠0,1),则称y1,
y2互为“相关抛物线”.给出如下结论:
①y1与y2的开口方向,开口大小不一定相同;
②y1与y2的对称轴相同;
③若y2的最值为m,则y1的最值为k2m;
④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.
其中正确的结论的序号是(把所有正确结论的序号都填在横线上).
25.已知抛物线y=ax2﹣4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为.
26.如图,某小区准备用篱笆围成一块矩形花圃ABCD,为了节省篱笆,一边利用足够长的墙,另外三边用篱笆围着,再用两段篱笆EF与GH将矩形ABCD分割成①②③三块矩形区域,而且这三块矩形区域的面积相等,现有总长80m的篱笆,当围成的花圃ABCD的面积最大时,AB的长为m.
(26)(28)
27.一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣,那么铅球运动过程中最高点离地面的距离为米.
28.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式;自变量的取值范围.
29.有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如图,求抛物线的解析式是.
30.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=.
二次函数与一元二次方程实际问题
一.选择题(共2小题)1.C;2.A;
二.填空题(共28小题)
3.2;4.;5.1;6.(2+,3);7.①②③⑤;8.②③;9.;10.8;11.32;12.3;13.1;14.-3<x<-1或x>2;15.-3<x<;16.(-2,0);17.-1,4,4+2,4-2;18.75;19.22;20.1+;21.2-3;-<m<;22.;23.0.16;24.①②④;25.(2,2);26.15;27.3;28.s=-3x2+24x;≤x<8;29.y=-0.04x2+1.6x;30.1.6;。

相关文档
最新文档